101
|
Uribe-Querol E, Rosales C. Control of Phagocytosis by Microbial Pathogens. Front Immunol 2017; 8:1368. [PMID: 29114249 PMCID: PMC5660709 DOI: 10.3389/fimmu.2017.01368] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
Phagocytosis is a fundamental process of cells to capture and ingest foreign particles. Small unicellular organisms such as free-living amoeba use this process to acquire food. In pluricellular organisms, phagocytosis is a universal phenomenon that all cells are able to perform (including epithelial, endothelial, fibroblasts, etc.), but some specialized cells (such as neutrophils and macrophages) perform this very efficiently and were therefore named professional phagocytes by Rabinovitch. Cells use phagocytosis to capture and clear all particles larger than 0.5 µm, including pathogenic microorganisms and cellular debris. Phagocytosis involves a series of steps from recognition of the target particle, ingestion of it in a phagosome (phagocytic vacuole), maturation of this phagosome into a phagolysosome, to the final destruction of the ingested particle in the robust antimicrobial environment of the phagolysosome. For the most part, phagocytosis is an efficient process that eliminates invading pathogens and helps maintaining homeostasis. However, several pathogens have also evolved different strategies to prevent phagocytosis from proceeding in a normal way. These pathogens have a clear advantage to perpetuate the infection and continue their replication. Here, we present an overview of the phagocytic process with emphasis on the antimicrobial elements professional phagocytes use. We also summarize the current knowledge on the microbial strategies different pathogens use to prevent phagocytosis either at the level of ingestion, phagosome formation, and maturation, and even complete escape from phagosomes.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
102
|
Di Cara F, Sheshachalam A, Braverman NE, Rachubinski RA, Simmonds AJ. Peroxisome-Mediated Metabolism Is Required for Immune Response to Microbial Infection. Immunity 2017; 47:93-106.e7. [PMID: 28723556 DOI: 10.1016/j.immuni.2017.06.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/20/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022]
Abstract
The innate immune response is critical for animal homeostasis and is conserved from invertebrates to vertebrates. This response depends on specialized cells that recognize, internalize, and destroy microbial invaders through phagocytosis. This is coupled to autonomous or non-autonomous cellular signaling via reactive oxygen species (ROS) and cytokine production. Lipids are known signaling factors in this process, as the acute phase response of macrophages is accompanied by systemic lipid changes that help resolve inflammation. We found that peroxisomes, membrane-enclosed organelles central to lipid metabolism and ROS turnover, were necessary for the engulfment of bacteria by Drosophila and mouse macrophages. Peroxisomes were also required for resolution of bacterial infection through canonical innate immune signaling. Reduced peroxisome function impaired the turnover of the oxidative burst necessary to fight infection. This impaired response to bacterial challenge affected cell and organism survival and revealed a previously unknown requirement for peroxisomes in phagocytosis and innate immunity.
Collapse
Affiliation(s)
- Francesca Di Cara
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - Avinash Sheshachalam
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Nancy E Braverman
- Research Institute of the McGill University Children's Hospital, Montreal, Quebec H4A 3J1, Canada
| | - Richard A Rachubinski
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
103
|
Kim E, Kim W, Lee S, Chun J, Kang J, Park G, Han I, Yang HJ, Youn H, Youn B. TRAF4 promotes lung cancer aggressiveness by modulating tumor microenvironment in normal fibroblasts. Sci Rep 2017; 7:8923. [PMID: 28827764 PMCID: PMC5566719 DOI: 10.1038/s41598-017-09447-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Normal fibroblasts surrounding tumor cells play a crucial role in cancer progression through formation of the tumor microenvironment. Because factors secreted from normal fibroblasts can modulate the tumor microenvironment, it is necessary to identify key factors associated with regulation of secreted factors and to investigate the molecular mechanisms contributing to the tumor microenvironment formation process. In this study, we found that radiation induced the expression and K63-linkage poly-ubiquitination of TRAF4 in normal lung fibroblasts. The K63-linkage poly-ubiquitinated TRAF4 formed complexes with NOX2 or NOX4 by mediating phosphorylated p47-phox in normal lung fibroblasts. Moreover, we showed that TRAF4 stabilized NOX complexes by decreasing lysosomal degradation of NOX2 and NOX4 after irradiation. NOX complexes increased endosomal ROS levels that were permeable into cytoplasm, leading to NF-κB-mediated ICAM1 up-regulation. Soluble ICAM1 was subsequently secreted into conditioned media of radiation-activated normal lung fibroblasts. The conditioned media from irradiated normal fibroblasts enhanced proliferation and epithelial-mesenchymal transition of non-small cell lung cancer cells both in vitro and in vivo. These results demonstrate that TRAF4 in irradiated fibroblasts is positively associated with aggressiveness of adjacent cancer cells by altering the tumor microenvironment. Thus, we suggest that regulation of TRAF4 might be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- EunGi Kim
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Wanyeon Kim
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Department of Biology Education, Korea National University of Education, Cheongju, 28173, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Jahyun Chun
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - JiHoon Kang
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Gaeul Park
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - IkJoon Han
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Hee Jung Yang
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
104
|
Myricitrin Modulates NADPH Oxidase-Dependent ROS Production to Inhibit Endotoxin-Mediated Inflammation by Blocking the JAK/STAT1 and NOX2/p47 phox Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9738745. [PMID: 28751937 PMCID: PMC5496130 DOI: 10.1155/2017/9738745] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/23/2022]
Abstract
Myricitrin, a naturally occurring polyphenol hydroxy flavonoid, has been reported to possess anti-inflammatory properties. However, the precise molecular mechanism of myricitrin's effects on LPS-induced inflammation is unclear. In the present study, myricitrin significantly alleviated acute lung injury in mice. Myricitrin also markedly suppressed the production of NO, TNF-α, IL-6, and MCP-1 in RAW264.7 macrophage cells. The inhibition of NO was concomitant with a decrease in the protein and mRNA levels of iNOS. The phosphorylation of JAKs and STAT-1 was abrogated by myricitrin. Furthermore, myricitrin inhibited the nuclear transfer and DNA binding activity of STAT1. The JAK-specific inhibitor ruxolitinib simulated the anti-inflammatory effect of myricitrin. However, myricitrin had no impact on the MAPK signalling pathway. Myricitrin attenuated the generation of intracellular ROS by inhibiting the assembly of components of the gp91phox and p47phox. Suppression of ROS generation using NAC or apocynin or by silencing gp91phox and p47phox all demonstrated that decreasing the level of ROS inhibited the LPS-induced inflammatory response. Collectively, these results confirmed that myricitrin exhibited anti-inflammatory activity by blocking the activation of JAKs and the downstream transcription factor STAT1, which may result from the downregulation of NOX2-dependent ROS production mediated by myricitrin.
Collapse
|
105
|
Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Sci Rep 2017; 7:44795. [PMID: 28317932 PMCID: PMC5357938 DOI: 10.1038/srep44795] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/14/2017] [Indexed: 01/17/2023] Open
Abstract
The evolutionarily conserved processes of endosome-lysosome maturation and macroautophagy are established mechanisms that limit survival of intracellular bacteria. Similarly, another emerging mechanism is LC3-associated phagocytosis (LAP). Here we report that an intracellular vacuolar pathogen, Legionella dumoffii, is specifically targeted by LAP over classical endocytic maturation and macroautophagy pathways. Upon infection, the majority of L. dumoffii resides in ER-like vacuoles and replicate within this niche, which involves inhibition of classical endosomal maturation. The establishment of the replicative niche requires the bacterial Dot/Icm type IV secretion system (T4SS). Intriguingly, the remaining subset of L. dumoffii transiently acquires LC3 to L. dumoffii-containing vacuoles in a Dot/Icm T4SS-dependent manner. The LC3-decorated vacuoles are bound by an apparently undamaged single membrane, and fail to associate with the molecules implicated in selective autophagy, such as ubiquitin or adaptors. The process requires toll-like receptor 2, Rubicon, diacylglycerol signaling and downstream NADPH oxidases, whereas ULK1 kinase is dispensable. Together, we have discovered an intracellular pathogen, the survival of which in infected cells is limited predominantly by LAP. The results suggest that L. dumoffii is a valuable model organism for examining the mechanistic details of LAP, particularly induced by bacterial infection.
Collapse
|
106
|
Zhao Z, Xie J, Liu B, Ge X, Song C, Ren M, Zhou Q, Miao L, Zhang H, Shan F, Yang Z. The effects of emodin on cell viability, respiratory burst and gene expression of Nrf2-Keap1 signaling molecules in the peripheral blood leukocytes of blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2017; 62:75-85. [PMID: 28065629 DOI: 10.1016/j.fsi.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
We determined the effects of emodin on the cell viability, respiratory burst activity, mRNA levels of antioxidative enzymes (Cu-Zn SOD, CAT and NOX2), and gene expressions of the Nrf2-Keap1 signaling molecules in the peripheral blood leukocytes of blunt snout bream. Triplicate groups of cultured cells were treated with different concentrations of emodin (0.04-25 μg/ml) for 24 h. Results showed that the emodin caused a dramatic loss in cell viability, and occurred in a dose-dependent manner. Emodin exposure (1-25 μg/ml) were significantly induced the ROS generation compared to the control. The respiratory burst and NADPH oxidase activities were significantly induced at a concentration of 0.20 μg/ml, and inhibited at 25 μg/ml. Besides, mRNA levels of antioxidant enzyme genes were dramatically regulated by emodin exposure for 24 h. During low concentrations of exposure, mRNA levels of Cu-Zn SOD in the cells treated with 0.04, 0.20 μg/ml, CAT, NOX2 and Nrf2 in the cells treated with 1 μg/ml were sharply increased, respectively. Whereas, high concentrations were dramatically down-regulated the gene expressions of CAT in the cells treated with 5, 25 μg/ml and NOX2 in the cells treated with 25 μg/ml. Furthermore, sharp increase in Keap1and Bach1 expression levels were observed a dose-dependent manner. In conclusion, this study demonstrated that emodin could induce antioxidant defenses which were involved in cytotoxic activities, respiratory burst and the transcriptional regulation levels of antioxidant enzymes and Nrf2-Keap1 signaling molecules.
Collapse
Affiliation(s)
- Zhenxin Zhao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Changyou Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Huimin Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Fan Shan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zhenfei Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
107
|
Keller CW, Lünemann JD. Autophagy and Autophagy-Related Proteins in CNS Autoimmunity. Front Immunol 2017; 8:165. [PMID: 28289410 PMCID: PMC5326760 DOI: 10.3389/fimmu.2017.00165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy comprises a heterogeneous group of cellular pathways that enables eukaryotic cells to deliver cytoplasmic constituents for lysosomal degradation, to recycle nutrients, and to survive during starvation. In addition to these primordial functions, autophagy has emerged as a key mechanism in orchestrating innate and adaptive immune responses and to shape CD4+ T cell immunity through delivery of peptides to major histocompatibility complex (MHC) class II-containing compartments (MIICs). Individual autophagy proteins additionally modulate expression of MHC class I molecules for CD8+ T cell activation. The emergence and expansion of autoreactive CD4+ and CD8+ T cells are considered to play a key role in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis. Expression of the essential autophagy-related protein 5 (Atg5), which supports T lymphocyte survival and proliferation, is increased in T cells isolated from blood or brain tissues from patients with relapsing-remitting MS. Whether Atgs contribute to the activation of autoreactive T cells through autophagy-mediated antigen presentation is incompletely understood. Here, we discuss the complex functions of autophagy proteins and pathways in regulating T cell immunity and its potential role in the development and progression of MS.
Collapse
Affiliation(s)
- Christian W Keller
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich , Zürich , Switzerland
| | - Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Zürich, Switzerland; Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
108
|
Expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and mitochondrial oxidative phosphorylation in septic patients. PLoS One 2017; 12:e0172024. [PMID: 28182798 PMCID: PMC5300193 DOI: 10.1371/journal.pone.0172024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/30/2017] [Indexed: 01/05/2023] Open
Abstract
Background and objectives Sepsis is a complex disease that is characterized by activation and inhibition of different cell signaling pathways according to the disease stage. Here, we evaluated genes involved in the TLR signaling pathway, oxidative phosphorylation and oxidative metabolism, aiming to assess their interactions and resulting cell functions and pathways that are disturbed in septic patients. Materials and methods Blood samples were obtained from 16 patients with sepsis secondary to community acquired pneumonia at admission (D0), and after 7 days (D7, N = 10) of therapy. Samples were also collected from 8 healthy volunteers who were matched according to age and gender. Gene expression of 84 genes was performed by real-time polymerase chain reactions. Their expression was considered up- or down-regulated when the fold change was greater than 1.5 compared to the healthy volunteers. A p-value of ≤ 0.05 was considered significant. Results Twenty-two genes were differently expressed in D0 samples; most of them were down-regulated. When gene expression was analyzed according to the outcomes, higher number of altered genes and a higher intensity in the disturbance was observed in non-survivor than in survivor patients. The canonical pathways altered in D0 samples included interferon and iNOS signaling; the role of JAK1, JAK2 and TYK2 in interferon signaling; mitochondrial dysfunction; and superoxide radical degradation pathways. When analyzed according to outcomes, different pathways were disturbed in surviving and non-surviving patients. Mitochondrial dysfunction, oxidative phosphorylation and superoxide radical degradation pathway were among the most altered in non-surviving patients. Conclusion Our data show changes in the expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and oxidative phosphorylation. Importantly, distinct patterns are clearly observed in surviving and non-surviving patients. Interferon signaling, marked by changes in JAK-STAT modulation, had prominent changes in both survivors and non-survivors, whereas the redox imbalance (iNOS signaling, oxidative phosphorylation and superoxide radical degradation) affecting mitochondrial functions was prominent in non-surviving patients.
Collapse
|
109
|
Kuwabara WMT, Curi R, Alba-Loureiro TC. Autophagy Is Impaired in Neutrophils from Streptozotocin-Induced Diabetic Rats. Front Immunol 2017; 8:24. [PMID: 28163707 PMCID: PMC5247474 DOI: 10.3389/fimmu.2017.00024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/06/2017] [Indexed: 01/14/2023] Open
Abstract
We tested the hypothesis that changes reported on functions of neutrophils from streptozotocin-induced diabetic rats involve autophagy impairment. Wistar rats were rendered diabetic by streptozotocin injection (65 mg/kg, i.v.), and the measurements were carried out 2 weeks afterward. Neutrophils were collected through intraperitoneal cavity lavage after 4 h of i.p. oyster glycogen type 2 injection. Neutrophils cultured with PMA (20 nM) for 1 h were used for analysis of plasma membrane integrity, DNA fragmentation, and mitochondrial depolarization by flow cytometry; expression of Atg5, Atg14, Beclin1, LC3BII, and Rab9 by RT-PCR; the contents of caspase 3, LC3BII/LC3BI, and pS6 by western blotting; ATP content by fluorescence essay; reactive oxygen species production by chemiluminescence (Luminol), and autophagy by immunofluorescence tracking LC3B cleavage. Herein, neutrophils from diabetic rats had high DNA fragmentation, depolarization of mitochondrial membrane, low content of ATP, and high content of cleaved caspase 3 after PMA stimulation. Neutrophils from diabetic rats also had low expression of LC3B, failed to increase the expression of Rab9 and Atg14 induced by PMA stimulation. Neutrophils from diabetic animals also had low cleavage of LC3BI to LC3BII and do not present punctate structures that label autophagosomal membranes after stimulus. The changes of neutrophil function reported in diabetic rats do involve impaired autophagy. The suppression of autophagy in neutrophils from diabetic rats may be associated with the activation of the mTOR signaling as indicated by the high content of pS6.
Collapse
Affiliation(s)
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | | |
Collapse
|
110
|
Dixon KB, Davies SS, Kirabo A. Dendritic cells and isolevuglandins in immunity, inflammation, and hypertension. Am J Physiol Heart Circ Physiol 2016; 312:H368-H374. [PMID: 27986660 DOI: 10.1152/ajpheart.00603.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is the major risk factor for morbidity and mortality from myocardial infarction, stroke, heart failure, and chronic kidney disease. Despite its importance, the pathogenesis of essential hypertension is poorly understood. During the past several years, it has become evident that T cells contribute to hypertension. Activated T cells accumulate in the perivascular space and the kidney and release cytokines that promote vascular dysfunction and end-organ damage. Although dendritic cells play a pivotal role in initiating adaptive immune responses, T cells have taken center stage in studies implicating the immune system in the genesis of hypertension. The mechanisms by which T cells are activated and the antigens involved are poorly understood. We recently showed that hypertension is associated with increased dendritic cell production of the TH17 polarizing cytokines, IL-6, IL-1β, and IL-23. This occurs in part by increased superoxide production via NADPH oxidase and protein modification by highly reactive isolevuglandins (IsoLGs). IsoLGs are produced via the isoprostane pathway of free radical-mediated lipid peroxidation and, when adducted to proteins, have the potential to act as neoantigens. In this review, we discuss recent advances in our understanding of the role of antigen-presenting dendritic cells in the pathophysiology of hypertension and highlight potential neoantigens that may contribute to this disease.
Collapse
Affiliation(s)
- Kala B Dixon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sean S Davies
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; and
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville Tennessee
| |
Collapse
|
111
|
p38α has an important role in antigen cross-presentation by dendritic cells. Cell Mol Immunol 2016; 15:246-259. [PMID: 27867197 DOI: 10.1038/cmi.2016.49] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 02/04/2023] Open
Abstract
The role of the p38 signaling pathway in the innate and adaptive immune responses has been well documented, especially in inflammatory cytokine production by dendritic cells (DCs). However, whether the p38 signaling pathway affects the important antigen (Ag) presentation function of DCs remains largely unknown. In this study, we reported that the deletion of p38α resulted in an impaired cross-presentation ability of CD8+ conventional DCs (cDCs) and a reduction in the direct presentation ability of CD8- cDCs ex vivo. Further study revealed that p38α had a crucial role in Ag processing by CD8+ cDCs but did not affect the Ag uptake or co-stimulation of T cells. Moreover, p38α deficiency led to reduced cross-priming of T cells in vivo. The production of the IL-12p40 and IL-12p70 cytokines by p38α-deficient cDCs was also significantly reduced. Our study identified a new role for p38α in modulating the important antigen cross-presentation function of DCs.
Collapse
|
112
|
Geis C, Geuss E, Sommer C, Schmidt HHHW, Kleinschnitz C. NOX4 is an early initiator of neuropathic pain. Exp Neurol 2016; 288:94-103. [PMID: 27856286 DOI: 10.1016/j.expneurol.2016.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/09/2016] [Accepted: 11/12/2016] [Indexed: 02/07/2023]
Abstract
Treatment of neuropathic pain remains challenging as the etiology is heterogeneous and pathomechanisms are incompletely understood. One possible mechanism is oxidative stress due to unphysiological reactive oxygen species (ROS) formation. The only know dedicated enzymatic source of ROS are NADPH oxidases of which the type 4 isoform (NOX4) has been suggested to be involved in the subacute and chronic phase of neuropathic pain. Here, we aim to translate this finding into a treatment strategy by examining the efficacy of the NOX1/4-specific inhibitor GKT136901 using the chronic constriction injury (CCI) mouse model of neuropathic pain. Unexpectedly, post-nerve lesion treatment using GKT136901 was ineffective to reduce pain-related behavior after CCI. We therefore re-investigated the role of NOX4 using an independent KO mouse model. Early after CCI we found an increase in pro-inflammatory cytokines, ROS formation and the oxidative stress marker nitrotyrosine in the lesioned nerve together with an upregulated Nox4 gene expression. In NOX4 KO mice, mechanical allodynia was markedly reduced from day 4 after nerve injury as were all ROS related and acute biomarkers. In addition, we observed a reduction in the CCI-induced upregulation of pro-inflammatory cytokines in the sciatic nerve and dorsal root ganglia along with NOX4-deficiency. Thus, we conclude that NOX4 is involved in the development of neuropathic pain states by producing oxidative stress and subsequent cytokine dysregulation at the lesion site. This appears at very early stages immediately after nerve injury explaining ineffectiveness of post-acute pharmacological NOX inhibition. We suggest that future target validation of NOX4 should now focus on defining the possible therapeutic window in human neuropathic pain.
Collapse
Affiliation(s)
- Christian Geis
- Hans-Berger Department of Neurology and Center of Sepsis Control and Care, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany; Department of Neurology, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany.
| | - Eva Geuss
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| | - Claudia Sommer
- Hans-Berger Department of Neurology and Center of Sepsis Control and Care, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | - Harald H H W Schmidt
- Department for Pharmacology, Cardiovascular Research Institute, Maastricht University, (CARIM), PO Box 616, Maastricht, 6200 MD, The Netherlands
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany; Department of Neurology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
113
|
Zheng K, Li Y, Wang S, Wang X, Liao C, Hu X, Fan L, Kang Q, Zeng Y, Wu X, Wu H, Zhang J, Wang Y, He Z. Inhibition of autophagosome-lysosome fusion by ginsenoside Ro via the ESR2-NCF1-ROS pathway sensitizes esophageal cancer cells to 5-fluorouracil-induced cell death via the CHEK1-mediated DNA damage checkpoint. Autophagy 2016; 12:1593-613. [PMID: 27310928 PMCID: PMC5082787 DOI: 10.1080/15548627.2016.1192751] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/18/2023] Open
Abstract
Modulation of autophagy has been increasingly regarded as a promising cancer therapeutic approach. In this study, we screened several ginsenosides extracted from Panax ginseng and identified ginsenoside Ro (Ro) as a novel autophagy inhibitor. Ro blocked the autophagosome-lysosome fusion process by raising lysosomal pH and attenuating lysosomal cathepsin activity, resulting in the accumulation of the autophagosome marker MAP1LC3B/LC3B and SQSTM1/p62 (sequestosome 1) in various esophageal cancer cell lines. More detailed studies demonstrated that Ro activated ESR2 (estrogen receptor 2), which led to the activation of NCF1/p47(PHOX) (neutrophil cytosolic factor 1), a subunit of NADPH oxidase, and subsequent reactive oxygen species (ROS) production. Treatment with siRNAs or inhibitors of the ESR2-NCF1-ROS axis, such as N-acetyl-L-cysteine (NAC), diphenyleneiodonium chloride (DPI), apocynin (ACN), Tiron, and Fulvestrant apparently decreased Ro-induced LC3B-II, GFP-LC3B puncta, and SQSTM1, indicating that ROS instigates autophagic flux inhibition triggered by Ro. More importantly, suppression of autophagy by Ro sensitized 5-fluorouracil (5-Fu)-induced cell death in chemoresistant esophageal cancer cells. 5-Fu induced prosurvival autophagy, and by inhibiting such autophagy, siRNAs against BECN1/beclin 1, ATG5, ATG7, and LC3B enhanced 5-Fu-induced autophagy-associated and apoptosis-independent cell death. We observed that Ro potentiates 5-Fu cytotoxicity via delaying CHEK1 (checkpoint kinase 1) degradation and downregulating DNA replication process, resulting in the delayed DNA repair and the accumulation of DNA damage. In summary, these data suggest that Ro is a novel autophagy inhibitor and could function as a potent anticancer agent in combination therapy to overcome chemoresistance.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yan Li
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shaoxiang Wang
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Xiao Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chenghui Liao
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Xiaopeng Hu
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Long Fan
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Qiangrong Kang
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Yong Zeng
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuli Wu
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Haiqiang Wu
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Jian Zhang
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhendan He
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| |
Collapse
|
114
|
Lei W, Browning JD, Eichen PA, Folk WR, Sun GY, Lubahn DB, Fritsche KL. An Investigation into the Immunomodulatory Activities of Sutherlandia frutescens in Healthy Mice. PLoS One 2016; 11:e0160994. [PMID: 27575007 PMCID: PMC5004858 DOI: 10.1371/journal.pone.0160994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022] Open
Abstract
Sutherlandia frutescens is a medicinal plant that has been traditionally used in southern Africa for cancers, infections, and inflammatory conditions. We recently published experiments demonstrating that an aqueous extract of S. frutescens possessed potent immune-stimulatory activity. This work was carried out with murine macrophages, an immune cell type that plays a pivotal role in host defense from infection and in shaping host inflammatory and immune responses. Here, we conducted a series of follow-up experiments to explore the impact of consuming S. frutescens on host response to bacterial challenge using healthy mice. We found that feeding mice a diet containing S. frutescens failed to significantly alter host response to systemic infection by either a gram-positive or gram-negative bacterium (i.e., L. monocytogenes and E. coli, respectively). In contrast to the in vitro observations, we found no evidence that S. frutescens consumption stimulated in vivo inflammatory responses; instead, consumption of S. frutescens tended to diminish in vivo inflammatory responses. Several possible reasons for this are discussed.
Collapse
Affiliation(s)
- Wei Lei
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Jimmy D. Browning
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Peggy A. Eichen
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - William R. Folk
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Dennis B. Lubahn
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Kevin L. Fritsche
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
115
|
Padgett LE, Tse HM. NADPH Oxidase-Derived Superoxide Provides a Third Signal for CD4 T Cell Effector Responses. THE JOURNAL OF IMMUNOLOGY 2016; 197:1733-42. [PMID: 27474077 DOI: 10.4049/jimmunol.1502581] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/27/2016] [Indexed: 12/13/2022]
Abstract
Originally recognized for their direct induced toxicity as a component of the innate immune response, reactive oxygen species (ROS) can profoundly modulate T cell adaptive immune responses. Efficient T cell activation requires: signal 1, consisting of an antigenic peptide-MHC complex binding with the TCR; signal 2, the interaction of costimulatory molecules on T cells and APCs; and signal 3, the generation of innate immune-derived ROS and proinflammatory cytokines. This third signal, in particular, has proven essential in generating productive and long-lasting immune responses. Our laboratory previously demonstrated profound Ag-specific hyporesponsiveness in the absence of NADPH oxidase-derived superoxide. To further examine the consequences of ROS deficiency on Ag-specific T cell responses, our laboratory generated the OT-II.Ncf1(m1J) mouse, possessing superoxide-deficient T cells recognizing the nominal Ag OVA323-339 In this study, we demonstrate that OT-II.Ncf1(m1J) CD4 T cells displayed a severe reduction in Th1 T cell responses, in addition to blunted IL-12R expression and severely attenuated proinflammatory chemokine ligands. Conversely, IFN-γ synthesis and IL-12R synthesis were rescued by the addition of exogenous superoxide via the paramagnetic superoxide donor potassium dioxide or superoxide-sufficient dendritic cells. Ultimately, these data highlight the importance of NADPH oxidase-derived ROS in providing a third signal for adaptive immune maturation by modulating the IL-12/IL-12R pathway and the novelty of the OT-II.Ncf1(m1J) mouse model to determine the role of redox-dependent signaling on effector responses. Thus, targeting ROS represents a promising therapeutic strategy in dampening Ag-specific T cell responses and T cell-mediated autoimmune diseases, such as type 1 diabetes.
Collapse
Affiliation(s)
- Lindsey E Padgett
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama-Birmingham School of Medicine, Birmingham, AL 35294
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama-Birmingham School of Medicine, Birmingham, AL 35294
| |
Collapse
|
116
|
Effect of Cocaine on HIV Infection and Inflammasome Gene Expression Profile in HIV Infected Macrophages. Sci Rep 2016; 6:27864. [PMID: 27321752 PMCID: PMC4913267 DOI: 10.1038/srep27864] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
We have observed significantly increased HIV infection in HIV infected macrophages in the presence of cocaine that could be due to the downregulation of BST2 restriction factor in these cells. In human inflammasome PCR array, among different involved in inflammasome formation, in HIV infected macrophages in the presence of cocaine, we have observed significant upregulation of NLRP3, AIM2 genes and downstream genes IL-1β and PTGS2. Whereas negative regulatory gene MEFV was upregulated, CD40LG and PYDC1 were significantly downregulated. Among various NOD like receptors, NOD2 was significantly upregulated in both HIV alone and HIV plus cocaine treated cells. In the downstream genes, chemokine (C-C motif) ligand 2 (CCL2), CCL7 and IL-6 were significantly up regulated in HIV plus cocaine treated macrophages. We have also observed significant ROS production (in HIV and/or cocaine treated cells) which is one of the indirect-activators of inflammasomes formation. Further, we have observed early apoptosis in HIV alone and HIV plus cocaine treated macrophages which may be resultant of inflammasome formation and cspase-1 activation. These results indicate that in case of HIV infected macrophages exposed to cocaine, increased ROS production and IL-1β transcription serve as an activators for the formation of NLRP3 and AIM2 mediated inflammasomes that leads to caspase 1 mediated apoptosis.
Collapse
|
117
|
Chen J, Zhao MF, Cao XL, Meng JX, Xing Y, He XY, Jin X, Xu P, Jiang YY. [Effects of iron overload on the peripheral blood T cells in mice]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:535-7. [PMID: 27431085 PMCID: PMC7348332 DOI: 10.3760/cma.j.issn.0253-2727.2016.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Indexed: 11/05/2022]
|
118
|
Li M, Wang J, Song S, Li C. Molecular characterization of a novel nitric oxide synthase gene from Portunus trituberculatus and the roles of NO/O2(-)- generating and antioxidant systems in host immune responses to Hematodinium. FISH & SHELLFISH IMMUNOLOGY 2016; 52:263-277. [PMID: 27033466 DOI: 10.1016/j.fsi.2016.03.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Increasing evidences have established that the nitric oxide synthase (NOS) and NADPH oxidase (NOX) play important roles in host defense system by catalyzing the production of nitrogen oxide (NO) and superoxide anions (O2(-)), respectively. While, there are limited studies to explore the roles of NOS/NOX enzymes in crustacean immunity, and no studies as yet were attempted to elucidate their functions in host immune responses to parasites. In the present study, we cloned a full-length cDNA of NOS and two partial cDNA fragments of NOX and GPx from the economic valuable crab Portunus trituberculatus. The full-length cDNA of NOS was 4002 bp in length that encoded 1203 amino acids containing motifs of the NOS protein and conserved domains. The phylogenetic analysis showed that the NOS protein sequence was clustered together with those of crustacean species in the phylogenetic tree. All of the three novel genes showed high mRNA transcripts in the immune-related tissues (e.g. hemocytes, hepatopancreas) of P. trituberculatus. Striking fluctuation in the transcripts of the critical NO/O2(-)- generating/scavenging related genes (NOS, NOX, CuZnSOD, CAT, GPx) as well as in the enzymatic activities of NOS, NOX, SOD, CAT and GPx were observed in the hemocytes and hepatopancreas of P. trituberculatus post challenged with the parasitic dinoflagellate Hematodinium, indicating that the NO/O2(-)- generating and the antioxidant systems played vital roles in the crustacean innate immunity against the parasitic intrusion. The results indicated a novel respect of the host-parasite interaction between the crab host and the parasitic dinoflagellate Hematodinium.
Collapse
Affiliation(s)
- Meng Li
- Key Lab of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wang
- Key Lab of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuqun Song
- Key Lab of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Caiwen Li
- Key Lab of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
119
|
Wiencke JK, Butler R, Hsuang G, Eliot M, Kim S, Sepulveda MA, Siegel D, Houseman EA, Kelsey KT. The DNA methylation profile of activated human natural killer cells. Epigenetics 2016; 11:363-80. [PMID: 26967308 DOI: 10.1080/15592294.2016.1163454] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states.
Collapse
Affiliation(s)
- John K Wiencke
- a Department of Neurological Surgery , University of California San Francisco , San Francisco , CA
| | - Rondi Butler
- b Brown University , Department of Epidemiology , Providence , RI
| | - George Hsuang
- a Department of Neurological Surgery , University of California San Francisco , San Francisco , CA
| | - Melissa Eliot
- b Brown University , Department of Epidemiology , Providence , RI
| | - Stephanie Kim
- b Brown University , Department of Epidemiology , Providence , RI
| | - Manuel A Sepulveda
- d Janssen Oncology Therapeutic Area, Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson , 1400 Welsh and McKean Roads, Spring House , PA
| | - Derick Siegel
- d Janssen Oncology Therapeutic Area, Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson , 1400 Welsh and McKean Roads, Spring House , PA
| | - E Andres Houseman
- e University of Oregon, College of Public Health and Human Science , Corvallis , OR
| | - Karl T Kelsey
- b Brown University , Department of Epidemiology , Providence , RI.,c Department of Laboratory Medicine and Pathology , Providence , RI
| |
Collapse
|
120
|
van Driel BJ, Liao G, Engel P, Terhorst C. Responses to Microbial Challenges by SLAMF Receptors. Front Immunol 2016; 7:4. [PMID: 26834746 PMCID: PMC4718992 DOI: 10.3389/fimmu.2016.00004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 12/24/2022] Open
Abstract
The SLAMF family (SLAMF) of cell surface glycoproteins is comprised of nine glycoproteins and while SLAMF1, 3, 5, 6, 7, 8, and 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development, and T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils, and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SLAM-associated protein and EAT-2 regulate innate and adaptive immune responses to microbes.
Collapse
Affiliation(s)
- Boaz Job van Driel
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Gongxian Liao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Pablo Engel
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona , Barcelona , Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
121
|
Padgett LE, Anderson B, Liu C, Ganini D, Mason RP, Piganelli JD, Mathews CE, Tse HM. Loss of NOX-Derived Superoxide Exacerbates Diabetogenic CD4 T-Cell Effector Responses in Type 1 Diabetes. Diabetes 2015; 64:4171-83. [PMID: 26269022 PMCID: PMC4657579 DOI: 10.2337/db15-0546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/04/2015] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) play prominent roles in numerous biological systems. While classically expressed by neutrophils and macrophages, CD4 T cells also express NADPH oxidase (NOX), the superoxide-generating multisubunit enzyme. Our laboratory recently demonstrated that superoxide-deficient nonobese diabetic (NOD.Ncf1(m1J)) mice exhibited a delay in type 1 diabetes (T1D) partially due to blunted IFN-γ synthesis by CD4 T cells. For further investigation of the roles of superoxide on CD4 T-cell diabetogenicity, the NOD.BDC-2.5.Ncf1(m1J) (BDC-2.5.Ncf1(m1J)) mouse strain was generated, possessing autoreactive CD4 T cells deficient in NOX-derived superoxide. Unlike NOD.Ncf1(m1J), stimulated BDC-2.5.Ncf1(m1J) CD4 T cells and splenocytes displayed elevated synthesis of Th1 cytokines and chemokines. Superoxide-deficient BDC-2.5 mice developed spontaneous T1D, and CD4 T cells were more diabetogenic upon adoptive transfer into NOD.Rag recipients due to a skewing toward impaired Treg suppression. Exogenous superoxide blunted exacerbated Th1 cytokines and proinflammatory chemokines to approximately wild-type levels, concomitant with reduced IL-12Rβ2 signaling and P-STAT4 (Y693) activation. These results highlight the importance of NOX-derived superoxide in curbing autoreactivity due, in part, to control of Treg function and as a redox-dependent checkpoint of effector T-cell responses. Ultimately, our studies reveal the complexities of free radicals in CD4 T-cell responses.
Collapse
Affiliation(s)
- Lindsey E Padgett
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Brian Anderson
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Chao Liu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Douglas Ganini
- Free Radical Metabolites, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Ronald P Mason
- Free Radical Metabolites, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Jon D Piganelli
- Department of Surgery, Immunology, and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| |
Collapse
|
122
|
Flannagan RS, Heit B, Heinrichs DE. Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus. Pathogens 2015; 4:826-68. [PMID: 26633519 PMCID: PMC4693167 DOI: 10.3390/pathogens4040826] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Habitually professional phagocytes, including macrophages, eradicate microbial invaders from the human body without overt signs of infection. Despite this, there exist select bacteria that are professional pathogens, causing significant morbidity and mortality across the globe and Staphylococcus aureus is no exception. S. aureus is a highly successful pathogen that can infect virtually every tissue that comprises the human body causing a broad spectrum of diseases. The profound pathogenic capacity of S. aureus can be attributed, in part, to its ability to elaborate a profusion of bacterial effectors that circumvent host immunity. Macrophages are important professional phagocytes that contribute to both the innate and adaptive immune response, however from in vitro and in vivo studies, it is evident that they fail to eradicate S. aureus. This review provides an overview of the antimicrobial mechanisms employed by macrophages to combat bacteria and describes the immune evasion strategies and some representative effectors that enable S. aureus to evade macrophage-mediated killing.
Collapse
Affiliation(s)
- Ronald S Flannagan
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Bryan Heit
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David E Heinrichs
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
123
|
Lei W, Browning JD, Eichen PA, Brownstein KJ, Folk WR, Sun GY, Lubahn DB, Rottinghaus GE, Fritsche KL. Unveiling the anti-inflammatory activity of Sutherlandia frutescens using murine macrophages. Int Immunopharmacol 2015; 29:254-262. [PMID: 26585972 DOI: 10.1016/j.intimp.2015.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/20/2015] [Accepted: 11/08/2015] [Indexed: 12/23/2022]
Abstract
Sutherlandia frutescens is a botanical widely used in southern Africa for treatment of inflammatory and other conditions. Previously, an ethanolic extract of S. frutescens (SFE) has been shown to inhibit the production of reactive oxygen species (ROS) and nitric oxide (NO) by murine neurons and a microglia cell line (BV-2 cells). In this study we sought to confirm the anti-inflammatory activities of SFE on a widely used murine macrophage cell line (i.e., RAW 264.7 cells) and primary mouse macrophages. Furthermore, experiments were conducted to investigate the anti-inflammatory activity of the flavonol and cycloartanol glycosides found in high quantities in S. frutescens. While the SFE exhibited anti-inflammatory activities upon murine macrophages similar to that reported with the microglia cell line, this effect does not appear to be mediated by sutherlandiosides or sutherlandins. In contrast, chlorophyll in our extracts appeared to be partly responsible for some of the activity observed in our macrophage-dependent screening assay.
Collapse
Affiliation(s)
- Wei Lei
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jimmy D Browning
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Peggy A Eichen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Korey J Brownstein
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - William R Folk
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - George E Rottinghaus
- Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, MO 65211, USA
| | - Kevin L Fritsche
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
124
|
NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1α/G-CSF axis. Blood 2015; 126:2724-33. [PMID: 26443623 DOI: 10.1182/blood-2015-05-644773] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023] Open
Abstract
The leukocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generates reactive oxygen species essential in microbial killing and regulation of inflammation. Inactivating mutations in this enzyme lead to chronic granulomatous disease (CGD), associated with increased susceptibility to both pyogenic infections and to inflammatory disorders. The role of the NADPH oxidase in regulating inflammation driven by nonmicrobial stimuli is poorly understood. Here, we show that NADPH oxidase deficiency enhances the early local release of interleukin-1α (IL-1α) in response to damaged cells, promoting an excessive granulocyte colony-stimulating factor (G-CSF)-regulated neutrophilic response and prolonged inflammation. In peritoneal inflammation elicited by tissue injury, X-linked Cybb-null (X-CGD) mice exhibited increased release of IL-1α and IL-1 receptor -mediated G-CSF production. In turn, higher levels of systemic G-CSF increased peripheral neutrophilia, which amplified neutrophilic peritoneal inflammation in X-CGD mice. Dampening early neutrophil recruitment by neutralization of IL-1α, G-CSF, or neutrophil depletion itself promoted resolution of otherwise prolonged inflammation in X-CGD. IL-1β played little role. Thus, we identified an excessive IL-1α/G-CSF response as a major driver of enhanced sterile inflammation in CGD in the response to damaged cells. More broadly, these results provide new insights into the regulation of sterile inflammation, and identify the NADPH oxidase in regulating the amplitude of the early neutrophilic response.
Collapse
|
125
|
Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol 2015; 6:472-485. [PMID: 26432659 PMCID: PMC4596921 DOI: 10.1016/j.redox.2015.09.005] [Citation(s) in RCA: 781] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria.
Collapse
|
126
|
Wei J, Zhang M, Zhou J. Myeloid-derived suppressor cells in major depression patients suppress T-cell responses through the production of reactive oxygen species. Psychiatry Res 2015; 228:695-701. [PMID: 26165964 DOI: 10.1016/j.psychres.2015.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Major depression is closely associated with immune dysregulation. Myeloid-derived suppressor cells (MDSCs) are an important suppressor of immune responses. The aim of this study was to evaluate the possible role of MDSCs in major depression patients. We collected peripheral blood mononuclear cells (PBMCs) from 25 major depression patients and 25 healthy donors, and the frequency of MDSCs was determined by flow cytometric analysis. The proportion of MDSCs was increased in the peripheral blood of major depression patients, when compared with healthy controls. Further functional studies revealed that MDSCs from depression patients suppressed T cell function potently. We examined the reactive oxygen species (ROS) content in MDSCs from 6 major depression patients and 6 healthy controls. The ROS content in depression derived MDSCs was significantly elevated, when compared with those from healthy controls. We also examined the arginase activity and NO content in 5 major depression patients and 5 healthy controls, respectively. But no significant changes were detected between two groups. Administration of a ROS inhibitor completely abrogated the suppressive effect of MDSCs on T cells. In conclusion, our study revealed that MDSCs from depression patients suppress T cell reponses in ROS-dependent manner.
Collapse
Affiliation(s)
- Jianyang Wei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ming Zhang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jie Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China; Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
127
|
Diebold BA, Smith SM, Li Y, Lambeth JD. NOX2 As a Target for Drug Development: Indications, Possible Complications, and Progress. Antioxid Redox Signal 2015; 23:375-405. [PMID: 24512192 PMCID: PMC4545678 DOI: 10.1089/ars.2014.5862] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/08/2014] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE NOX2 is important for host defense, and yet is implicated in a large number of diseases in which inflammation plays a role in pathogenesis. These include acute and chronic lung inflammatory diseases, stroke, traumatic brain injury, and neurodegenerative diseases, including Alzheimer's and Parkinson's Diseases. RECENT ADVANCES Recent drug development programs have targeted several NOX isoforms that are implicated in a variety of diseases. The focus has been primarily on NOX4 and NOX1 rather than on NOX2, due, in part, to concerns about possible immunosuppressive side effects. Nevertheless, NOX2 clearly contributes to the pathogenesis of many inflammatory diseases, and its inhibition is predicted to provide a novel therapeutic approach. CRITICAL ISSUES Possible side effects that might arise from targeting NOX2 are discussed, including the possibility that such inhibition will contribute to increased infections and/or autoimmune disorders. The state of the field with regard to existing NOX2 inhibitors and targeted development of novel inhibitors is also summarized. FUTURE DIRECTIONS NOX2 inhibitors show particular promise for the treatment of inflammatory diseases, both acute and chronic. Theoretical side effects include pro-inflammatory and autoimmune complications and should be considered in any therapeutic program, but in our opinion, available data do not indicate that they are sufficiently likely to eliminate NOX2 as a drug target, particularly when weighed against the seriousness of many NOX2-related indications. Model studies demonstrating efficacy with minimal side effects are needed to encourage future development of NOX2 inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Becky A. Diebold
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Susan M.E. Smith
- Department of Biology and Physics, Kennesaw State University, Kennesaw, Georgia
| | - Yang Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - J. David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
128
|
Hultqvist M, Olofsson P, Wallner FK, Holmdahl R. Pharmacological Potential of NOX2 Agonists in Inflammatory Conditions. Antioxid Redox Signal 2015; 23:446-59. [PMID: 24359237 DOI: 10.1089/ars.2013.5788] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE New insights into the role of reactive oxygen species (ROS) show that activators of the phagocyte NADPH oxidase 2 (NOX2) complex have the potential to be therapeutic in autoimmune and inflammatory conditions. It is, however, essential to elucidate the consequence of targeting the NOX2 complex, as it might lead to different outcomes depending on disease context and specificity, dose, and timing of ROS production. RECENT ADVANCES Increasing evidence is suggesting that the role of the NOX2 complex is far more complex than previously anticipated. In addition to the well-described antimicrobial response, ROS also have immune and inflammatory regulatory effects. Compounds increasing NOX2-dependent ROS production have been shown to be effective both in preventing and in treating inflammatory manifestations in animal models of autoimmune diseases. Altogether, these results suggest the possibility of activating the NOX2 complex for the treatment of autoimmune inflammatory diseases while restoring and maintaining a balanced ROS regulation. CRITICAL ISSUES The complexity of the NOX system and the derived ROS is important and must be considered when designing the programs for the development of NOX2-activating drugs, as well as for validation of selected hits, to successfully identify substances effective in treating inflammatory and autoimmune conditions. In addition, it is important to consider the complex downstream immunological effects and safety for drugs that increase the production of ROS. FUTURE DIRECTIONS There is a strong potential for the development of ROS-inducing drugs, targeting the NOX2 complex, which are effective and safe, for the treatment of inflammatory autoimmune disorders. In such drug development, one must carefully investigate the pharmaceutical properties, including both efficacy and safety of the drugs. In addition, the immunological pathways of this new treatment strategy need careful examination.
Collapse
Affiliation(s)
| | | | | | - Rikard Holmdahl
- 2 Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
129
|
Wang WF, Ma L, Liu MY, Zhao TT, Zhang T, Yang YB, Cao HX, Han XH, Li DS. A novel function for fibroblast growth factor 21: stimulation of NADPH oxidase-dependent ROS generation. Endocrine 2015; 49:385-95. [PMID: 25542183 DOI: 10.1007/s12020-014-0502-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/05/2014] [Indexed: 12/27/2022]
Abstract
Fibroblast growth factor 21 (FGF-21) is a major paracrine and endocrine regulator of metabolic homeostasis. Here we demonstrate that FGF-21 is also a potent mediator of innate immunity. Double-staining flow cytometry identified neutrophils and monocytes as the main sources of FGF-21 among circulating leukocytes. Functional assays showed that FGF-21 stimulates phagocytosis and production of reactive oxygen species in neutrophil-like HL-60 cells and monocytic THP-1 cells. The mechanism of action of FGF-21 was observed to involve FGF receptor activation, signal transduction through the PI3K/Akt pathway, and stimulation of NADPH oxidase activity. This study indicates that FGF-21 could be an attractive target for the management of inflammatory disorders.
Collapse
Affiliation(s)
- Wen-fei Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Liu H, Wei X, Kong L, Liu X, Cheng L, Yan S, Zhang X, Chen L. NOD2 is involved in the inflammatory response after cerebral ischemia-reperfusion injury and triggers NADPH oxidase 2-derived reactive oxygen species. Int J Biol Sci 2015; 11:525-35. [PMID: 25892960 PMCID: PMC4400384 DOI: 10.7150/ijbs.10927] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/23/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increasing evidences suggest that innate immunity is involved in cerebral ischemia-reperfusion (I/R) injury, but the liable innate immune receptors have not been completely elucidated. Here, we explored the role of the nucleotide-binding oligomerization domain (NOD)2, a member of the cytosolic NOD-like receptor family, in acute focal cerebral I/R injury. METHODS An in vivo middle cerebral artery occlusion (MCAO) model that in wild type (WT) and NOD2 deficient (NOD2(-/-)) mice and in vitro model of oxygen glucose deprivation and reoxygenation (OGD/R) in cultured primary microglia and astrocytes were used to investigate the expression of NOD2 and explore the roles of NOD2 in ischemic stroke. RESULTS Our results showed that NOD2 expression was significantly increased in microglia and astrocytes in response to the I/R insult. Pretreatment with muramyl dipeptide, an extrinsic ligand of NOD2, significantly increased the infarct volume and neurological dysfunction in mice subjected to MCAO. Genetic ablation of the NOD2 gene significantly improved stroke outcomes and reduced inflammation, as evidenced by a lower expression of the pro-inflammatory cytokines IL-1β, IL-6 and TNFα in conjunction with attenuated activation of nuclear factor κB (NF-κB), p38 mitogen activated protein kinases (MAPK) and JNK. Moreover, NOD2 deficiency prevented the upregulation of the NADPH oxidase (NOX) 2 and ROS generation induced by I/R. Mechanistically, NOD2-induced production of IL-6 in primary cultured microglia was mediated through activation of NOX2. CONCLUSIONS This study showed the contribution of NOD2 to inflammatory response and provided direct evidence that NOX2-mediated oxidative stress as an important target molecule linked NOD2 to inflammatory damage in ischemic stroke. Pharmacological targeting of NOD2-mediated inflammatory response at multiple levels may help design a new approach to develop therapeutic strategies for prevention of deterioration of cerebral function and for the treatment of stroke.
Collapse
Affiliation(s)
- Huiqing Liu
- 1. Department of Pharmacology, School of Medicine, Shandong University, Wenhua West Road 44, Jinan, Shandong 250012, P.R. China
| | - Xinbing Wei
- 1. Department of Pharmacology, School of Medicine, Shandong University, Wenhua West Road 44, Jinan, Shandong 250012, P.R. China
| | - Lingjun Kong
- 1. Department of Pharmacology, School of Medicine, Shandong University, Wenhua West Road 44, Jinan, Shandong 250012, P.R. China
| | - Xiaoqian Liu
- 1. Department of Pharmacology, School of Medicine, Shandong University, Wenhua West Road 44, Jinan, Shandong 250012, P.R. China. ; 2. Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, P.R. China
| | - Li Cheng
- 1. Department of Pharmacology, School of Medicine, Shandong University, Wenhua West Road 44, Jinan, Shandong 250012, P.R. China
| | - Shi Yan
- 3. Department of Obstetrics and Gynaecology, Qilu Hospital of Shandong University, Wenhua West Road 107, Jinan, Shandong 250012, P.R. China
| | - Xiumei Zhang
- 1. Department of Pharmacology, School of Medicine, Shandong University, Wenhua West Road 44, Jinan, Shandong 250012, P.R. China
| | - Lin Chen
- 1. Department of Pharmacology, School of Medicine, Shandong University, Wenhua West Road 44, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
131
|
Wang G, van Driel BJ, Liao G, O’Keeffe MS, Halibozek PJ, Flipse J, Yigit B, Azcutia V, Luscinskas FW, Wang N, Terhorst C. Migration of myeloid cells during inflammation is differentially regulated by the cell surface receptors Slamf1 and Slamf8. PLoS One 2015; 10:e0121968. [PMID: 25799045 PMCID: PMC4370648 DOI: 10.1371/journal.pone.0121968] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/05/2015] [Indexed: 01/22/2023] Open
Abstract
Previous studies have demonstrated that the cell surface receptor Slamf1 (CD150) is requisite for optimal NADPH-oxidase (Nox2) dependent reactive oxygen species (ROS) production by phagocytes in response to Gram- bacteria. By contrast, Slamf8 (CD353) is a negative regulator of ROS in response to Gram+ and Gram- bacteria. Employing in vivo migration after skin sensitization, induction of peritonitis, and repopulation of the small intestine demonstrates that in vivo migration of Slamf1-/- dendritic cells and macrophages is reduced, as compared to wt mice. By contrast, in vivo migration of Slamf8-/- dendritic cells, macrophages and neutrophils is accelerated. These opposing effects of Slamf1 and Slamf8 are cell-intrinsic as judged by in vitro migration in transwell chambers in response to CCL19, CCL21 or CSF-1. Importantly, inhibiting ROS production of Slamf8-/- macrophages by diphenyleneiodonium chloride blocks this in vitro migration. We conclude that Slamf1 and Slamf8 govern ROS–dependent innate immune responses of myeloid cells, thus modulating migration of these cells during inflammation in an opposing manner.
Collapse
Affiliation(s)
- Guoxing Wang
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Boaz J. van Driel
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gongxian Liao
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael S. O’Keeffe
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter J. Halibozek
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jacky Flipse
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Burcu Yigit
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Veronica Azcutia
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Francis W. Luscinskas
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ninghai Wang
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cox Terhorst
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
132
|
Henningham A, Döhrmann S, Nizet V, Cole JN. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 2015; 39:488-508. [PMID: 25670736 PMCID: PMC4487405 DOI: 10.1093/femsre/fuu009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. This review discusses the mechanisms utilized by the bacterial pathogen group A Streptococcus to detoxify reactive oxygen species and survive in the human host under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
133
|
Bruns H, Stenger S. New insights into the interaction of Mycobacterium tuberculosis and human macrophages. Future Microbiol 2015; 9:327-41. [PMID: 24762307 DOI: 10.2217/fmb.13.164] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen. It infects macrophages where it avoids elimination by interfering with host defense mechanisms. Until recently, it was assumed that the acidification of phagosomes is the major strategy of macrophages to eliminate M. tuberculosis. However, there is emerging evidence demonstrating that human macrophages are equipped with additional antimicrobial effector functions. Specifically, autophagy, efferocytosis and antimicrobial peptides have been identified as mechanisms to restrict mycobacterial proliferation. Here we review recent findings on effector functions of human macrophages and mechanisms of the pathogen to interfere with them.
Collapse
Affiliation(s)
- Heiko Bruns
- Department of Internal Medicine 5 - Hematology/Oncology, University of Erlangen, Germany
| | | |
Collapse
|
134
|
Dhiman M, Garg NJ. P47phox-/- mice are compromised in expansion and activation of CD8+ T cells and susceptible to Trypanosoma cruzi infection. PLoS Pathog 2014; 10:e1004516. [PMID: 25474113 PMCID: PMC4256457 DOI: 10.1371/journal.ppat.1004516] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/13/2014] [Indexed: 12/15/2022] Open
Abstract
Macrophage activation of NAD(P)H oxidase (NOX2) and reactive oxygen species (ROS) is suggested to kill Trypanosoma cruzi that causes Chagas disease. However, the role of NOX2 in generation of protective immunity and whether these mechanisms are deregulated in the event of NOX2 deficiency are not known, and examined in this study. Our data showed that C57BL/6 p47(phox-/-) mice (lack NOX2 activity), as compared to wild-type (WT) mice, succumbed within 30 days post-infection (pi) to low doses of T. cruzi and exhibited inability to control tissue parasites. P47(phox-/-) bone-marrow and splenic monocytes were not compromised in maturation, phagocytosis and parasite uptake capacity. The deficiency of NOX2 mediated ROS was compensated by higher level of inducible nitric oxide synthase (iNOS) expression, and nitric oxide and inflammatory cytokine (TNF-α, IFN-γ, IL-1β) release by p47(phox-/-) macrophages as compared to that noted in WT controls infected by T. cruzi. Splenic activation of Th1 CD4(+)T cells and tissue infiltration of immune cells in T. cruzi infected p47(phox-/-) mice were comparable to that noted in infected control mice. However, generation and activation of type 1 CD8(+)T cells was severely compromised in p47(phox-/-) mice. In comparison, WT mice exhibited a robust T. cruzi-specific CD8(+)T cell response with type 1 (IFN-γ(+)TNF-α>IL-4+IL-10), cytolytic effector (CD8(+)CD107a(+)IFN-γ(+)) phenotype. We conclude that NOX2/ROS activity in macrophages signals the development of antigen-specific CD8(+)T cell response. In the event of NOX2 deficiency, a compromised CD8(+)T cell response is generated, leading to increased parasite burden, tissue pathogenesis and mortality in chagasic mice.
Collapse
Affiliation(s)
- Monisha Dhiman
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- * E-mail: (MD); (NJG)
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Department of Pathology, UTMB, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, UTMB, Galveston, Texas, United States of America
- * E-mail: (MD); (NJG)
| |
Collapse
|
135
|
Kirabo A, Fontana V, de Faria APC, Loperena R, Galindo CL, Wu J, Bikineyeva AT, Dikalov S, Xiao L, Chen W, Saleh MA, Trott DW, Itani HA, Vinh A, Amarnath V, Amarnath K, Guzik TJ, Bernstein KE, Shen XZ, Shyr Y, Chen SC, Mernaugh RL, Laffer CL, Elijovich F, Davies SS, Moreno H, Madhur MS, Roberts J, Harrison DG. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest 2014; 124:4642-56. [PMID: 25244096 DOI: 10.1172/jci74084] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 08/04/2014] [Indexed: 12/21/2022] Open
Abstract
Oxidative damage and inflammation are both implicated in the genesis of hypertension; however, the mechanisms by which these stimuli promote hypertension are not fully understood. Here, we have described a pathway in which hypertensive stimuli promote dendritic cell (DC) activation of T cells, ultimately leading to hypertension. Using multiple murine models of hypertension, we determined that proteins oxidatively modified by highly reactive γ-ketoaldehydes (isoketals) are formed in hypertension and accumulate in DCs. Isoketal accumulation was associated with DC production of IL-6, IL-1β, and IL-23 and an increase in costimulatory proteins CD80 and CD86. These activated DCs promoted T cell, particularly CD8+ T cell, proliferation; production of IFN-γ and IL-17A; and hypertension. Moreover, isoketal scavengers prevented these hypertension-associated events. Plasma F2-isoprostanes, which are formed in concert with isoketals, were found to be elevated in humans with treated hypertension and were markedly elevated in patients with resistant hypertension. Isoketal-modified proteins were also markedly elevated in circulating monocytes and DCs from humans with hypertension. Our data reveal that hypertension activates DCs, in large part by promoting the formation of isoketals, and suggest that reducing isoketals has potential as a treatment strategy for this disease.
Collapse
|
136
|
Kim HG, Kim YR, Park JH, Khanal T, Choi JH, Do MT, Jin SW, Han EH, Chung YH, Jeong HG. Endosulfan induces COX-2 expression via NADPH oxidase and the ROS, MAPK, and Akt pathways. Arch Toxicol 2014; 89:2039-50. [PMID: 25199686 DOI: 10.1007/s00204-014-1359-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/28/2014] [Indexed: 01/20/2023]
Abstract
Endosulfan (1,4,5,6,7,7-hexachloro-8,9,10-trinorborn-5-en-2,3-ylenebismet-hylene) is correlated with endocrine disruption, reproductive, and immune dysfunctions. Recently, endosulfan was shown to have an effect on inflammatory pathways, but its influence on cyclooxygenase-2(COX-2) expression is unclear. This study investigated the effects of COX-2 and molecular mechanisms by endosulfan in murine macrophage RAW 264.7 cells. Endosulfan significantly induced COX-2 protein and mRNA levels, as well as COX-2 promoter-driven luciferase activity and the production of prostaglandin E2, a major COX-2 metabolite. Transfection experiments with several human COX-2 promoter constructs revealed that endosulfan activated NF-κB, C/EBP, AP-1, and CREB. Moreover, Akt and mitogen-activated protein kinases (MAPK) were significantly activated by endosulfan. Moreover, endosulfan increased production of the ROS and the ROS-producing NAPDH-oxidase (NOX) family oxidases, NOX2, and NOX3. Endosulfan-induced Akt/MAPK pathways and COX-2 expression were attenuated by DPI, a specific NOX inhibitor, and the ROS scavenger N-acetylcysteine. These results demonstrate that endosulfan induces COX-2 expression via NADPH oxidase, ROS, and Akt/MAPK pathways. These findings provide further insight into the signal transduction pathways involved in the inflammatory effects of endosulfan.
Collapse
Affiliation(s)
- Hyung Gyun Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Young Ran Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Jin Hee Park
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Tilak Khanal
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Jae Ho Choi
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Minh Truong Do
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Sun Woo Jin
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Eun Hee Han
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Young Ho Chung
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea.
| |
Collapse
|
137
|
Nestler J, Liu S, Wen TJ, Paschold A, Marcon C, Tang HM, Li D, Li L, Meeley RB, Sakai H, Bruce W, Schnable PS, Hochholdinger F. Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:729-40. [PMID: 24902980 DOI: 10.1111/tpj.12578] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 05/19/2023]
Abstract
Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map-based cloning revealed that the rth5 gene encodes a monocot-specific NADPH oxidase. RNA-Seq, in situ hybridization and qRT-PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild-type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA-Seq analysis of 6-day-old rth5 versus wild-type primary roots revealed significant over-representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups 'response to oxidative stress' and 'cellulose biosynthesis' were most prominently represented.
Collapse
Affiliation(s)
- Josefine Nestler
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Kim MJ, Nagy LE, Park PH. Globular adiponectin inhibits ethanol-induced reactive oxygen species production through modulation of NADPH oxidase in macrophages: involvement of liver kinase B1/AMP-activated protein kinase pathway. Mol Pharmacol 2014; 86:284-96. [PMID: 24850909 PMCID: PMC6067636 DOI: 10.1124/mol.114.093039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/20/2014] [Indexed: 01/13/2023] Open
Abstract
Adiponectin, an adipokine predominantly secreted from adipocytes, has been shown to play protective roles against chronic alcohol consumption. Although excessive reactive oxygen species (ROS) production in macrophages is considered one of the critical events for ethanol-induced damage in various target tissues, the effect of adiponectin on ethanol-induced ROS production is not clearly understood. In the present study, we investigated the effect of globular adiponectin (gAcrp) on ethanol-induced ROS production and the potential mechanisms underlying these effects of gAcrp in macrophages. Here we demonstrated that gAcrp prevented ethanol-induced ROS production in both RAW 264.7 macrophages and primary murine peritoneal macrophages. Globular adiponectin also inhibited ethanol-induced activation of NADPH oxidase. In addition, gAcrp suppressed ethanol-induced increase in the expression of NADPH oxidase subunits, including Nox2 and p22(phox), via modulation of nuclear factor-κB pathway. Furthermore, pretreatment with compound C, a selective inhibitor of AMPK, or knockdown of AMPK by small interfering RNA restored suppression of ethanol-induced ROS production and Nox2 expression by gAcrp. Finally, we found that gAcrp treatment induced phosphorylation of liver kinase B1 (LKB1), an upstream signaling molecule mediating AMPK activation. Knockdown of LKB1 restored gAcrp-suppressed Nox2 expression, suggesting that LKB1/AMPK pathway plays a critical role in the suppression of ethanol-induced ROS production and activation of NADPH oxidase by gAcrp. Taken together, these results demonstrate that globular adiponectin prevents ethanol-induced ROS production, at least in part, via modulation of NADPH oxidase in macrophages. Further, LKB1/AMPK axis plays an important role in the suppression of ethanol-induced NADPH oxidase activation by gAcrp in macrophages.
Collapse
Affiliation(s)
- Mi Jin Kim
- College of Pharmacy, Yeungnam University, Republic of Korea (M.J.K., P.-H.P.); and Center for Liver Disease Research, Departments of Pathobiology and Gastroenterology, Cleveland Clinic, Cleveland, Ohio (L.E.N.)
| | - Laura E Nagy
- College of Pharmacy, Yeungnam University, Republic of Korea (M.J.K., P.-H.P.); and Center for Liver Disease Research, Departments of Pathobiology and Gastroenterology, Cleveland Clinic, Cleveland, Ohio (L.E.N.)
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Republic of Korea (M.J.K., P.-H.P.); and Center for Liver Disease Research, Departments of Pathobiology and Gastroenterology, Cleveland Clinic, Cleveland, Ohio (L.E.N.)
| |
Collapse
|
139
|
Abkhezr M, Dryer SE. Angiotensin II and canonical transient receptor potential-6 activation stimulate release of a signal transducer and activator of transcription 3-activating factor from mouse podocytes. Mol Pharmacol 2014; 86:150-8. [PMID: 24850910 DOI: 10.1124/mol.114.092536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Previous studies have shown that the transcription factor signal transducer and activator of transcription-3 (STAT3) in podocytes plays an important role in progression of HIV nephropathy and in collapsing forms of glomerulonephritis. Here, we have observed that application of 100 nM angiotensin II (Ang II) to cultured podocytes for 6-24 hours causes a marked increase in the phosphorylation of STAT3 on tyrosine Y705 but has no effect on phosphorylation at serine S727. By contrast, Ang II treatment of short periods (20-60 minutes) caused a small but consistent suppression of tyrosine phosphylation of STAT3. A similar biphasic effect was seen after treatment with the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG), an agent that causes activation of Ca(2+)-permeable canonical transient receptor potential-6 (TRPC6) channels in podocytes. The stimulatory effects of Ang II on STAT3 phosphorylation were abolished by small-interfering RNA knockdown of TRPC6 and also by inhibitors of the Ca(2+)-dependent downstream enzymes calcineurin and Ca(2+)-calmodulin-dependent protein kinase II. The stimulatory effects of Ang II appear to be mediated by secretion and accumulation of an unknown factor into the surrounding medium, as they are no longer detected when medium is replaced every 2 hours even if Ang II is continuously present. By contrast, the inhibitory effect of Ang II on STAT3 phosphorylation persists with frequent medium changes. Experiments with neutralizing and inhibitory antibodies suggest that the STAT3 stimulatory factor secreted from podocytes is not interleukin-6, but also suggest that this factor exerts its actions through a receptor system that requires glycoprotein 130.
Collapse
Affiliation(s)
- Mousa Abkhezr
- Department of Biology and Biochemistry, University of Houston (M.A., S.E.D.), and Division of Nephrology, Baylor College of Medicine (S.E.D.), Houston, Texas
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston (M.A., S.E.D.), and Division of Nephrology, Baylor College of Medicine (S.E.D.), Houston, Texas
| |
Collapse
|
140
|
Mao Y, Poschke I, Kiessling R. Tumour-induced immune suppression: role of inflammatory mediators released by myelomonocytic cells. J Intern Med 2014; 276:154-70. [PMID: 24597954 DOI: 10.1111/joim.12229] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumour-induced immune dysfunction is a serious challenge to immunotherapy for cancer, and intact adaptive and innate cellular immunity is key to its success. Myelomonocytic cells have a central role in this immune suppression, and tumour-associated macrophages, eosinophils, neutrophils and myeloid-derived suppressor cells have all been shown to be of major importance. These myelomonocytic cells secrete a broad repertoire of inflammatory mediators providing them with powerful tools to inhibit tumour-reactive T cells and natural killer cells; free oxygen radicals including reactive oxygen species and NO, arginase, indoleamine 2,3-dioxygenase, prostaglandins, the pro-inflammatory heterodimer S100A8/9 and cytokines, such as granulocyte-macrophage colony-stimulating factor and transforming growth factor-β, have proven particularly potent in suppressing antitumour cellular immunity. Determining which of these factors prevail in individual cancer patients and designing methods aimed at neutralization or inhibition of their effects on target tissues have the potential to greatly enhance the clinical efficacy of immunotherapy.
Collapse
Affiliation(s)
- Y Mao
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
141
|
Chung KJ, Mitroulis I, Wiessner JR, Zheng YY, Siegert G, Sperandio M, Chavakis T. A novel pathway of rapid TLR-triggered activation of integrin-dependent leukocyte adhesion that requires Rap1 GTPase. Mol Biol Cell 2014; 25:2948-55. [PMID: 25057020 PMCID: PMC4230584 DOI: 10.1091/mbc.e14-04-0867] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
TLR2 and TLR5 ligation directly induces β2-integrin activation, promoting cell adhesion to ICAM-1. Systemic in vivo administration of the TLR2 ligand Pam3CSK4 increases integrin-dependent adhesion to endothelium within minutes. The signaling pathway linking TLR ligation with β2-integin activation involves Rac-1, NADPH oxidase 2, and Rap1-GTPase. Rapid β2-integrin activation is indispensable for leukocyte adhesion and recruitment to sites of infection and is mediated by chemokine- or P-selectin glycoprotein ligand-1–induced inside-out signaling. Here we uncovered a novel pathway for rapid activation of integrin-dependent leukocyte adhesion, triggered by toll-like receptor (TLR)–mediated signaling. TLR2 or TLR5 ligation rapidly activated integrin-dependent leukocyte adhesion to immobilized ICAM-1 and fibronectin. Consistently, in vivo administration of the TLR2-ligand Pam3CSK4 increased integrin-dependent slow rolling and adhesion to endothelium within minutes, as identified by intravital microscopy in the cremaster model. TLR2 and TLR5 ligation increased β2-integrin affinity, as assessed by the detection of activation-dependent neoepitopes. TLR2- and TLR5-triggered integrin activation in leukocytes required enhanced Rap1 GTPase activity, which was mediated by Rac1 activation and NADPH oxidase-2–dependent reactive oxygen species production. This novel direct pathway linking initial pathogen recognition by TLRs to rapid β2-integrin activation may critically regulate acute leukocyte infiltration to sites of pathogen invasion.
Collapse
Affiliation(s)
- Kyoung-Jin Chung
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, 01309 Dresden, Germany Institute of Physiology, Technische Universität Dresden, 01309 Dresden, Germany
| | - Ioannis Mitroulis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, 01309 Dresden, Germany Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01309 Dresden, Germany
| | - Johannes R Wiessner
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians Universität, 80539 Munich, Germany
| | - Ying Yi Zheng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Gabriele Siegert
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01309 Dresden, Germany
| | - Markus Sperandio
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians Universität, 80539 Munich, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, 01309 Dresden, Germany Institute of Physiology, Technische Universität Dresden, 01309 Dresden, Germany Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01309 Dresden, Germany Department of Medicine III, Technische Universität Dresden, 01309 Dresden, Germany
| |
Collapse
|
142
|
Pal R, Palmieri M, Loehr JA, Li S, Abo-Zahrah R, Monroe TO, Thakur PB, Sardiello M, Rodney GG. Src-dependent impairment of autophagy by oxidative stress in a mouse model of Duchenne muscular dystrophy. Nat Commun 2014; 5:4425. [PMID: 25028121 PMCID: PMC4101811 DOI: 10.1038/ncomms5425] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/17/2014] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal degenerative muscle disease resulting from mutations in the dystrophin gene. Increased oxidative stress and altered Ca(2+) homeostasis are hallmarks of dystrophic muscle. While impaired autophagy has recently been implicated in the disease process, the mechanisms underlying the impairment have not been elucidated. Here we show that nicotinamide adenine dinucleotide phosphatase (Nox2)-induced oxidative stress impairs both autophagy and lysosome formation in mdx mice. Persistent activation of Src kinase leads to activation of the autophagy repressor mammalian target of rapamycin (mTOR) via PI3K/Akt phosphorylation. Inhibition of Nox2 or Src kinase reduces oxidative stress and partially rescues the defective autophagy and lysosome biogenesis. Genetic downregulation of Nox2 activity in the mdx mouse decreases reactive oxygen species (ROS) production, abrogates defective autophagy and rescues histological abnormalities and contractile impairment. Our data highlight mechanisms underlying the pathogenesis of DMD and identify NADPH oxidase and Src kinase as potential therapeutic targets.
Collapse
Affiliation(s)
- Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michela Palmieri
- Department of Molecular, Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - James A Loehr
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shumin Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Reem Abo-Zahrah
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Tanner O Monroe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Poulami B Thakur
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Marco Sardiello
- Department of Molecular, Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
143
|
Yang P, Huang S, Yan X, Huang G, Dong X, Zheng T, Yuan D, Wang R, Li R, Tan Y, Xu A. Origin of the phagocytic respiratory burst and its role in gut epithelial phagocytosis in a basal chordate. Free Radic Biol Med 2014; 70:54-67. [PMID: 24560860 DOI: 10.1016/j.freeradbiomed.2014.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 11/23/2022]
Abstract
The vertebrate phagocytic respiratory burst (PRB) is a highly specific and efficient mechanism for reactive oxygen species (ROS) production. This mechanism is mediated by NADPH oxidase 2 (NOX2) and used by vertebrate phagocytic leukocytes to destroy internalized microbes. Here we demonstrate the presence of the PRB in a basal chordate, the amphioxus Branchiostoma belcheri tsingtauense (bbt). We show that using the antioxidant NAC to scavenge the production of ROS significantly decreased the survival rates of infected amphioxus, indicating that ROS are indispensable for efficient antibacterial responses. Amphioxus NOX enzymes and cytosolic factors were found to colocalize in the epithelial cells of the gill, intestine, and hepatic cecum and could be upregulated after exposure to microbial pathogens. The ROS production in epithelial cell lysates could be reconstructed by supplementing recombinant cytosolic factors, including bbt-p47phox, bbt-p67phox, bbt-p47phox, and bbt-Rac; the restored ROS production could be inhibited by anti-bbt-NOX2 and anti-bbt-p67phox antibodies. We also reveal that the gut epithelial lining cells of the amphioxus are competent at bacterial phagocytosis, and there is evidence that the PRB machinery could participate in the initiation of this phagocytic process. In conclusion, we report the presence of the classical PRB machinery in nonvertebrates and provide the first evidence for the possible role of PRB in epithelial cell immunity and phagocytosis.
Collapse
Affiliation(s)
- Ping Yang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Xinyu Yan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Guangrui Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Xiangru Dong
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Tingting Zheng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Dongjuan Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Ruihua Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Rui Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Ying Tan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China; Beijing University of Chinese Medicine, Beijing 100029, People׳s Republic of China.
| |
Collapse
|
144
|
Abstract
Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses.
Collapse
Affiliation(s)
- Claudia N Paiva
- Departamento de Imunologia, Instituto de Microbiologia , CCS Bloco D, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
145
|
Khan RT, Yuki KE, Malo D. Fine-mapping and phenotypic analysis of the Ity3 Salmonella susceptibility locus identify a complex genetic structure. PLoS One 2014; 9:e88009. [PMID: 24505352 PMCID: PMC3913713 DOI: 10.1371/journal.pone.0088009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/02/2014] [Indexed: 12/22/2022] Open
Abstract
Experimental animal models of Salmonella infections have been widely used to identify genes important in the host immune response to infection. Using an F2 cross between the classical inbred strain C57BL/6J and the wild derived strain MOLF/Ei, we have previously identified Ity3 (Immunity to Typhimurium locus 3) as a locus contributing to the early susceptibility of MOLF/Ei mice to infection with Salmonella Typhimurium. We have also established a congenic strain (B6.MOLF-Ity/Ity3) with the MOLF/Ei Ity3 donor segment on a C57BL/6J background. The current study was designed to fine map and characterize functionally the Ity3 locus. We generated 12 recombinant sub-congenic strains that were characterized for susceptibility to infection, bacterial load in target organs, cytokine profile and anti-microbial mechanisms. These analyses showed that the impact of the Ity3 locus on survival and bacterial burden was stronger in male mice compared to female mice. Fine mapping of Ity3 indicated that two subloci contribute collectively to the susceptibility of B6.MOLF-Ity/Ity3 congenic mice to Salmonella infection. The Ity3.1 sublocus controls NADPH oxidase activity and is characterized by decreased ROS production, reduced inflammatory cytokine response and increased bacterial burden, thereby supporting a role for Ncf2 (neutrophil cytosolic factor 2 a subunit of NADPH oxidase) as the gene underlying this sublocus. The Ity3.2 sub-locus is characterized by a hyperresponsive inflammatory cytokine phenotype after exposure to Salmonella. Overall, this research provides support to the combined action of hormonal influences and complex genetic factors within the Ity3 locus in the innate immune response to Salmonella infection in wild-derived MOLF/Ei mice.
Collapse
Affiliation(s)
- Rabia T. Khan
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- Complex Traits Group, McGill University, Montreal, Québec, Canada
| | - Kyoko E. Yuki
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- Complex Traits Group, McGill University, Montreal, Québec, Canada
| | - Danielle Malo
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- Complex Traits Group, McGill University, Montreal, Québec, Canada
- Department of Medicine, McGill University, Montreal, Québec, Canada
- * E-mail:
| |
Collapse
|
146
|
Saito K, Mori S, Date F, Ono M. Epigallocatechin gallate inhibits oxidative stress-induced DNA damage and apoptosis in MRL-Faslprmice with autoimmune sialadenitis via upregulation of heme oxygenase-1 and Bcl-2. Autoimmunity 2014; 47:13-22. [DOI: 10.3109/08916934.2013.850079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
147
|
Li SZ, Hu YY, Zhao J, Zhao YB, Sun JD, Yang YF, Ji CC, Liu ZB, Cao WD, Qu Y, Liu WP, Cheng G, Fei Z. MicroRNA-34a induces apoptosis in the human glioma cell line, A172, through enhanced ROS production and NOX2 expression. Biochem Biophys Res Commun 2014; 444:6-12. [PMID: 24393844 DOI: 10.1016/j.bbrc.2013.12.136] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 12/26/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND MicroRNA is a type of non-coding small RNA involved in regulating genes and signaling pathways through incomplete complementation with target genes. Recent research supports key roles of miRNA in the formation and development of human glioma. METHODS The relative quantity of miR-34a was initially determined in human glioma A172 cells and glioma tissues. Next, we analyzed the impact of miR-34a on A172 cell viability with the MTT assay. The effects of miR-34a overexpression on apoptosis were confirmed with flow cytometry and Hoechst staining experiments. We further defined the target genes of miR-34a using immunofluorescence and Western blot. RESULTS MiR-34a expression was significantly reduced in human glioma A172 cells and glioma tissue, compared with normal glial cells and tissue samples. Our MTT data suggest that up-regulation of miR-34a inhibits cell viability while suppression of miR-34a enhances cell viability. Flow cytometry and Hoechst staining results revealed increased rates of apoptosis in A172 human glioma cells overexpressing miR-34a. Using immunofluorescence and Western blot analyses, we identified NOX2 as a target of miR-34a in A172 cells. CONCLUSION MiR-34a serves as a tumor suppressor in human glioma mainly by decreasing NOX2 expression.
Collapse
Affiliation(s)
- San-Zhong Li
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yi-Yang Hu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Zhao
- Department of Anesthesiology, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yong-Bo Zhao
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ji-Dong Sun
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yue-Fan Yang
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chen-Cheng Ji
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zao-Bin Liu
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Dong Cao
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Qu
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Ping Liu
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guang Cheng
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhou Fei
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
148
|
Polettini J, Silva MG, Kacerovsky M, Syed TA, Saade G, Menon R. Expression profiles of fetal membrane nicotinamide adenine dinucleotide phosphate oxidases (NOX) 2 and 3 differentiates spontaneous preterm birth and pPROM pathophysiologies. Placenta 2014; 35:188-94. [PMID: 24439294 DOI: 10.1016/j.placenta.2013.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/27/2013] [Accepted: 12/23/2013] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Nicotinamide adenine dinucleotide phosphate oxidases (NOX 1-5) are enzymes that generate cellular reactive oxygen species (ROS) besides mitochondria and might be important ROS sources associated with pregnancy complications, particularly preterm premature rupture of membranes (pPROM), that has been related to ROS. OBJECTIVE To characterize NOX enzymes expression in human fetal membranes. METHODS Differential expression and localization of NOX isoforms in human fetal membranes collected from women with uncomplicated pregnancies at term, preterm birth (PTB) or pPROM and in vitro in normal term membranes maintained in an organ explant system stimulated with water-soluble cigarette smoke extract (wsCSE) were documented by real time PCR and immunohistochemistry. RESULTS Fetal membranes from term deliveries, PTB and pPROM expressed NOX 2, 3 and 4 mRNAs whereas NOX 1 and 5 were not detected. NOX 2 expression was 2.3-fold higher in PTB than pPROM (p = 0.005) whereas NOX 3 was 2.2-fold higher in pPROM compared to PTB (p = 0.04). NOX 2 and 3 expressions at term mimicked pPROM and PTB, respectively. No difference in NOX 4 expression was observed among the studied groups. NOX 2, 3 and 4 were localized to both amniotic and chorionic cells. Expression of NOX 2, 3 and 4 were not significant in wsCSE-stimulated membranes compared to untreated controls. DISCUSSION/CONCLUSIONS NOX enzymes are present in the fetal membranes and are differentially expressed in PTB and pPROM. Absence of any changes in NOXs expression after wsCSE stimulation suggests ROS generation in the membranes does not always correlate with NOX expression.
Collapse
Affiliation(s)
- J Polettini
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Pathology, Botucatu Medical School, UNESP - Univ. Estadual Paulista, Botucatu, Sao Paulo, Brazil
| | - M G Silva
- Department of Pathology, Botucatu Medical School, UNESP - Univ. Estadual Paulista, Botucatu, Sao Paulo, Brazil
| | - M Kacerovsky
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic; Department of Obstetrics and Gynecology, Charles University in Prague, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - T A Syed
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - G Saade
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - R Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
149
|
Huang CC, Chen KL, Cheung CHA, Chang JY. Autophagy induced by cathepsin S inhibition induces early ROS production, oxidative DNA damage, and cell death via xanthine oxidase. Free Radic Biol Med 2013; 65:1473-1486. [PMID: 23892358 DOI: 10.1016/j.freeradbiomed.2013.07.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
Cathepsin S plays multiple roles in MHC class II antigen presentation, extracellular matrix degradation, angiogenesis, and tumorogenesis. Our previous study revealed that targeting cathepsin S could induce cellular cytotoxicity and reduce cell viability. For the current study, we further investigated the molecular mechanism responsible for targeting cathepsin S-induced cell death and its association with autophagy. Distinct from regulation of the classic autophagy pathway by reactive oxygen species (ROS), we demonstrated that autophagy is the genuine regulator of early ROS production. The molecular silencing of autophagy-dependent ATG genes (ATG5, ATG7, and LC3) and the pharmacologic inhibition of autophagy with 3-MA and wortmannin reduced ROS production significantly. In addition, xanthine oxidase (XO), which is upregulated by autophagy, is required for early ROS production, oxidative DNA damage, and consequent cell death. Autophagy inhibition suppresses the upregulation of XO, which is induced by cathepsin S inhibition, resulting in reduced ROS generation, DNA damage, and cell death. Collectively, our study reveals a noncanonical molecular pathway in which, after the inhibition of cathepsin S, autophagy induces early ROS production for oxidative DNA damage and cell death through XO.
Collapse
Affiliation(s)
- Chien-Chang Huang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, Republic of China
| | - Kuo-Li Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, Republic of China
| | - Chun Hei Antonio Cheung
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China; The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, Republic of China; Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| |
Collapse
|
150
|
Natural compounds as modulators of NADPH oxidases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:271602. [PMID: 24381714 PMCID: PMC3863456 DOI: 10.1155/2013/271602] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/09/2013] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are cellular signals generated ubiquitously by all mammalian cells, but their relative unbalance triggers also diseases through intracellular damage to DNA, RNA, proteins, and lipids. NADPH oxidases (NOX) are the only known enzyme family with the sole function to produce ROS. The NOX physiological functions concern host defence, cellular signaling, regulation of gene expression, and cell differentiation. On the other hand, increased NOX activity contributes to a wide range of pathological processes, including cardiovascular diseases, neurodegeneration, organ failure, and cancer. Therefore targeting these enzymatic ROS sources by natural compounds, without affecting the physiological redox state, may be an important tool. This review summarizes the current state of knowledge of the role of NOX enzymes in physiology and pathology and provides an overview of the currently available NADPH oxidase inhibitors derived from natural extracts such as polyphenols.
Collapse
|