101
|
Tai J, Wang L, Yan Z, Liu J. Single-cell sequencing and transcriptome analyses in the construction of a liquid-liquid phase separation-associated gene model for rheumatoid arthritis. Front Genet 2023; 14:1210722. [PMID: 37953920 PMCID: PMC10634374 DOI: 10.3389/fgene.2023.1210722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Background: Rheumatoid arthritis (RA) is a disabling autoimmune disease that affects multiple joints. Accumulating evidence suggests that imbalances in liquid-liquid phase separation (LLPS) can lead to altered spatiotemporal coordination of biomolecular condensates, which play important roles in carcinogenesis and inflammatory diseases. However, the role of LLPS in the development and progression of RA remains unclear. Methods: We screened RA and normal samples from GSE12021, GSE55235, and GSE55457 transcriptome datasets and GSE129087 and GSE109449 single-cell sequencing datasets from Gene Expression Omnibus database to investigate the pathogenesis of LLPS-related hub genes at the transcriptome and single cell sequencing levels. Machine learning algorithms and weighted gene co-expression network analysis were applied to screen hub genes, and hub genes were validated using correlation studies. Results: Differential analysis showed that 36 LLPS-related genes were significantly differentially expressed in RA, further random forest and support vector machine identified four and six LLPS-related genes, respectively, and weighted gene co-expression network analysis identified 396 modular genes. Hybridization of the three sets revealed two hub genes, MYC and MAP1LC3B, with AUCs of 0.907 and 0.911, respectively. Further ROC analysis of the hub genes in the GSE55457 dataset showed that the AUCs of MYC and MAP1LC3B were 0.815 and 0.785, respectively. qRT-PCR showed that the expression of MYC and MAP1LC3B in RA synovial tissues was significantly lower than that in the normal control synovial tissues. Correlation analysis between hub genes and the immune microenvironment and single-cell sequencing analysis revealed that both MYC and MAP1LC3B were significantly correlated with the degree of infiltration of various innate and acquired immune cells. Conclusion: Our study reveals a possible mechanism for LLPS in RA pathogenesis and suggests that MYC and MAP1LC3B may be potential novel molecular markers for RA with immunological significance.
Collapse
Affiliation(s)
- Jiaojiao Tai
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Ziqiang Yan
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jingkun Liu
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
102
|
Seshadri G, Vivek S, Prizment A, Crimmins EM, Klopack ET, Faul J, Guan W, Meier HCS, Thyagarajan B. Immune cells are associated with mortality: the Health and Retirement Study. Front Immunol 2023; 14:1280144. [PMID: 37928548 PMCID: PMC10623116 DOI: 10.3389/fimmu.2023.1280144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Age-related immunosenescence is characterized by changes in immune cell subsets and is associated with mortality. However, since immunosenescence is associated with other concurrent age-related changes such as inflammation and multi-organ dysfunction, it is unclear whether the association between age-related immunosenescence and mortality is independent of other concurrent age-related changes. To address these limitations, we evaluated the independent association between immune cell subsets and mortality after adjustment for age-related inflammation and biologic age. Methods Data for this study was obtained from the 2016 interview of the Health and Retirement Study (N=6802). Cox proportional hazards regression models were used to estimate the association between 25 immune cell subsets (11 T-cell subsets, 4 B-cell subsets, 3 monocyte subsets, 3 natural killer cell subsets, 3 dendritic cell subsets, and neutrophils) and 4-year mortality adjusting for covariates such as the Klemera-Doubal algorithm biological age, chronological age, gender, race/ethnicity, BMI, smoking status, comorbidity index, CMV seropositivity, and inflammatory latent variable comprising C-reactive protein, and 4 cytokines (interleukin-10, interleukin-1 receptor antagonist, interleukin-6, and soluble tumor necrosis factor). Results Four hundred and seventy-six participants died during the study period with an overall median follow up time of 2.5 years. After controlling for covariates and adjustment for sample-weights, total T cells [HR: 0.86, p=0.004], NK CD56LO cells [HR: 0.88, p=0.005], and neutrophils [HR: 1.22, p=0.004] were significantly associated with mortality. Conclusions These findings support the idea that an aging immune system is associated with short-term mortality independent of age-related inflammation or other age-related measures of physiological dysfunction. If replicated in other external cohorts, these findings could identify novel targets for both monitoring and intervention to reduce the age-related mortality.
Collapse
Affiliation(s)
- Gokul Seshadri
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Sithara Vivek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Anna Prizment
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Eileen M. Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Eric T. Klopack
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Jessica Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Helen C. S. Meier
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
103
|
Grun LK, Maurmann RM, Scholl JN, Fogaça ME, Schmitz CRR, Dias CK, Gasparotto J, Padoin AV, Mottin CC, Klamt F, Figueiró F, Jones MH, Filippi-Chiela EC, Guma FCR, Barbé-Tuana FM. Obesity drives adipose-derived stem cells into a senescent and dysfunctional phenotype associated with P38MAPK/NF-KB axis. Immun Ageing 2023; 20:51. [PMID: 37821967 PMCID: PMC10566105 DOI: 10.1186/s12979-023-00378-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Adipose-derived stem cells (ADSC) are multipotent cells implicated in tissue homeostasis. Obesity represents a chronic inflammatory disease associated with metabolic dysfunction and age-related mechanisms, with progressive accumulation of senescent cells and compromised ADSC function. In this study, we aimed to explore mechanisms associated with the inflammatory environment present in obesity in modulating ADSC to a senescent phenotype. We evaluated phenotypic and functional alterations through 18 days of treatment. ADSC were cultivated with a conditioned medium supplemented with a pool of plasma from eutrophic individuals (PE, n = 15) or with obesity (PO, n = 14), and compared to the control. RESULTS Our results showed that PO-treated ADSC exhibited decreased proliferative capacity with G2/M cycle arrest and CDKN1A (p21WAF1/Cip1) up-regulation. We also observed increased senescence-associated β-galactosidase (SA-β-gal) activity, which was positively correlated with TRF1 protein expression. After 18 days, ADSC treated with PO showed augmented CDKN2A (p16INK4A) expression, which was accompanied by a cumulative nuclear enlargement. After 10 days, ADSC treated with PO showed an increase in NF-κB phosphorylation, while PE and PO showed an increase in p38MAPK activation. PE and PO treatment also induced an increase in senescence-associated secretory phenotype (SASP) cytokines IL-6 and IL-8. PO-treated cells exhibited decreased metabolic activity, reduced oxygen consumption related to basal respiration, increased mitochondrial depolarization and biomass, and mitochondrial network remodeling, with no superoxide overproduction. Finally, we observed an accumulation of lipid droplets in PO-treated ADSC, implying an adaptive cellular mechanism induced by the obesogenic stimuli. CONCLUSIONS Taken together, our data suggest that the inflammatory environment observed in obesity induces a senescent phenotype associated with p38MAPK/NF-κB axis, which stimulates and amplifies the SASP and is associated with impaired mitochondrial homeostasis.
Collapse
Affiliation(s)
- L K Grun
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| | - R M Maurmann
- Graduate Program in Cellular and Molecular Biology, School of Health, Sciences, and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - J N Scholl
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M E Fogaça
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - C R R Schmitz
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - C K Dias
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - J Gasparotto
- Institute of Biomedical Sciences, Federal University at Alfenas, Alfenas, Brazil
| | - A V Padoin
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - C C Mottin
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - F Klamt
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F Figueiró
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M H Jones
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - E C Filippi-Chiela
- Institute of Basic Health Sciences, Department of Morphological Sciences, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Center for Biotechnology, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F C R Guma
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F M Barbé-Tuana
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Cellular and Molecular Biology, School of Health, Sciences, and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
104
|
Arosio B, Ferri E, Mari D, Tobaldini E, Vitale G, Montano N. The influence of inflammation and frailty in the aging continuum. Mech Ageing Dev 2023; 215:111872. [PMID: 37689318 DOI: 10.1016/j.mad.2023.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
Inflammaging is a low-grade inflammatory state that can be considered an adaptive process aimed at stimulating appropriate anti-inflammatory response. Frailty is determined by the accumulation of molecular and cellular defects accumulated throughout life; therefore, an appropriate frailty computation could be a valuable tool for measuring biological age. This study aims to analyse the association between inflammatory markers and both chronological age "per se" and frailty. We studied 452 persons aged 43-114 years. A Frailty Index (FI) was computed considering a wide range of age-related signs, symptoms, disabilities, and diseases. Plasma concentrations of inflammatory cytokines and peripheral markers of neuroinflammation were analysed by next-generation ELISA. The mean age of the cohort was 79.7 (from 43 to 114) years and the median FI was 0.19 (from 0.00 to 0.75). The concentrations of most inflammatory markers increased significantly with chronological age, after adjustment for sex and FI. Interferon-γ was significantly affected only by FI, while interleukin (IL)-10 and IL-1β were associated only with chronological age. In conclusion, we described different associations between inflammatory components and chronological vs. biological age. A better characterization of the molecular signature of aging could help to understand the complexity of this process.
Collapse
Affiliation(s)
- Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122 Milan, Italy.
| | - Evelyn Ferri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Daniela Mari
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, 20095 Cusano Milanino, Italy
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Giovanni Vitale
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, 20095 Cusano Milanino, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20133 Milan, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
105
|
Salminen A. The role of immunosuppressive myofibroblasts in the aging process and age-related diseases. J Mol Med (Berl) 2023; 101:1169-1189. [PMID: 37606688 PMCID: PMC10560181 DOI: 10.1007/s00109-023-02360-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Tissue-resident fibroblasts are mesenchymal cells which control the structural integrity of the extracellular matrix (ECM). Fibroblasts possess a remarkable plasticity to allow them to adapt to the changes in the microenvironment and thus maintain tissue homeostasis. Several stresses, also those associated with the aging process, convert quiescent fibroblasts into myofibroblasts which not only display fibrogenic properties but also act as immune regulators cooperating both with tissue-resident immune cells and those immune cells recruited into affected tissues. TGF-β cytokine and reactive oxygen species (ROS) are major inducers of myofibroblast differentiation in pathological conditions either from quiescent fibroblasts or via transdifferentiation from certain other cell types, e.g., macrophages, adipocytes, pericytes, and endothelial cells. Intriguingly, TGF-β and ROS are also important signaling mediators between immunosuppressive cells, such as MDSCs, Tregs, and M2 macrophages. It seems that in pathological states, myofibroblasts are able to interact with the immunosuppressive network. There is clear evidence that a low-grade chronic inflammatory state in aging tissues is counteracted by activation of compensatory immunosuppression. Interestingly, common enhancers of the aging process, such as oxidative stress, loss of DNA integrity, and inflammatory insults, are inducers of myofibroblasts, whereas anti-aging treatments with metformin and rapamycin suppress the differentiation of myofibroblasts and thus prevent age-related tissue fibrosis. I will examine the reciprocal interactions between myofibroblasts and immunosuppressive cells within aging tissues. It seems that the differentiation of myofibroblasts with age-related harmful stresses enhances the activity of the immunosuppressive network which promotes tissue fibrosis and degeneration in elderly individuals.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
106
|
Alqaisi RO, Al-Kubaisy WA, Abughanam SN, Alfalayleh AZ, Almasri MSH. Risk factors and characteristics of hospitalized COVID-19 patients in Jordan. Saudi Med J 2023; 44:1054-1060. [PMID: 37777268 PMCID: PMC10541976 DOI: 10.15537/smj.2023.44.20230209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/24/2023] [Indexed: 10/02/2023] Open
Abstract
OBJECTIVES To investigate the occurrence and identify the factors contributing to hospitalization among individuals diagnosed with COVID-19. METHODS From June 15, 2020 to September 30, 2020, a cross-sectional study utilizing an online questionnaire was carried out in Jordan. The study included 657 COVID-19 patients who had recovered and had reached a minimum of 3 months post-illness. Sociodemographic and COVID-19-related data were collected. The questionnaire was distributed to members of the "My Experience with COVID-19 Association" in Jordan. RESULTS The prevalence of hospitalization among COVID-19 patients was 3%. Patients with hypertension (p=0.00), diabetes mellitus (p=0.00), and heart disease (p=0.009); using angiotensin-converting enzyme inhibitors (ACE) and angiotensin-receptor blockers (ARBs) (p=0.00); with body mass indexes (BMI) above normal (p=0.005); and aged over 45 years (p=0.00) were at higher risk of hospitalization. Using an odds ratio (OR), hypertension (OR=7.1), diabetes mellitus (OR=11.4), heart disease (OR=6.3), angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers use (OR=10.8), and having a BMI >25 (OR=5) were significant hospitalization risk factors. The seasonal influenza vaccine, smoking, and neuropsychological symptoms showed no significance. CONCLUSION Identifying high-risk groups can help them monitor their health and take preventive measures against COVID-19 infection.
Collapse
Affiliation(s)
- Rashed O. Alqaisi
- From the Department of Public Health (Al-Kubaisy), Mutah University, Al-Karak; and from Ministry of Health (Almasri, Alfalayleh, Abughanam), Irbid, Jordan.
| | - Waqar A. Al-Kubaisy
- From the Department of Public Health (Al-Kubaisy), Mutah University, Al-Karak; and from Ministry of Health (Almasri, Alfalayleh, Abughanam), Irbid, Jordan.
| | - Shahed N. Abughanam
- From the Department of Public Health (Al-Kubaisy), Mutah University, Al-Karak; and from Ministry of Health (Almasri, Alfalayleh, Abughanam), Irbid, Jordan.
| | - Areen Z. Alfalayleh
- From the Department of Public Health (Al-Kubaisy), Mutah University, Al-Karak; and from Ministry of Health (Almasri, Alfalayleh, Abughanam), Irbid, Jordan.
| | - Mohamad-Said H. Almasri
- From the Department of Public Health (Al-Kubaisy), Mutah University, Al-Karak; and from Ministry of Health (Almasri, Alfalayleh, Abughanam), Irbid, Jordan.
| |
Collapse
|
107
|
Wang C, Cheng Y, Li B, Qiu X, Hu H, Zhang X, Lu Z, Zheng F. Transcriptional characteristics and functional validation of three monocyte subsets during aging. Immun Ageing 2023; 20:50. [PMID: 37759225 PMCID: PMC10523626 DOI: 10.1186/s12979-023-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Age-associated changes in immunity are inextricably linked to chronic inflammation and age-related diseases, the impact of aging on monocyte subsets is poorly understood. METHODS Flow cytometry was applied to distinguish three monocyte subsets between 120 young and 103 aged individuals. We then analyzed the expression profiles of three monocyte subsets from 9 young and 9 older donors and CD14+ monocytes from 1202 individuals between 44 and 83 years old. Flow cytometry was used to measure β-galactosidase activities, ROS levels, mitochondrial contents, mitochondrial membrane potentials (MMPs) and intracellular IL-6 levels in three monocyte subsets of young and elderly individuals, and plasma IL-6 levels were detected by electrochemiluminescence immunoassay. Mitochondrial stress and glycolytic rate of CD14+ monocytes from young and aged individuals were measured by Seahorse XFe24 Analyzer. RESULTS Compared with young individuals, the percentage of classical subset in aged persons significantly decreased, while the proportion of nonclassical subset increased. Age-related differential genes were obviously enriched in cellular senescence, ROS, oxidative phosphorylation, mitochondrial respiratory chain, IL-6 and ribosome-related pathways. Compared with young individuals, the β-galactosidase activities, ROS contents, intracellular IL-6 levels of three monocyte subsets, and plasma IL-6 levels in aged individuals were significantly elevated, while the MMPs apparently declined with age and the mitochondrial contents were only increased in intermediate and nonclassical subsets. CD14+ monocytes from elderly adults had conspicuously lower basal and spare respiratory capacity and higher basal glycolysis than those from young individuals. CONCLUSIONS During aging, monocytes exhibited senescence-associated secretory phenotype, mitochondrial dysfunction, decreased oxidative phosphorylation and increased glycolysis and the nonclassical subset displayed the clearest features of aging. Our study comprehensively investigated age-related transcriptional alterations of three monocyte subsets and identified the pivotal pathways of monocyte senescence, which may have significant implications for tactics to alleviate age-related conditions.
Collapse
Affiliation(s)
- Chen Wang
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yating Cheng
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Boyu Li
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xueping Qiu
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Hu
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaokang Zhang
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Fang Zheng
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
108
|
Menghuan L, Yang Y, Qianhe M, Na Z, Shicheng C, Bo C, XueJie YI. Advances in research of biological functions of Isthmin-1. J Cell Commun Signal 2023; 17:507-521. [PMID: 36995541 PMCID: PMC10409700 DOI: 10.1007/s12079-023-00732-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/07/2023] [Indexed: 03/31/2023] Open
Abstract
Isthmin-1 (ISM1) was initially thought to be a brain secretory factor, but with the development of technical means of research and the refinement of animal models, numerous studies have shown that this molecule is expressed in multiple tissues, suggesting that it may have multiple biological functions. As a factor that regulates growth and development, ISM1 is expressed in different animals with spatial and temporal variability and can coordinate the normal development of multiple organs. Recent studies have found that under the dependence of a non-insulin pathway, ISM1 can lower blood glucose, inhibit insulin-regulated lipid synthesis, promote protein synthesis, and affect the body's glucolipid and protein metabolism. In addition, ISM1 plays an important role in cancer development by promoting apoptosis and anti-angiogenesis, and by regulating multiple inflammatory pathways to influence the body's immune response. The purpose of this paper is to summarize relevant research results from recent years and to describe the key features of the biological functions of ISM1. We aimed to provide a theoretical basis for the study of ISM1 related diseases, and potential therapeutic strategies. The main biological functions of ISM1. Current studies on the biological functions of ISM1 focus on growth and development, metabolism, and anticancer treatment. During embryonic development, ISM1 is dynamically expressed in the zebrafish, African clawed frog, chick, mouse, and human, is associated with craniofacial malformations, abnormal heart localization, and hematopoietic dysfunction. ISM1 plays an important role in regulating glucose metabolism, lipid metabolism, and protein metabolism in the body. ISM1 affects cancer development by regulating cellular autophagy, angiogenesis, and the immune microenvironment.
Collapse
Affiliation(s)
- Li Menghuan
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China
| | - Yang Yang
- School of Sports and Human Sciences, Shanghai Sport University, Shanghai, 200438, China
| | - Ma Qianhe
- School of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Zhang Na
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China
| | - Cao Shicheng
- Department of Sports Medicine, China Medical University, Shenyang, China
| | - Chang Bo
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China.
| | - Y I XueJie
- Exercise and Health Research Center/Department of Kinesiology, Shenyang Sport University, No.36 Qiangsong East Road, Sujiatun District, Shenyang, 110115, Liaoning Province, China.
| |
Collapse
|
109
|
Reichert C, Baldini C, Mezghani S, Maubec E, Longvert C, Mortier L, Quereux G, Jannic A, Machet L, de Quatrebarbes J, Nardin C, Beneton N, Amini Adle M, Funck-Brentano E, Descamps V, Hachon L, Malissen N, Baroudjian B, Brunet-Possenti F. Combined Nivolumab and Ipilimumab in Octogenarian and Nonagenarian Melanoma Patients. Cancers (Basel) 2023; 15:4330. [PMID: 37686606 PMCID: PMC10486537 DOI: 10.3390/cancers15174330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Data regarding elderly melanoma patients treated with anti-PD-1 or anti-CTLA-4 antibodies are in favor of tolerability outcomes that are similar to those of younger counterparts. However, there are very few studies focusing on elderly patients receiving nivolumab combined with ipilimumab (NIVO + IPI). Here, we ask what are the current prescribing patterns of NIVO + IPI in the very elderly population and analyze the tolerance profile. This French multicenter retrospective study was conducted on 60 melanoma patients aged 80 years and older treated with NIVO + IPI between January 2011 and June 2022. The mean age at first NIVO + IPI administration was 83.7 years (range: 79.3-93.3 years). Fifty-five patients (92%) were in good general condition and lived at home. Two dosing regimens were used: NIVO 1 mg/kg + IPI 3 mg/kg Q3W (NIVO1 + IPI3) in 27 patients (45%) and NIVO 3 mg/kg + IPI 1 mg/kg Q3W (NIVO3 + IPI1) in 33 patients (55%). NIVO + IPI was a first-line treatment in 39 patients (65%). The global prevalence of immune-related adverse events was 63% (38/60), with 27% (16/60) being of grade 3 or higher. Grade ≥ 3 adverse events were less frequent in patients treated with NIVO3 + IPI1 compared with those treated with NIVO1 + IPI3 (12% versus 44%, p = 0.04). In conclusion, the prescribing patterns of NIVO + IPI in very elderly patients are heterogeneous in terms of the dosing regimen and line of treatment. The safety profile of NIVO + IPI is reassuring; whether or not the low-dose regimen NIVO3 + IPI1 should be preferred over NIVO1 + IPI3 in patients aged 80 years or older remains an open question.
Collapse
Affiliation(s)
- Constance Reichert
- Department of Dermatology, Hôpital Bichat AP-HP, Université Paris Cité, 75018 Paris, France; (C.R.); (V.D.)
| | - Capucine Baldini
- Drug Development Department, Institut Gustave Roussy, CNRS-UMS 3655 and INSERM US23, 94805 Villejuif, France;
| | - Sarah Mezghani
- Department of Imaging, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Eve Maubec
- Department of Dermatology, Hôpital Avicenne AP-HP, Université Sorbonne Paris Nord—Campus de Bobigny, 93000 Bobigny, France;
| | - Christine Longvert
- Department of Dermatology, EA4340-BECCOH, Hôpital Ambroise Paré APHP, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.L.); (E.F.-B.)
| | - Laurent Mortier
- Department of Dermatology, Claude Huriez Hospital, Lille University, Inserm U1189, 59000 Lille, France;
| | - Gaëlle Quereux
- Department of Dermatology, Centre Hospitalier Universitaire de Nantes, CIC 1413, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes University, 44000 Nantes, France;
| | - Arnaud Jannic
- Dermatology Department, Hôpital Henri Mondor AP-HP, 94000 Créteil, France;
| | - Laurent Machet
- Department of Dermatology, Tours University Hospital, 37000 Tours, France;
| | - Julie de Quatrebarbes
- Department of Dermatology, Centre Hospitalier Annecy-Genevois, 74370 Annecy, France;
| | - Charlée Nardin
- Université de Franche-Comté, CHU Besançon, EFS, INSERM, UMR RIGHT, 25000 Besançon, France;
| | - Nathalie Beneton
- Department of Dermatology, Centre Hospitalier du Mans, 72037 Le Mans, France;
| | - Mona Amini Adle
- Oncodermatology Department Centre Léon Bérard, 69008 Lyon, France;
| | - Elisa Funck-Brentano
- Department of Dermatology, EA4340-BECCOH, Hôpital Ambroise Paré APHP, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.L.); (E.F.-B.)
| | - Vincent Descamps
- Department of Dermatology, Hôpital Bichat AP-HP, Université Paris Cité, 75018 Paris, France; (C.R.); (V.D.)
| | - Lorry Hachon
- Department of Pharmacy, Hôpital Bichat, AP-HP, 75018 Paris, France;
| | - Nausicaa Malissen
- Dermatology and Skin Cancer Department, APHM, CRCM Inserm U1068, CNRS U7258, CHU Timone, Aix Marseille University, 13007 Marseille, France;
| | - Barouyr Baroudjian
- Department of Dermato-Oncology, Hôpital Saint-Louis AP-HP, Inserm U976, Université Paris Cité, 75010 Paris, France;
| | - Florence Brunet-Possenti
- Department of Dermatology, Hôpital Bichat AP-HP, Université Paris Cité, 75018 Paris, France; (C.R.); (V.D.)
| |
Collapse
|
110
|
Fonseca DLM, Filgueiras IS, Marques AHC, Vojdani E, Halpert G, Ostrinski Y, Baiocchi GC, Plaça DR, Freire PP, Pour SZ, Moll G, Catar R, Lavi YB, Silverberg JI, Zimmerman J, Cabral-Miranda G, Carvalho RF, Khan TA, Heidecke H, Dalmolin RJS, Luchessi AD, Ochs HD, Schimke LF, Amital H, Riemekasten G, Zyskind I, Rosenberg AZ, Vojdani A, Shoenfeld Y, Cabral-Marques O. Severe COVID-19 patients exhibit elevated levels of autoantibodies targeting cardiolipin and platelet glycoprotein with age: a systems biology approach. NPJ AGING 2023; 9:21. [PMID: 37620330 PMCID: PMC10449916 DOI: 10.1038/s41514-023-00118-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/12/2023] [Indexed: 08/26/2023]
Abstract
Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) severity due to immunosenescence and certain age-dependent medical conditions (e.g., obesity, cardiovascular disorder, and chronic respiratory disease). However, despite the well-known influence of age on autoantibody biology in health and disease, its impact on the risk of developing severe COVID-19 remains poorly explored. Here, we performed a cross-sectional study of autoantibodies directed against 58 targets associated with autoimmune diseases in 159 individuals with different COVID-19 severity (71 mild, 61 moderate, and 27 with severe symptoms) and 73 healthy controls. We found that the natural production of autoantibodies increases with age and is exacerbated by SARS-CoV-2 infection, mostly in severe COVID-19 patients. Multiple linear regression analysis showed that severe COVID-19 patients have a significant age-associated increase of autoantibody levels against 16 targets (e.g., amyloid β peptide, β catenin, cardiolipin, claudin, enteric nerve, fibulin, insulin receptor a, and platelet glycoprotein). Principal component analysis with spectrum decomposition and hierarchical clustering analysis based on these autoantibodies indicated an age-dependent stratification of severe COVID-19 patients. Random forest analysis ranked autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein as the three most crucial autoantibodies for the stratification of severe COVID-19 patients ≥50 years of age. Follow-up analysis using binomial logistic regression found that anti-cardiolipin and anti-platelet glycoprotein autoantibodies significantly increased the likelihood of developing a severe COVID-19 phenotype with aging. These findings provide key insights to explain why aging increases the chance of developing more severe COVID-19 phenotypes.
Collapse
Affiliation(s)
- Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil.
| | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexandre H C Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Elroy Vojdani
- Regenera Medical 11860 Wilshire Blvd., Ste. 301, Los Angeles, CA, 90025, USA
| | - Gilad Halpert
- Ariel University, Ari'el, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Saint Petersburg State University Russia, Saint Petersburg, Russia
| | - Yuri Ostrinski
- Ariel University, Ari'el, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Saint Petersburg State University Russia, Saint Petersburg, Russia
| | - Gabriela Crispim Baiocchi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula P Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Shahab Zaki Pour
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Guido Moll
- Departament of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Rusan Catar
- Departament of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Yael Bublil Lavi
- Scakler faculty of medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan I Silverberg
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Robson F Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan
| | - Harald Heidecke
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Rodrigo J S Dalmolin
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Andre Ducati Luchessi
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, R.N., Natal, Brazil
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, USA
| | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Howard Amital
- Ariel University, Ari'el, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Medicine B, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriela Riemekasten
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Israel Zyskind
- Maimonides Medical Center, Brooklyn, NY, USA
- Department of Pediatrics, NYU Langone Medical Center, New York, NY, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Aristo Vojdani
- Department of Immunology, Immunosciences Laboratory, Inc., Los Angeles, CA, USA
- Cyrex Laboratories, LLC 2602 S. 24th St., Phoenix, AZ, 85034, USA
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Otavio Cabral-Marques
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil.
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
- Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil.
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil.
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil.
| |
Collapse
|
111
|
Gomes RDSR, do Valle ACF, Freitas DFS, de Macedo PM, Oliveira RDVC, Almeida-Paes R, Zancopé-Oliveira RM, Gutierrez-Galhardo MC. Sporotrichosis in Older Adults: A Cohort Study of 911 Patients from a Hyperendemic Area of Zoonotic Transmission in Rio de Janeiro, Brazil. J Fungi (Basel) 2023; 9:804. [PMID: 37623575 PMCID: PMC10455193 DOI: 10.3390/jof9080804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Generally, older people tend to suffer from more severe infections than younger adults. In addition, there are accumulations of comorbidities and immune senescence in some cases. This cohort study evaluated the clinical and epidemiological characteristics of older adults (≥60 years old) with sporotrichosis. The cohort consisted of 911 patients with a median age of 67 years, most of whom were female (72.6%), white (62.1%), and afflicted with comorbidities (64.5%). The lymphocutaneous form occurred in 62% of the patients, followed by the fixed form (25.7%), cutaneous disseminated form (8.9%), and extracutaneous/disseminated forms (3.3%). In this study, we draw attention to the frequency of osteoarticular involvement (2.1%) secondary to skin lesions such as osteomyelitis and/or tenosynovitis. A clinical cure was achieved in 87.3% of cases. Itraconazole was used in 81.1% of cases, while terbinafine was used in 22.7% of cases, usually in low doses. Survival analysis showed that the median treatment time was 119 days, and the multiple Cox model demonstrated that the presentation of a black coloration and diabetes was associated with a longer treatment time required to establish a cure. Therefore, these subgroups should be monitored more closely to reduce possible difficulties during treatment. It would be interesting to conduct more studies analyzing older adults with sporotrichosis from different geographic areas to better comprehend the disease in this group.
Collapse
Affiliation(s)
- Rachel da Silva Ribeiro Gomes
- Laboratory of Clinical Research in Infectious Dermatology, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Antonio Carlos Francesconi do Valle
- Laboratory of Clinical Research in Infectious Dermatology, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Dayvison Francis Saraiva Freitas
- Laboratory of Clinical Research in Infectious Dermatology, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Priscila Marques de Macedo
- Laboratory of Clinical Research in Infectious Dermatology, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil
| | | | - Rodrigo Almeida-Paes
- Laboratory of Mycology, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratory of Mycology, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Maria Clara Gutierrez-Galhardo
- Laboratory of Clinical Research in Infectious Dermatology, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
112
|
Xu Z, Peng Q, Liu W, Demongeot J, Wei D. Antibody Dynamics Simulation-A Mathematical Exploration of Clonal Deletion and Somatic Hypermutation. Biomedicines 2023; 11:2048. [PMID: 37509687 PMCID: PMC10377040 DOI: 10.3390/biomedicines11072048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
We have employed mathematical modeling techniques to construct a comprehensive framework for elucidating the intricate response mechanisms of the immune system, facilitating a deeper understanding of B-cell clonal deletion and somatic hypermutation. Our improved model introduces innovative mechanisms that shed light on positive and negative selection processes during T-cell and B-cell development. Notably, clonal deletion is attributed to the attenuated immune stimulation exerted by self-antigens with high binding affinities, rendering them less effective in eliciting subsequent B-cell maturation and differentiation. Secondly, our refined model places particular emphasis on the crucial role played by somatic hypermutation in modulating the immune system's functionality. Through extensive investigation, we have determined that somatic hypermutation not only expedites the production of highly specific antibodies pivotal in combating microbial infections but also serves as a regulatory mechanism to dampen autoimmunity and enhance self-tolerance within the organism. Lastly, our model advances the understanding of the implications of antibody in vivo evolution in the overall process of organismal aging. With the progression of time, the age-associated amplification of autoimmune activity becomes apparent. While somatic hypermutation effectively delays this process, mitigating the levels of autoimmune response, it falls short of reversing this trajectory entirely. In conclusion, our advanced mathematical model offers a comprehensive and scholarly approach to comprehend the intricacies of the immune system. By encompassing novel mechanisms for selection, emphasizing the functional role of somatic hypermutation, and illuminating the consequences of in vivo antibody evolution, our model expands the current understanding of immune responses and their implications in aging.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Qingzhi Peng
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Weidong Liu
- Department of Physical Education, Dezhou University, Dezhou 253023, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
113
|
Ying H, Li ZQ, Li MP, Liu WC. Metabolism and senescence in the immune microenvironment of osteosarcoma: focus on new therapeutic strategies. Front Endocrinol (Lausanne) 2023; 14:1217669. [PMID: 37497349 PMCID: PMC10366376 DOI: 10.3389/fendo.2023.1217669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Osteosarcoma is a highly aggressive and metastatic malignant tumor. It has the highest incidence of all malignant bone tumors and is one of the most common solid tumors in children and adolescents. Osteosarcoma tissues are often richly infiltrated with inflammatory cells, including tumor-associated macrophages, lymphocytes, and dendritic cells, forming a complex immune microenvironment. The expression of immune checkpoint molecules is also high in osteosarcoma tissues, which may be involved in the mechanism of anti-tumor immune escape. Metabolism and senescence are closely related to the immune microenvironment, and disturbances in metabolism and senescence may have important effects on the immune microenvironment, thereby affecting immune cell function and immune responses. Metabolic modulation and anti-senescence therapy are gaining the attention of researchers as emerging immunotherapeutic strategies for tumors. Through an in-depth study of the interconnection of metabolism and anti- senescence in the tumor immune microenvironment and its regulatory mechanism on immune cell function and immune response, more precise therapeutic strategies can be developed. Combined with the screening and application of biomarkers, personalized treatment can be achieved to improve therapeutic efficacy and provide a scientific basis for clinical decision-making. Metabolic modulation and anti- senescence therapy can also be combined with other immunotherapy approaches, such as immune checkpoint inhibitors and tumor vaccines, to form a multi-level and multi-dimensional immunotherapy strategy, thus further enhancing the effect of immunotherapy. Multidisciplinary cooperation and integrated treatment can optimize the treatment plan and maximize the survival rate and quality of life of patients. Future research and clinical practice will further advance this field, promising more effective treatment options for patients with osteosarcoma. In this review, we reviewed metabolic and senescence characteristics in the immune microenvironment of osteosarcoma and related immunotherapies, and provide a reference for development of more personalized and effective therapeutic strategies.
Collapse
Affiliation(s)
- Hui Ying
- Department of Emergency Trauma Surgery, Ganzhou People’s Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Zhi-Qiang Li
- Department of Emergency Trauma Surgery, Ganzhou People’s Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Meng-Pan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen-Cai Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
114
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
115
|
Morawin B, Tylutka A, Bielewicz F, Zembron-Lacny A. Diagnostics of inflammaging in relation to sarcopenia. Front Public Health 2023; 11:1162385. [PMID: 37465171 PMCID: PMC10351926 DOI: 10.3389/fpubh.2023.1162385] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
One of the theories about aging focuses on the immune response and relates to the activation of subclinical and chronic inflammation. This study was designed to investigate the relationship between inflammation and sarcopenia and to evaluate the influence of lifestyle on the inflammatory profile. Finally, therapeutic strategies to counteract the pathophysiological effect of skeletal muscle aging were also indicated. One hundred seventy-three individuals aged 71.5 ± 6.8 years were divided into two groups: sarcopenia and probable sarcopenia (n = 39) and no sarcopenia (n = 134). Sarcopenia was assessed according to the algorithm of the European Working Group on Sarcopenia in the older adults 2. C-reactive protein (CRP) (p = 0.011) and CRP/albumin ratio (p = 0.030) as well as IL-1β (p = 0.002), cfDNA (p < 0.001) and bilirubin levels (p = 0.002) were significantly higher in the sarcopenia group as opposed to the no sarcopenia group. No significant differences were observed between groups in the concentration of TNFα (p = 0.429) and IL-6 (p = 0.300). An inverse correlation was found between gait speed and cfDNA (rs = -0.234, p < 0.01) and IL-1β (rs = -0.263, p < 0.01). The ROC analysis of cfDNA, CRP, IL-1β and bilirubin ranged from 0.6 to 0.7, which confirms the association between sarcopenia and inflammatory mediators and indicates high clinical usefulness of cfDNA and bilirubin in sarcopenia prediction. We also indicated a link between inflammation and fitness level in the older adult thereby providing evidence that lifestyle exercise should be a key therapeutic strategy in sarcopenia prevention.
Collapse
Affiliation(s)
- Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Zielona Góra, Poland
| | - Anna Tylutka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Zielona Góra, Poland
| | - Filip Bielewicz
- Student Research Group, University of Zielona Gora, Collegium Medicum University of Zielona Gora, Zielona Gora, Poland
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Zielona Góra, Poland
| |
Collapse
|
116
|
Witham MD, Granic A, Miwa S, Passos JF, Richardson GD, Sayer AA. New Horizons in cellular senescence for clinicians. Age Ageing 2023; 52:afad127. [PMID: 37466640 PMCID: PMC10355181 DOI: 10.1093/ageing/afad127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 07/20/2023] Open
Abstract
Cellular senescence has emerged as a fundamental biological mechanism underpinning the ageing process and has been implicated in the pathogenesis of an increasing number of age-related conditions. Cellular senescence is a cell fate originally defined as an irreversible loss of replicative potential although it is now clear that it can be induced by a variety of mechanisms independent of replication and telomere attrition. The drivers include a persistent DNA damage response causing multiple alterations in cellular function. Senescent cells secrete a range of mediators that drive chronic inflammation and can convert other cells to the senescent state-the senescence-associated secretory phenotype. Much research to date has been conducted in animal models, but it is now clear that senescent cells accompany ageing in humans and their presence is an important driver of disease across systems. Proof-of-concept work suggests that preventing or reversing senescence may be a viable strategy to counteract human ageing and age-related disease. Possible interventions include exercise, nutrition and senolytics/senostatic drugs although there are a number of potential limitations to the use of senotherapeutics. These interventions are generally tested for single-organ conditions, but the real power of this approach is the potential to tackle multiple age-related conditions. The litmus test for this exciting new class of therapies, however, will be whether they can improve healthy life expectancy rather than merely extending lifespan. The outcomes measured in clinical studies need to reflect these aims if senotherapeutics are to gain the trust of clinicians, patients and the public.
Collapse
Affiliation(s)
- Miles D Witham
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Newcastle University, Newcastle, UK
| | - Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Newcastle University, Newcastle, UK
| | - Satomi Miwa
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Joao F Passos
- Department of Physiology and Biomedical Engineering and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Gavin D Richardson
- Vascular Medicine and Biology Theme, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Avan A Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Newcastle University, Newcastle, UK
| |
Collapse
|
117
|
Molina OE, LaRue H, Simonyan D, Hovington H, Têtu B, Fradet V, Lacombe L, Toren P, Bergeron A, Fradet Y. High infiltration of CD209 + dendritic cells and CD163 + macrophages in the peritumor area of prostate cancer is predictive of late adverse outcomes. Front Immunol 2023; 14:1205266. [PMID: 37435060 PMCID: PMC10331466 DOI: 10.3389/fimmu.2023.1205266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Prostate cancer (PCa) shows considerable variation in clinical outcomes between individuals with similar diseases. The initial host-tumor interaction as assessed by detailed analysis of tumor infiltrating immune cells within the primary tumor may dictate tumor evolution and late clinical outcomes. In this study, we assessed the association between clinical outcomes and dendritic cell (DC) or macrophage (MΦ) tumor infiltration as well as with expression of genes related to their functions. Methods Infiltration and localization of immature DC, mature DC, total MΦ and M2-type MΦ was analyzed by immunohistochemistry in 99 radical prostatectomy specimens from patients with 15.5 years median clinical follow-up using antibodies against CD209, CD83, CD68 and CD163, respectively. The density of positive cells for each marker in various tumor areas was determined. In addition, expression of immune genes associated with DC and MΦ was tested in a series of 50 radical prostatectomy specimens by Taqman Low-Density Array with similarly long follow-up. Gene expression was classified as low and high after unsupervised hierarchical clustering. Numbers and ratio of positive cells and levels of gene expression were correlated with endpoints such as biochemical recurrence (BCR), need for definitive androgen deprivation therapy (ADT) or lethal PCa using Cox regression analyses and/or Kaplan-Meier curves. Results Positive immune cells were observed in tumor, tumor margin, and normal-like adjacent epithelium areas. CD209+ and CD163+ cells were more abundant at the tumor margin. Higher CD209+/CD83+ cell density ratio at the tumor margin was associated with higher risk of ADT and lethal PCa while higher density of CD163+ cells in the normal-like adjacent epithelium was associated with a higher risk of lethal PCa. A combination of 5 genes expressed at high levels correlated with a shorter survival without ADT and lethal PCa. Among these five genes, expression of IL12A and CD163 was correlated to each other and was associated with shorter survival without BCR and ADT/lethal PCa, respectively. Conclusion A higher level of infiltration of CD209+ immature DC and CD163+ M2-type MΦ in the peritumor area was associated with late adverse clinical outcomes.
Collapse
Affiliation(s)
- Oscar Eduardo Molina
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Hélène LaRue
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - David Simonyan
- Plateforme de Recherche Clinique et Évaluative, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Hélène Hovington
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Bernard Têtu
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Vincent Fradet
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Louis Lacombe
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Paul Toren
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| |
Collapse
|
118
|
Capasso N, Virgilio E, Covelli A, Giovannini B, Foschi M, Montini F, Nasello M, Nilo A, Prestipino E, Schirò G, Sperandei S, Clerico M, Lanzillo R. Aging in multiple sclerosis: from childhood to old age, etiopathogenesis, and unmet needs: a narrative review. Front Neurol 2023; 14:1207617. [PMID: 37332984 PMCID: PMC10272733 DOI: 10.3389/fneur.2023.1207617] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Multiple sclerosis (MS) primarily affects adult females. However, in the last decades, rising incidence and prevalence have been observed for demographic extremes, such as pediatric-onset MS (POMS; occurring before 18 years of age) and late-onset MS (corresponding to an onset above 50 years). These categories show peculiar clinical-pathogenetic characteristics, aging processes and disease courses, therapeutic options, and unmet needs. Nonetheless, several open questions are still pending. POMS patients display an important contribution of multiple genetic and environmental factors such as EBV, while in LOMS, hormonal changes and pollution may represent disease triggers. In both categories, immunosenescence emerges as a pathogenic driver of the disease, particularly for LOMS. In both populations, patient and caregiver engagement are essential from the diagnosis communication to early treatment of disease-modifying therapy (DMTs), which in the elderly population appears more complex and less proven in terms of efficacy and safety. Digital technologies (e.g., exergames and e-training) have recently emerged with promising results, particularly in treating and following motor and cognitive deficits. However, this offer seems more feasible for POMS, being LOMS less familiar with digital technology. In this narrative review, we discuss how the aging process influences the pathogenesis, disease course, and therapeutic options of both POMS and LOMS. Finally, we evaluate the impact of new digital communication tools, which greatly interest the current and future management of POMS and LOMS patients.
Collapse
Affiliation(s)
- Nicola Capasso
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
- Multiple Sclerosis Unit, Policlinico Federico II University Hospital, Naples, Italy
| | - Eleonora Virgilio
- Neurology Unit, Department of Translational Medicine, AOU Maggiore della Carità Novara, University of Eastern Piedmont, Novara, Italy
| | - Antonio Covelli
- Department of Neurology, Santi Antonio e Biagio e Cesare Arrigo Hospital, Alessandria, Italy
| | - Beatrice Giovannini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Foschi
- Department of Neuroscience, MS Center, S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, L’Aquila, Italy
| | - Federico Montini
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Nasello
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Annacarmen Nilo
- Clinical Neurology Unit, Department of Head, Neck and Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Elio Prestipino
- UOSC Neuro-Stroke Unit, AORN Antonio Cardarelli, Naples, Italy
| | - Giuseppe Schirò
- Section of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Silvia Sperandei
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Roberta Lanzillo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
- Multiple Sclerosis Unit, Policlinico Federico II University Hospital, Naples, Italy
| |
Collapse
|
119
|
Feld JJ, King WC, Ghany MG, Chang KM, Terrault N, Perrillo RP, Khalili M, Hinerman AS, Janssen HLA, Lok AS. Characteristics of Older Patients With Immunotolerant Chronic Hepatitis B Virus Infection. Clin Gastroenterol Hepatol 2023; 21:1503-1512.e4. [PMID: 35843468 PMCID: PMC10363409 DOI: 10.1016/j.cgh.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Most patients in the immunotolerant (IT) phase of chronic hepatitis B (CHB) transition to the immune active (IA-hepatitis B surface antigen [HBeAg]+) phase by early adulthood. We examined characteristics of adults in the IT vs IA-HBeAg+ phase and rate of transition from IT to other phases of CHB, with a focus on those ≥40 years. METHODS Demographic, clinical, and virologic characteristics of participants in the Hepatitis B Research Network adult cohort study with IT CHB (alanine aminotransferase ≤1.5 × upper limit of normal, hepatitis B virus DNA >107 IU/mL) were compared by age category, and to those with IA-HBeAg+ CHB in cross-sectional analysis. This study received institutional review board approval at all participating centers. RESULTS Of 107 adult IT participants, 52 (48%) were <30, 33 (31%) were 30 to 39, and 22 (21%) were ≥40 years old (maximum, 71 years). Among IT groups, the proportion born in Asia and duration of CHB were greater in older IT groups, but virologic and liver disease characteristics were similar. Compared with IA-HBeAg+ participants (n = 192), IT participants were younger, fewer were men, more were Asian, and platelets, qHBsAg, and qHBeAg levels were higher. Similar differences were observed when comparisons were made with the ≥40 years IT group. Among IT participants, 60 (56%) transitioned during 206 person-years of follow-up. The phase transition rate per 100 person-years was highest in the <30 years group (33.0 [95% confidence interval [CI], 23.4-46.7]) vs the 30 to 39 years group (24.8 [95% CI, 15.6-39.4]) and ≥40 group (27.4 [95% CI, 14.8-50.9]), but 95% CIs overlapped. CONCLUSIONS In a large North American population, over 50% of adults in the IT phase of CHB were ≥30 years and 20% were ≥40 years old, but older IT patients had similar characteristics and rates of transition as younger IT patients.
Collapse
Affiliation(s)
- Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Wendy C King
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marc G Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kyong-Mi Chang
- University of Pennsylvania Perelman School of Medicine and the Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania
| | - Norah Terrault
- University of Southern California, Los Angeles, California
| | | | - Mandana Khalili
- University of California San Francisco, San Francisco, California
| | - Amanda S Hinerman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Harry LA Janssen
- Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Anna S Lok
- University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
120
|
Sherazi SAM, Abbasi A, Jamil A, Uzair M, Ikram A, Qamar S, Olamide AA, Arshad M, Fried PJ, Ljubisavljevic M, Wang R, Bashir S. Molecular hallmarks of long non-coding RNAs in aging and its significant effect on aging-associated diseases. Neural Regen Res 2023; 18:959-968. [PMID: 36254975 PMCID: PMC9827784 DOI: 10.4103/1673-5374.355751] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer's disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes (e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA- and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.
Collapse
Affiliation(s)
- Syed Aoun Mehmood Sherazi
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Asim Abbasi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Abdullah Jamil
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shanzay Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Peter J. Fried
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center (KS 158), Harvard Medical School, Boston, MA, USA
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
121
|
Papa V, Li Pomi F, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Immunosenescence and Skin: A State of Art of Its Etiopathogenetic Role and Crucial Watershed for Systemic Implications. Int J Mol Sci 2023; 24:ijms24097956. [PMID: 37175661 PMCID: PMC10178319 DOI: 10.3390/ijms24097956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Immunosenescence is a complex multifactorial phenomenon consisting of wide-ranging remodeling of the immune system during the life span, resulting in an age-related qualitative-quantitative decline of immune cells and cytokines. A growing body of evidence in the international literature is highlighting the etiopathogenetic role of skin immunosenescence in the onset of various dermatologic conditions. Skin immunosenescence also serves as an interesting watershed for the onset of system-wide conditions in the context of allergic inflammation. Moreover, in recent years, an increasingly emerging and fascinating etiopathogenetic parallelism has been observed between some mechanisms of immunosenescence, both at cutaneous and systemic sites. This would help to explain the occurrence of apparently unconnected comorbidities. Throughout our review, we aim to shed light on emerging immunosenescent mechanisms shared between dermatologic disorders and other organ-specific diseases in the context of a more extensive discussion on the etiopathogenetic role of skin immunosenescence. A promising future perspective would be to focus on better understanding the mutual influence between skin and host immunity, as well as the influence of high inter-individual variability on immunosenescence/inflammaging. This can lead to a more comprehensive "immunobiographic" definition of each individual.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Francesco Borgia
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Mario Vaccaro
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
122
|
Paparazzo E, Geracitano S, Lagani V, Citrigno L, Bartolomeo D, Aceto MA, Bruno F, Maletta R, Passarino G, Montesanto A. Thymic function and survival at advance ages in nursing home residents from Southern Italy. Immun Ageing 2023; 20:16. [PMID: 37038200 PMCID: PMC10084596 DOI: 10.1186/s12979-023-00340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Immunosenescence is a complex process characterized by an age-related remodelling of immune system. The prominent effects of the immunosenescence process is the thymic involution and, consequently, the decreased numbers and functions of T cells. Since thymic involution results in a collapse of the T-cell receptor (TCR) repertoire, a reliable biomarker of its activity is represented by the quantification of signal joint T-cell receptor rearrangement excision circles (sjTRECs) levels. Although it is reasonable to think that thymic function could play a crucial role on elderly survival, only a few studies investigated the relationship between an accurate measurement of human thymic function and survival at old ages. METHODS AND FINDINGS By quantifying the amount sjTRECs by real-time polymerase chain reaction (PCR), the decrease in thymic output in 241 nursing home residents from Calabria (Southern Italy) was evaluated to investigate the relationship between thymic function and survival at old ages. We found that low sjTREC levels were associated with a significant increased risk of mortality at older ages. Nursing home residents with lower sjTREC exhibit a near 2-fold increase in mortality risk compared to those with sjTREC levels in a normal range. CONCLUSION Thymic function failure is an independent predictor of mortality among elderly nursing home residents. sjTREC represents a biomarker of effective ageing as its blood levels could anticipate individuals at high risk of negative health outcomes. The identification of these subjects is crucial to manage older people's immune function and resilience, such as, for instance, to plan more efficient vaccinal campaigns in older populations.
Collapse
Affiliation(s)
- Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Silvana Geracitano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Vincenzo Lagani
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal, 23952, Saudi Arabia
- SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence, King Abdullah University of Science and Technology KAUST, Thuwal, 23952, Saudi Arabia
- Institute of Chemical Biology, Ilia State University, Tbilisi, 0162, Georgia
| | - Luigi Citrigno
- National Research Council (CNR) - Institute for Biomedical Research and Innovation - (IRIB), 87050 Mangone, Cosenza, Italy
| | - Denise Bartolomeo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Mirella Aurora Aceto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, Lamezia Terme (CZ), 88046, Italy
- Association for Neurogenetic Research (ARN), Lamezia Terme (CZ), 88046, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, Lamezia Terme (CZ), 88046, Italy
- Association for Neurogenetic Research (ARN), Lamezia Terme (CZ), 88046, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
123
|
Abstract
The inflammaging concept was introduced in 2000 by Prof. Franceschi. This was an evolutionary or rather a revolutionary conceptualization of the immune changes in response to a lifelong stress. This conceptualization permitted to consider the lifelong proinflammatory process as an adaptation which could eventually lead to either beneficial or detrimental consequences. This dichotomy is influenced by both the genetics and the environment. Depending on which way prevails in an individual, the outcome may be healthy longevity or pathological aging burdened with aging-related diseases. The concept of inflammaging has also revealed the complex, systemic nature of aging. Thus, this conceptualization opens the way to consider age-related processes in their complexity, meaning that not only the process but also all counter-processes should be considered. It has also opened the way to add new concepts to the original one, leading to better understanding of the nature of inflammaging and of aging itself. Finally, it showed the way towards potential multimodal interventions involving a holistic approach to optimize the aging process towards a healthy longevity.
Collapse
|
124
|
Bleve A, Motta F, Durante B, Pandolfo C, Selmi C, Sica A. Immunosenescence, Inflammaging, and Frailty: Role of Myeloid Cells in Age-Related Diseases. Clin Rev Allergy Immunol 2023; 64:123-144. [PMID: 35031957 PMCID: PMC8760106 DOI: 10.1007/s12016-021-08909-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
The immune system is the central regulator of tissue homeostasis, ensuring tissue regeneration and protection against both pathogens and the neoformation of cancer cells. Its proper functioning requires homeostatic properties, which are maintained by an adequate balance of myeloid and lymphoid responses. Aging progressively undermines this ability and compromises the correct activation of immune responses, as well as the resolution of the inflammatory response. A subclinical syndrome of "homeostatic frailty" appears as a distinctive trait of the elderly, which predisposes to immune debilitation and chronic low-grade inflammation (inflammaging), causing the uncontrolled development of chronic and degenerative diseases. The innate immune compartment, in particular, undergoes to a sequela of age-dependent functional alterations, encompassing steps of myeloid progenitor differentiation and altered responses to endogenous and exogenous threats. Here, we will review the age-dependent evolution of myeloid populations, as well as their impact on frailty and diseases of the elderly.
Collapse
Affiliation(s)
- Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center- IRCCS, via Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Barbara Durante
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Chiara Pandolfo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center- IRCCS, via Manzoni 56, Rozzano, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy.
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
125
|
Late-Onset Psoriatic Arthritis: Are There Any Distinct Characteristics? A Retrospective Cohort Data Analysis. Life (Basel) 2023; 13:life13030792. [PMID: 36983947 PMCID: PMC10058512 DOI: 10.3390/life13030792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
As life expectancy increases, psoriatic arthritis (PsA) in older individuals becomes more prevalent. We explored whether late-onset versus earlier-onset PsA patients display different clinical features at diagnosis and/or during the disease course, as well as different treatment approaches and comorbidity profiles. We retrospectively collected data from consecutive PsA patients attending two rheumatology centers (December 2017–December 2022). Late-onset PsA patients (diagnosis-age: ≥60 years) were compared to those diagnosed before 60 years old. Univariate analyses and logistic regression were performed to examine for factors associated with late-onset PsA. For sensitivity analyses, the cohort’s mean diagnosis age was used as the cut-off value. Overall, 281 PsA patients were included (mean ± SD diagnosis-age: 46.0 ± 13.3 years). Of them, 14.2% (N = 40) had late-onset PsA. At diagnosis, after controlling for confounders, no demographic and clinical differences were identified. During the disease course, the late-onset group exhibited 65% fewer odds of manifesting enthesitis (adjusted Odds-ratio—adOR 0.35; 95% confidence interval 0.13–0.97), but higher frequency of dyslipidemia (adOR 3.01; 1.30–6.95) and of major adverse cardiovascular events (adOR 4.30; 1.42–12.98) compared to earlier-onset PsA group. No differences were found in the treatment approaches. In sensitivity analyses, PsA patients diagnosed after 46 (vs. ≤46) years old had an increased frequency of hypertension (adOR 3.18; 1.70–5.94) and dyslipidemia (adOR 2.17; 1.25–3.74). The present study underpins that late-onset PsA is not uncommon, while the age at PsA onset may affect the longitudinal clinical expression of the disease. Patients with late-onset PsA were less likely to manifest enthesitis but displayed increased cardiovascular risk.
Collapse
|
126
|
Activation of α7nAChR by PNU282987 improves cognitive impairment through inhibiting oxidative stress and neuroinflammation in D-galactose induced aging via regulating α7nAChR/Nrf2/HO-1 signaling pathway. Exp Gerontol 2023; 175:112139. [PMID: 36898594 DOI: 10.1016/j.exger.2023.112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Aging is an important risk factor for neurodegenerative diseases. The activation of α7 nicotinic acetylcholine receptor (α7nAChR) is involved in inflammation and cognition, but the specific role it plays in aging remains unknown. This study aimed to investigate the anti-aging effect of the activation of α7nAChR on aging rats and BV2 cells induced by D-galactose, as well as its potential mechanism. D-galactose induced an increase in the SA-β-Gal positive cells, expression of p16 and p21 in vivo and in vitro. α7nAChR selective agonist PNU282987 decreased levels of pro-inflammatory factors, MDA, and Aβ, enhanced SOD activity and levels of anti-inflammatory factor (IL10) in vivo. PNU282987 enhanced the expression of Arg1, decreased the expression of iNOS, IL1β and TNFα in vitro. PNU282987 upregulated the levels of α7nAChR, Nrf2 and HO-1 in vivo and in vitro. The results of Morris water maze and novel object recognition tests showed that PNU282987 improved cognitive impairment in aging rats. Furthermore, α7nAChR selective inhibitor methyllycaconitine (MLA) results were opposite with PNU282987. PNU282987 improves cognitive impairment through inhibiting oxidative stress and neuroinflammation in D-galactose induced aging via regulating the α7nAChR/Nrf2/HO-1 signaling pathway. Therefore, targeting the α7nAChR may be a viable therapeutic approach for anti-inflammaging and neurodegenerative diseases.
Collapse
|
127
|
Tan Y, Zhang C, Li D, Huang J, Liu Z, Chen T, Zou X, Qin B. Bibliometric and visualization analysis of global research trends on immunosenescence (1970-2021). Exp Gerontol 2023; 173:112089. [PMID: 36646295 DOI: 10.1016/j.exger.2023.112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Immunosenescence, the aging of the immune system, leads to a decline in the body's adaptability to the environment and plays an important role in various diseases. Immunosenescence has been widely studied in recent years. However, to date, no relevant bibliometric analyses have been conducted. This study aimed to analyze the foundation and frontiers of immunosenescence research through bibliometric analysis. METHODS Articles and reviews on immunosenescence from 1970 to 2021 were obtained from the Web of Science Core Collection. Countries, institutions, authors, journals, references, and keywords were analyzed and visualized using VOSviewer and CiteSpace. The R language and Microsoft Excel 365 were used for statistical analyses. RESULTS In total, 3763 publications were included in the study. The global literature on immunosenescence research has increased from 1970 to 2021. The United States was the most productive country with 1409 papers and the highest H-index. Italy had the highest average number of citations per article (58.50). Among the top 10 institutions, 50 % were in the United States. The University of California was the most productive institution, with 159 articles. Kroemer G, Franceschi C, Goronzy JJ, Solana R, and Fulop T were among the top 10 most productive and co-cited authors. Experimental Gerontology (n = 170) published the most papers on immunosenescence. The analysis of keywords found that current research focuses on "inflammaging", "gut microbiota", "cellular senescence", and "COVID-19". CONCLUSIONS Immunosenescence research has increased over the years, and future cooperation and interaction between countries and institutions must be expanded. The connection between inflammaging, gut microbiota, age-related diseases, and immunosenescence is a current research priority. Individualized treatment of immunosenescence, reducing its negative effects, and promoting healthy longevity will become an emerging research direction.
Collapse
Affiliation(s)
- Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Chuanhe Zhang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Deshuang Li
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Jianguo Huang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Ziling Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Tianyu Chen
- Medical Department, Wuxi Second People's Hospital, Wuxi, China
| | - Xuyan Zou
- Changsha Aier Eye Hospital, Aier Eye Hospital Group, Changsha, China.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China.
| |
Collapse
|
128
|
Nussrat SW, Ad'hiah AH. Interleukin-40 is a promising biomarker associated with type 2 diabetes mellitus risk. Immunol Lett 2023; 254:1-5. [PMID: 36640967 DOI: 10.1016/j.imlet.2023.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Interleukin (IL)-40 is a recently identified cytokine with a proposed role in the pathogenesis of inflammatory diseases. Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by low-grade inflammation. Therefore, it can be suggested that IL-40 may be involved in the pathogenesis of T2DM, but this topic has not been explored. The current study evaluated the potential of IL-40 as a biomarker for T2DM. Serum IL-40 levels were determined in 106 patients with T2DM and 109 healthy controls using an enzyme-linked immunosorbent assay kit. Median (interquartile range) IL-40 levels were significantly higher in patients than in controls (2.82 [2.58-3.25] vs. 1.22 [0.93-1.42] ng/L; probability [p] < 0.001). When IL-40 levels were stratified according to age, gender, disease duration, body mass index, diabetic neuropathy, fasting plasma glucose or glycated hemoglobin, no significant differences were found in each stratum. Receiver operating characteristic curve analysis showed that IL-40 was an excellent predictor in discriminating between T2DM patients and controls (area under the curve = 0.989; 95% confidence interval = 0.973-1.00; p < 0.001). Age- and gender-adjusted multinomial logistic regression analysis estimated an odds ratio of 53.36 (95% confidence interval = 12.52-227.45; p < 0.001) for IL-40 in T2DM. IL-40 level was negatively correlated with age (correlation coefficient = -0.274; p = 0.005) and onset age (correlation coefficient = -0.203; p = 0.037). In conclusion, IL-40 was up-regulated in the serum of T2DM patients, and can be considered as a reliable biomarker in distinguishing patients with T2DM from healthy controls.
Collapse
Affiliation(s)
- Shahad W Nussrat
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
129
|
Song J, Farris D, Ariza P, Moorjani S, Varghese M, Blin M, Chen J, Tyrrell D, Zhang M, Singer K, Salmon M, Goldstein DR. Age-associated adipose tissue inflammation promotes monocyte chemotaxis and enhances atherosclerosis. Aging Cell 2023; 22:e13783. [PMID: 36683460 PMCID: PMC9924943 DOI: 10.1111/acel.13783] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 10/31/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Although aging enhances atherosclerosis, we do not know if this occurs via alterations in circulating immune cells, lipid metabolism, vasculature, or adipose tissue. Here, we examined whether aging exerts a direct pro-atherogenic effect on adipose tissue in mice. After demonstrating that aging augmented the inflammatory profile of visceral but not subcutaneous adipose tissue, we transplanted visceral fat from young or aged mice onto the right carotid artery of Ldlr-/- recipients. Aged fat transplants not only increased atherosclerotic plaque size with increased macrophage numbers in the adjacent carotid artery, but also in distal vascular territories, indicating that aging of the adipose tissue enhances atherosclerosis via secreted factors. By depleting macrophages from the visceral fat, we identified that adipose tissue macrophages are major contributors of the secreted factors. To identify these inflammatory factors, we found that aged fat transplants secreted increased levels of the inflammatory mediators TNFα, CXCL2, and CCL2, which synergized to promote monocyte chemotaxis. Importantly, the combined blockade of these inflammatory mediators impeded the ability of aged fat transplants to enhance atherosclerosis. In conclusion, our study reveals that aging enhances atherosclerosis via increased inflammation of visceral fat. Our study suggests that future therapies targeting the visceral fat may reduce atherosclerosis disease burden in the expanding older population.
Collapse
Affiliation(s)
- Jianrui Song
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Diana Farris
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Paola Ariza
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Smriti Moorjani
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Mita Varghese
- Department of Pediatrics, Division of EndocrinologyUniversity of MichiganAnn ArborMichiganUSA
| | - Muriel Blin
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Judy Chen
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
- Graduate Program in ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel Tyrrell
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Min Zhang
- Department of BiostatisticsUniversity of MichiganAnn ArborMichiganUSA
| | - Kanakadurga Singer
- Department of Pediatrics, Division of EndocrinologyUniversity of MichiganAnn ArborMichiganUSA
- Graduate Program in ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Morgan Salmon
- Department of Cardiac SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel R. Goldstein
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
- Graduate Program in ImmunologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
130
|
Moço G, Sousa C, Capitão A, MacKinnon SS, Leitão AJ, Mendes AF. Synthesis of Carvone Derivatives and In Silico and In Vitro Screening of Anti-Inflammatory Activity in Murine Macrophages. Int J Mol Sci 2023; 24:ijms24032263. [PMID: 36768590 PMCID: PMC9916994 DOI: 10.3390/ijms24032263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
The chemical modification of natural compounds is a promising strategy to improve their frequently poor bioavailability and low potency. This study aimed at synthesizing chemical derivatives of carvone, a natural monoterpene with anti-inflammatory properties, which we recently identified, and evaluating their potential anti-inflammatory activity. Fourteen chemical derivatives of carvone were synthesized, purified and their chemical structures confirmed. Noncytotoxic concentrations of the test compounds were selected based on the resazurin reduction assay. Among the tested compounds, four significantly reduced the lipopolysaccharides-induced protein levels of the inducible isoform of the nitric oxide synthase and nitric oxide production and showed a dual effect on pro-IL-1 protein levels in the Raw 264.7 cell line. The Ligand Express drug discovery platform was used to predict the targets of the test compounds, and an enrichment analysis was performed to group the different biological processes and molecular and cellular functions of the tested compounds. Moreover, Ligand Express also predicted that all chemicals evaluated have intestinal and blood-brain barrier permeability, do not inhibit P-gp and do not interact with major receptors. Although presenting anti-inflammatory and some advantageous ADME properties, the tested compounds still have low potency and specificity but may provide novel structures the further chemical modification of which may yield more promising drugs.
Collapse
Affiliation(s)
- Gabriela Moço
- Faculty of Pharmacy, University of Coimbra, 3004-548 Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cátia Sousa
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Interdisciplinary Research Institute, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana Capitão
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Interdisciplinary Research Institute, University of Coimbra, 3030-789 Coimbra, Portugal
| | | | - Alcino Jorge Leitão
- Faculty of Pharmacy, University of Coimbra, 3004-548 Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Alexandrina Ferreira Mendes
- Faculty of Pharmacy, University of Coimbra, 3004-548 Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
131
|
Schmitz CRR, Maurmann RM, Guma FTCR, Bauer ME, Barbé-Tuana FM. cGAS-STING pathway as a potential trigger of immunosenescence and inflammaging. Front Immunol 2023; 14:1132653. [PMID: 36926349 PMCID: PMC10011111 DOI: 10.3389/fimmu.2023.1132653] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is associated with an increased incidence of autoimmune diseases, despite the progressive decline of immune responses (immunosenescence). This apparent paradox can be explained by the age-related chronic low-grade systemic inflammation (inflammaging) and progressive dysregulation of innate signaling. During cellular aging, there is an accumulation of damaged DNA in the cell's cytoplasm, which serves as ubiquitous danger-associated molecule, promptly recognized by DNA sensors. For instance, the free cytoplasmic DNA can be recognized, by DNA-sensing molecules like cGAS-STING (cyclic GMP-AMP synthase linked to a stimulator of interferon genes), triggering transcriptional factors involved in the secretion of pro-inflammatory mediators. However, the contribution of this pathway to the aging immune system remains largely unknown. Here, we highlight recent advances in understanding the biology of the cGAS-STING pathway, its influence on the senescence-associated secretory phenotype (SASP), and its modulation of the immune system during sterile inflammation. We propose that this important stress sensor of DNA damage is also a trigger of immunosenescence and inflammaging.
Collapse
Affiliation(s)
- Carine Raquel Richter Schmitz
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciência Biológicas - Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Moura Maurmann
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Fatima T C R Guma
- Programa de Pós-Graduação em Ciência Biológicas - Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moisés Evandro Bauer
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Instituto Nacional de Ciência e Tecnologia - Neuroimunomodulação (INCT-NIM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil.,Programa de Pós-Graduação em Gerontologia Biomédica, Escola de Medicina, Pontifícia Universidade do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Florencia Maria Barbé-Tuana
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular da Escola de Ciências da Saúde da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Pediatria e Saúde da Criança da Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
132
|
Badimon L, Padro T, Vilahur G. Moving from reactive to preventive medicine. Aging (Albany NY) 2023:663-681. [DOI: 10.1016/b978-0-12-823761-8.00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
133
|
Chintapula U, Chikate T, Sahoo D, Kieu A, Guerrero Rodriguez ID, Nguyen KT, Trott D. Immunomodulation in age-related disorders and nanotechnology interventions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1840. [PMID: 35950266 PMCID: PMC9840662 DOI: 10.1002/wnan.1840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 01/31/2023]
Abstract
Recently, the aging population has increased exponentially around the globe bringing more challenges to improve quality of life in those populations while reducing the economic burden on healthcare systems. Aging is associated with changes in the immune system culminating in detrimental effects such as immune dysfunction, immunosenescence, and chronic inflammation. Age-related decline of immune functions is associated with various pathologies including cardiovascular, autoimmune, neurodegenerative, and infectious diseases to name a few. Conventional treatment addresses the onset of age-related diseases by early detection of risk factors, administration of vaccines as preventive care, immunomodulatory treatment, and other dietary supplements. However, these approaches often come with systemic side-effects, low bioavailability of therapeutic agents, and poor outcomes seen in the elderly. Recent innovations in nanotechnology have led to the development of novel biomaterials/nanomaterials, which explore targeted drug delivery and immunomodulatory interactions in vivo. Current nanotechnology-based immunomodulatory approaches that have the potential to be used as therapeutic interventions for some prominent age-related diseases are discussed here. Finally, we explore challenges and future aspects of nanotechnology in the treatments of age-related disorders to improve quality of life in the elderly. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tanmayee Chikate
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Deepsundar Sahoo
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Amie Kieu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | | | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
134
|
Granic A, Martin-Ruiz C, Rimmer L, Dodds RM, Robinson LA, Spyridopoulos I, Kirkwood TBL, von Zglinicki T, Sayer AA. Immunosenescence profiles of lymphocyte compartments and multiple long-term conditions (multimorbidity) in very old adults: The Newcastle 85+ Study. Mech Ageing Dev 2022; 208:111739. [PMID: 36152894 DOI: 10.1016/j.mad.2022.111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 09/18/2022] [Indexed: 12/30/2022]
Abstract
Immunosenescence, a decline in immune system function, has been linked to several age-related diseases and ageing syndromes. Very old adults (aged ≥ 85 years) live with multiple long-term conditions (MLTC, also known as multimorbidity)-a complex phenomenon of poor health defined by either counts, indices, or patterns, but little is known about the relationship between an ageing immune system and MLTC in this age group. We utilised baseline data from the Newcastle 85+ Study to investigate the associations between previously defined immunosenescence profiles of lymphocyte compartments and MLTC counts and patterns (from 16 chronic diseases/ageing syndromes). Seven hundred and three participants had MLTC and complete data for all 16 conditions, a median and mean of 5 (range 2-11) and 62.2% had ≥ 5 conditions. Three distinct MLTC patterns emerged by clustering: Cluster 1 ('Low frequency cardiometabolic-cerebrovascular diseases', n = 209), Cluster 2 ('High ageing syndromes-arthritis', n = 240), and Cluster 3 ('Hypertensive-renal impairment', n = 254). Although having a more senescent phenotype, characterised by higher frequency of CD4 and CD8 senescence-like effector memory cells and lower CD4/CD8 ratio, was not associated with MLTC compared with less senescent phenotype, the results warrant further investigation, including whether immunosenescence drives change in MLTC and influences MLTC severity in late adulthood.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Carmen Martin-Ruiz
- Bio Screening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucy Rimmer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Richard M Dodds
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louise A Robinson
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ioakim Spyridopoulos
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas B L Kirkwood
- National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas von Zglinicki
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Avan A Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
135
|
An evaluation of aging measures: from biomarkers to clocks. Biogerontology 2022; 24:303-328. [PMID: 36418661 DOI: 10.1007/s10522-022-09997-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
Abstract
With the increasing number of aged population and growing burden of healthy aging demands, a rational standard for evaluation aging is in urgent need. The advancement of medical testing technology and the prospering of artificial intelligence make it possible to evaluate the biological status of aging from a more comprehensive view. In this review, we introduced common aging biomarkers and concluded several famous aging clocks. Aging biomarkers reflect changes in the organism at a molecular or cellular level over time while aging clocks tend to be more of a generalization of the overall state of the organism. We expect to construct a framework for aging evaluation measurement from both micro and macro perspectives. Especially, population-specific aging clocks and multi-omics aging clocks may better fit the demands to evaluate aging in a comprehensive and multidimensional manner and make a detailed classification to represent different aging rates at tissue/organ levels. This framework will promisingly provide a crucial basis for disease diagnosis and intervention assessment in geroscience.
Collapse
|
136
|
Bae CY, Kim IH, Kim BS, Kim JH, Kim JH. Predicting the incidence of age-related diseases based on biological age: The 11-year national health examination data follow-up. Arch Gerontol Geriatr 2022; 103:104788. [PMID: 35964546 DOI: 10.1016/j.archger.2022.104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE As the population ages rapidly, the incidence of age-related diseases (ARDs) is also increasing fast. Predicting the incidence of ARDs is a challenge since the rates of individual aging vary, and objective assessments of the stages of aging based on chronological age (CA) may be inaccurate. Thus, in this study, we developed a biological age (BA) model based on the National Health Examination (NHE) data and analyzed the model prediction results for the incidence of 16 ARDs. METHODS This study was based on the 2002-2019 National Health Information Databases of the National Health Insurance Service (NHIS-NHID). The data from a total of 10,002,494 subjects were selected between 2009 and 2010, and the principal component analysis (PCA) was performed to develop the BA model. The Cox-proportional hazard model was used to perform predictive analysis of the ARD incidence. RESULTS For the unit increase in the difference between corrected biological age (cBA) and chronological age (CA), the hazard ratios (HRs) of ARDs increased significantly for both sexes (p < 0.001). In descending order, the corresponding ARDs' HRs were obesity (1.655), chronic renal failure (1.362), hypertension (1.301), hyperlipidemia (1.264), diabetes mellitus (1.261), fracture (1.119), dementia (1.163), cataract (1.116), myocardial infarction (1.097), stroke (1.169), macular degeneration (1.075), osteoarthritis (1.059), osteoporosis (1.124), Parkinson's disease (1.048), and chronic obstructive pulmonary disease (1.026). CONCLUSIONS In this study, the incidence of 16 ARDs were analyzed based on BA. Therefore, conducting the NHIS health examination can facilitate the prevention of ARDs by estimating HRs for at least 16 diseases.
Collapse
Affiliation(s)
- Chul-Young Bae
- Mediage Research Center, No.634-636, 42, Changeop-ro (Gyeonggi Business Growth Center), Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea
| | - In-Hee Kim
- Mediage Research Center, No.634-636, 42, Changeop-ro (Gyeonggi Business Growth Center), Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea.
| | - Bo-Seon Kim
- Mediage Research Center, No.634-636, 42, Changeop-ro (Gyeonggi Business Growth Center), Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea
| | - Jeong-Hoon Kim
- Mediage Research Center, No.634-636, 42, Changeop-ro (Gyeonggi Business Growth Center), Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea
| | - Ji-Hyun Kim
- Mediage Research Center, No.634-636, 42, Changeop-ro (Gyeonggi Business Growth Center), Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea
| |
Collapse
|
137
|
Liu J, Dan R, Zhou X, Xiang J, Wang J, Liu J. Immune senescence and periodontitis: From mechanism to therapy. J Leukoc Biol 2022; 112:1025-1040. [PMID: 36218054 DOI: 10.1002/jlb.3mr0822-645rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most prevalent infectious inflammatory diseases, characterized by irreversible destruction of the supporting tissues of teeth, which is correlated with a greater risk of multiple systemic diseases, thus regarded as a major health concern. Dysregulation between periodontal microbial community and host immunity is considered to be the leading cause of periodontitis. Comprehensive studies have unveiled the double-edged role of immune response in the development of periodontitis. Immune senescence, which is described as age-related alterations in immune system, including a diminished immune response to endogenous and exogenous stimuli, a decline in the efficiency of immune protection, and even failure in immunity build-up after vaccination, leads to the increased susceptibility to infection. Recently, the intimate relationship between immune senescence and periodontitis has come into focus, especially in the aging population. In this review, both periodontal immunity and immune senescence will be fully introduced, especially their roles in the pathology and progression of periodontitis. Furthermore, novel immunotherapies targeting immune senescence are presented to provide potential targets for research and clinical intervention in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruichen Dan
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueman Zhou
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Xiang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
138
|
Gál P, Brábek J, Holub M, Jakubek M, Šedo A, Lacina L, Strnadová K, Dubový P, Hornychová H, Ryška A, Smetana K. Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation. Histochem Cell Biol 2022; 158:415-434. [PMID: 35867145 PMCID: PMC9305064 DOI: 10.1007/s00418-022-02140-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Recent evidence indicates that targeting IL-6 provides broad therapeutic approaches to several diseases. In patients with cancer, autoimmune diseases, severe respiratory infections [e.g. coronavirus disease 2019 (COVID-19)] and wound healing, IL-6 plays a critical role in modulating the systemic and local microenvironment. Elevated serum levels of IL-6 interfere with the systemic immune response and are associated with disease progression and prognosis. As already noted, monoclonal antibodies blocking either IL-6 or binding of IL-6 to receptors have been used/tested successfully in the treatment of rheumatoid arthritis, many cancer types, and COVID-19. Therefore, in the present review, we compare the impact of IL-6 and anti-IL-6 therapy to demonstrate common (pathological) features of the studied diseases such as formation of granulation tissue with the presence of myofibroblasts and deposition of new extracellular matrix. We also discuss abnormal activation of other wound-healing-related pathways that have been implicated in autoimmune disorders, cancer or COVID-19.
Collapse
Affiliation(s)
- Peter Gál
- Department of Pharmacology, Pavol Jozef Šafárik University, Košice, Slovak Republic
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Holub
- Department of Infectious Diseases, First Faculty of Medicine, Military University Hospital Prague and Charles University, 160 00 Prague, Czech Republic
| | - Milan Jakubek
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 120 00 Praha 2, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| | - Karolína Strnadová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| | - Petr Dubový
- Institute of Anatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Helena Hornychová
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Aleš Ryška
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| |
Collapse
|
139
|
Immunosenescence in Aging-Related Vascular Dysfunction. Int J Mol Sci 2022; 23:ijms232113269. [PMID: 36362055 PMCID: PMC9654630 DOI: 10.3390/ijms232113269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The immunosenescence-related disproportion in T lymphocytes may have important consequences for endothelial dysfunction, which is a key event in vascular aging. The study was designed to assess the prognostic values of the inflammatory-immune profile to better predict and prevent vascular diseases associated with old age. Eighty individuals aged 70.9 ± 5.3 years were allocated to a low- (LGI) or high-grade inflammation (HGI) group based on CRP (<3 or ≥3 mg/L) as a conventional risk marker of cardiovascular diseases. Significant changes in inflammatory and endothelium-specific variables IL-1β, IL-6, TNFα, oxLDL, H2O2, NO, 3-nitrotyrosine, and endothelial progenitor cells (OR 7.61, 95% CI 2.56−29.05, p < 0.0001), confirmed their interplay in vascular inflammation. The flow-cytometry analysis demonstrated a high disproportion in T lymphocytes CD4+ and CD8+ between LGI and HGI groups. CRP was <3 mg/mL for the CD4/CD8 ratio within the reference values ≥ 1 or ≤2.5, unlike for the CD4/CD8 ratio < 1 and >2.5. The odds ratios for the distribution of CD4+ (OR 5.98, 95% CI 0.001−0.008, p < 0.001), CD8+ (OR 0.23, 95% CI 0.08−0.59, p < 0.01), and CD8CD45RO+ T naïve cells (OR 0.27, 95% CI 0.097−0.695, p < 0.01) and CD4/CD8 (OR 5.69, 95% CI 2.07−17.32, p < 0.001) indicated a potential diagnostic value of T lymphocytes for clinical prognosis in aging-related vascular dysfunction.
Collapse
|
140
|
Vellasamy DM, Lee SJ, Goh KW, Goh BH, Tang YQ, Ming LC, Yap WH. Targeting Immune Senescence in Atherosclerosis. Int J Mol Sci 2022; 23:13059. [PMID: 36361845 PMCID: PMC9658319 DOI: 10.3390/ijms232113059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 10/29/2023] Open
Abstract
Atherosclerosis is one of the main underlying causes of cardiovascular diseases (CVD). It is associated with chronic inflammation and intimal thickening as well as the involvement of multiple cell types including immune cells. The engagement of innate or adaptive immune response has either athero-protective or atherogenic properties in exacerbating or alleviating atherosclerosis. In atherosclerosis, the mechanism of action of immune cells, particularly monocytes, macrophages, dendritic cells, and B- and T-lymphocytes have been discussed. Immuno-senescence is associated with aging, viral infections, genetic predispositions, and hyperlipidemia, which contribute to atherosclerosis. Immune senescent cells secrete SASP that delays or accelerates atherosclerosis plaque growth and associated pathologies such as aneurysms and coronary artery disease. Senescent cells undergo cell cycle arrest, morphological changes, and phenotypic changes in terms of their abundances and secretome profile including cytokines, chemokines, matrix metalloproteases (MMPs) and Toll-like receptors (TLRs) expressions. The senescence markers are used in therapeutics and currently, senolytics represent one of the emerging treatments where specific targets and clearance of senescent cells are being considered as therapy targets for the prevention or treatment of atherosclerosis.
Collapse
Affiliation(s)
- Danusha Michelle Vellasamy
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Sin-Jye Lee
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yin-Quan Tang
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| |
Collapse
|
141
|
Gao Y, Cai W, Zhou Y, Li Y, Cheng J, Wei F. Immunosenescence of T cells: a key player in rheumatoid arthritis. Inflamm Res 2022; 71:1449-1462. [DOI: 10.1007/s00011-022-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
|
142
|
The ABC-associated Immunosenescence and Lifestyle Interventions in Autoimmune Disease. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:128-135. [PMID: 36788975 PMCID: PMC9895871 DOI: 10.2478/rir-2022-0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 02/16/2023]
Abstract
Aging-associated immune changes, termed immunosenescence, occur with impaired robust immune responses. This immune response is closely related to a greater risk of development of autoimmune disease (AID), which results in increased levels of autoantibodies and increased morbidity and mortality. In addition, lifestyle-related risk factors play a pivotal role in AID, which may be probable via senescence-related immune cell subsets. Age-associated B cell (ABC) subsets have been observed in those who have rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and multiple sclerosis (MS). Here, this review aims to highlight the mechanisms of ABCs with lifestyle interventions in AID, especially how immunosenescence affects the pathogenesis of AID and the future of aging-associated lifestyle interventions in immunosenescence of AID.
Collapse
|
143
|
Martín Martín S, Morató Agustí ML, Javierre Miranda AP, Sánchez Hernández C, Schwarz Chavarri G, Aldaz Herce P, García Iglesias C, Gómez Marco JJ, Gutiérrez Pérez MI. [Infectious Disease Prevention Group: Update on vaccines, 2022]. Aten Primaria 2022; 54 Suppl 1:102462. [PMID: 36435581 PMCID: PMC9682159 DOI: 10.1016/j.aprim.2022.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
The update of the preventive activities for this year 2022 in the field of infectious diseases is of special relevance due to the importance that prevention has gained and more specifically, vaccination as a tool to control the pandemic caused by the SARS-CoV-2 virus declared on March 11, 2020. The pandemic has focused much of the prevention efforts on its containment, but the importance of maintaining high vaccination coverage of the rest of the recommended vaccines to maintain good control of vaccine-preventable diseases and avoid complications in particularly vulnerable patients should not be forgotten. In this year's review we present a practical document with the aim of providing tools to primary care professionals who work with adults, to make the indication of each vaccine whether it is systematically recommended or if it is because the patient belongs to some risk group due to their condition or underlying pathology. In this way, throughout the document, we will comment on the most innovative aspects of systematic vaccination (flu, pneumococcus, meningococcal vaccines and vaccines against the human papillomavirus [HPV]), the new vaccines (pandemic vaccines against COVID-19, vaccines against herpes zoster of subunits, vaccines against monkeypox) and the recommended vaccines according to risk condition (pregnancy and lactation, travelers, patients with immunosuppression or underlying pathology).
Collapse
Affiliation(s)
- Susana Martín Martín
- Medicina Familiar y Comunitaria, Centro de Salud de Balmaseda, OSI Ezkerraldea Enkarterri Cruces, Balmaseda, Vizcaya, España.
| | - M Luisa Morató Agustí
- Medicina Familiar y Comunitaria, Consultor Senior del Grupo de Prevención en las Enfermedades Infecciosas PAPPS-semFyC
| | | | - Coro Sánchez Hernández
- Medicina Familiar y Comunitaria, Centro de Salud Virgen Peregrina, SERGAS, Pontevedra, España
| | - Germán Schwarz Chavarri
- Medicina Familiar y Comunitaria, Centro de Salud San Blas. Conselleria de Sanitat, Generalitat Valenciana, Alicante, España
| | - Pablo Aldaz Herce
- Medicina Familiar y Comunitaria, Centro de Salud San Juan, SNS, Pamplona, España
| | | | | | | |
Collapse
|
144
|
Severe psychiatric disorders and general medical comorbidities: inflammation-related mechanisms and therapeutic opportunities. Clin Sci (Lond) 2022; 136:1257-1280. [PMID: 36062418 DOI: 10.1042/cs20211106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Individuals with severe psychiatric disorders, such as mood disorders and schizophrenia, are at increased risk of developing other medical conditions, especially cardiovascular and metabolic diseases. These medical conditions are underdiagnosed and undertreated in these patients contributing to their increased morbidity and mortality. The basis for this increased comorbidity is not well understood, possibly reflecting shared risks factors (e.g. lifestyle risk factors), shared biological mechanisms and/or reciprocal interactions. Among overlapping pathophysiological mechanisms, inflammation and related factors, such as dysbiosis and insulin resistance, stand out. Besides underlying the association between psychiatric disorders and cardiometabolic diseases, these mechanisms provide several potential therapeutic targets.
Collapse
|
145
|
Luís C, Maduro AT, Pereira P, Mendes JJ, Soares R, Ramalho R. Nutritional senolytics and senomorphics: Implications to immune cells metabolism and aging – from theory to practice. Front Nutr 2022; 9:958563. [PMID: 36159455 PMCID: PMC9493043 DOI: 10.3389/fnut.2022.958563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Aging is a natural physiological process, but one that poses major challenges in an increasingly aging society prone to greater health risks such as diabetes, cardiovascular disease, cancer, frailty, increased susceptibility to infection, and reduced response to vaccine regimens. The loss of capacity for cell regeneration and the surrounding tissue microenvironment itself is conditioned by genetic, metabolic, and even environmental factors, such as nutrition. The senescence of the immune system (immunosenescence) represents a challenge, especially when associated with the presence of age-related chronic inflammation (inflammaging) and affecting the metabolic programming of immune cells (immunometabolism). These aspects are linked to poorer health outcomes and therefore present an opportunity for host-directed interventions aimed at both eliminating senescent cells and curbing the underlying inflammation. Senotherapeutics are a class of drugs and natural products that delay, prevent, or reverse the senescence process – senolytics; or inhibit senescence-associated secretory phenotype – senomorphics. Natural senotherapeutics from food sources – nutritional senotherapeutics – may constitute an interesting way to achieve better age-associated outcomes through personalized nutrition. In this sense, the authors present herein a framework of nutritional senotherapeutics as an intervention targeting immunosenescence and immunometabolism, identifying research gaps in this area, and gathering information on concluded and ongoing clinical trials on this subject. Also, we present future directions and ideation for future clinical possibilities in this field.
Collapse
Affiliation(s)
- Carla Luís
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana T. Maduro
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Paula Pereira
- Nutritional Immunology – Clinical and Experimental Lab (NICE Lab), Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Egas Moniz Higher Education School, Monte de Caparica, Portugal
- Applied Nutrition Study Group (Grupo de Estudos em Nutrição Aplicada – G.E.N.A.-IUEM), Egas Moniz Higher Education School, Monte de Caparica, Portugal
- Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
| | - José João Mendes
- Nutritional Immunology – Clinical and Experimental Lab (NICE Lab), Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Egas Moniz Higher Education School, Monte de Caparica, Portugal
- Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
| | - Raquel Soares
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Renata Ramalho
- Nutritional Immunology – Clinical and Experimental Lab (NICE Lab), Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Egas Moniz Higher Education School, Monte de Caparica, Portugal
- Applied Nutrition Study Group (Grupo de Estudos em Nutrição Aplicada – G.E.N.A.-IUEM), Egas Moniz Higher Education School, Monte de Caparica, Portugal
- Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
- *Correspondence: Renata Ramalho,
| |
Collapse
|
146
|
Salminen A. Aryl hydrocarbon receptor (AhR) reveals evidence of antagonistic pleiotropy in the regulation of the aging process. Cell Mol Life Sci 2022; 79:489. [PMID: 35987825 PMCID: PMC9392714 DOI: 10.1007/s00018-022-04520-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
The antagonistic pleiotropy hypothesis is a well-known evolutionary theory to explain the aging process. It proposes that while a particular gene may possess beneficial effects during development, it can exert deleterious properties in the aging process. The aryl hydrocarbon receptor (AhR) has a significant role during embryogenesis, but later in life, it promotes several age-related degenerative processes. For instance, AhR factor (i) controls the pluripotency of stem cells and the stemness of cancer stem cells, (ii) it enhances the differentiation of embryonal stem cells, especially AhR signaling modulates the differentiation of hematopoietic stem cells and progenitor cells, (iii) it also stimulates the differentiation of immunosuppressive Tregs, Bregs, and M2 macrophages, and finally, (iv) AhR signaling participates in the differentiation of many peripheral tissues. On the other hand, AhR signaling is involved in many processes promoting cellular senescence and pathological processes, e.g., osteoporosis, vascular dysfunction, and the age-related remodeling of the immune system. Moreover, it inhibits autophagy and aggravates extracellular matrix degeneration. AhR signaling also stimulates oxidative stress, promotes excessive sphingolipid synthesis, and disturbs energy metabolism by catabolizing NAD+ degradation. The antagonistic pleiotropy of AhR signaling is based on the complex and diverse connections with major signaling pathways in a context-dependent manner. The major regulatory steps include, (i) a specific ligand-dependent activation, (ii) modulation of both genetic and non-genetic responses, (iii) a competition and crosstalk with several transcription factors, such as ARNT, HIF-1α, E2F1, and NF-κB, and (iv) the epigenetic regulation of target genes with binding partners. Thus, not only mTOR signaling but also the AhR factor demonstrates antagonistic pleiotropy in the regulation of the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
147
|
Ghamar Talepoor A, Doroudchi M. Immunosenescence in atherosclerosis: A role for chronic viral infections. Front Immunol 2022; 13:945016. [PMID: 36059478 PMCID: PMC9428721 DOI: 10.3389/fimmu.2022.945016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Immune system is a versatile and dynamic body organ which offers survival and endurance of human beings in their hostile living environment. However, similar to other cells, immune cells are hijacked by senescence. The ageing immune cells lose their beneficial functions but continue to produce inflammatory mediators which draw other immune and non-immune cells to the senescence loop. Immunosenescence has been shown to be associated with different pathological conditions and diseases, among which atherosclerosis has recently come to light. There are common drivers of both immunosenescence and atherosclerosis; e.g. inflammation, reactive oxygen species (ROS), chronic viral infections, genomic damage, oxidized-LDL, hypertension, cigarette smoke, hyperglycaemia, and mitochondrial failure. Chronic viral infections induce inflammaging, sustained cytokine signaling, ROS generation and DNA damage which are associated with atherogenesis. Accumulating evidence shows that several DNA and RNA viruses are stimulators of immunosenescence and atherosclerosis in an interrelated network. DNA viruses such as CMV, EBV and HBV upregulate p16, p21 and p53 senescence-associated molecules; induce inflammaging, metabolic reprogramming of infected cells, replicative senescence and telomere shortening. RNA viruses such as HCV and HIV induce ROS generation, DNA damage, induction of senescence-associated secretory phenotype (SASP), metabolic reprogramming of infected cells, G1 cell cycle arrest, telomere shortening, as well as epigenetic modifications of DNA and histones. The newly emerged SARS-CoV-2 virus is also a potent inducer of cytokine storm and SASP. The spike protein of SARS-CoV-2 promotes senescence phenotype in endothelial cells by augmenting p16, p21, senescence-associated β-galactosidase (SA-β-Gal) and adhesion molecules expression. The impact of SARS-CoV-2 mega-inflammation on atherogenesis, however, remains to be investigated. In this review we focus on the common processes in immunosenescence and atherogenesis caused by chronic viral infections and discuss the current knowledge on this topic.
Collapse
|
148
|
Wang Y, Dong C, Han Y, Gu Z, Sun C. Immunosenescence, aging and successful aging. Front Immunol 2022; 13:942796. [PMID: 35983061 PMCID: PMC9379926 DOI: 10.3389/fimmu.2022.942796] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Aging induces a series of immune related changes, which is called immunosenescence, playing important roles in many age-related diseases, especially neurodegenerative diseases, tumors, cardiovascular diseases, autoimmune diseases and coronavirus disease 2019(COVID-19). However, the mechanism of immunosenescence, the association with aging and successful aging, and the effects on diseases are not revealed obviously. In order to provide theoretical basis for preventing or controlling diseases effectively and achieve successful aging, we conducted the review and found that changes of aging-related phenotypes, deterioration of immune organ function and alterations of immune cell subsets participated in the process of immunosenescence, which had great effects on the occurrence and development of age-related diseases.
Collapse
Affiliation(s)
- Yunan Wang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yudian Han
- Information Center, The First People’s Hospital of Nantong City, Nantong, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| | - Chi Sun
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| |
Collapse
|
149
|
Loureiro Salgado C, Mendéz Corea AF, Covre LP, De Matos Guedes HL, Falqueto A, Gomes DCO. Ageing impairs protective immunity and promotes susceptibility to murine visceral leishmaniasis. Parasitology 2022; 149:1249-1256. [PMID: 35670372 PMCID: PMC11010576 DOI: 10.1017/s0031182022000828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 11/06/2022]
Abstract
It is well accepted that the impact of diseases is generally more detrimental in elderly individuals than in younger ones. Changes in the immune system due to ageing can directly affect the ability to respond effectively to infections and may contribute to the higher morbidities and mortalities in the elderly population. Leishmaniasis is a complex of clinically unique diseases caused by obligate intracellular protozoa belonging to genus Leishmania, wherein visceral leishmaniasis (VL) is the most severe form and is fatal if left untreated. In this study, aged mice (72 weeks old) presented increased susceptibility to L. infantum infection compared to younger mice (4–6-week-old), with notable parasitism in both the spleen and liver, as well as exhibiting hepatosplenomegaly. A pronounced inflammatory profile was observed in the aged-infected mice, with excessive production of TNF-α and nitrite, along with diminished IFN-γ production and reduced proliferative capacity of T cells (assessed by expression of the Ki67 marker). Additionally, both CD4+ and CD8+ T cells from the aged-infected mice presented increased expression of the inhibitory receptors PD-1 and KLRG1 that strongly correlated with the parasitism found in the liver and spleen of this group. Overall, the data reported in this study suggests for the first time that ageing may negatively impact the VL outcome and provides a perspective for new therapeutic strategies involving manipulation of immunosenescence features against Leishmania infection.
Collapse
Affiliation(s)
- Caio Loureiro Salgado
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | | | | | - Herbet Leonel De Matos Guedes
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Daniel Cláudio Oliviera Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, Brazil
| |
Collapse
|
150
|
Peres A, Branchini G, Marmett B, Nunes FB, Romão PRT, Olean-Oliveira T, Minuzzi L, Cavalcante M, Elsner V, Lira FS, Dorneles GP. Potential Anticarcinogenic Effects From Plasma of Older Adults After Exercise Training: An Exploratory Study. Front Physiol 2022; 13:855133. [PMID: 35874516 PMCID: PMC9298496 DOI: 10.3389/fphys.2022.855133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Aim: To evaluate the impact of exercise training plasma on in vitro prostate cancer cell viability and proliferation. Methods: PC3 prostate cancer cells were incubated with plasma obtained from young men with high and low physical fitness (PF) (high PF, n = 5; low PF, n = 5) and with the plasma collected from institutionalized older adults (n = 8) before and after multimodal exercise training. Cell viability and proliferation, mitochondria membrane polarization, reactive oxygen species (ROS) generation, and apoptosis were evaluated after the cell treatment with plasma. Systemic cytokines were evaluated in the plasma of institutionalized older adults submitted to an exercise training protocol. Results: Plasma from high-PF men lowers both cell viability and proliferation after the incubation time. PC3 cells also presented lower cell viability and diminished rates of cell proliferation after the incubation with post-training plasma samples of the older adults. The incubation of PC3 cells with post-training plasma of older adults depolarized the mitochondrial membrane potential and increased mitochondrial reactive oxygen species production. Post-training plasma did not change apoptosis or necrosis rates in the PC3 cell line. Multimodal exercise training increased the plasma levels of IL-2, IL-10, IFN-α, and FGF-1 and decreased TNF-α concentrations in institutionalized older adults. Conclusion: Adaptations in blood factors of institutionalized older adults may alter cell viability and proliferation by targeting mitochondrial ROS in a prostate cancer cell line.
Collapse
Affiliation(s)
- Alessandra Peres
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Gisele Branchini
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Bruna Marmett
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Fernanda Bordignon Nunes
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Pedro R T Romão
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago Olean-Oliveira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil.,Faculty of Sports Science and Physical Education, Research Center for Sports and Physical Activity, University of Coimbra, Coimbra, Portugal
| | - Luciele Minuzzi
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Mateus Cavalcante
- Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Viviane Elsner
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil.,Faculty of Sports Science and Physical Education, Research Center for Sports and Physical Activity, University of Coimbra, Coimbra, Portugal
| | - Gilson Pires Dorneles
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|