101
|
Zeng HS, Lin WX, Zhao ST, Zhang ZH, Yang HW, Chen FP, Song YZ, Yin ZN. SLC25A13 cDNA cloning analysis using peripheral blood lymphocytes facilitates the identification of a large deletion mutation: Molecular diagnosis of an infant with neonatal intrahepatic cholestasis caused by citrin deficiency. Mol Med Rep 2016; 14:5189-5194. [PMID: 27779681 DOI: 10.3892/mmr.2016.5873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/08/2016] [Indexed: 11/05/2022] Open
Abstract
Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is an autosomal recessive disorder resulting from biallelic mutations of the SLC25A13 gene. Due to the lack of well‑recognized clinical or biochemical diagnostic criteria, the definitive diagnosis of this disease relies on the genetic analysis of SLC25A13 at present. As novel large deletion/insertion mutations of the SLC25A13 gene are difficult to detect using routine DNA analytic approaches, the timely diagnosis of patients with these types of mutations remains a challenge. The present study aimed to examine SLC25A13 mutations in an infant with a suspected diagnosis of NICCD. DNA was extracted from blood samples, and SLC25A13 mutations were examined by screening for high‑frequency mutations and Sanger sequencing. Reverse transcription-polymerase chain reaction and cDNA cloning analyses were then performed using peripheral blood lymphocytes (PBLs) to identify the obscure mutation. The results demonstrated that the infant was heterozygous for a paternally‑inherited mutation, c.851_854del4, and a maternally‑inherited large deletion, c.1019_1177+893del, which has not been reported previously. A positive diagnosis of NICCD was made, and the infant responded favorably to a galactose‑free and medium‑chain triglyceride‑enriched formula. The present study confirmed the effectiveness of this formula in NICCD therapy, enriched the SLC25A13 mutational spectrum and supported the feasibility of cDNA cloning analysis using PBLs as a molecular tool for facilitating the identification of large SLC25A13 deletions.
Collapse
Affiliation(s)
- Han-Shi Zeng
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Wei-Xia Lin
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Shu-Tao Zhao
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhan-Hui Zhang
- Core Laboratory, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Heng-Wen Yang
- Biomedical Translational Research Institute, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Feng-Ping Chen
- Department of Laboratory Science, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuan-Zong Song
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhi-Nan Yin
- Biomedical Translational Research Institute, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
102
|
Choi JJ, Kim HS, Lee KC, Shin Y, Jo YY. Anesthetic experience of an adult male with citrullinemia type II: a case report. BMC Anesthesiol 2016; 16:92. [PMID: 27724842 PMCID: PMC5057249 DOI: 10.1186/s12871-016-0253-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/23/2016] [Indexed: 12/30/2022] Open
Abstract
Background Citrullinemia type II is an autosomal recessive urea cycle disorder and a subtype of citrin deficiency. However, the management of recurrent hyperammonemia with neurologic symptoms in patients with citrullinemia type II is quite different from the management of other types of urea cycle disorders. In pats with citrullinemia type II, regional anesthesia might be a good choice for the early detection of hyperammonemic symptoms and addressing psychic stress. Case presentation A 48-year-old male with adult onset citrullinemia type II was scheduled for urethral scrotal fistula repair. During the first operation, spinal anesthesia with conscious sedation using dexmedetomidine was used, a second operation was performed after confirmation of infection control and a stable neurologic condition. In this patient, dietary planning with close monitoring of serum ammonia level and close observation of neurologic conditions might lead to successful perioperative care. Conclusion For anesthesia of patients with adult onset citrullinemia type II, close monitoring of neurologic signs and serum ammonia are important to reduce neurologic complications induced by hyperammonemia. Regional anesthesia with a proper dietary plan might reduce patient stress and prevent metabolic tragedy.
Collapse
Affiliation(s)
- Jung Ju Choi
- Department of Anesthesiology and Pain Medicine, Gachon University Gil Medical Center, 1198 Guwol-dong, Namdong-gu, Incheon, 405-760, South Korea
| | - Hong Soon Kim
- Department of Anesthesiology and Pain Medicine, Gachon University Gil Medical Center, 1198 Guwol-dong, Namdong-gu, Incheon, 405-760, South Korea
| | - Kyung Cheon Lee
- Department of Anesthesiology and Pain Medicine, Gachon University Gil Medical Center, 1198 Guwol-dong, Namdong-gu, Incheon, 405-760, South Korea
| | - Youseok Shin
- Department of Anesthesiology and Pain Medicine, Gachon University Gil Medical Center, 1198 Guwol-dong, Namdong-gu, Incheon, 405-760, South Korea
| | - Youn Yi Jo
- Department of Anesthesiology and Pain Medicine, Gachon University Gil Medical Center, 1198 Guwol-dong, Namdong-gu, Incheon, 405-760, South Korea.
| |
Collapse
|
103
|
Fu CL, Hu YF, Song YZ. Idiopathic eruptive macular pigmentation in a child with citrin deficiency. Pediatr Int 2016; 58:902-5. [PMID: 27389718 DOI: 10.1111/ped.13007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/20/2016] [Accepted: 04/05/2016] [Indexed: 11/30/2022]
Abstract
Idiopathic eruptive macular pigmentation (IEMP) is a rare dermatological disorder with generally unclear etiology and pathogenesis. A 5½-year-old girl was referred to hospital with a 10 month history of brown skin rashes. In early infancy, citrin deficiency had been diagnosed with the SLC25A13 genotype c.851_854del4/c.998G > A, but all clinical and laboratory abnormalities recovered following the introduction of a lactose-free and medium-chain triglyceride-enriched formula. Physical examination at referral indicated symmetric, multiple and non-scaly brown macules on the neck, trunk, buttocks and proximal parts of the extremities. Histopathology indicated epidermal basal layer hyperpigmentation with an irregular distribution, along with a large number of melanophages in the upper dermis. The diagnosis of IEMP was thus made. Within 2 years of follow up, the rashes disappeared spontaneously and gradually. To our knowledge, this is the first description of IEMP in a patient with silent citrin deficiency.
Collapse
Affiliation(s)
- Chu-Li Fu
- Department of Pediatrics, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yun-Feng Hu
- Department of Dermatology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuan-Zong Song
- Department of Pediatrics, First Affiliated Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
104
|
|
105
|
Adenosine kinase deficiency with neurodevelopemental delay and recurrent hepatic dysfunction: A case report. ACTA ACUST UNITED AC 2016; 3. [PMID: 27500280 PMCID: PMC4975537 DOI: 10.12715/ard.2014.3.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hypermethioninemia may be benign, present as a nonspecific sign of nongenetic conditions such as liver failure and prematurity, or a severe, progressive inborn error of metabolism. Genetic causes of hypermethioninemia include mitochondrial depletion syndromes caused by mutations in the MPV17 and DGUOK genes and deficiencies of cystathionine β-synthase, methionine adenosyltransferase types I and III, glycine N-methyltransferase, S-adenosylhomocysteine hydrolase, citrin, fumarylacetoacetate hydrolase, and adenosine kinase. Here we present a 3-year old girl with a history of poor feeding, irritability, respiratory infections, cholestasis, congenital heart disease, neurodevelopmental delay, hypotonia, sparse hair, facial dysmorphisms, liver dysfunction, severe hypermethioninemia and mild homocystinemia. Genetic analysis of the adenosine kinase (ADK) gene revealed a previously unreported variant (c.479–480 GA>TG) resulting in a stop codon (p.E160X) in ADK. A methionine-restricted diet normalized the liver function test results and improved her hypotonia.
Collapse
|
106
|
Lin WX, Zeng HS, Zhang ZH, Mao M, Zheng QQ, Zhao ST, Cheng Y, Chen FP, Wen WR, Song YZ. Molecular diagnosis of pediatric patients with citrin deficiency in China: SLC25A13 mutation spectrum and the geographic distribution. Sci Rep 2016; 6:29732. [PMID: 27405544 PMCID: PMC4942605 DOI: 10.1038/srep29732] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Citrin deficiency (CD) is a Mendelian disease due to biallelic mutations of SLC25A13 gene. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is the major pediatric CD phenotype, and its definite diagnosis relies on SLC25A13 genetic analysis. China is a vast country with a huge population, but the SLC25A13 genotypic features of CD patients in our country remains far from being well clarified. Via sophisticated molecular analysis, this study diagnosed 154 new CD patients in mainland China and identified 9 novel deleterious SLC25A13 mutations, i.e. c.103A > G, [c.329 - 154_c.468 + 2352del2646; c.468 + 2392_c.468 + 2393ins23], c.493C > T, c.755 - 1G > C, c.845_c.848 + 1delG, c.933_c.933 + 1insGCAG, c.1381G > T, c.1452 + 1G > A and c.1706_1707delTA. Among the 274 CD patients diagnosed by our group thus far, 41 SLC25A13 mutations/variations were detected. The 7 mutations c.775C > T, c.851_854del4, c.1078C > T, IVS11 + 1G > A, c.1364G > T, c.1399C > T and IVS16ins3kb demonstrated significantly different geographic distribution. Among the total 53 identified genotypes, only c.851_854del4/c.851_854del4 and c.851_854del4/c.1399C > T presented different geographic distribution. The northern population had a higher level of SLC25A13 allelic heterogeneity than those in the south. These findings enriched the SLC25A13 mutation spectrum and brought new insights into the geographic distribution of the variations and genotypes, providing reliable evidences for NICCD definite diagnosis and for the determination of relevant molecular targets in different Chinese areas.
Collapse
Affiliation(s)
- Wei-Xia Lin
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Han-Shi Zeng
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zhan-Hui Zhang
- Clinical Medicine Research Institute, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Man Mao
- Department of Laboratory Science, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Qi-Qi Zheng
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Shu-Tao Zhao
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Ying Cheng
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Feng-Ping Chen
- Department of Laboratory Science, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Wang-Rong Wen
- Department of Laboratory Science, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Yuan-Zong Song
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
107
|
Amoedo ND, Punzi G, Obre E, Lacombe D, De Grassi A, Pierri CL, Rossignol R. AGC1/2, the mitochondrial aspartate-glutamate carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2394-412. [PMID: 27132995 DOI: 10.1016/j.bbamcr.2016.04.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
In this review we discuss the structure and functions of the aspartate/glutamate carriers (AGC1-aralar and AGC2-citrin). Those proteins supply the aspartate synthesized within mitochondrial matrix to the cytosol in exchange for glutamate and a proton. A structure of an AGC carrier is not available yet but comparative 3D models were proposed. Moreover, transport assays performed by using the recombinant AGC1 and AGC2, reconstituted into liposome vesicles, allowed to explore the kinetics of those carriers and to reveal their specific transport properties. AGCs participate to a wide range of cellular functions, as the control of mitochondrial respiration, calcium signaling and antioxydant defenses. AGC1 might also play peculiar tissue-specific functions, as it was found to participate to cell-to-cell metabolic symbiosis in the retina. On the other hand, AGC1 is involved in the glutamate-mediated excitotoxicity in neurons and AGC gene or protein alterations were discovered in rare human diseases. Accordingly, a mice model of AGC1 gene knock-out presented with growth delay and generalized tremor, with myelinisation defects. More recently, AGC was proposed to play a crucial role in tumor metabolism as observed from metabolomic studies showing that the asparate exported from the mitochondrion by AGC1 is employed in the regeneration of cytosolic glutathione. Therefore, given the central role of AGCs in cell metabolism and human pathology, drug screening are now being developed to identify pharmacological modulators of those carriers. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- N D Amoedo
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France; Instituto de Bioquímica Médica Leopoldo De Meis, UFRJ, Rio de Janeiro, Brazil
| | - G Punzi
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France; Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari
| | - E Obre
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France
| | - D Lacombe
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France
| | - A De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari
| | - C L Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari.
| | - R Rossignol
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France.
| |
Collapse
|
108
|
Identification of a Large SLC25A13 Deletion via Sophisticated Molecular Analyses Using Peripheral Blood Lymphocytes in an Infant with Neonatal Intrahepatic Cholestasis Caused by Citrin Deficiency (NICCD): A Clinical and Molecular Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4124263. [PMID: 27127784 PMCID: PMC4835617 DOI: 10.1155/2016/4124263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022]
Abstract
Background. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a Mendelian disorder arising from biallelic SLC25A13 mutations, and SLC25A13 genetic analysis was indispensable for its definite diagnosis. However, conventional SLC25A13 analysis could not detect all mutations, especially obscure large insertions/deletions. This paper aimed to explore the obscure SLC25A13 mutation in an NICCD infant. Methods. Genomic DNA was extracted to screen for 4 high-frequency SLC25A13 mutations, and then all 18 exons and their flanking sequences were analyzed by Sanger sequencing. Subsequently, cDNA cloning, SNP analyses, and semiquantitative PCR were performed to identify the obscure mutation. Results. A maternally inherited mutation IVS16ins3kb was screened out, and then cDNA cloning unveiled paternally inherited alternative splicing variants (ASVs) featuring exon 5 skipping. Ultimately, a large deletion c.329-1687_c.468+3865del5692bp, which has never been described in any other references, was identified via intensive study on the genomic DNA around exon 5 of SLC25A13 gene. Conclusions. An NICCD patient was definitely diagnosed as a compound heterozygote of IVS16ins3kb and c.329-1687_c.468+3865del5692bp. The large deletion enriched the SLC25A13 mutation spectrum, and its identification supported the concept that cDNA cloning analysis, along with other molecular tools such as semiquantitative PCR, could provide valuable clues, facilitating the identification of obscure SLC25A13 deletions.
Collapse
|
109
|
Inui A, Hashimoto T, Sogo T, Komatsu H, Saheki T, Fujisawa T. Chronic hepatitis without hepatic steatosis caused by citrin deficiency in a child. Hepatol Res 2016; 46:357-362. [PMID: 26190322 DOI: 10.1111/hepr.12559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 02/08/2023]
Abstract
Citrin deficiency manifests as both neonatal intrahepatic cholestasis (NICCD) during early infancy and adult-onset type II citrullinemia during adulthood. Hepatic steatosis is most frequently observed in patients with citrin deficiency. Thus, non-alcoholic fatty liver disease that is unrelated to being overweight is considered one of the clinical features of citrin deficiency in children and adults. However, it remains unknown whether citrin deficiency is a cause of chronic hepatitis in the absence of fatty changes to the liver that occur during childhood. We encountered an 8-year-old girl who showed no clinical features of NICCD during infancy and had persistently elevated transaminase levels for several years. Liver biopsy showed widening of the portal tracts with intense mononuclear cell infiltration and mild fibrosis but no fatty changes. However, she had peculiar dietary habits similar to those that have been observed in many patients with citrin deficiency. In addition, a slightly elevated plasma citrulline level and a high pancreatic secretory trypsin inhibitor level were detected by blood examination, and she was diagnosed with citrin deficiency. Analysis of the SLC25A13 gene revealed the presence of the compound heterozygous mutations 851del4 and IVS13 + 1G > A. Thus, citrin deficiency should be included in the differential diagnosis of chronic hepatitis in children, even in the absence of hepatic steatosis.
Collapse
Affiliation(s)
- Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Eastern Yokohama Hospital, Kanagawa, Japan
| | - Takuji Hashimoto
- Department of Pediatric Hepatology and Gastroenterology, Eastern Yokohama Hospital, Kanagawa, Japan
- Department of Pediatrics, Toho University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Sogo
- Department of Pediatric Hepatology and Gastroenterology, Eastern Yokohama Hospital, Kanagawa, Japan
| | - Haruki Komatsu
- Department of Pediatrics, Toho University, Sakura Medical Center, Chiba, Japan
| | - Takeyori Saheki
- Institute of Resource Development Analysis, Kumamoto University, Kumamoto, Japan
| | - Tomoo Fujisawa
- Department of Pediatric Hepatology and Gastroenterology, Eastern Yokohama Hospital, Kanagawa, Japan
| |
Collapse
|
110
|
Del Arco A, Contreras L, Pardo B, Satrustegui J. Calcium regulation of mitochondrial carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2413-21. [PMID: 27033520 DOI: 10.1016/j.bbamcr.2016.03.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
Abstract
Mitochondrial function is regulated by calcium. In addition to the long known effects of matrix Ca(2+), regulation of metabolite transport by extramitochondrial Ca(2+) represents an alternative Ca(2+)-dependent mechanism to regulate mitochondrial function. The Ca(2+) regulated mitochondrial transporters (CaMCs) are well suited for that role, as they contain long N-terminal extensions harboring EF-hand Ca(2+) binding domains facing the intermembrane space. They fall in two groups, the aspartate/glutamate exchangers, AGCs, major components of the NADH malate aspartate shuttle (MAS) and urea cycle, and the ATP-Mg(2+)/Pi exchangers or short CaMCs (APCs or SCaMCs). The AGCs are activated by relatively low Ca(2+) levels only slightly higher than resting Ca(2+), whereas all SCaMCs studied so far require strong Ca(2+) signals, above micromolar, for activation. In addition, AGCs are not strictly Ca(2+) dependent, being active even in Ca(2+)-free conditions. Thus, AGCs are well suited to respond to small Ca(2+) signals and that do not reach mitochondria. In contrast, ATP-Mg(2+)/Pi carriers are inactive in Ca(2+) free conditions and activation requires Ca(2+) signals that will also activate the calcium uniporter (MCU). By changing the net content of adenine nucleotides of the matrix upon activation, SCaMCs regulate the activity of the permeability transition pore, and the Ca(2+) retention capacity of mitochondria (CRC), two functions synergizing with those of the MCU. The different Ca(2+) activation properties of the two CaMCs are discussed in relation to their newly obtained structures. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Araceli Del Arco
- Facultad de Ciencias Ambientales y Bioquímica, Centro RegionaI de Investigaciones Biomédicas, Universidad de Castilla la Mancha, Toledo 45071, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Beatriz Pardo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jorgina Satrustegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| |
Collapse
|
111
|
Palmieri F, Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2362-78. [PMID: 26968366 DOI: 10.1016/j.bbamcr.2016.03.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Mitochondrial carriers (MCs) are a superfamily of nuclear-encoded proteins that are mostly localized in the inner mitochondrial membrane and transport numerous metabolites, nucleotides, cofactors and inorganic anions. Their unique sequence features, i.e., a tripartite structure, six transmembrane α-helices and a three-fold repeated signature motif, allow MCs to be easily recognized. This review describes how the functions of MCs from Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana (listed in the first table) were discovered after the genome sequence of S. cerevisiae was determined in 1996. In the genomic era, more than 50 previously unknown MCs from these organisms have been identified and characterized biochemically using a method consisting of gene expression, purification of the recombinant proteins, their reconstitution into liposomes and transport assays (EPRA). Information derived from studies with intact mitochondria, genetic and metabolic evidence, sequence similarity, phylogenetic analysis and complementation of knockout phenotypes have guided the choice of substrates that were tested in the transport assays. In addition, the diseases associated to defects of human MCs have been briefly reviewed. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
112
|
Moriyama M, Fujimoto Y, Rikimaru S, Ushikai M, Kuroda E, Kawabe K, Takano K, Asakawa A, Inui A, Eto K, Kadowaki T, Sinasac DS, Okano Y, Yazaki M, Ikeda SI, Zhang C, Song YZ, Sakamoto O, Kure S, Mitsubuchi H, Endo F, Horiuchi M, Nakamura Y, Yamamura KI, Saheki T. Mechanism for increased hepatic glycerol synthesis in the citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mouse: Urine glycerol and glycerol 3-phosphate as potential diagnostic markers of human citrin deficiency. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1787-95. [DOI: 10.1016/j.bbadis.2015.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
|
113
|
Takeuchi S, Yazaki M, Yamada S, Fukuyama T, Inui A, Iwasaki Y, Ikeda SI. An Adolescent Case of Citrin Deficiency With Severe Anorexia Mimicking Anorexia Nervosa. Pediatrics 2015. [PMID: 26195537 DOI: 10.1542/peds.2014-4172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We report a 12-year-old female citrin-deficient patient presenting with severe anorexia and body weight loss, mimicking the restricting type of anorexia nervosa (AN). She showed normal development until age 10 years when she started to play volleyball at school. She then became gradually anorexic, and her growth was stunted. At age 12, she was admitted to hospital because of severe anorexia and thinness. She was first thought to have AN, and drip infusion of glucose solution and high-calorie drinks were given, but her condition deteriorated further. She had a history of neonatal hepatitis and was therefore suspected to have citrin deficiency (CD). Genetic analysis of SLC25A13 revealed that she was compound heterozygous for 851del4 and IVS16ins3kb, and a diagnosis of CD was made. A low-carbohydrate diet with oral intake of arginine and ursodeoxycholic acid was started, and her condition gradually improved. The clinical features in our patient were similar to those of AN, and therefore AN may also be an important clinical sign in adolescent patients with CD.
Collapse
Affiliation(s)
- Satsuki Takeuchi
- Department of Pediatrics, Matsumoto Medical Center of Chu-shin-Matsumoto Hospital, Matsumoto, Japan
| | - Masahide Yazaki
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan; Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan;
| | - Shinji Yamada
- Department of Pediatrics, Matsumoto Medical Center of Chu-shin-Matsumoto Hospital, Matsumoto, Japan
| | | | - Akio Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasushi Iwasaki
- Department of Pediatrics, Matsumoto Medical Center of Chu-shin-Matsumoto Hospital, Matsumoto, Japan
| | - Shu-ichi Ikeda
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan; Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
114
|
Wang H, Shu S, Chen C, Huang Z, Wang D. Novel mutations in the SLC25A13 gene in a patient with NICCD and severe manifestations. J Pediatr Endocrinol Metab 2015; 28:471-5. [PMID: 25381944 DOI: 10.1515/jpem-2014-0278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/26/2014] [Indexed: 11/15/2022]
Abstract
Neonatal intrahepatic cholestatic due to citrin deficiency (NICCD) is an autosomal recessive disorder caused by mutations in the SLC25A13 gene and characterized by neonatal/infantile-onset cholestatic hepatitis syndrome associated with conjugated hyperbilirubinemia and multiple aminoacidemias. We report the case of a Chinese female patient with NICCD disease who manifested prominent clinical features. The patient was diagnosed with NICCD based on cholestasis, aminoacidemia, and hypoproteinemia. She exhibited extreme aminoacidemia, coagulation disorders and untypical myocardial damage, which are rare in other NICCD patients genetically confirmed by us. This myocardial damage observed in obstructive jaundice could be caused by both hyperbilirubinemia and redundant blood bile acids. Screening the SLC25A13 gene revealed that this patient was compound heterozygous harboring two novel mutations, the c. 640C>T (p. Gln214X) in exon 7 and the c. 1709_1710insA (p. Ile570fs573X) in exon 16. Both mutations cause a premature stop codon and thereby truncated peptide or nonsense-mediated with loss of natural function accordingly. In conclusion, extremely manifested clinical features, including significant hyperbilirubinemia, multiple aminoacidemia, hypoproteinemia, coagulation disorders, and myocardial damage related to redundant blood bilirubin and bile acids, were observed in a NICCD patients with two novel mutations.
Collapse
|
115
|
Liu Y, Huang ZH, Xu SQ, Huang YJ, Zhou H. Inherited metabolic disease screening in etiological diagnosis of infantile hepatitis syndrome. Shijie Huaren Xiaohua Zazhi 2015; 23:261-266. [DOI: 10.11569/wcjd.v23.i2.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the significance of screening for inherited metabolic diseases in the etiological diagnosis of infantile hepatitis syndrome.
METHODS: A retrospective analysis was performed of patients with infantile hepatitis syndrome who received hereditary metabolic disease screening from October 2003 to March 2010.
RESULTS: Among 802 patients with infantile hepatitis syndrome, 35 were identified to have hereditary metabolic hepatopathy. The main causes were tyrosinemia (n = 9), citrullinemia (n = 4), neonatal intrahepatic cholestasis caused by citrin deficiency (n = 4), hyperlactacidemia (n = 3), Niemann-Pick disease (n = 5), glycogenic thesaurismosis (n = 2), dicarboxylic aciduria (n = 2), alagille syndrome (n = 3), and progressive familial intrahepatic cholestasis (n = 3).
CONCLUSION: The causes of infantile hepatitis syndrome are diverse. It is necessary to conduct routine screening of inherited metabolic diseases in infantile hepatitis syndrome, which will be helpful to early diagnosis and correct treatment.
Collapse
|
116
|
Chanprasert S, Scaglia F. Adult liver disorders caused by inborn errors of metabolism: review and update. Mol Genet Metab 2015; 114:1-10. [PMID: 25467056 DOI: 10.1016/j.ymgme.2014.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
Inborn errors of metabolism (IEMs) are a group of genetic diseases that have protean clinical manifestations and can involve several organ systems. The age of onset is highly variable but IEMs afflict mostly the pediatric population. However, in the past decades, the advancement in management and new therapeutic approaches have led to the improvement in IEM patient care. As a result, many patients with IEMs are surviving into adulthood and developing their own set of complications. In addition, some IEMs will present in adulthood. It is important for internists to have the knowledge and be familiar with these conditions because it is predicted that more and more adult patients with IEMs will need continuity of care in the near future. The review will focus on Wilson disease, alpha-1 antitrypsin deficiency, citrin deficiency, and HFE-associated hemochromatosis which are typically found in the adult population. Clinical manifestations and pathophysiology, particularly those that relate to hepatic disease as well as diagnosis and management will be discussed in detail.
Collapse
Affiliation(s)
- Sirisak Chanprasert
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children Hospital, Houston, TX, USA.
| |
Collapse
|
117
|
Cooper AJL, Kuhara T. α-Ketoglutaramate: an overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle. Metab Brain Dis 2014; 29:991-1006. [PMID: 24234505 PMCID: PMC4020999 DOI: 10.1007/s11011-013-9444-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/21/2013] [Indexed: 01/16/2023]
Abstract
Glutamine metabolism is generally regarded as proceeding via glutaminase-catalyzed hydrolysis to glutamate and ammonia, followed by conversion of glutamate to α-ketoglutarate catalyzed by glutamate dehydrogenase or by a glutamate-linked aminotransferase (transaminase). However, another pathway exists for the conversion of glutamine to α-ketoglutarate that is often overlooked, but is widely distributed in nature. This pathway, referred to as the glutaminase II pathway, consists of a glutamine transaminase coupled to ω-amidase. Transamination of glutamine results in formation of the corresponding α-keto acid, namely, α-ketoglutaramate (KGM). KGM is hydrolyzed by ω-amidase to α-ketoglutarate and ammonia. The net glutaminase II reaction is: L - Glutamine + α - keto acid + H2O → α - ketoglutarate + L - amino acid + ammonia. In this mini-review the biochemical importance of the glutaminase II pathway is summarized, with emphasis on the key component KGM. Forty years ago it was noted that the concentration of KGM is increased in the cerebrospinal fluid (CSF) of patients with hepatic encephalopathy (HE) and that the level of KGM in the CSF correlates well with the degree of encephalopathy. In more recent work, we have shown that KGM is markedly elevated in the urine of patients with inborn errors of the urea cycle. It is suggested that KGM may be a useful biomarker for many hyperammonemic diseases including hepatic encephalopathy, inborn errors of the urea cycle, citrin deficiency and lysinuric protein intolerance.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA,
| | | |
Collapse
|
118
|
γ-Glutamyl transpeptidase level as a screening marker among diverse etiologies of infantile intrahepatic cholestasis. J Pediatr Gastroenterol Nutr 2014; 59:695-701. [PMID: 25141230 DOI: 10.1097/mpg.0000000000000538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Low γ-glutamyl transpeptidase (GGT) level is an important marker for progressive familial intrahepatic cholestasis, yet the cutoff level and clinical application is not well defined. This study aimed to evaluate the role of GGT as a screening marker among diverse etiologies of infantile cholestasis. METHODS This retrospective study analyzed 256 cholestatic infants admitted to a tertiary referral center between 2000 and 2012. After excluding 121 infants of extrahepatic cholestasis, advanced investigations for 135 infants with intrahepatic cholestasis were performed. The etiologies, outcomes, and correlations with GGT levels were analyzed. Good prognosis was defined as clinical recovery before 1 year of age; poor prognosis as persistent disease, liver transplantation, or death before 1 year. RESULTS Among 135 patients of intrahepatic cholestasis, >12 different etiologies were found. Neonatal hepatitis (49.6%), progressive familial intrahepatic cholestasis (21.5%), and neonatal cholestasis caused by citrin deficiency (10.4%) were the leading causes. Patients with initial GGT between 75 and 300 U/L had a higher chance of good prognosis (61/74, 82.4%) than those with GGT <75 U/L or >300 U/L (25/61, 41%, P < 0.0001). In the low-GGT group (≤ 100 U/L), 52.6% (30/57) of the patients have good prognosis; and GGT level ≤ 75 U/L has a sensitivity, specificity, and positive predictive value of 100%, 43.3%, and 61.4% in predicting poor prognosis. CONCLUSIONS Patients with GGT levels ≤ 75 or ≥ 300 U/L should receive advanced investigations such as genetic/metabolic assays early; otherwise, the amount of diagnostic workup may be limited if no signs of progressive disease.
Collapse
|
119
|
Liver transplantation versus conservative treatment for adult-onset type II citrullinemia: our experience and a review of the literature. Transplant Proc 2014; 45:3432-7. [PMID: 24182831 DOI: 10.1016/j.transproceed.2013.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 05/15/2013] [Accepted: 06/18/2013] [Indexed: 12/26/2022]
Abstract
Adult-onset type II citrullinemia (CTLN2), an autosomal recessive disorder caused by a mutation in the SLC25A13 gene, is characterized by increased serum citrulline and ammonia levels. Patients with CTLN2 also display various neuropsychiatric symptoms. Many individuals with CTLN2 are fond of protein-rich and/or lipid-rich foods with an aversion to carbohydrate-rich foods. We herein report two cases of CTLN2 treated with living donor liver transplantation (LDLT) and provide a review of the pertinent literature. Case 1 was a 43-year-old man admitted to our hospital for repetitive episodes of consciousness disturbance. Case 2 was a 37-year-old man admitted to our hospital because of abnormal behavior associated with hyperammonemia. A definitive diagnosis of CTLN2 was accomplished by DNA analysis in both patients, who successfully underwent LDLT using liver segments from donor siblings with confirmed heterozygous gene expression. Case 2 also underwent conservative therapy with arginine and a high-fat, carbohydrate-restricted diet prior to LDLT. Postoperative recovery was uneventful and food was unrestricted in both patients. We also identified 77 cases of CTLN2 in the literature and reviewed them in terms of outcome of both liver transplantation and conservative therapy. The survival rate in patients treated by liver transplantation was 100%, whereas that in patients treated by conservative treatment showed improvement from 39.5% to 76.5% over the years. Liver transplantation is a practical treatment that fundamentally improves patient quality of life after transplantation. However, recent studies have suggested that arginine and sodium pyruvate administration combined with intensive nutritional support is also an effective therapy for CTLN2. Further development of conservative therapy may provide a safer, more affordable alternative to liver transplantation in the near future.
Collapse
|
120
|
Abstract
Hypoglycemia in the pediatric population is a common finding important to recognize and manage to prevent brain injury. Recent advances in molecular genetics have provided new insight into its biochemical and physiologic basis and have led to more appropriate and specific treatment. Although a major cause of brain injury in pediatrics, the ability to predict the long-term outcome in these patients remains difficult. Identification of these at-risk individuals is important. The physiologic adaptations associated with transition from fetal to neonatal life are now better understood thus allowing for improved surveillance and management. Despite these advances, analytical limitations of point-of-care testing instruments at low glucose concentration continue to persist, This review aims to address these questions and provide an overview of pediatric hypoglycemia and the molecular pathways involved.
Collapse
|
121
|
Molecular genetics of citrullinemia types I and II. Clin Chim Acta 2014; 431:1-8. [DOI: 10.1016/j.cca.2014.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 12/16/2022]
|
122
|
Durdiaková J, Warrier V, Baron-Cohen S, Chakrabarti B. Single nucleotide polymorphism rs6716901 in SLC25A12 gene is associated with Asperger syndrome. Mol Autism 2014; 5:25. [PMID: 24679184 PMCID: PMC3973607 DOI: 10.1186/2040-2392-5-25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/20/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Autism Spectrum Conditions (ASC) are a group of developmental conditions which affect communication, social interactions and behaviour. Mitochondrial oxidative dysfunction has been suggested as a mechanism of autism based on the results of multiple genetic association and expression studies. SLC25A12 is a gene encoding a calcium-binding carrier protein that localizes to the mitochondria and is involved in the exchange of aspartate for glutamate in the inner membrane of the mitochondria regulating the cytosolic redox state. rs2056202 SNP in this gene has previously been associated with ASC. SNPs rs6716901 and rs3765166 analysed in this study have not been previously explored in association with AS. METHODS We genotyped three SNPs (rs2056202, rs3765166, and rs6716901) in SLC25A12 in n?=?117 individuals with Asperger syndrome (AS) and n?=?426 controls, all of Caucasian ancestry. RESULTS rs6716901 showed significant association with AS (P?=?0.008) after correcting for multiple testing. We did not replicate the previously identified association between rs2056202 and AS in our sample. Similarly, rs3765166 (P?=?0.11) showed no significant association with AS. CONCLUSION The present study, in combination with previous studies, provides evidence for SLC25A12 as involved in the etiology of AS. Further cellular and molecular studies are required to elucidate the role of this gene in ASC.
Collapse
Affiliation(s)
| | | | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge CB2 8AH, UK.
| | | |
Collapse
|
123
|
Zhang ZH, Lin WX, Deng M, Zhao ST, Zeng HS, Chen FP, Song YZ. Clinical, molecular and functional investigation on an infant with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). PLoS One 2014; 9:e89267. [PMID: 24586645 PMCID: PMC3931723 DOI: 10.1371/journal.pone.0089267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 01/16/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND OBJECTIVE SLC25A13 analysis has provided reliable evidences for the definitive diagnosis of citrin deficiency (CD) in the past decade. Meanwhile, these studies generated some issues yet to be resolved, including the pathogenicity of SLC25A13 missense mutations and the mRNA product from the mutation c.615+5G>A. This study aims to investigate the effect of a novel missense mutation on the aspartate/glutamate carrier (AGC) function of citrin protein, and to explore the aberrant transcript from c.615+5G>A in the same CD infant. METHODS AND RESULTS By means of screening for prevalent SLC25A13 mutations and exons sequencing, the patient proved a compound heterozygote of c.615+5G>A and a novel c.1064G>A (p.Arg355Gln) mutation. An aberrant transcript with retention of the entire intron 6, r.[615+1_615+1789ins; 615+5 g>a] (GenBank accession number KJ128074), which was resulted from c.615+5G>A, was detected by RT-PCR and cDNA sequencing. After bioinformatic analyses of the novel missense mutation c.1064G>A, the growth abilities of three agc1Δ yeast strains were tested, which had been transformed with recombinant or empty vectors, respectively. Besides the bioinformatically pathogenic evidences, the growth ability of the agc1Δ strains transformed with mutant recombinant was the same as with empty vector, but significantly lower than that with normal control in functional analysis. CONCLUSIONS A CD infant was definitely diagnosed in this paper by a genetic, transcriptional and functional analysis of SLC25A13 gene. This study provided direct laboratory evidences supporting the splice-site nature of the c.615+5G>A mutation, and the novel c.1064G>A variation, which proved a pathogenic mutation bioinformatically and functionally, enriched the SLC25A13 mutation spectrum.
Collapse
Affiliation(s)
- Zhan-Hui Zhang
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Central Laboratory, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Wei-Xia Lin
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Mei Deng
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Shu-Tao Zhao
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Han-Shi Zeng
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Feng-Ping Chen
- Department of Laboratory Science, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yuan-Zong Song
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
124
|
Falk MJ, Li D, Gai X, McCormick E, Place E, Lasorsa FM, Otieno FG, Hou C, Kim CE, Abdel-Magid N, Vazquez L, Mentch FD, Chiavacci R, Liang J, Liu X, Jiang H, Giannuzzi G, Marsh ED, Yiran G, Tian L, Palmieri F, Hakonarson H. AGC1 Deficiency Causes Infantile Epilepsy, Abnormal Myelination, and Reduced N-Acetylaspartate. JIMD Rep 2014; 14:77-85. [PMID: 24515575 DOI: 10.1007/8904_2013_287] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/11/2013] [Accepted: 12/04/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Whole exome sequencing (WES) offers a powerful diagnostic tool to rapidly and efficiently sequence all coding genes in individuals presenting for consideration of phenotypically and genetically heterogeneous disorders such as suspected mitochondrial disease. Here, we report results of WES and functional validation in a consanguineous Indian kindred where two siblings presented with profound developmental delay, congenital hypotonia, refractory epilepsy, abnormal myelination, fluctuating basal ganglia changes, cerebral atrophy, and reduced N-acetylaspartate (NAA). METHODS Whole blood DNA from one affected and one unaffected sibling was captured by Agilent SureSelect Human All Exon kit and sequenced on the Illumina HiSeq2000. Mutations were validated by Sanger sequencing in all family members. Protein from wild-type and mutant fibroblasts was isolated to assess mutation effects on protein expression and enzyme activity. RESULTS A novel SLC25A12 homozygous missense mutation, c.1058G>A; p.Arg353Gln, segregated with disease in this kindred. SLC25A12 encodes the neuronal aspartate-glutamate carrier 1 (AGC1) protein, an essential component of the neuronal malate/aspartate shuttle that transfers NADH and H(+) reducing equivalents from the cytosol to mitochondria. AGC1 activity enables neuronal export of aspartate, the glial substrate necessary for proper neuronal myelination. Recombinant mutant p.Arg353Gln AGC1 activity was reduced to 15% of wild type. One prior reported SLC25A12 mutation caused complete loss of AGC1 activity in a child with epilepsy, hypotonia, hypomyelination, and reduced brain NAA. CONCLUSIONS These data strongly suggest that SLC25A12 disease impairs neuronal AGC1 activity. SLC25A12 sequencing should be considered in children with infantile epilepsy, congenital hypotonia, global delay, abnormal myelination, and reduced brain NAA.
Collapse
Affiliation(s)
- Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia and The Perelman School of Medicine, Philadelphia, PA, 19104, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Liu G, Wei X, Chen R, Zhou H, Li X, Sun Y, Xie S, Zhu Q, Qu N, Yang G, Chu Y, Wu H, Lan Z, Wang J, Yang Y, Yi X. A novel mutation of the SLC25A13 gene in a Chinese patient with citrin deficiency detected by target next-generation sequencing. Gene 2014; 533:547-53. [DOI: 10.1016/j.gene.2013.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/06/2013] [Accepted: 10/11/2013] [Indexed: 01/29/2023]
|
126
|
Antoniu S. Fresh from the designation pipeline: orphan drugs recently designated in the European Union (June – August 2013). Expert Opin Orphan Drugs 2013. [DOI: 10.1517/21678707.2013.857597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
127
|
Wongkittichote P, Sukasem C, Kikuchi A, Aekplakorn W, Jensen LT, Kure S, Wattanasirichaigoon D. Screening of SLC25A13 mutation in the Thai population. World J Gastroenterol 2013; 19:7735-7742. [PMID: 24282362 PMCID: PMC3837273 DOI: 10.3748/wjg.v19.i43.7735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/29/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the prevalence of SLC25A13 mutations in the Thai population.
METHODS: A total of 1537 subjects representing the Thai population were screened for a novel pathologic allele p.Met1? (c.2T > C) and six previously known common SLC25A13 mutations: [I] (c.851_854delGTAT), [II] (g.IVS11 + 1G > A), [III] (c.1638_1660dup), [IV] (p.S225X), [V] (IVS13 + 1G > A), and [XIX] (g.IVS16ins3kb) using a newly developed TaqMan and established HybProbe assay, respectively. Sanger sequencing was employed for specimens showing an aberrant peak to confirm the targeted mutation as well as the unknown aberrant peaks detected. Frequencies of the mutations identified were compared in each region. Carrier frequency and disease prevalence of citrin deficiency caused by SCL25A13 mutations were estimated.
RESULTS: p.Met1? was identified in the heterozygous state in 85 individuals, giving a carrier frequency of 1/18, which suggests possible selective advantage of this variant. The question of p.Met1? homozygote lethality remains unanswered which may serve as an explanation as to why this homozygote has yet to be identified in patients/controls even with high allele frequency. The p.Met1? mutation has rarely been studied in populations other than Thai and Chinese; therefore, may have been overlooked. Development of the TaqMan assay in the present study would allow a simple, rapid, and cost-effective method for mass screening. Heterozygous mutations: [XIX] and [I] were identified in 17 individuals, giving a carrier rate of 1/90 and a calculated homozygote rate of 1/33000. Two novel variants, g.IVS11 + 17C > G and c.1311C > T, of unknown clinical significance were identified at low frequency.
CONCLUSION: This study highlighted the current underestimation of citrin deficiency and suggests the possible selective advantage of the p.Met1? allele.
Collapse
|
128
|
Benjamin S, Lauterbach MD, Stanislawski AL. Congenital and acquired disorders presenting as psychosis in children and young adults. Child Adolesc Psychiatr Clin N Am 2013; 22:581-608. [PMID: 24012075 DOI: 10.1016/j.chc.2013.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A review of the published literature found 60 congenital and acquired disorders with symptoms that include psychosis in youth. The prevalence, workup, genetics, and associated neuropsychiatric features of each disorder are described. Eighteen disorders (30%) have distinct phenotypes (doorway diagnoses); 18 disorders (30%) are associated with intellectual disability; and 43 disorders (72%) have prominent neurologic signs. Thirty-one disorders (52%) can present without such distinct characteristics, and are thus more easily overlooked. A systematic and cost-effective differential diagnostic approach based on estimated prevalence and most prominent associated signs is recommended.
Collapse
Affiliation(s)
- Sheldon Benjamin
- Departments of Psychiatry and Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
129
|
SLC25A13 gene analysis in citrin deficiency: sixteen novel mutations in East Asian patients, and the mutation distribution in a large pediatric cohort in China. PLoS One 2013; 8:e74544. [PMID: 24069319 PMCID: PMC3777997 DOI: 10.1371/journal.pone.0074544] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/02/2013] [Indexed: 12/19/2022] Open
Abstract
Background The human SLC25A13 gene encodes citrin, the liver-type mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), and SLC25A13 mutations cause citrin deficiency (CD), a disease entity that encompasses different age-dependant clinical phenotypes such as Adult-onset Citrullinemia Type II (CTLN2) and Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD). The analyses of SLC25A13 gene and its protein/mRNA products remain reliable tools for the definitive diagnoses of CD patients, and so far, the SLC25A13 mutation spectrum in Chinese CD patients has not been well-characterized yet. Methods and Results By means of direct DNA sequencing, cDNA cloning and SNP analyses, 16 novel pathogenic mutations, including 9 missense, 4 nonsense, 1 splice-site, 1 deletion and 1 large transposal insertion IVS4ins6kb (GenBank accession number KF425758), were identified in CTLN2 or NICCD patients from China, Japan and Malaysia, respectively, making the SLC25A13 variations worldwide reach the total number of 81. A large NICCD cohort of 116 Chinese cases was also established, and the 4 high-frequency mutations contributed a much larger proportion of the mutated alleles in the patients from south China than in those from the north (χ2 = 14.93, P<0.01), with the latitude of 30°N as the geographic dividing line in mainland China. Conclusions This paper further enriched the SLC25A13 variation spectrum worldwide, and formed a substantial contribution to the in-depth understanding of the genotypic feature of Chinese CD patients.
Collapse
|
130
|
Wongkittichote P, Tungpradabkul S, Wattanasirichaigoon D, Jensen LT. Prediction of the functional effect of novel SLC25A13 variants using a S. cerevisiae model of AGC2 deficiency. J Inherit Metab Dis 2013; 36:821-30. [PMID: 23053473 DOI: 10.1007/s10545-012-9543-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/05/2012] [Accepted: 09/12/2012] [Indexed: 01/31/2023]
Abstract
AGC2, a member of the mitochondrial carrier protein family, is as an aspartate-glutamate carrier and is important for urea synthesis and the maintenance of the malate-aspartate shuttle. Mutations in SLC25A13, the gene encoding AGC2, result in two age dependent disorders: neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) and type II citrullinemia (CTLN2). The clinical features of CTLN2 are very similar to those of other urea cycle disorders making a clear diagnosis difficult. Analysis of the SLC25A13 gene sequence can provide a definitive diagnosis, however the predictive value of DNA sequencing requires that the disease association of variants be characterized. We utilized the yeast Saccharomyces cerevisiae lacking AGC1 as a model system to study the effect on the function of AGC2 variants and confirmed that this system is capable of distinguishing between AGC2 variants with normal (p.Pro632Leu) or impaired function (p.Gly437Glu, p.Gly531Asp, p.Thr546Met, p.Leu598Arg and p.Glu601Lys). Three novel AGC2 genetic variants, p.Met1? (c.2T>C), p.Pro502Leu (c.1505C>T), and p.Arg605Gln (c.1814G>A) were investigated and our analysis revealed that p.Pro502Leu and p.Arg605Gln substitutions in the AGC2 protein were without effect and these variants were fully functional. The p.Met1? mutant is capable of expressing a truncated p.Met1_Phe34del AGC2 variant, however this protein is not functional due to disruptions in a calcium binding EF hand as well as incorrect intracellular localization. Our study demonstrates that the characterization of AGC2 expressed in yeast cells is a powerful technique to investigate AGC2 variants, and this analysis should aid in establishing the disease association of novel variants.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | |
Collapse
|
131
|
Chen R, Wang XH, Fu HY, Zhang SR, Abudouxikuer K, Saheki T, Wang JS. Different regional distribution of SLC25A13 mutations in Chinese patients with neonatal intrahepatic cholestasis. World J Gastroenterol 2013; 19:4545-4551. [PMID: 23901231 PMCID: PMC3725380 DOI: 10.3748/wjg.v19.i28.4545] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/24/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the differences in the mutation spectra of the SLC25A13 gene mutations from specific regions of China.
METHODS: Genetic analyses of SLC25A13 mutations were performed in 535 patients with neonatal intrahepatic cholestasis from our center over eight years. Unrelated infants with at least one mutant allele were enrolled to calculate the proportion of SLC25A13 mutations in different regions of China. The boundary between northern and southern China was drawn at the historical border of the Yangtze River.
RESULTS: A total of 63 unrelated patients (about 11% of cases with intrahepatic cholestasis) from 16 provinces or municipalities in China had mutations in the SLC25A13 gene, of these 16 (25%) were homozygotes, 28 (44%) were compound heterozygotes and 19 (30%) were heterozygotes. In addition to four well described common mutations (c.851_854del, c.1638_1660dup23, c.615+5G>A and c.1750+72_1751-4dup17insNM_138459.3:2667 also known as IVS16ins3kb), 13 other mutation types were identified, including three novel mutations: c.985_986insT, c.287T>C and c.1349A>G. According to the geographical division criteria, 60 mutant alleles were identified in patients from the southern areas of China, 43 alleles were identified in patients from the border, and 4 alleles were identified in patients from the northern areas of China. The proportion of four common mutations was higher in south region (56/60, 93%) than that in the border region (34/43, 79%, χ2 = 4.621, P = 0.032) and the northern region (2/4, 50%, χ2 = 8.288, P = 0.041).
CONCLUSION: The SLC25A13 mutation spectra among the three regions of China were different, providing a basis for the improvement of diagnostic strategies and interpretation of genetic diagnosis.
Collapse
|
132
|
Tazawa KI, Yazaki M, Fukushima K, Ogata S, Makuuchi M, Morita K, Hiraishi H, Iwasaki Y, Kita J, Kubota K, Ikeda SI. Patient with adult-onset type II citrullinemia beginning 2 years after operation for duodenal malignant somatostatinoma: Indication for liver transplantation. Hepatol Res 2013; 43:563-8. [PMID: 23617280 DOI: 10.1111/j.1872-034x.2012.01098.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 02/08/2023]
Abstract
We report a 51-year-old female patient with adult-onset type II citrullinemia (CTLN2) who had a history of pancreatoduodenectomy for duodenal somatostatinoma with metastases to regional lymph nodes at age 49 years, paying special attention to indications for liver transplantation. At age 50 years, she developed hepatic encephalopathy with elevation of plasma ammonia and citrulline levels. A diagnosis of CTLN2 was made by DNA analysis of the SLC25A13 gene and treatment with conservative therapies was begun, including a low-carbohydrate diet and supplementation with arginine and sodium pyruvate. However, despite these treatments, frequent attacks of encephalopathy occurred with markedly elevated plasma ammonia levels. While we were apprehensive regarding the risk of recurrence of somatostatinoma due to immunosuppressive therapy after liver transplantation, the patient was in a critical condition with CTLN2 and it was decided to perform living-donor liver transplantation using a graft obtained from her son. Her postoperative clinical course was uneventful and she has had an active life without recurrence of somatostatinoma for 2 years. This is the first case of CTLN2 with somatostatinoma. As the condition of CTLN2 patients with rapidly progressive courses is often intractable by conservative therapies alone, liver transplantation should be considered even after surgery for malignant tumors in cases with neither metastasis nor recurrence.
Collapse
Affiliation(s)
- Ko-Ichi Tazawa
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Okano Y, Kobayashi K, Ihara K, Ito T, Yoshino M, Watanabe Y, Kaji S, Ohura T, Nagao M, Noguchi A, Mushiake S, Hohashi N, Hashimoto-Tamaoki T. Fatigue and quality of life in citrin deficiency during adaptation and compensation stage. Mol Genet Metab 2013; 109:9-13. [PMID: 23453692 DOI: 10.1016/j.ymgme.2013.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
Citrin-deficient children and adolescents between adult-onset type II citrullinemia and neonatal intrahepatic cholestasis by citrin deficiency do not have clear clinical features except for unusual diet of high-fat, high-protein, and low-carbohydrate food. The aims of the present study are to characterize fatigue and quality of life (QOL) in citrin-deficient patients during adaptation and compensation stage, and to define the relationship between fatigue and QOL. The study subjects were 55 citrin-deficient patients aged 1-22years (29 males) and 54 guardians. Fatigue was evaluated by self-reports and proxy-reports of the PedsQL Multidimensional Fatigue Scale. QOL was evaluated by the PedsQL Generic Core Scales. Both scale scores were significantly lower in child self-reports (p<0.01 and p<0.05, respectively) and parent proxy-reports (p<0.01 and p<0.01, respectively) than those of healthy children. Citrin-deficient patients with scores of 50 percentile or less of healthy children constituted 67.5% of the sample for the Fatigue Scale and 68.4% for the Generic Core Scales. The PedsQL Fatigue Scale correlated with the Generic Core Scales for both the patients (r=0.56) and parents reports (r=0.71). Assessments by the patients and their parents showed moderate agreement. Parents assessed the condition of children more favorably than their children. The study identified severe fatigue and impaired QOL in citrin-deficient patients during the silent period, and that such children perceive worse fatigue and poorer QOL than those estimated by their parents. The results stress the need for active involvement of parents and medical staff in the management of citrin-deficient patients during the silent period.
Collapse
Affiliation(s)
- Yoshiyuki Okano
- Department of Genetics, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, 663-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Wu QP, Wang LL, Chen XQ, Tang Q, Shan QW, Huang L, Lian SJ, Yun X, Gao GP, Chen Y. Screening of SLC25A13 gene mutations in infants with idiopathic intrahepatic cholestasis in Guangxi. Shijie Huaren Xiaohua Zazhi 2013; 21:1120-1125. [DOI: 10.11569/wcjd.v21.i12.1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To screen SLC25A13 gene mutations in idiopathic infantile hepatitis cholestasis in Guangxi, China.
METHODS: Sixty-three patients with idiopathic infantile cholestasis, who were hospitalized in the Department of Pediatrics of the First Affiliated Hospital of Guangxi Medical University from September 2010 to June 2012, and 50 infants without intrahepatic cholestasis were included in this study. Genomic DNA was prepared from peripheral blood of all subjects for further analysis. For the case group, Citrin deficiency was screened using the tandem mass spectrometry (MS-MS, using blood samples) and gas chromatography mass spectrometry (GC-MS, using urine samples). Direct gene sequencing was performed in patients who were suspected to have Citrin deficiency. Twelve common SLC25A13 gene hot-spot mutations were screened by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) in the remaining patients and controls.
RESULTS: MS-MS and GC-MS analyses suggested that five patients were suspected to have Citrin deficiency, but the 12 common SLC25A13 gene hot-spot mutations were not detected in these patients in a further DNA sequencing analysis. The 12 common SLC25A13 gene hot-spot mutations were also not detected by PCR-SSCP in the remaining patients and controls.
CONCLUSION: The 12 common SLC25A13 gene hot-spot mutations were not found in patients who were suspected to have Citrin deficiency and the other patients and controls. Other rare SLC25A13 gene mutations should be screened in more patients.
Collapse
|
135
|
Wang LY, Chen NI, Chen PW, Chiang SC, Hwu WL, Lee NC, Chien YH. Newborn screening for citrin deficiency and carnitine uptake defect using second-tier molecular tests. BMC MEDICAL GENETICS 2013; 14:24. [PMID: 23394329 PMCID: PMC3575349 DOI: 10.1186/1471-2350-14-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 02/07/2013] [Indexed: 11/26/2022]
Abstract
Background Tandem mass spectrometry (MS/MS) analysis is a powerful tool for newborn screening, and many rare inborn errors of metabolism are currently screened using MS/MS. However, the sensitivity of MS/MS screening for several inborn errors, including citrin deficiency (screened by citrulline level) and carnitine uptake defect (CUD, screened by free carnitine level), is not satisfactory. This study was conducted to determine whether a second-tier molecular test could improve the sensitivity of citrin deficiency and CUD detection without increasing the false-positive rate. Methods Three mutations in the SLC25A13 gene (for citrin deficiency) and one mutation in the SLC22A5 gene (for CUD) were analyzed in newborns who demonstrated an inconclusive primary screening result (with levels between the screening and diagnostic cutoffs). Results The results revealed that 314 of 46 699 newborns received a second-tier test for citrin deficiency, and two patients were identified; 206 of 30 237 newborns received a second-tier testing for CUD, and one patient was identified. No patients were identified using the diagnostic cutoffs. Although the incidences for citrin deficiency (1:23 350) and CUD (1:30 000) detected by screening are still lower than the incidences calculated from the mutation carrier rates, the second-tier molecular test increases the sensitivity of newborn screening for citrin deficiency and CUD without increasing the false-positive rate. Conclusions Utilizing a molecular second-tier test for citrin deficiency and carnitine transporter deficiency is feasible.
Collapse
Affiliation(s)
- Li-Yun Wang
- Graduate Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
136
|
Siu LY, Wong KN, Li KW, Kwong NS. Outcome of hepatobiliary scanning: preterm versus full-term cholestatic infants. J Paediatr Child Health 2013; 49:E46-51. [PMID: 23279199 DOI: 10.1111/jpc.12067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aims of this study were to evaluate the specificity of a non-draining hepatobiliary scintigraphy (HBS) for biliary atresia (BA) in preterm and full-term babies, to verify the relationship between non-draining scan and higher levels of direct bilirubin and to find an objective criterion to guide the time in performing HBS. METHODS A total of 175 infants (113 males and 62 females, median age of 45 days) with 181 HBS performed in Tuen Mun Hospital between January 1998 and May 2010 were retrospectively analysed. A 'non-draining' scan was defined as one showing no excretion of radiolabelled tracer into the small bowel 24 h after injection. The disease category, epidemiological and laboratory data were compared between infants having non-draining and draining scans. In addition, the predictive value of a negative scan for BA was compared between preterm and full-term infants. RESULTS Twenty infants (11.4%) were surgically confirmed to have BA. A non-draining scan was found to be 100% sensitive for BA, and the specificity was 96% and 78% among full-term infants and preterm infants, respectively. The mean direct bilirubin values of infants with BA and intrahepatic cholestasis were 141.9 and 111.3 μmol/L, respectively, which were significantly higher than 67.2 μmol/L seen in infants with draining scans. This analysis shows that using direct bilirubin ≥63 μmol/L as an objective criterion in guiding the time to perform HBS is most cost-effective. CONCLUSION Our data supported that using direct bilirubin ≥63 μmol/L as an objective criterion in guiding the time to perform HBS will avoid unnecessary scans.
Collapse
Affiliation(s)
- Luen Yee Siu
- Department of Paediatrics and Adolescent Medicine, Tuen Mun Hospital, New Territories, Hong Kong, China.
| | | | | | | |
Collapse
|
137
|
Saheki T, Inoue K, Ono H, Katsura N, Yokogawa M, Yoshidumi Y, Furuie S, Kuroda E, Ushikai M, Asakawa A, Inui A, Eto K, Kadowaki T, Sinasac DS, Yamamura KI, Kobayashi K. Effects of supplementation on food intake, body weight and hepatic metabolites in the citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mouse model of human citrin deficiency. Mol Genet Metab 2012; 107:322-9. [PMID: 22921887 DOI: 10.1016/j.ymgme.2012.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 01/19/2023]
Abstract
The C57BL/6:Slc23a13(-/-);Gpd2(-/-) double-knockout (a.k.a., citrin/mitochondrial glycerol 3-phosphate dehydrogenase double knockout or Ctrn/mGPD-KO) mouse displays phenotypic attributes of both neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2), making it a suitable model of human citrin deficiency. In the present study, we show that when mature Ctrn/mGPD-KO mice are switched from a standard chow diet (CE-2) to a purified maintenance diet (AIN-93M), this resulted in a significant loss of body weight as a result of reduced food intake compared to littermate mGPD-KO mice. However, supplementation of the purified maintenance diet with additional protein (from 14% to 22%; and concomitant reduction or corn starch), or with specific supplementation with alanine, sodium glutamate, sodium pyruvate or medium-chain triglycerides (MCT), led to increased food intake and body weight gain near or back to that on chow diet. No such effect was observed when supplementing the diet with other sources of fat that contain long-chain fatty acids. Furthermore, when these supplements were added to a sucrose solution administered enterally to the mice, which has been shown previously to lead to elevated blood ammonia as well as altered hepatic metabolite levels in Ctrn/mGPP-KO mice, this led to metabolic correction. The elevated hepatic glycerol 3-phosphate and citrulline levels after sucrose administration were suppressed by the administration of sodium pyruvate, alanine, sodium glutamate and MCT, although the effect of MCT was relatively small. Low hepatic citrate and increased lysine levels were only found to be corrected by sodium pyruvate, while alanine and sodium glutamate both corrected hepatic glutamate and aspartate levels. Overall, these results suggest that dietary factors including increased protein content, supplementation of specific amino acids like alanine and sodium glutamate, as well as sodium pyruvate and MCT all show beneficial effects on citrin deficiency by increasing the carbohydrate tolerance of Ctrn/mGPD-KO mice, as observed through increased food intake and maintenance of body weight.
Collapse
Affiliation(s)
- Takeyori Saheki
- Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Treepongkaruna S, Jitraruch S, Kodcharin P, Charoenpipop D, Suwannarat P, Pienvichit P, Kobayashi K, Wattanasirichaigoon D. Neonatal intrahepatic cholestasis caused by citrin deficiency: prevalence and SLC25A13 mutations among Thai infants. BMC Gastroenterol 2012; 12:141. [PMID: 23067347 PMCID: PMC3483206 DOI: 10.1186/1471-230x-12-141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 10/08/2012] [Indexed: 01/13/2023] Open
Abstract
Background The most common causes of cholestatic jaundice are biliary atresia and idiopathic neonatal hepatitis (INH). Specific disorders underlying INH, such as various infectious and metabolic causes, including neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) especially, in East Asian populations are increasingly being identified. Since most NICCD infants recovered from liver disease by 1 year of age, they often are misdiagnosed with INH, leading to difficulty in determining the true prevalence of NICCD. Mutation(s) of human SLC25A13 gene encoding a mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), can lead to AGC2 deficiency, resulting in NICCD and an adult-onset fatal disease namely citrullinemia type II (CTLN2). To study the prevalence of NICCD and SLC25A13 mutations in Thai infants, and to compare manifestations of NICCD and non-NICCD, infants with idiopathic cholestatic jaundice or INH were enrolled. Clinical and biochemical data were reviewed. Urine organic acid and plasma amino acids profiles were analyzed. PCR-sequencing of all 18 exons of SLC25A13 and gap PCR for the mutations IVS16ins3kb and Ex16+74_IVS17-32del516 were performed. mRNA were analyzed in selected cases with possible splicing error. Results Five out of 39 (12.8%) unrelated infants enrolled in the study were found to have NICCD, of which three had homozygous 851del4 (GTATdel) and two compound heterozygous 851del4/IVS16ins3kb and 851del4/1638ins23, respectively. Two missense mutations (p.M1? and p.R605Q) of unknown functional significance were identified. At the initial presentation, NICCD patients had higher levels of alkaline phosphatase (ALP) and alpha-fetoprotein (AFP) and lower level of alanine aminotransferase (ALT) than those in non-NICCD patients (p< 0.05). NICCD patients showed higher citrulline level and threonine/serine ratio than non-NICCD infants (p< 0.05). Fatty liver was found in 2 NICCD patients. Jaundice resolved in all NICCD and in 87.5% of non-NICCD infants at the median age of 9.5 and 4.0 months, respectively. Conclusion NICCD should be considered in infants with idiopathic cholestasis. The preliminary estimated prevalence of NICCD was calculated to be 1/48,228 with carrier rate of 1/110 among Thai infants. However, this number may be underestimated and required further analysis with mutation screening in larger control population to establish the true prevalence of NICCD and AGC2 deficiency.
Collapse
Affiliation(s)
- Suporn Treepongkaruna
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Zhang ZH, Zhao XJ, Song YZ, Tang XM, Zha QB. Cloning and sequence analysis of SLC25A13 transcripts in human amniocytes. Transl Pediatr 2012; 1:85-90. [PMID: 26835269 PMCID: PMC4728883 DOI: 10.3978/j.issn.2224-4336.2012.02.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE To amplify the entire ORF of SLC25A13 cDNA which encodes citrin, a liver-type mitochondrial aspartate-glutamate carrier, and to investigate sequence feature of the transcripts for this gene in cultured human amniocytes. This study will provide laboratory evidences for prenatal diagnosis of NICCD at mRNA level. METHODS Total RNA was extracted from cultured amniocytes, and cDNA was synthesized, and then nest PCR was performed to amplify the entire ORF sequences of SLC25A13. The PCR products were purified, cloned, sequenced, and aligned with the genomic DNA of SLC25A13 to analyze the alternative splicing pattern. RESULTS The entire ORF of SLC25A13 gene was successfully amplified. Three splice variants of SLC25A13, i.e., SLCA (normal mRNA), SLCB (CAG insertion between exon 9-10) and SLCC (exon 5-11 skipping), were identified in the subjects. However, no abnormal mRNA from the allele with mutation 851del4 was detected in the amniocytes cultured from a carrier fetus of this mutation. CONCLUSIONS This study demonstrated that the entire ORF of SLC25A13 cDNA can be successfully amplified from cultured human amniocytes, and revealed exon 5-11 skipping as a novel SLC25A13 transcript. Normal mRNA occupied majority of the transcripts in normal control and heterozygous amniocytes which contained normal allele and 851del4 mutation, indicating that the two fetuses wouldn't suffer from NICCD. These SLC25A13 transcription features provided laboratory evidences for prenatal diagnosis of NICCD.
Collapse
Affiliation(s)
- Zhan-Hui Zhang
- 1 Department of Pediatrics, 2 Department of Obstetrics and Gynecology, 3 Department of Fetal Medicine, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Xin-Jing Zhao
- 1 Department of Pediatrics, 2 Department of Obstetrics and Gynecology, 3 Department of Fetal Medicine, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yuan-Zong Song
- 1 Department of Pediatrics, 2 Department of Obstetrics and Gynecology, 3 Department of Fetal Medicine, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Xiao-Mei Tang
- 1 Department of Pediatrics, 2 Department of Obstetrics and Gynecology, 3 Department of Fetal Medicine, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Qing-Bing Zha
- 1 Department of Pediatrics, 2 Department of Obstetrics and Gynecology, 3 Department of Fetal Medicine, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| |
Collapse
|
140
|
Chen ST, Su YN, Ni YH, Hwu WL, Lee NC, Chien YH, Chang CC, Chen HL, Chang MH. Diagnosis of neonatal intrahepatic cholestasis caused by citrin deficiency using high-resolution melting analysis and a clinical scoring system. J Pediatr 2012; 161:626-31.e2. [PMID: 22575253 DOI: 10.1016/j.jpeds.2012.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 03/02/2012] [Accepted: 03/20/2012] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To assess the diagnosis of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) by using high-resolution melting (HRM) analysis and a clinical scoring system. STUDY DESIGN Genetic variations in the 18 coding exons were prescreened using HRM analysis and then confirmed by direct sequencing. To establish a scoring system, clinical features of 20 patients with NICCD diagnosed in Taiwan between the years 2000 and 2008 were compared with those of 47 patients with biliary atresia and 35 with infantile cholestasis. RESULTS Eight types of mutations/polymorphisms were identified in patients with NICCD, including 5 mutations in the coding region or splice site (c.851del4, c.1638ins23, R553Q, IVS6+5G > A, IVS11+1G > A), and 3 single-nucleotide polymorphisms (IVS11+17C > G, IVS4+6A > G/rs6957975, and c.1194A > G/rs2301629). The 3 hotspot mutations (c.851del4, c.1638ins23, and IVS6+5G > A) comprised 33/35 (94.3%) mutated alleles. The patients with NICCD had a higher frequency of the rs6957975 polymorphism compared with 103 healthy controls (P < .0001). A 6-point scoring system was proposed according to clinical parameters. The patients with NICCD tended to score ≥ 4 points, whereas biliary atresia and other infantile cholestasis tended to score <4 points (P < .0001). CONCLUSIONS HRM analysis was efficient and effective in detecting mutations. Three common mutations comprised the majority of mutations found in our patients. The IVS4+6A > G polymorphism was associated with NICCD. A scoring system may help to differentiate patients with NICCD from those with biliary atresia.
Collapse
Affiliation(s)
- Szu-Ta Chen
- Department of Pediatrics, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Zhang ZH, Lin WX, Deng M, Zhao XJ, Song YZ. Molecular analysis of SLC25A13 gene in human peripheral blood lymphocytes: Marked transcript diversity, and the feasibility of cDNA cloning as a diagnostic tool for citrin deficiency. Gene 2012; 511:227-34. [PMID: 23022256 DOI: 10.1016/j.gene.2012.09.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 12/29/2022]
Abstract
Human SLC25A13 gene encodes citrin, the liver-type aspartate-glutamate carrier isoform 2, and SLC25A13 mutations lead to citrin deficiency (CD). The definitive diagnosis of CD relies on SLC25A13 analysis, but conventional DNA analysis could not identify all SLC25A13 mutations. We investigated transcriptional features of SLC25A13 gene in peripheral blood lymphocytes (PBLs) from CD patients and healthy volunteers. SLC25A13 mutations were explored by PCR/LA-PCR, PCR-RFLP and direct sequencing. SLC25A13 cDNA was amplified by RT-PCR, cloned and then sequenced. All diagnoses of the CD patients were confirmed, including a heterozygote of g.2T>C and an unknown mutation yielding an aberrant transcript r.16_212dup. Twenty-eight alternative splice variants (ASVs) were identified from normal SLC25A13 alleles. Among them, r.213_328del took account for 53.7%, the normal transcript r.=, 16.6%, and the remaining 26 novel ASVs, collectively 29.3%, of all cDNA clones. Moreover, similar ASVs, all reflecting corresponsive mutations, were detected from the mutated alleles. These results indicated that the normal SLC25A13 transcript could be cloned, and the abundance of the ASV r.213_328del predicted the existence of a constructively novel protein isoform for this gene in human PBLs. And, the 26 novel ASVs, along with the novel aberrant transcript r.16_212dup and the SNP g.2T>C, enriched the transcript/variation spectrum of SLC25A13 gene in human beings. The findings in this paper, for the first time, uncovered the marked transcript diversity of SLC25A13 gene in human PBLs, and suggested that cDNA cloning analysis of this gene in human PBLs might be a feasible tool for CD molecular diagnosis.
Collapse
Affiliation(s)
- Zhan-Hui Zhang
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | | | | | | | | |
Collapse
|
142
|
Lin WX, Zhang ZH, Deng M, Cai XR, Song YZ. Multiple ovarian antral follicles in a preterm infant with neonatal intrahepatic cholestasis caused by citrin deficiency: A clinical, genetic and transcriptional analysis. Gene 2012; 505:269-75. [DOI: 10.1016/j.gene.2012.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/03/2012] [Accepted: 06/07/2012] [Indexed: 01/14/2023]
|
143
|
Leung TM, Lu Y, Yan W, Morón-Concepción JA, Ward SC, Ge X, de la Rosa LC, Nieto N. Argininosuccinate synthase conditions the response to acute and chronic ethanol-induced liver injury in mice. Hepatology 2012; 55:1596-1609. [PMID: 22213272 PMCID: PMC4632528 DOI: 10.1002/hep.25543] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Argininosuccinate synthase (ASS) is the rate-limiting enzyme in both the urea and the L-citrulline/nitric oxide (NO·) cycles regulating protein catabolism, ammonia levels, and NO· generation. Because a proteomics analysis identified ASS and nitric oxide synthase-2 (NOS2) as coinduced in rat hepatocytes by chronic ethanol consumption, which also occurred in alcoholic liver disease (ALD) and in cirrhosis patients, we hypothesized that ASS could play a role in ethanol binge and chronic ethanol-induced liver damage. To investigate the contribution of ASS to the pathophysiology of ALD, wildtype (WT) and Ass(+/-) mice (Ass(-/-) are lethal due to hyperammonemia) were exposed to an ethanol binge or to chronic ethanol drinking. Compared with WT, Ass(+/-) mice given an ethanol binge exhibited decreased steatosis, lower NOS2 induction, and less 3-nitrotyrosine (3-NT) protein residues, indicating that reducing nitrosative stress by way of the L-citrulline/NO· pathway plays a significant role in preventing liver damage. However, chronic ethanol-treated Ass(+/-) mice displayed enhanced liver injury compared with WT mice. This was due to hyperammonemia, lower phosphorylated AMP-activated protein kinase alpha (pAMPKα) to total AMPKα ratio, decreased sirtuin-1 (Sirt-1) and peroxisomal proliferator-activated receptor coactivator-1α (Pgc1α) messenger RNAs (mRNAs), lower fatty acid β-oxidation due to down-regulation of carnitine palmitoyl transferase-II (CPT-II), decreased antioxidant defense, and elevated lipid peroxidation end-products in spite of comparable nitrosative stress but likely reduced NOS3. CONCLUSION Partial Ass ablation protects only in acute ethanol-induced liver injury by decreasing nitrosative stress but not in a more chronic scenario where oxidative stress and impaired fatty acid β-oxidation are key events.
Collapse
Affiliation(s)
- Tung Ming Leung
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, Box 1123, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| | - Yongke Lu
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, Box 1123, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| | - Wei Yan
- Institute for Systems Biology, 1441 North 34 Street, Seattle, WA 98103, USA
| | - Jose A. Morón-Concepción
- Department of Anesthesiology, Columbia University Medical Center, 630 West 168 Street, New York, NY 10032, USA
| | - Stephen C. Ward
- Department of Pathology, Mount Sinai School of Medicine, 1468 Madison Avenue, New York, NY 10029, USA
| | - Xiaodong Ge
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, Box 1123, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| | - Laura Conde de la Rosa
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, Box 1123, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| | - Natalia Nieto
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, Box 1123, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| |
Collapse
|
144
|
Nakamura M, Yazaki M, Kobayashi Y, Fukushima K, Ikeda SI, Kobayashi K, Saheki T, Nakaya Y. The characteristics of food intake in patients with type II citrullinemia. J Nutr Sci Vitaminol (Tokyo) 2012; 57:239-45. [PMID: 21908947 DOI: 10.3177/jnsv.57.239] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Some patients with citrin deficiency caused by SLC25A13 gene mutations develop adult-onset type II citrullinemia (CTLN2) with hepatic encephalopathy. A recent nutritional survey of 18 citrin-deficient subjects (age 1-33 y) confirmed a marked decrease in carbohydrate intake compared to an age-matched general Japanese population. However, a quantitative understanding of food intake in CTLN2 patients remains unclear, although qualitative dietary information has been reported. In order to elucidate the characteristics of daily nutrition of CTLN2 patients, the food intake of 5 male patients (age 39-52 y) was investigated in detail by the Food Frequency Questionnaire. In the present survey, the mean energy ratio of protein : fat : carbohydrate (PFC ratio) of the 5 patients was 19±3% : 44±5% : 37±4%, which was almost identical to previously reported data in younger citrin-deficient subjects (19±2% : 44±5% : 37±7%). Cereal intake was especially low in all CTLN2 patients at 309±33 g/d (56% of control), compared to that in an age-matched general Japanese population (553±197 g/d). Additionally, CTLN2 patients preferred high fat and protein foods. Commonly, fat intake declines with age in the general Japanese population, but this tendency was not observed in the 5 CTLN2 patients. The present results suggest that intakes of low-carbohydrate, high-protein and high-fat food was characteristic the 5 CTLN2 patients surveyed, as has been previously reported in younger citrin-deficient subjects, and that the PFC ratio may not be influenced by age or CTLN2-onset.
Collapse
Affiliation(s)
- Mio Nakamura
- Division of Nutrition, Shinshu University Hospital, Matsumoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Takahashi Y, Koyama S, Tanaka H, Arawaka S, Wada M, Kawanami T, Haga H, Watanabe H, Toyota K, Numakura C, Hayasaka K, Kato T. An elderly Japanese patient with adult-onset type II citrullinemia with a novel D493G mutation in the SLC25A13 gene. Intern Med 2012; 51:2131-4. [PMID: 22892490 DOI: 10.2169/internalmedicine.51.7644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the SLC25A13 gene lead to neonatal intrahepatic cholestasis caused by citrin deficiency and/or adult-onset type II citrullinemia (CTLN2). A 62-year-old man presented with recurrent episodes of neuropsychiatric manifestations. On admission, he had disorientation and flapping tremor. Laboratory data showed hyperferritinemia in addition to postprandial hyperammonemia and citrullinemia. A liver biopsy specimen revealed moderate hemosiderin deposits and hepatocytes with macrovesicular fat droplets. Genetic analysis of the SLC25A13 gene identified the previously reported p.S225X mutation and a novel p.D493G mutation. Hyperferritinemia might also be a characteristic finding of CTLN2-related fatty changes of the liver.
Collapse
Affiliation(s)
- Yoshimi Takahashi
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Faculty of Medicine, Yamagata University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Saheki T, Inoue K, Ono H, Tushima A, Katsura N, Yokogawa M, Yoshidumi Y, Kuhara T, Ohse M, Eto K, Kadowaki T, Sinasac DS, Kobayashi K. Metabolomic analysis reveals hepatic metabolite perturbations in citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mice, a model of human citrin deficiency. Mol Genet Metab 2011; 104:492-500. [PMID: 21908222 DOI: 10.1016/j.ymgme.2011.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/14/2011] [Accepted: 08/14/2011] [Indexed: 02/08/2023]
Abstract
The citrin/mitochondrial glycerol-3-phosphate dehydrogenase (mGPD) double-knockout mouse displays phenotypic attributes of both neonatal intrahepatic cholestasis and adult-onset type II citrullinemia, making it a suitable model of human citrin deficiency. In the present study, we investigated metabolic disturbances in the livers of wild-type, citrin (Ctrn) knockout, mGPD knockout, and Ctrn/mGPD double-knockout mice following oral sucrose versus saline administration using metabolomic approaches. By using gas chromatography/mass spectrometry and capillary electrophoresis/mass spectrometry, we found three general groupings of metabolite changes in the livers of the double-knockout mice following sucrose administration that were subsequently confirmed using liquid chromatography/mass spectrometry or enzymatic methods: a marked increase of hepatic glycerol 3-phosphate, a generalized decrease of hepatic tricarboxylic acid cycle intermediates, and alterations of hepatic amino acid levels related to the urea cycle or lysine catabolism including marked increases in citrulline and lysine. Furthermore, concurrent oral administration of sodium pyruvate with sucrose ameliorated the hyperammonemia induced by sucrose, as had been shown previously, as well as almost completely normalizing the hepatic metabolite perturbations found. Overall, we have identified additional metabolic disturbances in double-KO mice following oral sucrose administration, and provided further evidence for the therapeutic use of sodium pyruvate in our mouse model of citrin deficiency.
Collapse
Affiliation(s)
- Takeyori Saheki
- Institute for Health Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Fiermonte G, Parisi G, Martinelli D, De Leonardis F, Torre G, Pierri CL, Saccari A, Lasorsa FM, Vozza A, Palmieri F, Dionisi-Vici C. A new Caucasian case of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD): a clinical, molecular, and functional study. Mol Genet Metab 2011; 104:501-6. [PMID: 21914561 DOI: 10.1016/j.ymgme.2011.08.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/19/2011] [Accepted: 08/19/2011] [Indexed: 12/29/2022]
Abstract
Citrin is the liver-specific isoform of the mitochondrial aspartate/glutamate carrier (AGC2). AGC2 deficiency is an autosomal recessive disorder with two age related phenotypes: neonatal intrahepatic cholestasis (NICCD, OMIM#605814) and adult-onset type II citrullinemia (CTLN2, OMIM#603471). NICCD arises within the first few weeks of life resulting in prolonged cholestasis and metabolic abnormalities including aminoacidemia and galactosuria. Usually symptoms disappear within the first year of life, thus making a diagnosis difficult after this time. In this study we report a new Caucasian case of NICCD, a seven week old Romanian boy with prolonged jaundice. Sequencing of the AGC2 gene showed a novel homozygous missense double-nucleotide (doublet) mutation, which produces the change of the glycine at position 437 into glutamate. Functional studies, carried out on the recombinant mutant protein, for the first time demonstrated, that NICCD is caused by a reduced transport activity of AGC2. The presence of AGC2 deficiency in other ethnic groups besides Asian population suggests further consideration for NICCD diagnosis of any neonate with an unexplained cholestasis; a prompt diagnosis is crucial to resolve the metabolic decompensation with an appropriate dietary treatment.
Collapse
Affiliation(s)
- Giuseppe Fiermonte
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Chang KW, Chen HL, Chien YH, Chen TC, Yeh CT. SLC25A13 gene mutations in Taiwanese patients with non-viral hepatocellular carcinoma. Mol Genet Metab 2011; 103:293-6. [PMID: 21470889 DOI: 10.1016/j.ymgme.2011.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 12/24/2022]
Abstract
Mutations of the SLC25A13 gene, which encodes citrin, result in adult-onset type II citrullinemia (CTLN2). Because CTLN2 has been associated with hepatocellular carcinoma (HCC) and may be involved in hepatocarcinogenesis, the objective of this study was to assess the frequency of SLC25A13 mutations in patients with non-viral HCC. A retrospective review of 154 patients with HCC, who underwent total tumor resection from July 1998 to August 2005, was conducted. After exclusion of 137 patients infected with hepatitis B and/or C viruses, 17 patients were analyzed. Genomic DNA from stored tumor and normal hepatic samples was analyzed for the SLC25A13 gene mutation. In addition, the clinicopathological and histopathological features of patients with and without the SLC25A13 gene mutation were compared. The SLC25A13 mutation was observed in two patients (12%), and the carrier rate was approximately 1 in 8 patients. The IVS6+5G>A mutation was heterozygous in both normal hepatic and tumor tissues for case 1. On the other hand, the c.851del4 mutation was heterozygous in normal tissue but homozygous in tumor tissue for case 2. No significant differences in patient characteristics were observed. Further analyses of patients with SLC25A13 gene mutations may elucidate the relationship between the citrin gene and susceptibility of HCC.
Collapse
Affiliation(s)
- Kuei-Wen Chang
- Department of Pediatrics, Chang Gung Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
149
|
Liver transplantation in an adult with citrullinaemia type 2. J Transplant 2011; 2011:176370. [PMID: 21647347 PMCID: PMC3103874 DOI: 10.1155/2011/176370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/18/2011] [Indexed: 11/17/2022] Open
Abstract
Citrullinaemia is a urea cycle defect that results from a deficiency of the enzyme arginosuccinate synthetase. Type 1 disease is diagnosed in childhood, whereas Type 2 disease is adult onset. We report the outcome of a patient with citrullinemia Type 2 who received a liver transplant at our center and the implications of this diagnosis in liver transplantation.
Collapse
|
150
|
Erez A, Shchelochkov OA, Plon SE, Scaglia F, Lee B. Insights into the pathogenesis and treatment of cancer from inborn errors of metabolism. Am J Hum Genet 2011. [PMID: 21473982 DOI: 10.1016/j.ajhg.2011.03.005.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mutations in genes that play fundamental roles in metabolic pathways have been found to also play a role in tumor development and susceptibility to cancer. At the same time, significant progress has been made in the treatment of patients with inborn errors of metabolism (IEM),(1) resulting in increased longevity and the unmasking of cancer predisposition, frequently hepatocellular carcinoma, in these conditions. These patients offer a potential opportunity to deepen our understanding of how intermediary metabolism impacts tumorigenesis. We provide an overview from the perspective of cancers in patients affected with IEM and discuss how dysregulation of these specific metabolic pathways might contribute to the mechanisms of cancer development and treatment.
Collapse
Affiliation(s)
- Ayelet Erez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|