101
|
Kciuk M, Yahya EB, Mohamed Ibrahim Mohamed M, Rashid S, Iqbal MO, Kontek R, Abdulsamad MA, Allaq AA. Recent Advances in Molecular Mechanisms of Cancer Immunotherapy. Cancers (Basel) 2023; 15:2721. [PMID: 37345057 DOI: 10.3390/cancers15102721] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is among the current leading causes of death worldwide, despite the novel advances that have been made toward its treatment, it is still considered a major public health concern. Considering both the serious impact of cancer on public health and the significant side effects and complications of conventional therapeutic options, the current strategies towards targeted cancer therapy must be enhanced to avoid undesired toxicity. Cancer immunotherapy has become preferable among researchers in recent years compared to conventional therapeutic options, such as chemotherapy, surgery, and radiotherapy. The understanding of how to control immune checkpoints, develop therapeutic cancer vaccines, genetically modify immune cells as well as enhance the activation of antitumor immune response led to the development of novel cancer treatments. In this review, we address recent advances in cancer immunotherapy molecular mechanisms. Different immunotherapeutic approaches are critically discussed, focusing on the challenges, potential risks, and prospects involving their use.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| |
Collapse
|
102
|
Li J, Goh ELK, He J, Li Y, Fan Z, Yu Z, Yuan P, Liu DX. Emerging Intrinsic Therapeutic Targets for Metastatic Breast Cancer. BIOLOGY 2023; 12:697. [PMID: 37237509 PMCID: PMC10215321 DOI: 10.3390/biology12050697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Breast cancer is now the most common cancer worldwide, and it is also the main cause of cancer-related death in women. Survival rates for female breast cancer have significantly improved due to early diagnosis and better treatment. Nevertheless, for patients with advanced or metastatic breast cancer, the survival rate is still low, reflecting a need for the development of new therapies. Mechanistic insights into metastatic breast cancer have provided excellent opportunities for developing novel therapeutic strategies. Although high-throughput approaches have identified several therapeutic targets in metastatic disease, some subtypes such as triple-negative breast cancer do not yet have an apparent tumor-specific receptor or pathway to target. Therefore, exploring new druggable targets in metastatic disease is a high clinical priority. In this review, we summarize the emerging intrinsic therapeutic targets for metastatic breast cancer, including cyclin D-dependent kinases CDK4 and CDK6, the PI3K/AKT/mTOR pathway, the insulin/IGF1R pathway, the EGFR/HER family, the JAK/STAT pathway, poly(ADP-ribose) polymerases (PARP), TROP-2, Src kinases, histone modification enzymes, activated growth factor receptors, androgen receptors, breast cancer stem cells, matrix metalloproteinases, and immune checkpoint proteins. We also review the latest development in breast cancer immunotherapy. Drugs that target these molecules/pathways are either already FDA-approved or currently being tested in clinical trials.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Eyleen L. K. Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Ji He
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Zhimin Fan
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan 250033, China;
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
103
|
Darr C, Hilser T, Kesch C, Isgandarov A, Reis H, Wahl M, Kasper-Virchow I, Hadaschik BA, Grünwald V. Immune-Checkpoint-Inhibitor Therapy-Principles and Relevance of Biomarkers for Pathologists and Oncologists. Adv Anat Pathol 2023; 30:160-166. [PMID: 36221221 DOI: 10.1097/pap.0000000000000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Immune-checkpoint-inhibitor (ICI) therapy has been one of the major advances in the treatment of a variety of advanced or metastatic tumors in recent years. Therefore, ICI-therapy is already approved in first-line therapy for multiple tumors, either as monotherapy or as combination therapy. However, there are relevant differences in approval among different tumor entities, especially with respect to PD-L1 testing. Different response to ICI-therapy has been observed in the pivotal trials, so PD-L1 diagnostic testing is used for patient selection. In addition to PD-L1 testing of tumor tissue, liquid biopsy provides a noninvasive way to monitor disease in cancer patients and identify those who would benefit most from ICI-therapy. This overview focuses on the use of ICI-therapy and how it relates to common and potential future biomarkers for patient-directed treatment planning.
Collapse
Affiliation(s)
| | - Thomas Hilser
- German Cancer Consortium (DKTK)
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen
| | - Claudia Kesch
- Department of Urology
- German Cancer Consortium (DKTK)
| | | | - Henning Reis
- Institute of Pathology, University Hospital Essen, Essen
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Milan Wahl
- Department of Urology
- German Cancer Consortium (DKTK)
| | - Isabel Kasper-Virchow
- German Cancer Consortium (DKTK)
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen
| | | | - Viktor Grünwald
- Department of Urology
- German Cancer Consortium (DKTK)
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen
| |
Collapse
|
104
|
Numpadit S, Ito C, Nakaya T, Hagiwara K. Investigation of oncolytic effect of recombinant Newcastle disease virus in primary and metastatic oral melanoma. Med Oncol 2023; 40:138. [PMID: 37022566 PMCID: PMC10079733 DOI: 10.1007/s12032-023-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Malignant melanoma is aggressive cancer with a high rate of local invasiveness and metastasis. Currently, the treatment options for patients with advanced-stage and metastatic oral melanoma are limited. A promising treatment option is oncolytic viral therapy. This study aimed to evaluate novel therapies for malignant melanoma using a canine model. Oral melanoma, which frequently occurs in dogs is used as a model for human melanoma, was isolated and cultured and used for the evaluation of the tumor lytic effect induced by viral infection. We constructed a recombinant Newcastle disease virus (rNDV) that promotes the extracellular release of IFNγ from the virus-infected melanoma. The expression of oncolytic and apoptosis-related genes, the immune response by lymphocytes, and IFNγ expression were evaluated in virus-infected melanoma cells. The results showed that the rate of rNDV infection varied according to the isolated melanoma cells and the oncolytic effect differed between melanoma cells owing to the infectivity of the virus. The oncolytic effect tended to be greater for the IFNγ-expressing virus than for the GFP-expressing prototype virus. Additionally, lymphocytes co-cultured with the virus showed induced expression of Th1 cytokines. Therefore, recombinant NDV expressing IFNγ is expected to induce cellular immunity and oncolytic activity. This oncolytic treatment shows promise as a therapeutic approach for melanoma treatment once evaluated using clinical samples from humans.
Collapse
Affiliation(s)
- Supaporn Numpadit
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Chiaki Ito
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Takaaki Nakaya
- Department of Infectious Disease, Kyoto Prefectural University of Medicine, Kamigyo-ku Kajii-cho, Kawaramachi-Hirokoji, Kyoto-shi, 602-8566, Japan
| | - Katsuro Hagiwara
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan.
| |
Collapse
|
105
|
Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41:450-465. [PMID: 36917950 DOI: 10.1016/j.ccell.2023.02.014] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Regulatory T cells (Tregs) are abundant in tumor tissues, raising a question of whether immunosuppressive tumor-infiltrating Tregs (TI-Tregs) can be selectively depleted or functionally attenuated to evoke effective anti-tumor immune responses by conventional T cells (Tconvs), without perturbing Treg-dependent immune homeostasis in healthy organs and causing autoimmunity. Here, we review current cancer immunotherapy strategies, including immune checkpoint blockade (ICB) antibodies against CTLA-4 and PD-1 and discuss their effects on TI-Tregs. We also discuss approaches that exploit differentially regulated molecules on the cell surface (e.g., CTLA-4) and intracellularly (e.g., T cell receptor signaling molecules) between TI-Tregs and Tconvs as well as their dependence on cytokines (e.g., IL-2) and metabolites (e.g., lactate). We envisage that targeting TI-Tregs could be effective as a monotherapy and/or when combined with ICB antibodies.
Collapse
Affiliation(s)
- Christopher Tay
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Atsushi Tanaka
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
106
|
B7H4 Expression Is More Frequent in MSS Status Colorectal Cancer and Is Negatively Associated with Tumour Infiltrating Lymphocytes. Cells 2023; 12:cells12060861. [PMID: 36980202 PMCID: PMC10046962 DOI: 10.3390/cells12060861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The immunotherapies based on ICIs in CRC are nowadays limited to microsatellite unstable tumours which are approximately 15% of all CRC cases. There are a few new immune checkpoints belonging to the B7 family, including B7H4. B7H4 expression is associated with so-called “cold tumours”, and its function is linked to the downregulation of various immune cell populations. Our study aimed to investigate whether B7H4 expression is dependent on microsatellite status in CRC and on elucidating the immunological context in which the expression of B7H4 occurs. We enrolled 167 patients in the study. We prepared the homogenates from tumour tissues and healthy adjacent tissue to assess the B7H4 levels and the Bio-Plex Pro Human 48-cytokine panel. We assessed the microsatellite status of the tumour, B7H4 expression, CD8+ T cell population, and the TILs and budding in H + E stained slides by the IHC method. We used an online available database for further exploring the biological characteristics of B7H4. The expression of B7H4 was more frequent in microsatellite stable tumours, and was negatively associated with TILs. B7H4 is positively correlated with antitumour immunosuppressive iTME, thus contributing to the immunosuppressive environment in CRC.
Collapse
|
107
|
Dong M, Yu T, Tse G, Lin Z, Lin C, Zhang N, Wang R, Liu T, Zhong L. PD-1/PD-L1 Blockade Accelerates the Progression of Atherosclerosis in Cancer Patients. Curr Probl Cardiol 2023; 48:101527. [PMID: 36455793 DOI: 10.1016/j.cpcardiol.2022.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
PD-1(programed death-1)/PD-L1(programed death-1 ligand) blockade represents a major breakthrough of anti-cancer therapies, however, it may come with increased risk of cardiovascular morbidity, such as myocarditis, acute coronary syndrome, arrhythmias, etc. Although the PD-1/PD-L1-blockade-related acute coronary syndrome (ACS) is rare, it can be fatal. Previous studies have implicated a role of the PD-1/PD-L1 axis in the development of atherosclerosis. This review explores a hypothesis that PD-1/PD-L1 blockade accelerates the progression of atherosclerosis and promotes plaque rupture, by synthesizing the evidence of vascular inflammation, as well as plaque progression, destabilization and rupture via T-cell activation and effector function. In order to improve the prognosis of cancer patients and decrease the cardiotoxicity of PD-1/PD-L1 blockade therapy, early recognition of PD-1/PD-L1-blockade-related ACS is important.
Collapse
Affiliation(s)
- Mei Dong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Ting Yu
- Medical College, Qingdao University, Qingdao, Shandong, P.R. China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, P.R. China; Kent and Medway Medical School, University of Kent, Canterbury, Kent, UK
| | - Zerun Lin
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Chen Lin
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Nan Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Rujian Wang
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, P.R. China.
| | - Lin Zhong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China.
| |
Collapse
|
108
|
Egeler MD, van Leeuwen M, Fraterman I, van den Heuvel NMJ, Boekhout AH, Lai-Kwon J, Wilthagen EA, Eriksson H, Haanen JB, Wilgenhof S, Ascierto PA, van Akkooi ACJ, van de Poll-Franse LV. Common toxicities associated with immune checkpoint inhibitors and targeted therapy in the treatment of melanoma: A systematic scoping review. Crit Rev Oncol Hematol 2023; 183:103919. [PMID: 36736511 DOI: 10.1016/j.critrevonc.2023.103919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/23/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION This systematic scoping review compares the toxicities experienced by patients receiving immune checkpoint inhibitors (ICIs) or targeted therapy (TT) for stage III (resected and unresectable) and stage IV melanoma. METHODS OVID Medline, Embase, and PsycInfo were searched to identify Phase III trials reporting toxicities of FDA-approved ICIs and TT for advanced melanoma. AEs that were reported by ≥ 10% of patients in the evaluated trials were included. RESULTS Toxicity profiles of 11208 patients from 24 studies were reviewed. The rate of AEs was lower with ICIs compared to TT. However, ICIs were associated with higher rates of long-term or permanent AEs compared to TT, where toxicities generally were shortterm and reversible with treatment discontinuation. CONCLUSION The toxicity profiles of ICIs and TT vary substantially. Whilst the rate of AEs was lower with ICIs than during TT, it was also associated with higher rates of potentially chronic AEs.
Collapse
Affiliation(s)
- Mees D Egeler
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Marieke van Leeuwen
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Itske Fraterman
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Noelle M J van den Heuvel
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annelies H Boekhout
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julia Lai-Kwon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Erica A Wilthagen
- Scientific Information Service, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hanna Eriksson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Medical Unit Head-Neck-, Lung-, Skin Cancer, Skin Cancer Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - John B Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sofie Wilgenhof
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paolo A Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - Alexander C J van Akkooi
- Melanoma Institute Australia, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Lonneke V van de Poll-Franse
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Research & Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, the Netherlands; Department of Medical and Clinical Psychology, Center of Research on Psychology in Somatic diseases (CoRPS), Tilburg University, Tilburg, the Netherlands
| |
Collapse
|
109
|
Muthukutty P, Woo HY, Ragothaman M, Yoo SY. Recent Advances in Cancer Immunotherapy Delivery Modalities. Pharmaceutics 2023; 15:pharmaceutics15020504. [PMID: 36839825 PMCID: PMC9967630 DOI: 10.3390/pharmaceutics15020504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy is crucial in fighting cancer and achieving successful remission. Many novel strategies have recently developed, but there are still some obstacles to overcome before we can effectively attack the cancer cells and decimate the cancer environment by inducing a cascade of immune responses. To successfully demonstrate antitumor activity, immune cells must be delivered to cancer cells and exposed to the immune system. Such cutting-edge technology necessitates meticulously designed delivery methods with no loss or superior homing onto cancer environments, as well as high therapeutic efficacy and fewer adverse events. In this paper, we discuss recent advances in cancer immunotherapy delivery techniques, as well as their future prospects.
Collapse
Affiliation(s)
- Palaniyandi Muthukutty
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Young Woo
- Department of Internal Medicine and Medical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Murali Ragothaman
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: or ; Tel.: +82-51-510-3402
| |
Collapse
|
110
|
Firouzi J, Hajifathali A, Azimi M, Parvini N, Ghaemi F, Shayan Asl N, Hedayati Asl AA, Safa M, Ebrahimi M. Hsp70, in Combination with IL-15 and PD-1 Blocker, Interferes with The Induction of Cytotoxic NK Cells in Relapsed Acute Myeloid Leukemia Patients. CELL JOURNAL 2023; 25:92-101. [PMID: 36840455 PMCID: PMC9968373 DOI: 10.22074/cellj.2023.561054.1123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 02/26/2023]
Abstract
OBJECTIVE Natural killer (NK) cells are critical immune cells for acute myeloid leukemia (AML) targeting. However, little is known about the relationship between using checkpoint inhibitors and heat shock protein 70 (Hsp70) as NK cell activators to control AML. Therefore, the study aims to find the best formulation of Hsp70, human PD-1 (Programmed cell death protein 1) blocker, and interleukin 15 (IL-15) to activate NK cells against AML. MATERIALS AND METHODS In this experimental study, the NK cells were isolated from mononuclear cells (MNCs) by using magnetic activation cell sorting (MACS) and were activated using the different combinations of Hsp70, PD-1 blocker, and IL-15 and then followed by immunophenotyping, functional assays to estimate their killing potential, and evaluation of expression pattern of PRF1, PIK3CB, PD-1, AKT-1, FAS-L, TRAIL, and GER A and B. RESULTS The expression of PD-1 was significantly (P<0.05) reduced after NK cell activation by the different formulas of IL-15, Hsp70, and PD-1 blocker. The expression of NKG2A in the treated NK cells was reduced particularly in the IL-15 (P<0.01) and IL-15+PD-1 blocker (P<0.05) groups. The addition of Hsp70 increased its expression. The cytotoxic effect of NK cells increased in all groups, especially in IL-15+PD-1 blocker besides increasing interferon-gamma (IFN-γ), Granzymes, and perforin expression (P<0.05). All IL-15+PD-1 blocker group changes were associated with the upregulation of PIK3CB and AKT-1 as key factors of NK cell activation. The presence of Hsp70 reduced IFN-γ releasing, and down-regulation of PIK3CB, AKT-1, Granzymes, and Perforin (P<0.05). CONCLUSION We suggested the combination of IL-15 and PD-1 blocker could enhance the killing potential of AMLNK cells. Moreover, Hsp70 in combination with IL-15 and PD-1 blocker interferes activation of AML-NK cells through unknown mechanisms.
Collapse
Affiliation(s)
- Javad Firouzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University
of Medical Sciences, Tehran, Iran,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran,Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | - Neda Parvini
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences,
Kurdistan, Iran
| | - Fatemeh Ghaemi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | - Niloufar Shayan Asl
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | - Amir Abbas Hedayati Asl
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | - Majid Safa
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University
of Medical Sciences, Tehran, Iran,Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran,Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran,P.O.Box: 1449614535Department of Hematology
and Blood BankingFaculty of Allied MedicineIran University of Medical
SciencesTehranIranP.O.Box: 16635-148Department of Stem Cells and Developmental BiologyCell
Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
Emails: ,
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology,
ACECR, Tehran, Iran,P.O.Box: 1449614535Department of Hematology
and Blood BankingFaculty of Allied MedicineIran University of Medical
SciencesTehranIranP.O.Box: 16635-148Department of Stem Cells and Developmental BiologyCell
Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
Emails: ,
| |
Collapse
|
111
|
Berz AM, Boughdad S, Vietti-Violi N, Digklia A, Dromain C, Dunet V, Duran R. Imaging assessment of toxicity related to immune checkpoint inhibitors. Front Immunol 2023; 14:1133207. [PMID: 36911692 PMCID: PMC9995973 DOI: 10.3389/fimmu.2023.1133207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
In recent years, a wide range of cancer immunotherapies have been developed and have become increasingly important in cancer treatment across multiple oncologic diseases. In particular, immune checkpoint inhibitors (ICIs) offer promising options to improve patient outcomes. However, a major limitation of these treatments consists in the development of immune-related adverse events (irAEs) occurring in potentially any organ system and affecting up to 76% of the patients. The most frequent toxicities involve the skin, gastrointestinal tract, and endocrine system. Although mostly manageable, potentially life-threatening events, particularly due to neuro-, cardiac, and pulmonary toxicity, occur in up to 30% and 55% of the patients treated with ICI-monotherapy or -combination therapy, respectively. Imaging, in particular computed tomography (CT), magnetic resonance imaging (MRI), and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT), plays an important role in the detection and characterization of these irAEs. In some patients, irAEs can even be detected on imaging before the onset of clinical symptoms. In this context, it is particularly important to distinguish irAEs from true disease progression and specific immunotherapy related response patterns, such as pseudoprogression. In addition, there are irAEs which might be easily confused with other pathologies such as infection or metastasis. However, many imaging findings, such as in immune-related pneumonitis, are nonspecific. Thus, accurate diagnosis may be delayed underling the importance for adequate imaging features characterization in the appropriate clinical setting in order to provide timely and efficient patient management. 18F-FDG-PET/CT and radiomics have demonstrated to reliably detect these toxicities and potentially have predictive value for identifying patients at risk of developing irAEs. The purpose of this article is to provide a review of the main immunotherapy-related toxicities and discuss their characteristics on imaging.
Collapse
Affiliation(s)
- Antonia M Berz
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Sarah Boughdad
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Naïk Vietti-Violi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
112
|
Khadela A, Shah Y, Mistry P, Bodiwala K, CB A. Immunomodulatory Therapy in Head and Neck Squamous Cell Carcinoma: Recent Advances and Clinical Prospects. Technol Cancer Res Treat 2023; 22:15330338221150559. [PMID: 36683526 PMCID: PMC9893386 DOI: 10.1177/15330338221150559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The immune system plays a significant role in the development, invasion, progression, and metastasis of head and neck cancer. Over the last decade, the emergence of immunotherapy has irreversibly altered the paradigm of cancer treatment. The current treatment modalities for head and neck squamous cell carcinoma (HNSCC) include surgery, radiotherapy, and adjuvant or neoadjuvant chemotherapy which has failed to provide satisfactory clinical outcomes. To encounter this, there is a need for a novel or targeted therapy such as immunological targets along with conventional treatment strategy for optimal therapeutic outcomes. The immune system can contribute to promoting metastasis, angiogenesis, and growth by exploiting the tumor's influence on the microenvironment. Immunological targets have been found effective in recent clinical studies and have shown promising results. This review outlines the important immunological targets and the medications acting on them that have already been explored, are currently under clinical trials and are further being targeted.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Priya Mistry
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Kunjan Bodiwala
- Department of Pharmaceutical chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Avinash CB
- Medical Oncologist, ClearMedi Radiant Hospital, Mysore, India
| |
Collapse
|
113
|
Patra D, Bhavya K, Ramprasad P, Kalia M, Pal D. Anti-cancer drug molecules targeting cancer cell cycle and proliferation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:343-395. [PMID: 37061337 DOI: 10.1016/bs.apcsb.2022.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cancer, a vicious clinical burden that potentiates maximum fatality for humankind, arises due to unregulated excessive cell division and proliferation through an eccentric expression of cell cycle regulator proteins. A set of evolutionarily conserved machinery controls the cell cycle in an extremely precise manner so that a cell that went through the cycle can produce a genetically identical copy. To achieve perfection, several checkpoints were placed in the cycle for surveillance; so, errors during the division were rectified by the repair strategies. However, irreparable damage leads to exit from the cell cycle and induces programmed cell death. In comparison to a normal cell, cancer cells facilitate the constitutive activation of many dormant proteins and impede negative regulators of the checkpoint. Extensive studies in the last few decades on cell division and proliferation of cancer cells elucidate the molecular mechanism of the cell-cycle regulators that are often targeted for the development of anti-cancer therapy. Each phase of the cell cycle has been regulated by a unique set of proteins including master regulators Cyclins, and CDKs, along with the accessory proteins such as CKI, Cdc25, error-responsive proteins, and various kinase proteins mainly WEE1 kinases, Polo-like kinases, and Aurora kinases that control cell division. Here in this chapter, we have analytically discussed the role of cell cycle regulators and proliferation factors in cancer progression and the rationale of using various cell cycle-targeting drug molecules as anti-cancer therapy.
Collapse
Affiliation(s)
- Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Kumari Bhavya
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Palla Ramprasad
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Moyna Kalia
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
114
|
Saadi W, Fatmi A, Pallardó FV, García-Giménez JL, Mena-Molla S. Long Non-Coding RNAs as Epigenetic Regulators of Immune Checkpoints in Cancer Immunity. Cancers (Basel) 2022; 15:cancers15010184. [PMID: 36612180 PMCID: PMC9819025 DOI: 10.3390/cancers15010184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
In recent years, cancer treatment has undergone significant changes, predominantly in the shift towards immunotherapeutic strategies using immune checkpoint inhibitors. Despite the clinical efficacy of many of these inhibitors, the overall response rate remains modest, and immunotherapies for many cancers have proved ineffective, highlighting the importance of knowing the tumor microenvironment and heterogeneity of each malignancy in patients. Long non-coding RNAs (lncRNAs) have attracted increasing attention for their ability to control various biological processes by targeting different molecular pathways. Some lncRNAs have a regulatory role in immune checkpoints, suggesting they might be utilized as a target for immune checkpoint treatment. The focus of this review is to describe relevant lncRNAs and their targets and functions to understand key regulatory mechanisms that may contribute in regulating immune checkpoints. We also provide the state of the art on super-enhancers lncRNAs (selncRNAs) and circular RNAs (circRNAs), which have recently been reported as modulators of immune checkpoint molecules within the framework of human cancer. Other feasible mechanisms of interaction between lncRNAs and immune checkpoints are also reported, along with the use of miRNAs and circRNAs, in generating new tumor immune microenvironments, which can further help avoid tumor evasion.
Collapse
Affiliation(s)
- Wiam Saadi
- Department of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana 44225, Algeria
- Correspondence: (W.S.); (S.M.-M.)
| | - Ahlam Fatmi
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
| | - Federico V. Pallardó
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Salvador Mena-Molla
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (W.S.); (S.M.-M.)
| |
Collapse
|
115
|
Jongerius C, Vermeulen L, van Egmond M, Evers AWM, Buffart LM, Lenos KJ. Behavioral factors to modulate immunotherapy efficacy in cancer. Front Immunol 2022; 13:1066359. [PMID: 36591246 PMCID: PMC9800824 DOI: 10.3389/fimmu.2022.1066359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Immune checkpoint inhibitors, including anti-PD-1 and anti-CTLA-4 therapies, are used to (re)activate the immune system to treat cancer. Despite promising results, a large group of patients does not respond to checkpoint inhibition. In the vulnerability-stress model of behavioral medicine, behavioral factors, such as stress, exercise and classical pharmacological conditioning, predict cancer incidence, recurrence and the efficacy of conventional cancer treatments. Given the important role of the immune system in these processes, certain behavior may be promising to complement immune checkpoint inhibition therapy. Here, we discuss the preliminary evidence and suitability of three behavioral mechanisms, i.e. stress modulation, exercise and classical pharmacological conditioning for the benefit of immunotherapy. It is crucial to study the potential beneficial effects of behavioral strategies that support immunotherapeutic anti-tumor effects with rigorous experimental evidence, to exploit behavioral mechanisms in improving checkpoint inhibition efficacy.
Collapse
Affiliation(s)
- C. Jongerius
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam, Netherlands,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands,Oncode Institute, Amsterdam, Netherlands,*Correspondence: C. Jongerius,
| | - L. Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam, Netherlands,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands,Oncode Institute, Amsterdam, Netherlands
| | - M. van Egmond
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC, Location VU University, Amsterdam, Netherlands,Department of Surgery, Amsterdam UMC, Location VU University, Amsterdam, Netherlands
| | - A. W. M. Evers
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, Netherlands
| | - L. M. Buffart
- Department of Physiology, Radboudumc, Nijmegen, Netherlands
| | - K. J. Lenos
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam, Netherlands,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands,Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
116
|
Sadeghi M, Khodakarami A, Ahmadi A, Fathi M, Gholizadeh Navashenaq J, Mohammadi H, Yousefi M, Hojjat-Farsangi M, Movasaghpour Akbari AA, Jadidi-Niaragh F. The prognostic and therapeutic potentials of CTLA-4 in hematological malignancies. Expert Opin Ther Targets 2022; 26:1057-1071. [PMID: 36683579 DOI: 10.1080/14728222.2022.2170781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Hematological Malignancies (HMs) are a group of progressive, difficult-to-treat, and highly recurrent diseases. A suppressed phenotype of the immune system is present in HMs and growing evidence indicates the role of Cytotoxic T lymphocyte-Associated protein 4 (CTLA-4) in the course of HMs. AREAS COVERED This article reviews the recent literature on the role of CTLA-4 in different subtypes of HMs. Here, the studies on the expression pattern, its effect on the prognosis of different HMs, and polymorphisms of CTLA-4 have been elaborated. Finally, the effect of targeting CTLA-4 in vitro and in vivo, as well as in clinical trials, is discussed. EXPERT OPINION According to the recent literature, CTLA-4 is overexpressed in different HMs, which is correlated with poor survival, while it is associated with better a prognosis in Chronic Lymphocytic Leukemia (CLL). Targeting CTLA-4 in Acute Myeloid Leukemia (AML), Sezary Syndrome (SS), Hodgkin's Lymphoma (HL), and so on, is helpful. While this is not recommended and may even be harmful in multiple myeloma (MM) and CLL. Also, it seems that certain CTLA-4 gene polymorphisms are efficient factors in the course of HMs. Future studies may broaden our knowledge regarding the role of CTLA-4 in HMs.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Ahmadi
- Department of Chemical and Materials Engineering, the University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Mehrdad Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
117
|
DI Cosola M, Spirito F, Saracino P, Caponio VC, Diaz-Flores Garcia V, Madonna G, Ascierto P, Lo Muzio L. Oral immune-related adverse events caused by immune checkpoint inhibitors: a retrospective study. Minerva Dent Oral Sci 2022; 71:318-323. [PMID: 36760201 DOI: 10.23736/s2724-6329.22.04768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND Immune Checkpoint inhibitors (ICI) are linked to a series of adverse systemic and/or oral side effects such as "stomatitis," "oral inflammation" and "mucositis." These oral lesions induced by target therapies and immune checkpoint inhibitors are different from traditional lesions associated with chemo/radiotherapy and they have not yet been correctly characterized. This paper aims to report retrospectively the oral immune-related adverse events caused by immune checkpoint inhibitors. METHODS A table in electronic format was prepared and sent by e-mail to several clinical structures in order to collect, for each patient, anamnestic data, discretionary habits, systemic risk factors, the presence and number of comorbidities, and the characteristics of the oral lesions in the course of oncological therapy with anti-PD1 (nivolumab, pembrolizumab). Following the collection of anamnestic and clinical data relating to patients treated with anti-PD1 (nivolumab, pembrolizumab) and the detection of oral lesions, data analysis was carried out. RESULTS A number of 364 patients treated with nivolumab (209) and pembrolizumab (155), administered intravenously at a therapeutic dose were selected. There have been cases of oral adverse effects in treated patients. The oral adverse effects found fell into the categories of stomatitis, xerostomia, candidiasis and taste disturbances. Analyzing the incidence of oral lesions in patients undergoing treatment with immune checkpoint inhibitors, there was no significant difference between the two drugs examined. CONCLUSIONS Further studies are certainly needed to catalog, focus and identify in advance the adverse effects, including oral ones, in patients treated with ICI type PD1/PDL-1. It is necessary, for the benefit of patients, to pay particular attention to the adverse effects in order to recognize, treat and possibly modulate the therapy with an adequate assessment of the cost/benefit ratio and quality of life.
Collapse
Affiliation(s)
- Michele DI Cosola
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Foggia, Italy
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Foggia, Italy -
| | - Piermichele Saracino
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Foggia, Italy
| | - Vito C Caponio
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Foggia, Italy
| | - Victor Diaz-Flores Garcia
- Department of Preclinical Dentistry, School of Biomedical Sciences, European University of Madrid, Madrid, Spain
| | - Gabriele Madonna
- Istituto Nazionale dei Tumori Pascale "Fondazione Pascale, " Naples, Italy
| | - Paolo Ascierto
- Istituto Nazionale dei Tumori Pascale "Fondazione Pascale, " Naples, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Foggia, Italy.,C.I.N.B.O. (Consorzio Interuniversitario Nazionale per la Bio-Oncologia), Chieti, Italy
| |
Collapse
|
118
|
Abedi Kiasari B, Abbasi A, Ghasemi Darestani N, Adabi N, Moradian A, Yazdani Y, Sadat Hosseini G, Gholami N, Janati S. Combination therapy with nivolumab (anti-PD-1 monoclonal antibody): A new era in tumor immunotherapy. Int Immunopharmacol 2022; 113:109365. [PMID: 36332452 DOI: 10.1016/j.intimp.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
119
|
Fibroblast Common Serum Response Signature-Related Classification Affects the Tumour Microenvironment and Predicts Prognosis in Bladder Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5645944. [PMID: 36312898 PMCID: PMC9606836 DOI: 10.1155/2022/5645944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
Abstract
Abnormal oncogenic signatures provide important clues regarding cancer prognosis and treatment. We analysed the variations in 189 oncogenic signature gene sets between normal and tumourous tissues from The Cancer Genome Atlas (TCGA) and found that the “CSR_LATE_UP” signature was the most upregulated oncogenic signature gene set in bladder cancer. Next, we developed a common serum response (CSR) risk score (CRS) model based on fibroblast CSR genes and systematically analysed the correlations of these genes or the CRSs with survival, previously reported molecular subtypes, clinicopathological features, cancer signalling pathways, chemotherapeutic responses, and the tumour microenvironment using TCGA and validation cohorts. The CRS could predict the malignant phenotype, chemotherapeutic efficacy, immune invasion, and disease prognosis. Inflammatory signalling pathways (e.g., inflammatory response, TNFA signalling via NFƘB, IFNα response, and IL2-STAT5 signalling) were markedly upregulated in patients with high CRS. Notably, the CSR-related gene ANLN was positively correlated with CD8+ immune cell infiltration, PD-L1 expression, and sensitivity to PD-L1 inhibitors and could thus provide guidance for clinical immunotherapy. This study highlights the crucial role of the CSR signature in bladder cancer and provides a CRS model for accurate predictions of the disease prognosis and chemotherapy and immunotherapy responses.
Collapse
|
120
|
Wen Y, Zhu Y, Zhang C, Yang X, Gao Y, Li M, Yang H, Liu T, Tang H. Chronic inflammation, cancer development and immunotherapy. Front Pharmacol 2022; 13:1040163. [PMID: 36313280 PMCID: PMC9614255 DOI: 10.3389/fphar.2022.1040163] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic inflammation plays a pivotal role in cancer development. Cancer cells interact with adjacent cellular components (pro-inflammatory cells, intrinsic immune cells, stromal cells, etc.) and non-cellular components to form the inflammatory tumor microenvironment (TME). Interleukin 6 (IL-6), macrophage migration inhibitory factor (MIF), immune checkpoint factors and other pro-inflammatory cytokines produced by intrinsic immune cells in TME are the main mediators of intercellular communication in TME, which link chronic inflammation to cancer by stimulating different oncogenic signaling pathways and improving immune escape to promote cancer development. In parallel, the ability of monocytes, T regulatory cells (Tregs) and B regulatory cells (Bregs) to perform homeostatic tolerogenic functions is hijacked by cancer cells, leading to local or systemic immunosuppression. Standard treatments for advanced malignancies such as chemotherapy and radiotherapy have improved in the last decades. However, clinical outcomes of certain malignant cancers are not satisfactory due to drug resistance and side effects. The clinical application of immune checkpoint therapy (ICT) has brought hope to cancer treatment, although therapeutic efficacy are still limited due to the immunosuppressive microenvironment. Emerging evidences reveal that ideal therapies including clearance of tumor cells, disruption of tumor-induced immunosuppression by targeting suppressive TME as well as reactivation of anti-tumor T cells by ICT. Here, we review the impacts of the major pro-inflammatory cells, mediators and their downstream signaling molecules in TME on cancer development. We also discuss the application of targeting important components in the TME in the clinical management of cancer.
Collapse
Affiliation(s)
- Yalei Wen
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Yingjie Zhu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Caishi Zhang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Xiao Yang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Yuchen Gao
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Mei Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Hongyan Yang
- Department of Central Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, China,*Correspondence: Hongyan Yang, ; Tongzheng Liu, ; Hui Tang,
| | - Tongzheng Liu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China,*Correspondence: Hongyan Yang, ; Tongzheng Liu, ; Hui Tang,
| | - Hui Tang
- Department of Central Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, China,Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People’s Hospital), Heyuan, China,*Correspondence: Hongyan Yang, ; Tongzheng Liu, ; Hui Tang,
| |
Collapse
|
121
|
Giampietri C, Scatozza F, Crecca E, Vigiano Benedetti V, Natali PG, Facchiano A. Analysis of gene expression levels and their impact on survival in 31 cancer-types patients identifies novel prognostic markers and suggests unexplored immunotherapy treatment options in a wide range of malignancies. J Transl Med 2022; 20:467. [PMID: 36224560 PMCID: PMC9559014 DOI: 10.1186/s12967-022-03670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunotherapy has dramatically improved cancer treatment by inhibiting or activating specific cell receptors, thus unleashing the host anti-tumor response. However, the engagement of the three main immune checkpoints so far identified, CTLA4, PD-1 and PD-L1, is effective in a fraction of patients, therefore novel targets must be identified and tested. METHODS We focused our attention on the following nine highly relevant immune checkpoint (ICR) receptors: CTLA4, PD1, PD-L1, LAG3, TIM3, OX40, GITR, 4-1BB and TIGIT. All of them are targets of existing drugs currently under clinical scrutiny in several malignancies. Their expression levels were evaluated in patient tissues of 31 different cancer types vs. proper controls, in a total of 15,038 individuals. This analysis was carried out by interrogating public databases available on GEPIA2 portal and UALCAN portal. By the Principal Component Analysis (PCA) their ability to effectively discriminate patients form controls was then investigated. Expression of the nine ICRs was also related to overall survival in 31 cancer types and expressed as Hazard Ratio, on the GEPIA2 portal and validated, for melanoma patients, in patients-datasets available on PROGgene V2 portal. RESULTS Significant differential expression was observed for each ICR molecule in many cancer types. A 7-molecules profile was found to specifically discriminate melanoma patients from controls, while two different 6-molecules profiles discriminate pancreatic cancer patients and Testicular Germ Cell Tumors from matched controls. Highly significant survival improvement was found to be related to the expression levels of all nine ICRs in a wide spectrum of malignancies. For melanoma analysis, the relation with survival observed in TCGA datasets was validated in independent GSE melanoma datasets. CONCLUSION Analysis the nine ICR molecules demonstrates that their expression patterns may be considered as markers of disease and strong survival predictors in a variety of malignancies frequently associated to poor prognosis. Thus, the present findings are strongly advocating that exploratory clinical trials are worth to be performed, using available drugs, targeting these molecules.
Collapse
Affiliation(s)
- Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Human Anatomy, Sapienza University of Rome, Rome, Italy
| | - Francesca Scatozza
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | - Elena Crecca
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | - Virginia Vigiano Benedetti
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | | | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy.
| |
Collapse
|
122
|
Cadonilimab: First Approval. Drugs 2022; 82:1333-1339. [DOI: 10.1007/s40265-022-01761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
123
|
The Effect of the Gut Microbiota on Systemic and Anti-Tumor Immunity and Response to Systemic Therapy against Cancer. Cancers (Basel) 2022; 14:cancers14153563. [PMID: 35892821 PMCID: PMC9330582 DOI: 10.3390/cancers14153563] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota can have opposing functions from pro-tumorigenic to anti-tumorigenic effects. Increasing preclinical and clinical evidence suggests that the intestinal microbiota affects cancer patients’ response to immune checkpoint inhibitors (ICIs) immunotherapy, such as anti-programmed cell death protein 1 (PD-1) and its ligand (PD-L1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Microbiota-induced inflammation possibly contributes to tumor growth and cancer development. Microbiota-derived metabolites can also be converted to carcinogenic agents related to genetic mutations and DNA damage in organs such as the colon. However, other attributes of microbiota, such as greater diversity and specific bacterial species and their metabolites, are linked to better clinical outcomes and potentially improved anti-tumor immunity. In addition, the intratumoral microbial composition strongly affects T-cell-mediated cytotoxicity and anti-tumor immune surveillance, adding more complexity to the cancer-microbiome-immune axis. Despite the emerging clinical evidence for the activity of the gut microbiota in immuno-oncology, the fundamental mechanisms of such activity are not well understood. This review provides an overview of underlying mechanisms by which the gut microbiota and its metabolites enhance or suppress anti-tumor immune responses. Understanding such mechanisms allows for better design of microbiome-specific treatment strategies to improve the clinical outcome in cancer patients undergoing systemic therapy.
Collapse
|
124
|
Cao P, Yang X, Liu D, Ye S, Yang W, Xie Z, Lei X. Research progress of
PD‐L1
non‐glycosylation in cancer immunotherapy. Scand J Immunol 2022. [DOI: 10.1111/sji.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pu Cao
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
| | - Xiaoyan Yang
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
| | - Daquan Liu
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
| | - Simin Ye
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
| | - Wei Yang
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
| | - Zhizhong Xie
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
| | - Xiaoyong Lei
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China Hengyang Hunan P.R. China
| |
Collapse
|
125
|
Yu Y, Wang S, Su N, Pan S, Tu B, Zhao J, Shen Y, Qiu Q, Liu X, Luan J, Wang FS, Meng F, Shi M. Increased Circulating Levels of CRP and IL-6 and Decreased Frequencies of T and B Lymphocyte Subsets Are Associated With Immune-Related Adverse Events During Combination Therapy With PD-1 Inhibitors for Liver Cancer. Front Oncol 2022; 12:906824. [PMID: 35756643 PMCID: PMC9232255 DOI: 10.3389/fonc.2022.906824] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Background Programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) immune-related adverse events (irAEs) are inevitable in patients with liver cancer. Although the incidence of severe irAEs is low, but can result in fatal consequences. To date, only a few commonly used clinical biomarkers have been reported. Aim To assess commonly used clinical biomarkers associated with the occurrence of irAEs to enable better management of irAEs by clinicians. Methods We retrospectively reviewed patients with liver cancer treated with at least one cycle of PD-1 immune checkpoint inhibitors (ICIs) combined with tyrosine kinase inhibitors (TKIs). IrAEs were documented according to the common terminology criteria for adverse events version 5. Clinical and laboratory parameters were also evaluated. Results A total of 67 patients were included, 36 with irAEs and 31 without irAEs. A total of 104 adverse events occurred; 83 of these events were grade 1/2 (G1/G2), 21 were grade 3/4 (G3/G4), and one died of G4 hepatitis. Patients with irAEs had higher levels of C-reactive protein (CRP) and interleukin-6 (IL-6) and lower levels of lymphocyte subsets, except natural killer (NK) cell counts, than those without irAEs (P <0.05). Patients who experienced G3/G4 irAEs had higher levels of CRP and IL-6 and lower levels of CD4+ T lymphocytes and B lymphocytes than those who experienced G1/G2 irAEs (P <0.05). Of note, impairments in liver function and routine blood tests were also observed (P <0.05). The results of univariate and multivariate analyses for any grade of irAEs revealed that the combination of sintilimab and lenvatinib (P= 0.004, odds ratio [OR]: 7.414, 95% confidence interval [95% CI]: 1.925–28.560) and CRP ≥8.2 mg/L (P= 0.024, OR: 3.727, CI: 1.185–11.726) were independent risk factors. Univariate and multivariate analyses of the risk factors of G3/G4 irAEs suggested that the combination of sintilimab and lenvatinib was a potential risk factor (P = 0.049, OR: 8.242, CI: 1.006–67.532). Conclusion Changes in patient CRP, IL-6, and lymphocyte subsets were associated with irAE onset and may act as potential biomarkers of irAEs. Impairments in liver function and routine blood tests owing to the occurrence of irAEs may become new concerns for clinicians.
Collapse
Affiliation(s)
- Yingying Yu
- 302 Clinical Medical School, Peking University, Beijing, China.,Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Siyu Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Nan Su
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shida Pan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Bo Tu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jinfang Zhao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yingjuan Shen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qin Qiu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xiaomeng Liu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Junqing Luan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Fanping Meng
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Ming Shi
- 302 Clinical Medical School, Peking University, Beijing, China.,Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
126
|
Li X, Li M, Huang M, Lin Q, Fang Q, Liu J, Chen X, Liu L, Zhan X, Shan H, Lu D, Li Q, Li Z, Zhu X. The multi-molecular mechanisms of tumor-targeted drug resistance in precision medicine. Biomed Pharmacother 2022; 150:113064. [PMID: 35658234 DOI: 10.1016/j.biopha.2022.113064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022] Open
Abstract
Clinically, cancer drug therapy is still dominated by chemotherapy drugs. Although the emergence of targeted drugs has greatly improved the survival rate of patients with advanced cancer, drug resistance has always been a difficult problem in clinical cancer treatment. At the current level of medicine, most drugs cannot escape the fate of drug resistance. With the emergence and development of gene detection, liquid biopsy ctDNA technology, and single-cell sequencing technology, the molecular mechanism of tumor drug resistance has gradually emerged. Drugs can also be updated in response to drug resistance mechanisms and bring higher survival benefits. The use of new drugs often leads to new mechanisms of resistance. In this review, the multi-molecular mechanisms of drug resistance are introduced, and the overcoming of drug resistance is discussed from the perspective of the tumor microenvironment.
Collapse
Affiliation(s)
- Xinming Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Mingdong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Meiying Huang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qianyi Lin
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qiuping Fang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Jianjiang Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xiaohui Chen
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Lin Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xuliang Zhan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Huisi Shan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Deshuai Lu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qinlan Li
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| | - Xiao Zhu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
127
|
dos Reis JS, Rodrigues da Costa Santos MA, Mendonça DP, Martins do Nascimento SI, Barcelos PM, Correia de Lima RG, da Costa KM, Freire-de-Lima CG, Morrot A, Previato JO, Mendonça Previato L, da Fonseca LM, Freire-de-Lima L. Glycobiology of Cancer: Sugar Drives the Show. MEDICINES 2022; 9:medicines9060034. [PMID: 35736247 PMCID: PMC9229842 DOI: 10.3390/medicines9060034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Cancer development and progression is associated with aberrant changes in cellular glycosylation. Cells expressing altered glycan-structures are recognized by cells of the immune system, favoring the induction of inhibitory immune processes which subsequently promote tumor growth and spreading. Here, we discuss about the importance of glycobiology in modern medicine, taking into account the impact of altered glycan structures expressed in cancer cells as potential glycobiomarkers of disease, as well as on cancer development and progression.
Collapse
Affiliation(s)
- Jhenifer Santos dos Reis
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Marcos André Rodrigues da Costa Santos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Daniella Pereira Mendonça
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Stefani Ingrid Martins do Nascimento
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Pedro Marçal Barcelos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Rafaela Gomes Correia de Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Kelli Monteiro da Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil;
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21044-020, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Lucia Mendonça Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Leonardo Marques da Fonseca
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Leonardo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
- Correspondence: ; Tel./Fax: +55-21-3938-6646
| |
Collapse
|
128
|
Le I, Dhandayuthapani S, Chacon J, Eiring AM, Gadad SS. Harnessing the Immune System with Cancer Vaccines: From Prevention to Therapeutics. Vaccines (Basel) 2022; 10:816. [PMID: 35632572 PMCID: PMC9146235 DOI: 10.3390/vaccines10050816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Prophylactic vaccination against infectious diseases is one of the most successful public health measures of our lifetime. More recently, therapeutic vaccination against established diseases such as cancer has proven to be more challenging. In the host, cancer cells evade immunologic regulation by multiple means, including altering the antigens expressed on their cell surface or recruiting inflammatory cells that repress immune surveillance. Nevertheless, recent clinical data suggest that two classes of antigens show efficacy for the development of anticancer vaccines: tumor-associated antigens and neoantigens. In addition, many different vaccines derived from antigens based on cellular, peptide/protein, and genomic components are in development to establish their efficacy in cancer therapy. Some vaccines have shown promising results, which may lead to favorable outcomes when combined with standard therapeutic approaches. This review provides an overview of the innate and adaptive immune systems, their interactions with cancer cells, and the development of various different vaccines for use in anticancer therapeutics.
Collapse
Affiliation(s)
- Ilene Le
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
| | - Subramanian Dhandayuthapani
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jessica Chacon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
| | - Anna M. Eiring
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Shrikanth S. Gadad
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, USA
| |
Collapse
|
129
|
Chaudhuri A, Kumar DN, Dehari D, Singh S, Kumar P, Bolla PK, Kumar D, Agrawal AK. Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals (Basel) 2022; 15:542. [PMID: 35631368 PMCID: PMC9143332 DOI: 10.3390/ph15050542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered one of the un-manageable types of breast cancer, involving devoid of estrogen, progesterone, and human epidermal growth factor receptor 2 (HER 2) receptors. Due to their ability of recurrence and metastasis, the management of TNBC remains a mainstay challenge, despite the advancements in cancer therapies. Conventional chemotherapy remains the only treatment regimen against TNBC and suffers several limitations such as low bioavailability, systemic toxicity, less targetability, and multi-drug resistance. Although various targeted therapies have been introduced to manage the hardship of TNBC, they still experience certain limitations associated with the survival benefits. The current research thus aimed at developing and improving the strategies for effective therapy against TNBC. Such strategies involved the emergence of nanoparticles. Nanoparticles are designated as nanocavalries, loaded with various agents (drugs, genes, etc.) to battle the progression and metastasis of TNBC along with overcoming the limitations experienced by conventional chemotherapy and targeted therapy. This article documents the treatment regimens of TNBC along with their efficacy towards different subtypes of TNBC, and the various nanotechnologies employed to increase the therapeutic outcome of FDA-approved drug regimens.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Deepa Dehari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA;
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| |
Collapse
|
130
|
Duarte HS, Veiga CRP, Veiga CP, Wainstein AJA, Drummond-Lage AP. Toxicity profile of treatment with PD-1 inhibitors for lung cancer, melanoma and renal cell carcinoma: A real-world Brazilian study. Int Immunopharmacol 2022; 108:108727. [PMID: 35397393 DOI: 10.1016/j.intimp.2022.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Immunotherapy revolutionized cancer care in the last decade and, notably among its tools, the programmed cell death protein-1 (PD-1) inhibitors. These drugs are related to increased life expectancy rates. However, they can cause several adverse events that have not been fully characterized, thus challenging clinical practice. OBJECTIVE To evaluate the toxicity profile, determining its frequency, causality, and severity associated with treatment with PD-1 inhibitors in patients treated at an oncology service in the private health sector in Belo Horizonte. METHODS Observational, retrospective, and cross-sectional study, based on the review of electronic medical records. The eligibility criteria included patients over 18 years old with a diagnosis of any cancer and staging, receiving a PD-1 inhibitor from January 2017 to January 2020. RESULTS The sample consisted of 134 patients with lung cancer (46,3%), melanoma (34,3%), and kidney cancer (19,4%). The most common adverse event (AE) related to treatment were fatigue (51.5%), anorexia (23.1%), hypothyroidism (15.7%), and skin rash (14.9%), being grades 1 and 2 more prevalent. Between 3 and 12 months, there were more cutaneous, nutritional, and metabolic toxicities, and fatigue was present throughout the entire treatment period. Gastrointestinal and pulmonary toxicities were more frequent up to the 9th month. CONCLUSION Based on real-world evidence, it was possible to reveal important findings to support the safe practice of PD-1 inhibitors treatment. Fatigue was the most prevalent AE among patients. In addition, the kinetics of AE allowed the identification of major occurrences according to the period o treatment, allowing more precise monitoring and surveillance.
Collapse
Affiliation(s)
- Hugo S Duarte
- Faculdade Ciências Médicas de Minas Gerais, Post-Graduation Department, Brazil
| | - Cassia R P Veiga
- Universidade Federal do Paraná, Post-Graduation Department, Brazil
| | | | | | - Ana P Drummond-Lage
- Faculdade Ciências Médicas de Minas Gerais, Post-Graduation Department, Brazil.
| |
Collapse
|
131
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
132
|
Sato T, Takagi K, Higuchi M, Abe H, Kojimahara M, Sagawa M, Tanaki M, Miki Y, Suzuki T, Hojo H. Immunolocalization of CD80 and CD86 in Non-Small Cell Lung Carcinoma: CD80 as a Potent Prognostic Factor. Acta Histochem Cytochem 2022; 55:25-35. [PMID: 35444349 PMCID: PMC8913274 DOI: 10.1267/ahc.21-00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
It has been demonstrated that tumor cells express programed cell death protein 1 (PD-L1) to escape T lymphocytes that express programed cell protein 1 (PD-1), and PD-1/PD-L1 immune checkpoint inhibitors have been regarded in lung cancer patients. CD80 and CD86 are members of B7 superfamily which regulates T lymphocyte activation and tolerance. However, immunolocalization of CD80 and CD86 has not been examined in the lung carcinoma tissues and their clinical significance remains unknown. Therefore, to clarify clinical significance of CD80 and CD86, we immunolocalized these in 75 non-small cell lung carcinomas (NSCLC) in this study. Immunoreactivities of CD80 and CD86 were mainly detected in tumor-infiltrating macrophages. Immunohistochemical CD80 status was high in 56% of NSCLC, and it was positively associated with stage, pathological T factor, distant metastasis, histological type and PD-L1 status. Moreover, multivariate analysis turned out that the CD80 status was an independent worse prognostic factor. CD86 status was high in 53% of the cases, but it was not significantly associated with any clinicopathological parameters. These findings suggest that CD80 is a potent worse prognostic factor possibly in association with escape from immune attack in NSCLC.
Collapse
Affiliation(s)
- Takashi Sato
- Department of Clinical Laboratory, Aizu Medical Center, Fukushima Medical University
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Mitsunori Higuchi
- Department of Thoracic Surgery, Aizu Medical Center, Fukushima Medical University
| | - Hiroko Abe
- Department of Clinical Laboratory, Aizu Medical Center, Fukushima Medical University
| | - Michie Kojimahara
- Department of Clinical Laboratory, Aizu Medical Center, Fukushima Medical University
| | - Miho Sagawa
- Department of Clinical Laboratory, Aizu Medical Center, Fukushima Medical University
| | - Megumi Tanaki
- Department of Clinical Laboratory, Aizu Medical Center, Fukushima Medical University
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science, Tohoku University
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Hiroshi Hojo
- Department of Pathology, Aizu Medical Center, Fukushima Medical University
| |
Collapse
|
133
|
Qiu X, Zhao T, Luo R, Qiu R, Li Z. Tumor-Associated Macrophages: Key Players in Triple-Negative Breast Cancer. Front Oncol 2022; 12:772615. [PMID: 35237507 PMCID: PMC8882594 DOI: 10.3389/fonc.2022.772615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Triple negative breast cancer (TNBC) refers to the subtype of breast cancer which is negative for ER, PR, and HER-2 receptors. Tumor-associated macrophages (TAMs) refer to the leukocyte infiltrating tumor, derived from circulating blood mononuclear cells and differentiating into macrophages after exuding tissues. TAMs are divided into typical activated M1 subtype and alternately activated M2 subtype, which have different expressions of receptors, cytokines and chemokines. M1 is characterized by expressing a large amount of inducible nitric oxide synthase and TNF-α, and exert anti-tumor activity by promoting pro-inflammatory and immune responses. M2 usually expresses Arginase 1 and high levels of cytokines, growth factors and proteases to support their carcinogenic function. Recent studies demonstrate that TAMs participate in the process of TNBC from occurrence to metastasis, and might serve as potential biomarkers for prognosis prediction.
Collapse
Affiliation(s)
- Xia Qiu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianjiao Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Cell Biology, Wuhan Institute of Bioengineering, Wuhan, China
| | - Ran Luo
- Department of Cell Biology, Wuhan Institute of Bioengineering, Wuhan, China
| | - Ran Qiu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaoming Li, ; Ran Qiu,
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaoming Li, ; Ran Qiu,
| |
Collapse
|
134
|
Kong F, Chen T, Li X, Jia Y. The Current Application and Future Prospects of Astragalus Polysaccharide Combined With Cancer Immunotherapy: A Review. Front Pharmacol 2021; 12:737674. [PMID: 34721026 PMCID: PMC8548714 DOI: 10.3389/fphar.2021.737674] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
So far, immunotherapy has been shown to have impressive effects on different cancers in clinical trials. All those immunotherapies are generally derived from three main therapeutic approaches: immune checkpoint inhibitors, immune cell vaccination, and adoptive cellular immunotherapy. Our research systematically reviewed a wide range of clinical trials and laboratory studies of astragalus polysaccharide (APS) and elucidated the potential feasibility of using APS in activating adoptive immunotherapy. Apart from being effective in adaptive “passive” immunotherapy such as lymphokine-activated killer treatment and dendritic cell (DC)–cytokine–induced killer treatment, APS could also regulate the anti-programmed cell death protein 1 (PD-1)/PD-L1 on the surface of the immune cells, as a part in the immune checkpoint inhibitory signaling pathway by activating the immune-suppressed microenvironment by regulating cytokines, toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways, and immune cells, such as DCs, macrophages, NK cells, and so on. In view of the multiple functions of APS in immunotherapy and tumor microenvironment, a combination of APS and immunotherapy in cancer treatment has a promising prospect.
Collapse
Affiliation(s)
- Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Tianqi Chen
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
135
|
Liu Y, Liu S, Qin Y, Zhao L, Li Y, Zhou C, Chen W. Does prior exposure to immune checkpoint inhibitors treatment affect incidence and mortality of COVID-19 among the cancer patients: The systematic review and meta-analysis. Int Immunopharmacol 2021; 101:108242. [PMID: 34688136 PMCID: PMC8502698 DOI: 10.1016/j.intimp.2021.108242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) treatment among cancer patients has been shown to have antiviral effects by reactivating exhausted T cells. However, they could also trigger inflammatory storm. Therefore, prior exposure to ICIs may influence the risk of SARS-CoV2 infection and subsequent mortality. Recent results from studies of ICIs treatment on incidence and mortality of COVID-19 are controversial. MATERIALS AND METHODS We searched databases PubMed, Embase, ISI of Knowledge, Cochrane Central Register of Controlled Trials (CENTRAL), as well as pre-print databases (MedRxiv and BioRxiv) for retrospective and prospective studies comparing ICIs versus other antitumor treatments in cancer patients in the area of COVID-19 pandemic. The primary outcome was the incidence of COVID-19. The secondary outcomes were mortality of COVID-19. RESULTS Twenty-three studies with a total of 117,735 patients were selected. Compared with other antitumor treatments, prior exposure to ICIs had not an increased risk of incidence [Odds ratio (OR), 0.84; 95% confidence interval (CI), 0.60-1.18; P = 0.32] and mortality (OR, 1.22; 95% CI, 0.91-1.62; P = 0.18) of COVID-19 infectioin. Our subgroup and meta-regression analyses indicated that prior exposure to ICIs may reduce the incidence of COVID-19 in metastatic cancer patients. CONCLUSIONS There was no significant difference on incidence and mortality of COVID-19 between prior exposure to ICIs with other anti-tumor treatments. ICIs may reduce infection susceptibility of COVID-19 in metastatic cancer patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Surgical intensive care unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuo Liu
- Department of Pharmacy, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yujun Qin
- Department of Intensive care unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- Department of Intensive care unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yiliang Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chenghui Zhou
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Chen
- Department of Intensive care unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
136
|
Glucocorticoid and PD-1 Cross-Talk: Does the Immune System Become Confused? Cells 2021; 10:cells10092333. [PMID: 34571982 PMCID: PMC8468592 DOI: 10.3390/cells10092333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death protein 1 (PD-1) and its ligands, PD-L1/2, control T cell activation and tolerance. While PD-1 expression is induced upon T cell receptor (TCR) activation or cytokine signaling, PD-L1 is expressed on B cells, antigen presenting cells, and on non-immune tissues, including cancer cells. Importantly, PD-L1 binding inhibits T cell activation. Therefore, the modulation of PD-1/PD-L1 expression on immune cells, both circulating or in a tumor microenvironment and/or on the tumor cell surface, is one mechanism of cancer immune evasion. Therapies that target PD-1/PD-L1, blocking the T cell-cancer cell interaction, have been successful in patients with various types of cancer. Glucocorticoids (GCs) are often administered to manage the side effects of chemo- or immuno-therapy, exerting a wide range of immunosuppressive and anti-inflammatory effects. However, GCs may also have tumor-promoting effects, interfering with therapy. In this review, we examine GC signaling and how it intersects with PD-1/PD-L1 pathways, including a discussion on the potential for GC- and PD-1/PD-L1-targeted therapies to "confuse" the immune system, leading to a cancer cell advantage that counteracts anti-cancer immunotherapy. Therefore, combination therapies should be utilized with an awareness of the potential for opposing effects on the immune system.
Collapse
|