101
|
van Schouwenburg PA, van der Burg M, IJspeert H. NGS-Based B-Cell Receptor Repertoire AnalysisRepertoire analyses in the Context of Inborn Errors of Immunity. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:169-190. [PMID: 35622327 DOI: 10.1007/978-1-0716-2115-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inborn errors of immunity (IEI) are genetic defects that can affect both the innate and the adaptive immune system. Patients with IEI usually present with recurrent infections, but many also suffer from immune dysregulation, autoimmunity, and malignancies.Inborn errors of the immune system can cause defects in the development and selection of the B-cell receptor (BCR ) repertoire. Patients with IEI can have a defect in one of the key processes of immune repertoire formation like V(D)J recombination, somatic hypermutation (SHM), class switch recombination (CSR), or (pre-)BCR signalling and proliferation. However, also other genetic defects can lead to quantitative and qualitative differences in the immune repertoire.In this chapter, we will give an overview of protocols that can be used to study the immune repertoire in patients with IEI, provide considerations to take into account before setting up experiments, and discuss analysis of the immune repertoire data using Antigen Receptor Galaxy (ARGalaxy).
Collapse
Affiliation(s)
- Pauline A van Schouwenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Hanna IJspeert
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
102
|
Woon ST, Mayes J, Quach A, Longhurst H, Ferrante A, Ameratunga R. Droplet digital PCR for identifying copy number variations in patients with primary immunodeficiency disorders. Clin Exp Immunol 2022; 207:329-335. [PMID: 35553639 PMCID: PMC9113119 DOI: 10.1093/cei/uxab034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Primary immunodeficiency disorders comprise a rare group of mostly monogenic disorders caused by inborn errors of immunity. The majority can be identified by either Sanger sequencing or next generation sequencing. Some disorders result from large insertions or deletions leading to copy number variations (CNVs). Sanger sequencing may not identify these mutations. Here we present droplet digital PCR as an alternative cost-effective diagnostic method to identify CNV in these genes. The data from patients with large deletions of NFKB1, SERPING1, and SH2D1A are presented.
Collapse
Affiliation(s)
- See-Tarn Woon
- Department of Virology and Immunology, LabPLUS, Auckland City Hospital, Grafton, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Julia Mayes
- Department of Virology and Immunology, LabPLUS, Auckland City Hospital, Grafton, Auckland, New Zealand
| | - Alexander Quach
- SA Pathology at the Women’s & Children’s Hospital, Immunopathology Department, North Adelaide, South Australia, Australia
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland City Hospital, Grafton, Auckland, New Zealand
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Antonio Ferrante
- SA Pathology at the Women’s & Children’s Hospital, Immunopathology Department, North Adelaide, South Australia, Australia
| | - Rohan Ameratunga
- Department of Virology and Immunology, LabPLUS, Auckland City Hospital, Grafton, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Clinical Immunology, Auckland City Hospital, Grafton, Auckland, New Zealand
| |
Collapse
|
103
|
Barreiros LA, Sousa JL, Geier C, Leiss-Piller A, Kanegae MPP, França TT, Boisson B, Lima AM, Costa-Carvalho BT, Aranda CS, de Moraes-Pinto MI, Segundo GRS, Ferreira JFS, Tavares FS, Guimarães FATDM, Toledo EC, da Matta Ain AC, Moreira IF, Soldatelli G, Grumach AS, de Barros Dorna M, Weber CW, Di Gesu RSW, Dantas VM, Fernandes FR, Torgerson TR, Ochs HD, Bustamante J, Walter JE, Condino-Neto A. SCID and Other Inborn Errors of Immunity with Low TRECs - the Brazilian Experience. J Clin Immunol 2022; 42:1171-1192. [PMID: 35503492 DOI: 10.1007/s10875-022-01275-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
Abstract
Severe combined immunodeficiency, SCID, is a pediatric emergency that represents the most critical group of inborn errors of immunity (IEI). Affected infants present with early onset life-threatening infections due to absent or non-functional T cells. Without early diagnosis and curative treatment, most die in early infancy. As most affected infants appear healthy at birth, newborn screening (NBS) is essential to identify and treat patients before the onset of symptoms. Here, we report 47 Brazilian patients investigated between 2009 and 2020 for SCID due to either a positive family history and/or clinical impression and low TRECs. Based on clinical presentation, laboratory finding, and genetic information, 24 patients were diagnosed as typical SCID, 14 as leaky SCID, and 6 as Omenn syndrome; 2 patients had non-SCID IEI, and 1 remained undefined. Disease onset median age was 2 months, but at the time of diagnosis and treatment, median ages were 6.5 and 11.5 months, respectively, revealing considerable delay which affected negatively treatment success. While overall survival was 51.1%, only 66.7% (30/45) lived long enough to undergo hematopoietic stem-cell transplantation, which was successful in 70% of cases. Forty-three of 47 (91.5%) patients underwent genetic testing, with a 65.1% success rate. Even though our patients did not come from the NBS programs, the diagnosis of SCID improved in Brazil during the pilot programs, likely due to improved medical education. However, we estimate that at least 80% of SCID cases are still missed. NBS-SCID started to be universally implemented in the city of São Paulo in May 2021, and it is our hope that other cities will follow, leading to early diagnosis and higher survival of SCID patients in Brazil.
Collapse
Affiliation(s)
- Lucila Akune Barreiros
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 1730, Av. Professor Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Jusley Lira Sousa
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 1730, Av. Professor Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | | | | | - Marilia Pylles Patto Kanegae
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 1730, Av. Professor Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Tábata Takahashi França
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 1730, Av. Professor Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | - Ana Carolina da Matta Ain
- Departamento de Pediatria E Imunologia, Hospital Universitário de Taubaté, Universidade de Taubaté, Taubate, SP, Brazil
| | | | - Gustavo Soldatelli
- Hospital das Clínicas, Universidade Federal de Santa Caratina, Florianopolis, SC, Brazil
| | | | - Mayra de Barros Dorna
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, SP, Brazil
| | | | | | - Vera Maria Dantas
- Departamento de Pediatria, Universidade Federal Do Rio Grande Do Norte, Natal, RN, Brazil
| | | | | | - Hans Dietrich Ochs
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, USA
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jolan Eszter Walter
- University of South Florida at Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Antonio Condino-Neto
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 1730, Av. Professor Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil.
- Immunogenic Laboratories Inc, Sao Paulo, SP, Brazil.
| |
Collapse
|
104
|
Al Farsi T, Ahmed K, Alshekaili J, Al Kindi M, Cook M, Al-Hosni A, Ansari Z, Nasr I, Al Sukaiti N. Immune Dysregulation in Monogenic Inborn Errors of Immunity in Oman: Over A Decade of Experience From a Single Tertiary Center. Front Immunol 2022; 13:849694. [PMID: 35464432 PMCID: PMC9019296 DOI: 10.3389/fimmu.2022.849694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Inborn errors of immunity (IEIs) are being recognized as an important cause of morbidity and mortality in communities with a high frequency of consanguinity, such as Oman, and thus recessively inherited conditions. Various monogenic causes of IEI have been recently discovered; however, the disease phenotype may be variable and does not always include infection at presentation, leading to a delay in diagnosis and a poor outcome. It is now well recognized that immune dysregulation manifestations are observed in a significant proportion of patients with IEI and occasionally precede infection. Methods Here, we retrospectively report the epidemiological, clinical, immunological, and molecular findings and outcomes from 239 patients with IEI who were diagnosed and managed at the Royal Hospital, Oman, from January 2010 to October 2021. Results The estimated annual cumulative mean incidence of IEI was 25.5 per 100,000 Omani live births with a total prevalence of 15.5 per 100,000 Omani population. Both the high incidence and prevalence are attributed to the high rate of consanguinity (78.2%). Defects affecting cellular and humoral immunity including severe combined immunodeficiency (SCID), combined immunodeficiency (CID), and CID with syndromic features were the predominant defects in IEI (36%). Immune dysregulation was a prominent manifestation and occurred in approximately a third of all patients with IEI (32%), with a mean age of onset of 81 months and a mean diagnostic delay of 50.8 months. The largest percentage of patients who showed such clinical signs were in the category of diseases of immune dysregulation (41%), followed by predominantly antibody deficiency (18%). The overall mortality rate in our cohort was 25.1%, with higher death rates seen in CID including SCID and diseases of immune dysregulation. Conclusion Immune dysregulation is a frequent manifestation of Omani patients with IEI. Early detection through raising awareness of signs of IEI including those of immune dysregulation and implementation of newborn screening programs will result in early intervention and improved overall outcome.
Collapse
Affiliation(s)
- Tariq Al Farsi
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Khwater Ahmed
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Jalila Alshekaili
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mahmood Al Kindi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Matthew Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, NSW, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, NSW, Australia.,Centre for Personalized Immunology (National Health and Medical Research Council (NHMRC) Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, NSW, Australia
| | - Aliya Al-Hosni
- Molecular Genetics, National Genetics Center, Muscat, Oman
| | - Zainab Ansari
- Department of Adult Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Iman Nasr
- Department of Adult Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Nashat Al Sukaiti
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| |
Collapse
|
105
|
Belaid B, Lamara Mahammed L, Drali O, Oussaid AM, Touri NS, Melzi S, Dehimi A, Berkani LM, Merah F, Larab Z, Allam I, Khemici O, Kirane SY, Boutaba M, Belbouab R, Bekkakcha H, Guedouar A, Chelali A, Baamara B, Noui D, Baaziz H, Rezak R, Azzouz SM, Aichaoui M, Moktefi A, Benhatchi RM, Oussalah M, Benaissa N, Laredj A, Bouchetara A, Adria A, Habireche B, Tounsi N, Dahmoun F, Touati R, Boucenna H, Bouferoua F, Sekfali L, Bouhafs N, Aboura R, Kherra S, Inouri Y, Dib S, Medouri N, Khelfaoui N, Redjedal A, Zelaci A, Yahiaoui S, Medjadj S, Touhami TK, Kadi A, Amireche F, Frada I, Houasnia S, Benarab K, Boubidi C, Ferhani Y, Benalioua H, Sokhal S, Benamar N, Aggoune S, Hadji K, Bellouti A, Rahmoune H, Boutrid N, Okka K, Ammour A, Saadoune H, Amroun M, Belhadj H, Ghanem A, Abbaz H, Boudrioua S, Zebiche B, Ayad A, Hamadache Z, Ouaras N, Achour N, Bouchair N, Boudiaf H, Bekkat-Berkani D, Maouche H, Bouzrar Z, Aissat L, Ibsaine O, Bioud B, Kedji L, Dahlouk D, Bensmina M, Radoui A, Bessahraoui M, Bensaadi N, Mekki A, Zeroual Z, Chan KW, Leung D, Tebaibia A, Ayoub S, Mekideche D, Gharnaout M, et alBelaid B, Lamara Mahammed L, Drali O, Oussaid AM, Touri NS, Melzi S, Dehimi A, Berkani LM, Merah F, Larab Z, Allam I, Khemici O, Kirane SY, Boutaba M, Belbouab R, Bekkakcha H, Guedouar A, Chelali A, Baamara B, Noui D, Baaziz H, Rezak R, Azzouz SM, Aichaoui M, Moktefi A, Benhatchi RM, Oussalah M, Benaissa N, Laredj A, Bouchetara A, Adria A, Habireche B, Tounsi N, Dahmoun F, Touati R, Boucenna H, Bouferoua F, Sekfali L, Bouhafs N, Aboura R, Kherra S, Inouri Y, Dib S, Medouri N, Khelfaoui N, Redjedal A, Zelaci A, Yahiaoui S, Medjadj S, Touhami TK, Kadi A, Amireche F, Frada I, Houasnia S, Benarab K, Boubidi C, Ferhani Y, Benalioua H, Sokhal S, Benamar N, Aggoune S, Hadji K, Bellouti A, Rahmoune H, Boutrid N, Okka K, Ammour A, Saadoune H, Amroun M, Belhadj H, Ghanem A, Abbaz H, Boudrioua S, Zebiche B, Ayad A, Hamadache Z, Ouaras N, Achour N, Bouchair N, Boudiaf H, Bekkat-Berkani D, Maouche H, Bouzrar Z, Aissat L, Ibsaine O, Bioud B, Kedji L, Dahlouk D, Bensmina M, Radoui A, Bessahraoui M, Bensaadi N, Mekki A, Zeroual Z, Chan KW, Leung D, Tebaibia A, Ayoub S, Mekideche D, Gharnaout M, Casanova JL, Puel A, Lau YL, Cherif N, Ladj S, Smati L, Boukari R, Benhalla N, Djidjik R. Inborn Errors of Immunity in Algerian Children and Adults: A Single-Center Experience Over a Period of 13 Years (2008-2021). Front Immunol 2022; 13:900091. [PMID: 35529857 PMCID: PMC9069527 DOI: 10.3389/fimmu.2022.900091] [Show More Authors] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Inborn errors of immunity (IEI) predispose patients to various infectious and non-infectious complications. Thanks to the development and expanding use of flow cytometry and increased awareness, the diagnostic rate of IEI has markedly increased in Algeria the last decade. AIM This study aimed to describe a large cohort of Algerian patients with probable IEI and to determine their clinical characteristics and outcomes. METHODS We collected and analyzed retrospectively the demographic data, clinical manifestations, immunologic, genetic data, and outcome of Algerian IEI patients - diagnosed in the department of medical immunology of Beni Messous university hospital center, Algiers, from 2008 to 2021. RESULTS Eight hundred and seven patients with IEI (482 males and 325 females) were enrolled, 9.7% of whom were adults. Consanguinity was reported in 50.3% of the cases and a positive family history in 32.34%. The medium age at disease onset was 8 months and at diagnosis was 36 months. The median delay in diagnosis was 16 months. Combined immunodeficiencies were the most frequent (33.8%), followed by antibody deficiencies (24.5%) and well-defined syndromes with immunodeficiency (24%). Among 287 patients tested for genetic disorders, 129 patients carried pathogenic mutations; 102 having biallelic variants mostly in a homozygous state (autosomal recessive disorders). The highest mortality rate was observed in patients with combined immunodeficiency (70.1%), especially in patients with severe combined immunodeficiency (SCID), Omenn syndrome, or Major Histocompatibility Complex (MHC) class II deficiency. CONCLUSION The spectrum of IEI in Algeria is similar to that seen in most countries of the Middle East and North Africa (MENA) region, notably regarding the frequency of autosomal recessive and/or combined immunodeficiencies.
Collapse
Affiliation(s)
- Brahim Belaid
- Department of Medical Immunology, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Lydia Lamara Mahammed
- Department of Medical Immunology, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Ouardia Drali
- Department of Pediatrics B, Hussein Dey University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Aida Mohand Oussaid
- Department of Pediatrics A, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Nabila Souad Touri
- Department of Pediatrics, Blida University Hospital Center, University of Blida, Blida, Algeria
| | - Souhila Melzi
- Department of Pediatrics, Bab El Oued University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Abdelhak Dehimi
- Department of Pediatrics, Setif University Hospital Center, University of Setif 1, Setif, Algeria
| | - Lylia Meriem Berkani
- Department of Medical Immunology, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Fatma Merah
- Department of Medical Immunology, Beni Messous University Hospital Center, Algiers, Algeria
| | - Zineb Larab
- Department of Medical Immunology, Beni Messous University Hospital Center, Algiers, Algeria
| | - Ines Allam
- Department of Medical Immunology, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Ouarda Khemici
- Department of Pediatrics B, Beni Messous University Hospital Center, Algiers, Algeria
| | - Sonya Yasmine Kirane
- Department of Pediatrics B, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Mounia Boutaba
- Department of Pediatrics A, Hussein Dey University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Reda Belbouab
- Department of Pediatrics, Mustapha Pacha University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Hadjira Bekkakcha
- Department of Pediatrics A, Hussein Dey University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Assia Guedouar
- Department of Pediatrics A, Hussein Dey University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Abdelhakim Chelali
- Department of Pediatrics, Djelfa Public Hospital Institution, Djelfa, Algeria
| | - Brahim Baamara
- Department of Pediatrics, Djelfa Public Hospital Institution, Djelfa, Algeria
| | - Djamila Noui
- Department of Pediatrics, Batna University Hospital center, University of Batna, Batna, Algeria
| | - Hadda Baaziz
- Department of Pediatrics, Batna University Hospital center, University of Batna, Batna, Algeria
| | - Radia Rezak
- Department of Pediatric Gastroenterology and Nutrition, Canastel Children’s Hospital, Oran, Algeria
| | - Sidi Mohamed Azzouz
- Department of Pediatric Gastroenterology and Nutrition, Canastel Children’s Hospital, University of Oran, Oran, Algeria
| | - Malika Aichaoui
- Department of Pediatric Pneumo-Allergology, Canastel Children’s Hospital, Oran, Algeria
| | - Assia Moktefi
- Department of Pediatric Pneumo-Allergology, Canastel Children’s Hospital, Oran, Algeria
| | | | - Meriem Oussalah
- Department of Pediatric Pneumo-Allergology, Canastel Children’s Hospital, University of Oran, Oran, Algeria
| | - Naila Benaissa
- Department of Children’s Infectious Diseases, Canastel Children’s Hospital, University of Oran, Oran, Algeria
| | - Amel Laredj
- Department of Children’s Infectious Diseases, Canastel Children’s Hospital, University of Oran, Oran, Algeria
| | - Assia Bouchetara
- Department of Children’s Infectious Diseases, Canastel Children’s Hospital, University of Oran, Oran, Algeria
| | - Abdelkader Adria
- Department of Pediatric Hematology, Canastel Children’s Hospital, Oran, Algeria
| | - Brahim Habireche
- Department of Pediatrics, El Bayadh Public Hospital Institution, EL Bayadh, Algeria
| | - Noureddine Tounsi
- Department of Pediatrics, El Bayadh Public Hospital Institution, EL Bayadh, Algeria
| | - Fella Dahmoun
- Department of Pediatrics, Bejaia University Hospital Center, University of Bejaia, Bejaia, Algeria
| | - Rabah Touati
- Department of Pediatrics, Bejaia University Hospital Center, University of Bejaia, Bejaia, Algeria
| | - Hamza Boucenna
- Department of Pediatrics A, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Fadila Bouferoua
- Department of Pediatrics A, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Lynda Sekfali
- Department of Pediatrics A, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Nadjet Bouhafs
- Department of Pediatrics, Bab El Oued University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Rawda Aboura
- Department of Pediatrics, Bab El Oued University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Sakina Kherra
- Department of Pediatrics A, Hussein Dey University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Yacine Inouri
- Department of Pediatrics, Central Hospital of the Army, University of Algiers 1, Algiers, Algeria
| | - Saadeddine Dib
- Department of Pediatrics, Mother & Child Hospital of Tlemcen, University of Tlemcen, Tlemcen, Algeria
| | - Nawel Medouri
- Department of Pediatrics, Saida Public Hospital Institution, Saida, Algeria
| | | | - Aicha Redjedal
- Department of Pediatrics, Saida Public Hospital Institution, Saida, Algeria
| | - Amara Zelaci
- Department of Pediatrics, El Oued Public Hospital Institution, El Oued, Algeria
| | - Samah Yahiaoui
- Department of Pediatrics, Barika Public Hospital Institution, Batna, Algeria
| | - Sihem Medjadj
- Department of Pediatrics, Ghardaia Public Hospital Institution, Ghardaia, Algeria
| | | | - Ahmed Kadi
- Department of Pneumology A, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Fouzia Amireche
- Department of Pediatrics, Mother & Child Hospital of EL Mansourah, University of Constantine 3, Constantine, Algeria
| | - Imane Frada
- Department of Pediatrics, Biskra Public Hospital Institution, Biskra, Algeria
| | - Shahrazed Houasnia
- Department of Pediatrics, El Harrouche Public Hospital Institution, Skikda, Algeria
| | - Karima Benarab
- Department of Pediatrics, Tizi Ouzou University Hospital Center, University of Tizi Ouzou, Tizi Ouzou, Algeria
| | - Chahynez Boubidi
- Department of Pediatrics A, Hussein Dey University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Yacine Ferhani
- Department of Pediatrics, Mustapha Pacha University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Hayet Benalioua
- Department of Pediatrics, Mustapha Pacha University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Samia Sokhal
- Department of Pediatrics, Mustapha Pacha University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Nadia Benamar
- Department of Pediatrics, Tighennif Public Hospital Institution, Mascara, Algeria
| | - Samira Aggoune
- Department of Pediatrics, El-Harrach Public Hospital Institution, University of Algiers 1, Algiers, Algeria
| | - Karima Hadji
- Department of Pediatrics, Ain Oulmene Public Hospital Institution, Setif, Algeria
| | - Asma Bellouti
- Department of Pediatrics, Ain Azel Public Hospital Institution, Setif, Algeria
| | - Hakim Rahmoune
- Department of Pediatrics, Setif University Hospital Center, University of Setif 1, Setif, Algeria
| | - Nada Boutrid
- Department of Pediatrics, Setif University Hospital Center, University of Setif 1, Setif, Algeria
| | - kamelia Okka
- Department of Pediatrics, Setif University Hospital Center, University of Setif 1, Setif, Algeria
| | - Assia Ammour
- Department of Pediatrics, Mother & Child Hospital of Touggourt, Touggourt, Algeria
| | - Houssem Saadoune
- Department of Pneumology, Mila Public Hospital Institution, Mila, Algeria
| | - Malika Amroun
- Department of Pediatrics, Central Hospital of the Army, University of Algiers 1, Algiers, Algeria
| | - Hayet Belhadj
- Department of Pediatrics, Central Hospital of the Army, University of Algiers 1, Algiers, Algeria
| | - Amina Ghanem
- Department of Pediatrics, Khenchela Public Hospital Institution, Khenchela, Algeria
| | - Hanane Abbaz
- Department of Pediatrics, Khenchela Public Hospital Institution, Khenchela, Algeria
| | - Sana Boudrioua
- Department of Pediatrics, El Khroub Public Hospital Institution, Constantine, Algeria
| | - Besma Zebiche
- Department of Pediatrics, Kolea Public Hospital Institution, Tipaza, Algeria
| | - Assia Ayad
- Department of Pediatrics, Kolea Public Hospital Institution, Tipaza, Algeria
| | - Zahra Hamadache
- Department of Pediatrics, Kolea Public Hospital Institution, Tipaza, Algeria
| | - Nassima Ouaras
- Department of Infectious Diseases, EL Kettar Specialized Hospital, University of Algiers 1, Algiers, Algeria
| | - Nassima Achour
- Department of Infectious Diseases, EL Kettar Specialized Hospital, University of Algiers 1, Algiers, Algeria
| | - Nadira Bouchair
- Department of Pediatrics, Annaba University Hospital Center, University of Annaba, Annaba, Algeria
| | - Houda Boudiaf
- Department of Pediatric Oncology, Mustapha pacha University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Dahila Bekkat-Berkani
- Department of Pediatrics, Bologhine Public Hospital Institution, University of Algiers 1, Algiers, Algeria
| | - Hachemi Maouche
- Department of Pediatrics, El-Harrach Public Hospital Institution, University of Algiers 1, Algiers, Algeria
| | - Zahir Bouzrar
- Department of Pediatrics, Bab El Oued University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Lynda Aissat
- Department of Pediatrics, Mother & Child Hospital of Tipaza, University of Blida, Algiers, Algeria
| | - Ouardia Ibsaine
- Department of Pediatrics, Ain Taya Public Hospital Institution, University of Algiers 1, Algiers, Algeria
| | - Belkacem Bioud
- Department of Pediatrics, Setif University Hospital Center, University of Setif 1, Setif, Algeria
| | - Leila Kedji
- Department of Pediatrics, Blida University Hospital Center, University of Blida, Blida, Algeria
| | - Djazia Dahlouk
- Department of Pediatrics, Central Hospital of the Army, University of Algiers 1, Algiers, Algeria
| | - Manoubia Bensmina
- Department of Pediatrics B, Douera University Hospital Center, University of Blida, Algiers, Algeria
| | - Abdelkarim Radoui
- Department of Pediatric Pneumo-Allergology, Canastel Children’s Hospital, University of Oran, Oran, Algeria
| | - Mimouna Bessahraoui
- Department of Pediatric Gastroenterology and Nutrition, Canastel Children’s Hospital, University of Oran, Oran, Algeria
| | - Nadia Bensaadi
- Department of Pediatrics, Tizi Ouzou University Hospital Center, University of Tizi Ouzou, Tizi Ouzou, Algeria
| | - Azzeddine Mekki
- Department of Pediatrics B, Hussein Dey University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Zoulikha Zeroual
- Department of Pediatrics A, Hussein Dey University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Koon-Wing Chan
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Daniel Leung
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Amar Tebaibia
- Department of Internal Medicine, El Biar Public Hospital Institution, University of Algiers 1, Algiers, Algeria
| | - Soraya Ayoub
- Department of Internal Medicine, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Dalila Mekideche
- Department of Pneumology B, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Merzak Gharnaout
- Department of Pneumology A, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Jean Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States
- Howard Hughes Medical Institute, New York, NY, United States
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States
| | - Yu Lung Lau
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nacira Cherif
- Department of Pediatrics B, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Samir Ladj
- Department of Pediatrics, El Biar Public Hospital Institution, University of Algiers 1, Algiers, Algeria
| | - Leila Smati
- Department of Pediatrics, Bologhine Public Hospital Institution, University of Algiers 1, Algiers, Algeria
| | - Rachida Boukari
- Department of Pediatrics, Mustapha Pacha University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Nafissa Benhalla
- Department of Pediatrics A, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| | - Reda Djidjik
- Department of Medical Immunology, Beni Messous University Hospital Center, University of Algiers 1, Algiers, Algeria
| |
Collapse
|
106
|
Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med 2022; 219:e20211387. [PMID: 35319722 PMCID: PMC8952682 DOI: 10.1084/jem.20211387] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
The vast interindividual clinical variability observed in any microbial infection-ranging from silent infection to lethal disease-is increasingly being explained by human genetic and immunological determinants. Autoantibodies neutralizing specific cytokines underlie the same infectious diseases as inborn errors of the corresponding cytokine or response pathway. Autoantibodies against type I IFNs underlie COVID-19 pneumonia and adverse reactions to the live attenuated yellow fever virus vaccine. Autoantibodies against type II IFN underlie severe disease caused by environmental or tuberculous mycobacteria, and other intra-macrophagic microbes. Autoantibodies against IL-17A/F and IL-6 are less common and underlie mucocutaneous candidiasis and staphylococcal diseases, respectively. Inborn errors of and autoantibodies against GM-CSF underlie pulmonary alveolar proteinosis; associated infections are less well characterized. In individual patients, autoantibodies against cytokines preexist infection with the pathogen concerned and underlie the infectious disease. Human antibody-driven autoimmunity can interfere with cytokines that are essential for protective immunity to specific infectious agents but that are otherwise redundant, thereby underlying specific infectious diseases.
Collapse
Affiliation(s)
- Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, Paris, France
| |
Collapse
|
107
|
v. Hardenberg S, Klemann C, Auber B, Baumann U. Warnzeichen für und moderne Diagnostik von angeborenen Störungen des Immunsystems. Monatsschr Kinderheilkd 2022. [DOI: 10.1007/s00112-022-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
108
|
Quinn J, Modell V, Orange JS, Modell F. Growth in diagnosis and treatment of primary immunodeficiency within the global Jeffrey Modell Centers Network. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:19. [PMID: 35246253 PMCID: PMC8896271 DOI: 10.1186/s13223-022-00662-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/20/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Primary immunodeficiencies (PI), which include more than 450 single-gene inborn errors of immunity and may affect up to 1% of the population, are genetic disorders that impair the immune system. If not properly identified and treated, individuals with PI are subject to serious, prolonged, and sometimes life-threatening infections or autoimmunity. Despite advancements, awareness of PI remains a critical issue for physicians and the public alike, as this leads to the enhanced and expedited management of these conditions. To address this critical issue, the Jeffrey Modell Foundation (JMF) formed a global network of specialized centers. The goal of this endeavor was to raise awareness of PI to better identify, diagnose, and treat patients, reducing associated mortality and morbidity and improving quality of life (QOL). For more than two decades, the Jeffrey Modell Centers Network (JMCN) has served as the foundation upon which these goals have been pursued. The JMCN currently includes 909 Expert Physicians at 400 institutions, in 316 cities, and 86 countries spanning six continents. METHODS A survey was developed by JMF for members of the JMCN, following the most recent Classification of PI from the IUIS Expert Committee, to periodically describe the patient population, including treatment modalities and demographics. Physician-reported data from 2021 was compared to that from 2018 and 2013. Physicians in the JMCN also reported on select outcomes of their PI patients one year prior to and one year following diagnosis. RESULTS A total of 300 JMF Physician Surveys from 681 physicians were included in this analysis. This is a 75% physician response rate. From 2013 to 2021, there was a 96.3% increase in patients followed in the US and an 86.1% increase globally. During the same period, patients identified with a specific PI defect increased by 46.6% in the US and 47.9% globally. Patients receiving IgG and HSCT increased by 110% and 201% respectfully since 2013. Early diagnosis led to reported decreased morbidity and mortality and reduced calculated healthcare costs. CONCLUSIONS This global analysis of physician-reported data on patients with PI demonstrates an increase in both diagnosed and treated patients. This substantial increase from within the JMCN is a testament to its impact. In addition to building an extensive global patient database, the expanding JMCN serves as a unique and critical resource, providing the infrastructure for earliest diagnosis, optimized treatments, and implementation of standard-of-care and best practices. The JMCN provides a critical platform that facilitates the education of physicians and patients, awareness initiatives, and research advances, through collaboration and connectivity, ultimately resulting in improved outcomes and QOL for patients with PI. The JMCN has steadily and substantially grown for more than two decades and continues to substantively impact the field of Immunology globally.
Collapse
Affiliation(s)
- Jessica Quinn
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York, NY, 10017, USA
| | - Vicki Modell
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York, NY, 10017, USA
| | - Jordan S Orange
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York, NY, 10017, USA
| | - Fred Modell
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York, NY, 10017, USA.
| |
Collapse
|
109
|
Flinn AM, Gennery AR. Primary immune regulatory disorders: Undiagnosed needles in the haystack? Orphanet J Rare Dis 2022; 17:99. [PMID: 35241125 PMCID: PMC8895571 DOI: 10.1186/s13023-022-02249-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/13/2022] [Indexed: 12/16/2022] Open
Abstract
Primary Immune Regulatory Disorders (PIRD) describe a group of conditions characterized by loss of normal inflammatory control and immune tolerance mechanisms, with autoimmunity as a predominant clinical feature. PIRD can arise due to defects in the number or function of regulatory T-lymphocytes, defects in the immune mechanisms required to ‘turn off’ inflammation such as in perforin-dependent cytotoxicity or alterations in cytokine signalling pathways. Diagnosis of PIRD is a significant challenge to physicians due to their rarity, complexity, and diversity in clinical manifestations. Many of these individual conditions lack a genotype–phenotype correlation and display incomplete penetrance. However, establishing a diagnosis is integral in optimizing patient management, including the use of individualized treatment approaches. Increasing awareness among physicians is necessary as patients are likely to present to different subspecialties. Due to the rarity of these conditions, worldwide collaboration and data-sharing is essential to improve our knowledge of the clinical spectrum and disease course in PIRD, and to optimize therapeutic strategies including identification of which patients can benefit from hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Aisling M Flinn
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
110
|
Perelygina L, Faisthalab R, Abernathy E, Chen MH, Hao L, Bercovitch L, Bayer DK, Noroski LM, Lam MT, Cicalese MP, Al-Herz W, Nanda A, Hajjar J, Vanden Driessche K, Schroven S, Leysen J, Rosenbach M, Peters P, Raedler J, Albert MH, Abraham RS, Rangarjan HG, Buchbinder D, Kobrynski L, Pham-Huy A, Dhossche J, Cunningham Rundles C, Meyer AK, Theos A, Atkinson TP, Musiek A, Adeli M, Derichs U, Walz C, Krüger R, von Bernuth H, Klein C, Icenogle J, Hauck F, Sullivan KE. Rubella Virus Infected Macrophages and Neutrophils Define Patterns of Granulomatous Inflammation in Inborn and Acquired Errors of Immunity. Front Immunol 2022; 12:796065. [PMID: 35003119 PMCID: PMC8728873 DOI: 10.3389/fimmu.2021.796065] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
Rubella virus (RuV) has recently been found in association with granulomatous inflammation of the skin and several internal organs in patients with inborn errors of immunity (IEI). The cellular tropism and molecular mechanisms of RuV persistence and pathogenesis in select immunocompromised hosts are not clear. We provide clinical, immunological, virological, and histological data on a cohort of 28 patients with a broad spectrum of IEI and RuV-associated granulomas in skin and nine extracutaneous tissues to further delineate this relationship. Combined immunodeficiency was the most frequent diagnosis (67.8%) among patients. Patients with previously undocumented conditions, i.e., humoral immunodeficiencies, a secondary immunodeficiency, and a defect of innate immunity were identified as being susceptible to RuV-associated granulomas. Hematopoietic cell transplantation was the most successful treatment in this case series resulting in granuloma resolution; steroids, and TNF-α and IL-1R inhibitors were moderately effective. In addition to M2 macrophages, neutrophils were identified by immunohistochemical analysis as a novel cell type infected with RuV. Four patterns of RuV-associated granulomatous inflammation were classified based on the structural organization of granulomas and identity and location of cell types harboring RuV antigen. Identification of conditions that increase susceptibility to RuV-associated granulomas combined with structural characterization of the granulomas may lead to a better understanding of the pathogenesis of RuV-associated granulomas and discover new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Ludmila Perelygina
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, United States
| | - Raeesa Faisthalab
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, United States
| | - Emily Abernathy
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, United States
| | - Min-Hsin Chen
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, United States
| | - LiJuan Hao
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, United States
| | - Lionel Bercovitch
- Department of Dermatology, Hasbro Children's Hospital and Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Diana K Bayer
- Department of Pediatrics, University of Iowa Stead Family Children's Hospital, Iowa City, IA, United States
| | - Lenora M Noroski
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Michael T Lam
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Maria Pia Cicalese
- Pediatric Immunohematology and Bone Marrow Transplantation Unit and San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Istituto di Ricovero e Cura a Carattere Scientifico (National Institute for Research and Treatment) (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Waleed Al-Herz
- Department of Pediatrics, Kuwait University, Kuwait City, Kuwait.,Allergy and Clinical Immunology Unit, Department of Pediatrics, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Arti Nanda
- Pediatric Dermatology Unit, As'ad Al-Hamad Dermatology Center, Al-sabah Hospital, Kuwait City, Kuwait
| | - Joud Hajjar
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Koen Vanden Driessche
- Department of Pediatrics, Queen Mathilde Mother and Child Centre, Antwerp University Hospital, Antwerp, Belgium
| | - Shari Schroven
- Department of Pediatrics, Queen Mathilde Mother and Child Centre, Antwerp University Hospital, Antwerp, Belgium
| | - Julie Leysen
- Department of Dermatology, Queen Mathilde Mother and Child Centre, Antwerp University Hospital, Antwerp, Belgium
| | - Misha Rosenbach
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Philipp Peters
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Raedler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Hemalatha G Rangarjan
- Department of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - David Buchbinder
- Department of Hematology, Children's Hospital of Orange County, Orange, CA, United States.,Department of Pediatrics, University of California at Irvine, Orange, CA, United States
| | - Lisa Kobrynski
- Allergy/Immunology Section, Emory University, Atlanta, GA, United States
| | - Anne Pham-Huy
- Department of Pediatrics, University of Ottawa and Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Julie Dhossche
- Department of Dermatology, Oregon Health and Science University, Portland, OR, United States
| | - Charlotte Cunningham Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anna K Meyer
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Amy Theos
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amy Musiek
- Division of Dermatology, Washington University School of Medicine, St. Louis, MO, United States
| | - Mehdi Adeli
- Division of Immunology and Allergy, Sidra Medicine and Hamad Medical Corporation, Doha, Qatar
| | - Ute Derichs
- Center for Pediatric and Adolescent Medicine, University Medical Hospital Mainz, Mainz, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Labor Berlin GmbH, Department of Immunology, Berlin, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joseph Icenogle
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, United States
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
111
|
Elsink K, Huibers MMH, Hollink IHIM, Simons A, Zonneveld-Huijssoon E, van der Veken LT, Leavis HL, Henriet SSV, van Deuren M, van de Veerdonk FL, Potjewijd J, Berghuis D, Dalm VASH, Vermont CL, van de Ven AAJM, Lambeck AJA, Abbott KM, van Hagen PM, de Bree GJ, Kuijpers TW, Frederix GWJ, van Gijn ME, van Montfrans JM. Implementation of Early Next-Generation Sequencing for Inborn Errors of Immunity: A Prospective Observational Cohort Study of Diagnostic Yield and Clinical Implications in Dutch Genome Diagnostic Centers. Front Immunol 2022; 12:780134. [PMID: 34992599 PMCID: PMC8724043 DOI: 10.3389/fimmu.2021.780134] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
Objective Inborn errors of immunity (IEI) are a heterogeneous group of disorders, affecting different components of the immune system. Over 450 IEI related genes have been identified, with new genes continually being recognized. This makes the early application of next-generation sequencing (NGS) as a diagnostic method in the evaluation of IEI a promising development. We aimed to provide an overview of the diagnostic yield and time to diagnosis in a cohort of patients suspected of IEI and evaluated by an NGS based IEI panel early in the diagnostic trajectory in a multicenter setting in the Netherlands. Study Design We performed a prospective observational cohort study. We collected data of 165 patients with a clinical suspicion of IEI without prior NGS based panel evaluation that were referred for early NGS using a uniform IEI gene panel. The diagnostic yield was assessed in terms of definitive genetic diagnoses, inconclusive diagnoses and patients without abnormalities in the IEI gene panel. We also assessed time to diagnosis and clinical implications. Results For children, the median time from first consultation to diagnosis was 119 days versus 124 days for adult patients (U=2323; p=0.644). The median turn-around time (TAT) of genetic testing was 56 days in pediatric patients and 60 days in adult patients (U=1892; p=0.191). A definitive molecular diagnosis was made in 25/65 (24.6%) of pediatric patients and 9/100 (9%) of adults. Most diagnosed disorders were identified in the categories of immune dysregulation (n=10/25; 40%), antibody deficiencies (n=5/25; 20%), and phagocyte diseases (n=5/25; 20%). Inconclusive outcomes were found in 76/165 (46.1%) patients. Within the patient group with a genetic diagnosis, a change in disease management occurred in 76% of patients. Conclusion In this cohort, the highest yields of NGS based evaluation for IEI early in the diagnostic trajectory were found in pediatric patients, and in the disease categories immune dysregulation and phagocyte diseases. In cases where a definitive diagnosis was made, this led to important disease management implications in a large majority of patients. More research is needed to establish a uniform diagnostic pathway for cases with inconclusive diagnoses, including variants of unknown significance.
Collapse
Affiliation(s)
- Kim Elsink
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon M H Huibers
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Iris H I M Hollink
- Department of Clinical Genetics, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Annet Simons
- Department of Human Genetics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Centre, Radboud University, Nijmegen, Netherlands.,Radboud Institute for Oncology, Radboud University Medical Center, Radboud University, Nijmegen, Netherlands
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lars T van der Veken
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Stefanie S V Henriet
- Department of Pediatric Infectious Diseases and Immunology, Amalia's Children Hospital, Radboud University Nijmegen Medical Centre, Radboud University, Nijmegen, Netherlands
| | - Marcel van Deuren
- Department of Internal Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Judith Potjewijd
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht University, Maastricht, Netherlands
| | - Dagmar Berghuis
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology; Department of Immunology, Erasmus University Medical Center Rotterdam, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Clementien L Vermont
- Department of Pediatric Infectious Diseases, Immunology and Rheumatology, Sophia Children's Hospital, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Annick A J M van de Ven
- Department of Internal Medicine and Allergology, Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, Netherlands
| | - Annechien J A Lambeck
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kristin M Abbott
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Allergy & Clinical Immunology; Department of Immunology, Erasmus University Medical Center Rotterdam, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Godelieve J de Bree
- Department of Internal Medicine, Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Geert W J Frederix
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Mariëlle E van Gijn
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
112
|
Moeini Shad T, Yazdani R, Amirifar P, Delavari S, Heidarzadeh Arani M, Mahdaviani SA, Sadeghi-Shabestari M, Aghamohammadi A, Rezaei N, Abolhassani H. Atypical Ataxia Presentation in Variant Ataxia Telangiectasia: Iranian Case-Series and Review of the Literature. Front Immunol 2022; 12:779502. [PMID: 35095854 PMCID: PMC8795590 DOI: 10.3389/fimmu.2021.779502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Ataxia-telangiectasia (AT) is a rare autosomal recessive neurodegenerative multisystem disorder. A minority of AT patients can present late-onset atypical presentations due to unknown mechanisms. The demographic, clinical, immunological and genetic data were collected by direct interview and examining the Iranian AT patients with late-onset manifestations. We also conducted a systematic literature review for reported atypical AT patients. We identified three Iranian AT patients (3/249, 1.2% of total registry) with later age at ataxia onset and slower neurologic progression despite elevated alpha-fetoprotein levels, history of respiratory infections, and immunological features of the syndrome. Of note, all patients developed autoimmunity in which a decrease of naïve T cells and regulatory T cells were observed. The literature searches also summarized data from 73 variant AT patients with atypical presentation indicating biallelic mild mutations mainly lead to an atypical phenotype with an increased risk of cancer. Variant AT patients present with milder phenotype or atypical form of classical symptoms causing under- or mis- diagnosis. Although missense mutations are more frequent, an atypical presentation can be associated with deleterious mutations due to unknown modifying factors.
Collapse
Affiliation(s)
- Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Parisa Amirifar
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
113
|
Shendi HM, Al Kuwaiti AA, Al Dhaheri AD, Al-Hammadi S. The Spectrum of Inborn Errors of Immunity in the United Arab Emirates: 5 Year Experience in a Tertiary Center. Front Immunol 2022; 13:837243. [PMID: 35173743 PMCID: PMC8841332 DOI: 10.3389/fimmu.2022.837243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Inborn Errors of Immunity (IEI) are heterogeneous disorders of immunity with variable clinical presentation and outcome. This is the first comprehensive report from the United Arab Emirates aiming to describe the demographics, clinical characteristics, categories, treatment modalities and outcome of patients with IEI. Methods This retrospective study was conducted on patients who attended Tawam Hospital between 2016-2020. Results We identified 162 patients with IEI, of whom 152 were children. The age of onset of symptoms ranged between birth to 38 years. About two-thirds of patients were Emirati nationals, 64.2% had consanguineous parents and 38.3% of cases were familial. Patients were classified as; immunodeficiencies affecting cellular and humoral immunity (20.4%), combined immunodeficiencies with associated or syndromic features (38.3%), predominantly antibody deficiencies (16%), immune dysregulation (4.3%), congenital defects of phagocytes number or function (8.6%), defects in intrinsic and innate immunity (1.9%) autoinflammatory disorders (1.9%), complement deficiency (6.2%), bone marrow failure (1.9%) and phenocopies of inborn errors of immunity (0.6%). Genetic testing was performed in 85.2% of patients with a diagnostic yield of 92.7%. Complications included bronchiectasis, neoplasia, and vaccine-related infections. Immunoglobulin therapy and antimicrobial prophylaxis were both used in (51.9%) of patients while (20.4%) underwent hematopoietic stem cell transplantation (HSCT). The overall mortality rate was 10.5%. Conclusion This report highlights the burden of IEI in the UAE. Ongoing education of physicians, establishment of a national registry and considering changes to early BCG vaccination are measures recommended to improve outcomes.
Collapse
Affiliation(s)
- Hiba Mohammed Shendi
- Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
- *Correspondence: Hiba M. Shendi,
| | | | | | - Suleiman Al-Hammadi
- College of Medicine, Mohamed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
114
|
Comprehensive Assessment of Skin Disorders in Patients with Common Variable Immunodeficiency (CVID). J Clin Immunol 2022; 42:653-664. [PMID: 35084691 DOI: 10.1007/s10875-022-01211-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is an inborn error of immunity (IEI) characterized by various clinical manifestations such as hypogammaglobulinemia, recurrent infections, and autoimmune diseases. Among different clinical manifestations, skin manifestations have been less reported in these patients. METHODS In this study, we investigated the prevalence of dermatologic features in 387 CVID patients. Demographic information, clinical manifestations, laboratory data, and genetic findings were collected from medical records. All data were analyzed based on the presence or absence of skin disorders in CVID patients. RESULTS We observed at least one skin manifestation in about 40% of these patients. Among these complications, skin infection (n = 64, 42.1%) was the most frequent presentation, followed by non-infectious skin lesions (n = 54, 35.6%). Among skin infections, abscesses (n = 34, 22.4%) were the most common complication. Skin infections such as cellulitis, impetigo, measles, and warts were also documented. Eczema (n = 34, 22.4%) was the most common complication in atopic lesions, and vitiligo (n = 13, 8.5%) was prevalent in autoimmune/pigmentation disorders. Among all the patients with genetic mutations, one-quarter had a deleterious mutation in the LRBA gene, relating to the autoimmune and atopic skin lesions. CONCLUSION This rate of skin disorders in our cohort demonstrating these manifestations could be significant in CVID patients, and they are not rare. Low data of skin complications in CVID patients could be attributed to insufficient attention of physicians and also might alert dermatologists to perform immunological investigations in children with certain skin manifestations.
Collapse
|
115
|
Sefer AP, Abolhassani H, Ober F, Kayaoglu B, Bilgic Eltan S, Kara A, Erman B, Surucu Yilmaz N, Aydogmus C, Aydemir S, Charbonnier LM, Kolukisa B, Azizi G, Delavari S, Momen T, Aliyeva S, Kendir Demirkol Y, Tekin S, Kiykim A, Baser OF, Cokugras H, Gursel M, Karakoc-Aydiner E, Ozen A, Krappmann D, Chatila TA, Rezaei N, Baris S. Expanding the Clinical and Immunological Phenotypes and Natural History of MALT1 Deficiency. J Clin Immunol 2022; 42:634-652. [DOI: 10.1007/s10875-021-01191-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
|
116
|
Nicolas P, Ollier J, Mori D, Voisinne G, Celis-Gutierrez J, Gregoire C, Perroteau J, Vivien R, Camus M, Burlet-Schiltz O, Gonzalez de Peredo A, Clémenceau B, Roncagalli R, Vié H, Malissen B. Systems-level conservation of the proximal TCR signaling network of mice and humans. J Exp Med 2022; 219:212976. [PMID: 35061003 PMCID: PMC8789201 DOI: 10.1084/jem.20211295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/11/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
We exploited traceable gene tagging in primary human T cells to establish the composition and dynamics of seven canonical TCR-induced protein signaling complexes (signalosomes) using affinity purification coupled with mass spectrometry (AP-MS). It unveiled how the LAT adaptor assembles higher-order molecular condensates and revealed that the proximal TCR-signaling network has a high degree of qualitative and quantitative conservation between human CD4+ and CD8+ T cells. Such systems-level conservation also extended across human and mouse T cells and unexpectedly encompassed protein–protein interaction stoichiometry. Independently of evolutionary considerations, our study suggests that a drug targeting the proximal TCR signaling network should behave similarly when applied to human and mouse T cells. However, considering that signaling differences likely exist between the distal TCR-signaling pathway of human and mouse, our fast-track AP-MS approach should be favored to determine the mechanism of action of drugs targeting human T cell activation. An opportunity is illustrated here using an inhibitor of the LCK protein tyrosine kinase as a proof-of-concept.
Collapse
Affiliation(s)
- Philippe Nicolas
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Jocelyn Ollier
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Université d'Angers, Université de Nantes, Nantes, France
- LabEx Immunotherapy–Graft–Oncology, Nantes, France
| | - Daiki Mori
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Guillaume Voisinne
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Claude Gregoire
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Jeanne Perroteau
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Régine Vivien
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Université d'Angers, Université de Nantes, Nantes, France
- LabEx Immunotherapy–Graft–Oncology, Nantes, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre national de la recherche scientifique Université Paul Sabatier, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre national de la recherche scientifique Université Paul Sabatier, Toulouse, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre national de la recherche scientifique Université Paul Sabatier, Toulouse, France
| | - Béatrice Clémenceau
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Université d'Angers, Université de Nantes, Nantes, France
- LabEx Immunotherapy–Graft–Oncology, Nantes, France
| | - Romain Roncagalli
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Henri Vié
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Université d'Angers, Université de Nantes, Nantes, France
- LabEx Immunotherapy–Graft–Oncology, Nantes, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| |
Collapse
|
117
|
Alligon M, Mahlaoui N, Courteille V, Costes L, Afonso V, Randrianomenjanahary P, de Vergnes N, Ranohavimparany A, Vo D, Hafsa I, Bach P, Benoit V, Garcelon N, Fischer A. An appraisal of the frequency and severity of non-infectious manifestations in primary immunodeficiencies. A study of a national retrospective cohort of 1375 patients over 10 years. J Allergy Clin Immunol 2022; 149:2116-2125. [PMID: 35031273 DOI: 10.1016/j.jaci.2021.12.790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Non-infectious manifestations, i.e. allergy, autoimmunity/inflammation, lymphoproliferation and malignancies are known to be observed in many primary immunodeficiency diseases (PID) and to participate to their prognosis. OBJECTIVE In order to have a global view on their occurrence, we retrieved data from a retrospective cohort of 1375 patients included in the French national registry of PID (CEREDIH) for whom we had a 10-year follow-up since inclusion in the registry. METHODS These patients were followed for 10 years (2009-2018) by specialized centers in University Hospitals. This study shows that 20.1% of patients without prior curative therapy (n=1163) developed at least one manifestation (event) encompassing 277 events. RESULTS Autoimmune/inflammatory events (n=138) and malignancies (n=85) affected all age classes and virtually all PID diagnostic groups. They were associated with a risk of death that occurred in 14.2% of them (n=195), being found as causal in 43% of cases. Malignancies (OR: 5.62 [3.66 - 8.62]) and autoimmunity (OR: 1.9 [1.27 - 2.84]) were clearly identified as risk factors for lethality. Patients who underwent curative therapy (i.e. mostly allogeneic hematopoietic stem cell transplantation, a few cases of gene therapy or thymic transplantation) prior to the 10-year study period (n=212) had comparatively reduced but still detectable clinical manifestations (n=16) leading to death in 9.4% of them. CONCLUSION This study points to the frequency and severity of non-infectious manifestations in various PID groups across all age groups. These results warrant further prospective analysis to better assess their consequences and to adapt therapy, notably indication of curative therapy.
Collapse
Affiliation(s)
- Mickaël Alligon
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Nizar Mahlaoui
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Pediatric Immuno-Hematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Virginie Courteille
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurence Costes
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Veronica Afonso
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Randrianomenjanahary
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Nathalie de Vergnes
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anja Ranohavimparany
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Duy Vo
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Inès Hafsa
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Perrine Bach
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Vincent Benoit
- Université de Paris, Imagine Institute, Data Science Platform, INSERM UMR 1163, F-75015, Paris, France
| | - Nicolas Garcelon
- Université de Paris, Imagine Institute, Data Science Platform, INSERM UMR 1163, F-75015, Paris, France
| | - Alain Fischer
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Pediatric Immuno-Hematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France; Collège de France, Paris, France.
| | | |
Collapse
|
118
|
Kobayashi RH, Litzman J, Rizvi S, Kreuwel H, Hoeller S, Gupta S. Overview of subcutaneous immunoglobulin 16.5% in primary and secondary immunodeficiency diseases. Immunotherapy 2022; 14:259-270. [PMID: 34986666 DOI: 10.2217/imt-2021-0313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Most primary immunodeficiency diseases, and select secondary immunodeficiency diseases, are treated with immunoglobulin (IG) therapy, administered intravenously or subcutaneously (SCIG). The first instance of IG replacement for primary immunodeficiency disease was a 16.5% formulation administered subcutaneously in 1952. While most SCIG products are now a 10 or 20% concentration, this review will focus on SCIG 16.5% products with a historical overview of development, including the early pioneers who initiated and refined IG replacement therapy, as well as key characteristics, manufacturing and clinical studies. In determining an appropriate IG regimen, one must consider specific patient needs, characteristics and preferences. There are advantages to SCIG, such as stable serum immunoglobulin G levels, high tolerability and the flexibility of self-administered home treatment.
Collapse
Affiliation(s)
| | - Jiří Litzman
- Department of Clinical Immunology & Allergology, St. Anne's University in Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | - Sonja Hoeller
- Octapharma Pharm. ProduduktionsgesmbH, Vienna, Austria
| | - Sudhir Gupta
- Division of Basic & Clinical Immunology, University of California, Irvine, CA, USA
| |
Collapse
|
119
|
Castagnoli R, Delmonte OM, Notarangelo LD. Congenital and acquired defects of immunity: An ever-evolving story. Pediatr Allergy Immunol 2022; 33 Suppl 27:61-64. [PMID: 35080321 PMCID: PMC9284288 DOI: 10.1111/pai.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
Inborn errors of immunity (IEI), also referred to as primary immunodeficiencies (PID), are disorders that, for the most part, result from mutations in genes involved in immune host defense and immune regulation. With the increased availability of high-throughput DNA sequencing and improved genomic data interpretation, the number of newly identified genes associated with IEI has exponentially increased over the last decade. Here, we focus on the newly described IEI associated with severe COVID-19 and SASH3 deficiency, the most recently reported IEI with impaired T-cell receptor (TCR) signaling.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Division of Intramural Research, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Ottavia M Delmonte
- Division of Intramural Research, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Division of Intramural Research, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
120
|
Vogel TP, Leiding JW, Cooper MA, Forbes Satter LR. STAT3 gain-of-function syndrome. Front Pediatr 2022; 10:770077. [PMID: 36843887 PMCID: PMC9948021 DOI: 10.3389/fped.2022.770077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
STAT3 gain-of-function (GOF) syndrome is a multi-organ primary immune regulatory disorder characterized by early onset autoimmunity. Patients present early in life, most commonly with lymphoproliferation, autoimmune cytopenias, and growth delay. However, disease is often progressive and can encompass a wide range of clinical manifestations such as: enteropathy, skin disease, pulmonary disease, endocrinopathy, arthritis, autoimmune hepatitis, and rarely neurologic disease, vasculopathy, and malignancy. Treatment of the autoimmune and immune dysregulatory features of STAT3-GOF patients relies heavily on immunosuppression and is often challenging and fraught with complications including severe infections. Defects in the T cell compartment leading to effector T cell accumulation and decreased T regulatory cells may contribute to autoimmunity. While T cell exhaustion and apoptosis defects likely contribute to the lymphoproliferative phenotype, no conclusive correlations are yet established. Here we review the known mechanistic and clinical characteristics of this heterogenous PIRD.
Collapse
Affiliation(s)
- Tiphanie P Vogel
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States.,Orlando Health Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Megan A Cooper
- Division of Rheumatology and Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
121
|
Tangye SG, Gray PE, Pillay BA, Yap JY, Figgett WA, Reeves J, Kummerfeld SK, Stoddard J, Uzel G, Jing H, Su HC, Campbell DE, Sullivan A, Burnett L, Peake J, Ma CS. Hyper-IgE Syndrome due to an Elusive Novel Intronic Homozygous Variant in DOCK8. J Clin Immunol 2022; 42:119-129. [PMID: 34657245 PMCID: PMC10461790 DOI: 10.1007/s10875-021-01152-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
Rare, biallelic loss-of-function mutations in DOCK8 result in a combined immune deficiency characterized by severe and recurrent cutaneous infections, eczema, allergies, and susceptibility to malignancy, as well as impaired humoral and cellular immunity and hyper-IgE. The advent of next-generation sequencing technologies has enabled the rapid molecular diagnosis of rare monogenic diseases, including inborn errors of immunity. These advances have resulted in the implementation of gene-guided treatments, such as hematopoietic stem cell transplant for DOCK8 deficiency. However, putative disease-causing variants revealed by next-generation sequencing need rigorous validation to demonstrate pathogenicity. Here, we report the eventual diagnosis of DOCK8 deficiency in a consanguineous family due to a novel homozygous intronic deletion variant that caused aberrant exon splicing and subsequent loss of expression of DOCK8 protein. Remarkably, the causative variant was not initially detected by clinical whole-genome sequencing but was subsequently identified and validated by combining advanced genomic analysis, RNA-seq, and flow cytometry. This case highlights the need to adopt multipronged confirmatory approaches to definitively solve complex genetic cases that result from variants outside protein-coding exons and conventional splice sites.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
| | - Paul E Gray
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Bethany A Pillay
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jin Yan Yap
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
| | - William A Figgett
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
| | - John Reeves
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Sarah K Kummerfeld
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Huie Jing
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dianne E Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Anna Sullivan
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
- Queensland Children's Hospital and University of Queensland, South Brisbane, Queensland, Australia
| | - Leslie Burnett
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jane Peake
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
- Queensland Children's Hospital and University of Queensland, South Brisbane, Queensland, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia.
| |
Collapse
|
122
|
Escobar Vasco A, Broglie L, Talano JA, Routes J, Verbsky J, Remiker A. GATA2 deficiency detected by newborn screening for SCID: A case report. Front Pediatr 2022; 10:1031106. [PMID: 36726998 PMCID: PMC9886089 DOI: 10.3389/fped.2022.1031106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
The early diagnosis and treatment of inborn errors of immunity (IEI) is crucial in reducing the morbidity and mortality due to these disorders. The institution of newborn screening (NBS) for the diagnosis of Severe Combined Immune Deficiency (SCID) has decreased the mortality of this disorder and led to the discovery of novel genetic defects that cause this disease. GATA2 deficiency is an autosomal dominant, pleiotropic disease with clinical manifestations that include bone marrow failure, monocyte and B cell deficiency, leukemia, pulmonary alveolar proteinosis and lymphedema. We present the case of an infant identified by newborn screening for SCID due to GATA2 deficiency.
Collapse
Affiliation(s)
- Alejandra Escobar Vasco
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, United States
| | - Larisa Broglie
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, United States
| | - Julie-An Talano
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, United States
| | - John Routes
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, United States
| | - James Verbsky
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, United States
| | - Allison Remiker
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
123
|
Redmond MT, Scherzer R, Prince BT. Novel Genetic Discoveries in Primary Immunodeficiency Disorders. Clin Rev Allergy Immunol 2022; 63:55-74. [PMID: 35020168 PMCID: PMC8753955 DOI: 10.1007/s12016-021-08881-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 01/12/2023]
Abstract
The field of Immunology is one that has undergone great expansion in recent years. With the advent of new diagnostic modalities including a variety of genetic tests (discussed elsewhere in this journal), the ability to diagnose a patient with a primary immunodeficiency disorder (PIDD) has become a more streamlined process. With increased availability of genetic testing for those with suspected or known PIDD, there has been a significant increase in the number of genes associated with this group of disorders. This is of great importance as a misdiagnosis of these rare diseases can lead to a delay in what can be critical treatment options. At times, those options can include life-saving medications or procedures. Presentation of patients with PIDD can vary greatly based on the specific genetic defect and the part(s) of the immune system that is affected by the variation. PIDD disorders lead to varying levels of increased risk of infection ranging from a mild increase such as with selective IgA deficiency to a profound risk with severe combined immunodeficiency. These diseases can also cause a variety of other clinical findings including autoimmunity and gastrointestinal disease.
Collapse
Affiliation(s)
- Margaret T. Redmond
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| | - Rebecca Scherzer
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| | - Benjamin T. Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| |
Collapse
|
124
|
Zanatta L, Biscaro F, Bresolin S, Marzaro M, Sarcognato S, Cataldo I, Marzollo A, Martelossi S. Case Report: An early-onset inflammatory colitis due to a variant in TNFAIP3 causing A20 haploinsufficiency. Front Pediatr 2022; 10:1044007. [PMID: 36467491 PMCID: PMC9715734 DOI: 10.3389/fped.2022.1044007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
Autoinflammatory diseases (AID) are a heterogeneous group of inherited conditions caused by abnormal activation of systems mediating innate immunity. Recent literature focuses on A20 Haploinsufficiency, an autoinflammatory disease with a phenotype resembling Behçet disease (BD). It is caused by loss-of-function mutations in TNFAIP3 gene that result in the activation of a pro-inflammatory pathway. In this case report we describe a one-year-old baby who came to our attention for hematochezia appeared at three months of age which was considered an expression of early-onset colitis. The following appearance of cutaneous inflammation Behçet-like and the positive family history concurred with the diagnosis of an autoinflammatory disease. Extended genetic tests in the patient allowed to identify a heterozygous variant in TNFAIP3 [NM_006290.4:c.460G > T, p.(Glu154Ter)], not previously described and not present in the GnomAD database. As a consequence the diagnosis A20 Haploinsufficiency was established and the appropriate management was started. The same TNFAIP3 variant was also found in her father who had suffered from recurrent oral aphthosis, vitiligo and thyroiditis since childhood. In conclusion, we described a young patient with a novel heterozygous mutation in TNFAIP3 who developed BD-like symptoms. We proposed that loss-of-function variants in TNFAIP3 may be associated with a very early-onset intestinal BD phenotype.
Collapse
Affiliation(s)
- Laura Zanatta
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | | | - Silvia Bresolin
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Maurizio Marzaro
- Pediatric Surgery Department, Ca' Foncello Hospital, Treviso, Italy
| | - Samantha Sarcognato
- Pathological Anatomy and Cytopathology Department, Ca' Foncello Hospital, Treviso, Italy
| | - Ivana Cataldo
- Pathological Anatomy and Cytopathology Department, Ca' Foncello Hospital, Treviso, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | | |
Collapse
|
125
|
Carneiro-Sampaio M, de Jesus AA, Bando SY, Moreira-Filho CA. Inborn Errors of Immunity With Fetal or Perinatal Clinical Manifestations. Front Pediatr 2022; 10:891343. [PMID: 35601409 PMCID: PMC9121170 DOI: 10.3389/fped.2022.891343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
In this article we revised the literature on Inborn Errors of Immunity (IEI) keeping our focus on those diseases presenting with intrauterine or perinatal clinical manifestations. We opted to describe our findings according to the IEI categories established by the International Union of Immunological Societies, predominantly addressing the immunological features of each condition or group of diseases. The main finding is that such precocious manifestations are largely concentrated in the group of primary immune regulatory disorders (PIRDs) and not in the group of classical immunodeficiencies. The IEI categories with higher number of immunological manifestations in utero or in perinatal period are: (i) diseases of immune dysregulation (HLH, IPEX and other Tregopathies, autosomal recessive ALPS with complete lack of FAS protein expression) and (ii) autoinflammatory diseases (NOMID/CINCA, DIRA and some interferonopathies, such as Aicardi-Goutières syndrome, AGS, and USP18 deficiency). Regarding the other IEI categories, some patients with Omenn syndrome (an atypical form of SCID), and a few X-linked CGD patients present with clinical manifestations at birth associated to immune dysregulation. The most frequent clinical features were hydrops fetalis, intrauterine growth retardation leading to fetal loss, stillbirths, and prematurity, as in HLH and IPEX. Additionally, pseudo-TORCH syndrome was observed in AGS and in USP18 deficiency. The main goal of our review was to contribute to increasing the medical awareness of IEI with intrauterine and perinatal onset, which has obvious implications for diagnosis, treatment, and genetic counseling.
Collapse
Affiliation(s)
- Magda Carneiro-Sampaio
- Department of Pediatrics, Faculdade de Medicina, Universidade de São Paulo, Sao-Paulo, Brazil
| | - Adriana Almeida de Jesus
- Translational Autoinflammatory Disease Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina, Universidade de São Paulo, Sao-Paulo, Brazil
| | | |
Collapse
|
126
|
Costagliola G, Peroni DG, Consolini R. Beyond Infections: New Warning Signs for Inborn Errors of Immunity in Children. Front Pediatr 2022; 10:855445. [PMID: 35757131 PMCID: PMC9226481 DOI: 10.3389/fped.2022.855445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Patients with inborn errors of immunity (IEI) are susceptible to developing a severe infection-related clinical phenotype, but the clinical consequences of immune dysregulation, expressed with autoimmunity, atopy, and lymphoproliferation could represent the first sign in a significant percentage of patients. Therefore, during the diagnostic work-up patients with IEI are frequently addressed to different specialists, including endocrinologists, rheumatologists, and allergologists, often resulting in a delayed diagnosis. In this paper, the most relevant non-infectious manifestations of IEI are discussed. Particularly, we will focus on the potential presentation of IEI with autoimmune cytopenia, non-malignant lymphoproliferation, severe eczema or erythroderma, autoimmune endocrinopathy, enteropathy, and rheumatologic manifestations, including vasculitis and systemic lupus erythematosus. This paper aims to identify new warning signs to suspect IEI and help in the identification of patients presenting with atypical/non-infectious manifestations.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
127
|
Rojas-Restrepo J, Caballero-Oteyza A, Huebscher K, Haberstroh H, Fliegauf M, Keller B, Kobbe R, Warnatz K, Ehl S, Proietti M, Grimbacher B. Establishing the Molecular Diagnoses in a Cohort of 291 Patients With Predominantly Antibody Deficiency by Targeted Next-Generation Sequencing: Experience From a Monocentric Study. Front Immunol 2021; 12:786516. [PMID: 34975878 PMCID: PMC8718408 DOI: 10.3389/fimmu.2021.786516] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Predominantly antibody deficiencies (PAD) are a heterogeneous group of disorders characterized by dysfunctional antibody production, low immunoglobulin levels in serum and impaired vaccine responses. The clinical picture is variable, ranging from mild symptoms to severe complications, which may include autoimmunity, gastrointestinal disease, allergy, and malignancies. If left untreated, PAD patients are at risk of enduring disease progression, irreversible organ damage, and reduced life expectancy. A timely diagnosis has been shown to significantly improve disease prognosis. Here, we report on our experience using targeted gene panel sequencing by employing Agilent's HaloPlex or SureSelect and Illumina's MiSeq technologies in a cohort of 291 individuals who presented with low or absent immunoglobulin levels in combination with or without other clinical features. In total, we have detected over 57 novel or previously reported relevant mutations in ADA, ADA2, BTK, CTLA4, LRBA, NFKB1, NFKB2, PIK3CD, STAT3, and TNFRSF13B. Overall, a genetic diagnosis could be made in 24.7% of the investigated patients. The percentage of coverage for the targeted regions ranged from 90% to 98% in this study. Moreover, functional assays were performed on a defined group of the patients carrying candidate variants in CTLA4, LRBA, NFKB1 and BTK, which confirmed their deleterious effect on protein expression and/or function. This study reiterates that the immunological heterogeneity of predominantly antibody deficiencies may have a diverse genetic origin, although certain clinical features may hint towards a specific group of defects. Employing targeted sequencing panels proves to be a very time- and cost-efficient, yet reliable, method for the establishment of a genetic diagnosis in individuals with PAD. However, in case of negative panel results, or if functional testing reveals inconspicuous observations in patients with a clear indication for genetic testing, further work-up including whole exome or whole genome sequencing should be considered.
Collapse
Affiliation(s)
- Jessica Rojas-Restrepo
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Resolving Infection Susceptibility (RESIST) – Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Katrin Huebscher
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Hanna Haberstroh
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Manfred Fliegauf
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Baerbel Keller
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
| | - Robin Kobbe
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Immunology, Hannover Medical University, Hannover, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Resolving Infection Susceptibility (RESIST) – Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
- German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
128
|
Pai SY. How immunodeficiency can lead to malignancy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:287-295. [PMID: 34889385 PMCID: PMC8791117 DOI: 10.1182/hematology.2021000261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Immunodeficiency, whether acquired in the case of human immunodeficiency virus (HIV) infection or congenital due to inborn errors of immunity (IEIs), presents clinically with not only infection and immune dysregulation but also increased risk of malignancy. The range of malignancies seen is relatively limited and attributable to the particular cellular and molecular defects in each disease. CD4+ T-cell lymphopenia in people living with HIV infection (PLWH) and certain IEIs drive the predisposition to aggressive B-cell non-Hodgkin lymphomas, including certain rare subtypes rarely seen in immunocompetent individuals. PLWH and IEI that lead to profound T-cell lymphopenia or dysfunction also are at risk of cancers related to oncogenic viruses such as Kaposi sarcoma herpesvirus, Epstein-Barr virus, human papillomavirus (HPV), and Merkel cell polyomavirus. IEIs that affect natural killer cell development and/or function heavily predispose to HPV-associated epithelial cancers. Defects in DNA repair pathways compromise T- and B-lymphocyte development during immune receptor rearrangement in addition to affecting hematopoietic and epithelial DNA damage responses, resulting in both hematologic and nonhematologic cancers. Treatment of cancers in immunodeficient individuals should be curative in intent and pursued in close consultation with disease experts in immunology and infectious disease.
Collapse
Affiliation(s)
- Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD
- Correspondence Sung-Yun Pai, National Institutes of Health, Building 10, Room 1-5142, 10 Center Dr, Bethesda, MD 20892; e-mail:
| |
Collapse
|
129
|
Staels F, Collignon T, Betrains A, Gerbaux M, Willemsen M, Humblet-Baron S, Liston A, Vanderschueren S, Schrijvers R. Monogenic Adult-Onset Inborn Errors of Immunity. Front Immunol 2021; 12:753978. [PMID: 34867986 PMCID: PMC8635491 DOI: 10.3389/fimmu.2021.753978] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Inborn errors of immunity (IEI) are a heterogenous group of disorders driven by genetic defects that functionally impact the development and/or function of the innate and/or adaptive immune system. The majority of these disorders are thought to have polygenic background. However, the use of next-generation sequencing in patients with IEI has led to an increasing identification of monogenic causes, unravelling the exact pathophysiology of the disease and allowing the development of more targeted treatments. Monogenic IEI are not only seen in a pediatric population but also in adulthood, either due to the lack of awareness preventing childhood diagnosis or due to a delayed onset where (epi)genetic or environmental factors can play a role. In this review, we discuss the mechanisms accounting for adult-onset presentations and provide an overview of monogenic causes associated with adult-onset IEI.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | | | - Albrecht Betrains
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Steven Vanderschueren
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
130
|
Nordin J, Solís L, Prévot J, Mahlaoui N, Chapel H, Sánchez-Ramón S, Ali A, Seymour JW, Pergent M. The PID Principles of Care: Where Are We Now? A Global Status Report Based on the PID Life Index. Front Immunol 2021; 12:780140. [PMID: 34868053 PMCID: PMC8637458 DOI: 10.3389/fimmu.2021.780140] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
A global gold standard framework for primary immunodeficiency (PID) care, structured around six principles, was published in 2014. To measure the implementation status of these principles IPOPI developed the PID Life Index in 2020, an interactive tool aggregating national PID data. This development was combined with a revision of the principles to consider advances in the field of health and science as well as political developments since 2014. The revision resulted in the following six principles: PID diagnosis, treatments, universal health coverage, specialised centres, national patient organisations and registries for PIDs. A questionnaire corresponding to these principles was sent out to IPOPI’s national member organisations and to countries in which IPOPI had medical contacts, and data was gathered from 60 countries. The data demonstrates that, regardless of global scientific progress on PIDs with a growing number of diagnostic tools and better treatment options becoming available, the accessibility and affordability of these remains uneven throughout the world. It is not only visible between regions, but also between countries within the same region. One of the most urgent needs is medical education. In countries without immunologists, patients with PID suffer the risk of remaining undiagnosed or misdiagnosed, resulting in health implications or even death. Many countries also lack the infrastructure needed to carry out more advanced diagnostic tests and perform treatments such as hematopoietic stem cell transplantation or gene therapy. The incapacity to secure appropriate diagnosis and treatments affects the PID environment negatively in these countries. Availability and affordability also remain key issues, as diagnosis and treatments require coverage/reimbursement to ensure that patients with PID can access them in practice, not only in theory. This is still not the case in many countries of the world according to the PID Life Index. Although some countries do perform better than others, to date no country has fully implemented the PID principles of care, confirming the long way ahead to ensure an optimal environment for patients with PID in every country.
Collapse
Affiliation(s)
- Julia Nordin
- The International Patient Organisation for Primary Immunodeficiencies, Downderry, United Kingdom
| | - Leire Solís
- The International Patient Organisation for Primary Immunodeficiencies, Downderry, United Kingdom
| | - Johan Prévot
- The International Patient Organisation for Primary Immunodeficiencies, Downderry, United Kingdom
| | - Nizar Mahlaoui
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Children's University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Children's University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Helen Chapel
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, Instituto de Medicina del Laboratorio (IML) and Instituto de Investigación Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, ENT and Ophthalmology, Complutense University School of Medicine, Madrid, Spain
| | - Adli Ali
- Clinical Immunology Unit, Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.,Institute of IR4.0, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - John W Seymour
- The International Patient Organisation for Primary Immunodeficiencies, Downderry, United Kingdom.,Department of Counseling and Student Personnel, Minnesota State University, Mankato, MN, United States
| | - Martine Pergent
- The International Patient Organisation for Primary Immunodeficiencies, Downderry, United Kingdom
| |
Collapse
|
131
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiency diseases (PIDs), also called inborn errors of immunity (IEI), are genetic disorders classically characterized by an increased susceptibility to infection and/or disruption in the regulation of an immunologic pathway. This review summarizes and highlights the new IEI disorders in the IUIS 2019 report and 2020 interim report and discusses the directions for the future management of PIDs. RECENT FINDINGS Since 2017, the International Union of Immunologic Societies (IUIS) IEI committee has updated the IUIS classification of IEIs with 88 new gene defects and 75 new immune disorders. The increased utilization of genetic testing and advances in the strategic evaluation of genetic variants have identified, not only novel IEI disorders, but additional genetic causes for known IEI disorders. Investigation of potential immune susceptibilities during the ongoing COVID-19 pandemic suggests that defects in Type I interferon signalling may underlie more severe disease. SUMMARY The rapid discovery of new IEIs reflects the growing trend of applying genetic testing modalities as part of medical diagnosis and management.In turn, elucidating the pathophysiology of these novel IEIs have enhanced our understanding of how genetic mutations can modulate the immune system and their consequential effect on human health and disease.
Collapse
Affiliation(s)
- Yesim Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ramsay Fuleihan
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
| | - Jordan S Orange
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
- Division of Immunogenetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Joyce E Yu
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
| |
Collapse
|
132
|
Mechanisms underlying host defense and disease pathology in response to severe acute respiratory syndrome (SARS)-CoV2 infection: insights from inborn errors of immunity. Curr Opin Allergy Clin Immunol 2021; 21:515-524. [PMID: 34494617 DOI: 10.1097/aci.0000000000000786] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The severe acute respiratory syndrome (SARS)-coronavirus 2 (CoV2)/COVID-19 pandemic has reminded us of the fundamental and nonredundant role played by the innate and adaptive immune systems in host defense against emerging pathogens. The study of rare 'experiments of nature' in the setting of inborn errors of immunity (IEI) caused by monogenic germline variants has revealed key insights into the molecular and cellular requirements for immune-mediated protection against infectious diseases. This review will provide an overview of the discoveries obtained from investigating severe COVID-19 in patients with defined IEI or otherwise healthy individuals. RECENT FINDINGS Genetic, serological and cohort studies have provided key findings regarding host defense against SARS-CoV2 infection, and mechanisms of disease pathogenesis. Remarkably, the risk factors, severity of disease, and case fatality rate following SARS-CoV2 infection in patients with IEI were not too dissimilar to that observed for the general population. However, the type I interferon (IFN) signaling pathway - activated in innate immune cells in response to viral sensing - is critical for anti-SARS-CoV2 immunity. Indeed, genetic variants or autoAbs affecting type I IFN function account for up to 20% of all cases of life-threatening COVID-19. SUMMARY The analysis of rare cases of severe COVID-19, coupled with assessing the impact of SARS-CoV2 infection in individuals with previously diagnosed IEI, has revealed fundamental aspects of human immunology, disease pathogenesis and immunopathology in the context of exposure to and infection with a novel pathogen. These findings can be leveraged to improve therapies for treating for emerging and established infectious diseases.
Collapse
|
133
|
Ripen AM, Chiow MY, Rama Rao PR, Mohamad SB. Revealing Chronic Granulomatous Disease in a Patient With Williams-Beuren Syndrome Using Whole Exome Sequencing. Front Immunol 2021; 12:778133. [PMID: 34804071 PMCID: PMC8599285 DOI: 10.3389/fimmu.2021.778133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Blended phenotypes exhibited by a patient may present a challenge to the establishment of diagnosis. In this study, we report a seven-year-old Murut girl with unusual features of Williams-Beuren syndrome (WBS), including recurrent infections and skin abscesses. Considering the possibility of a second genetic disorder, a mutation screening for genes associated with inborn errors of immunity (IEI) was conducted using whole exome sequencing (WES). Analysis of copy number variations (CNVs) from the exome data revealed a 1.53Mb heterozygous deletion on chromosome 7q11.23, corresponding to the known WBS. We also identified a biallelic loss of NCF1, which indicated autosomal recessive chronic granulomatous disease (CGD). Dihydrorhodamine (DHR) flow cytometric assay demonstrated abnormally low neutrophil oxidative burst activity. Coamplification of NCF1 and its pseudogenes identified a GT-deletion (ΔGT) at the start of exon 2 in NCF1 (NM_000265.7: c.75_76delGT: p.Tyr26Hisfs*26). Estimation of NCF1-to-NCF1 pseudogenes ratio using ΔGT and 20-bp gene scans affirmed nil copies of NCF1 in the patient. While the father had a normal ratio of 2:4, the mother had a ratio of 1:5, implicating the carrier of ΔGT-containing NCF1. Discovery of a 7q11.23 deletion involving one NCF1 allele and a ΔGT in the second NCF1 allele explained the coexistence of WBS and CGD in our patient. This study highlights the capability of WES to establish a molecular diagnosis for a case with blended phenotypes, enabling the provision of appropriate prophylactic treatment.
Collapse
Affiliation(s)
- Adiratna Mat Ripen
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia
| | - Mei Yee Chiow
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Prakash Rao Rama Rao
- Pediatrics Department, Keningau Hospital, Ministry of Health Malaysia, Sabah, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre of Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
134
|
Perazzio SF, Palmeira P, Moraes-Vasconcelos D, Rangel-Santos A, de Oliveira JB, Andrade LEC, Carneiro-Sampaio M. A Critical Review on the Standardization and Quality Assessment of Nonfunctional Laboratory Tests Frequently Used to Identify Inborn Errors of Immunity. Front Immunol 2021; 12:721289. [PMID: 34858394 PMCID: PMC8630704 DOI: 10.3389/fimmu.2021.721289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Inborn errors of immunity (IEI), which were previously termed primary immunodeficiency diseases, represent a large and growing heterogeneous group of diseases that are mostly monogenic. In addition to increased susceptibility to infections, other clinical phenotypes have recently been associated with IEI, such as autoimmune disorders, severe allergies, autoinflammatory disorders, benign lymphoproliferative diseases, and malignant manifestations. The IUIS 2019 classification comprises 430 distinct defects that, although rare individually, represent a group affecting a significant number of patients, with an overall prevalence of 1:1,200-2,000 in the general population. Early IEI diagnosis is critical for appropriate therapy and genetic counseling, however, this process is deeply dependent on accurate laboratory tests. Despite the striking importance of laboratory data for clinical immunologists, several IEI-relevant immunoassays still lack standardization, including standardized protocols, reference materials, and external quality assessment programs. Moreover, well-established reference values mostly remain to be determined, especially for early ages, when the most severe conditions manifest and diagnosis is critical for patient survival. In this article, we intend to approach the issue of standardization and quality control of the nonfunctional diagnostic tests used for IEI, focusing on those frequently utilized in clinical practice. Herein, we will focus on discussing the issues of nonfunctional immunoassays (flow cytometry, enzyme-linked immunosorbent assays, and turbidimetry/nephelometry, among others), as defined by the pure quantification of proteins or cell subsets without cell activation or cell culture-based methods.
Collapse
Affiliation(s)
- Sandro Félix Perazzio
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Patricia Palmeira
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Dewton Moraes-Vasconcelos
- Laboratório de Investigação Médica (LIM-56), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Andréia Rangel-Santos
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | | | - Luis Eduardo Coelho Andrade
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| |
Collapse
|
135
|
Blom M, Bredius RGM, van der Burg M. Future Perspectives of Newborn Screening for Inborn Errors of Immunity. Int J Neonatal Screen 2021; 7:ijns7040074. [PMID: 34842618 PMCID: PMC8628921 DOI: 10.3390/ijns7040074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Newborn screening (NBS) programs continue to expand due to innovations in both test methods and treatment options. Since the introduction of the T-cell receptor excision circle (TREC) assay 15 years ago, many countries have adopted screening for severe combined immunodeficiency (SCID) in their NBS program. SCID became the first inborn error of immunity (IEI) in population-based screening and at the same time the TREC assay became the first high-throughput DNA-based test in NBS laboratories. In addition to SCID, there are many other IEI that could benefit from early diagnosis and intervention by preventing severe infections, immune dysregulation, and autoimmunity, if a suitable NBS test was available. Advances in technologies such as KREC analysis, epigenetic immune cell counting, protein profiling, and genomic techniques such as next-generation sequencing (NGS) and whole-genome sequencing (WGS) could allow early detection of various IEI shortly after birth. In the next years, the role of these technical advances as well as ethical, social, and legal implications, logistics and cost will have to be carefully examined before different IEI can be considered as suitable candidates for inclusion in NBS programs.
Collapse
Affiliation(s)
- Maartje Blom
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Correspondence:
| | - Robbert G. M. Bredius
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| |
Collapse
|
136
|
Amirifar P, Yazdani R, Azizi G, Ranjouri MR, Durandy A, Plebani A, Lougaris V, Hammarstrom L, Aghamohammadi A, Abolhassani H. Known and potential molecules associated with altered B cell development leading to predominantly antibody deficiencies. Pediatr Allergy Immunol 2021; 32:1601-1615. [PMID: 34181780 DOI: 10.1111/pai.13589] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/12/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Predominantly antibody deficiencies (PADs) encompass a heterogeneous group of disorders characterized by low immunoglobulin serum levels in the presence or absence of peripheral B cells. Clinical presentation of affected patients may include recurrent respiratory and gastrointestinal infections, invasive infections, autoimmune manifestations, allergic reactions, lymphoproliferation, and increased susceptibility to malignant transformation. In the last decades, several genetic alterations affecting B-cell development/maturation have been identified as causative of several forms of PADs, adding important information on the genetic background of PADs, which in turn should lead to a better understanding of these disorders and precise clinical management of affected patients. This review aimed to present a comprehensive overview of the known and potentially involved molecules in the etiology of PADs to elucidate the pathogenesis of these disorders and eventually offer a better prognosis for affected patients.
Collapse
Affiliation(s)
- Parisa Amirifar
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anne Durandy
- Human Lymphohematopoiesis Laboratory, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Alessandro Plebani
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Lennart Hammarstrom
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
137
|
Fadeel B, Garwicz D, Carlsson G, Sandstedt B, Nordenskjöld M. Kostmann disease and other forms of severe congenital neutropenia. Acta Paediatr 2021; 110:2912-2920. [PMID: 34160857 DOI: 10.1111/apa.16005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
Congenital neutropenia with autosomal recessive inheritance was first described by the Swedish paediatrician Rolf Kostmann who coined the term 'infantile genetic agranulocytosis'. The condition is now commonly referred to as Kostmann disease. These patients display a maturation arrest of the myelopoiesis in the bone marrow and reduced neutrophil numbers and suffer from recurrent, often life-threatening infections. The molecular mechanism underlying congenital neutropenia has been intensively investigated, and mutations in genes that impinge on programmed cell death have been identified. The present review provides an overview of these studies.
Collapse
Affiliation(s)
- Bengt Fadeel
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Daniel Garwicz
- Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Göran Carlsson
- Department of Woman and Child Health Karolinska University Hospital Stockholm Sweden
| | - Bengt Sandstedt
- Department of Woman and Child Health Karolinska University Hospital Stockholm Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden
- Department of Clinical Genetics Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
138
|
Li J, Lei WT, Zhang P, Rapaport F, Seeleuthner Y, Lyu B, Asano T, Rosain J, Hammadi B, Zhang Y, Pelham SJ, Spaan AN, Migaud M, Hum D, Bigio B, Chrabieh M, Béziat V, Bustamante J, Zhang SY, Jouanguy E, Boisson-Dupuis S, El Baghdadi J, Aimanianda V, Thoma K, Fliegauf M, Grimbacher B, Korganow AS, Saunders C, Rao VK, Uzel G, Freeman AF, Holland SM, Su HC, Cunningham-Rundles C, Fieschi C, Abel L, Puel A, Cobat A, Casanova JL, Zhang Q, Boisson B. Biochemically deleterious human NFKB1 variants underlie an autosomal dominant form of common variable immunodeficiency. J Exp Med 2021; 218:212613. [PMID: 34473196 PMCID: PMC8421261 DOI: 10.1084/jem.20210566] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/12/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Autosomal dominant (AD) NFKB1 deficiency is thought to be the most common genetic etiology of common variable immunodeficiency (CVID). However, the causal link between NFKB1 variants and CVID has not been demonstrated experimentally and genetically, as there has been insufficient biochemical characterization and enrichment analysis. We show that the cotransfection of NFKB1-deficient HEK293T cells (lacking both p105 and its cleaved form p50) with a κB reporter, NFKB1/p105, and a homodimerization-defective RELA/p65 mutant results in p50:p65 heterodimer–dependent and p65:p65 homodimer–independent transcriptional activation. We found that 59 of the 90 variants in patients with CVID or related conditions were loss of function or hypomorphic. By contrast, 258 of 260 variants in the general population or patients with unrelated conditions were neutral. None of the deleterious variants displayed negative dominance. The enrichment in deleterious NFKB1 variants of patients with CVID was selective and highly significant (P = 2.78 × 10−15). NFKB1 variants disrupting NFKB1/p50 transcriptional activity thus underlie AD CVID by haploinsufficiency, whereas neutral variants in this assay should not be considered causal.
Collapse
Affiliation(s)
- Juan Li
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Department of Pediatrics, Hsinchu Mackay Memorial Hospital, Hsinchu City, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Bingnan Lyu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Boualem Hammadi
- General Chemistry Laboratory, Department of Clinical Chemistry, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Simon J Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Stephanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | | | - Vishukumar Aimanianda
- Molecular Mycology Unit, Pasteur Institute, Centre National de la Recherche Scientifique UMR 2000, Paris, France
| | - Katharina Thoma
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, Albert Ludwigs University, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, Albert Ludwigs University, Freiburg, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Autoimmune Diseases, University Hospitals of Strasbourg, Strasbourg, France
| | - Carol Saunders
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO.,School of Medicine, University of Missouri-Kansas City, Kansas City, MO
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | - Claire Fieschi
- Department of Clinical Immunology, Saint-Louis Hospital, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| |
Collapse
|
139
|
Seth N, Tuano KS, Chinen J. Inborn errors of immunity: Recent progress. J Allergy Clin Immunol 2021; 148:1442-1450. [PMID: 34688776 DOI: 10.1016/j.jaci.2021.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Recent advances in the field of inborn errors of immunity (IEIs) have been wide in scope, including progress in mechanisms of disease, diagnosis, and management. New gene defects affecting the immune response continue to be reported, as many as 26 in the year 2020. It was noted that the presentation of IEIs might not include recurrent infections in 9% of cases, and that current diagnostic methods can identify molecular causes in 92% of patients with severe combined immunodeficiency. Progress in immunopathogenesis explained mechanisms leading to symptoms of autosomal-recessive hyper-IgE syndrome. There was an emphasis on research in primary antibody deficiencies. The benefit of antibiotic prophylaxis to reduce the frequency of infections was demonstrated in these patients. The regimen of rituximab and azathioprine or mycophenolate was proven effective for chronic granulocytic interstitial pneumonia. The efficacy and adverse events of hematopoietic stem cell transplant in different IEI conditions were reported, as well as different strategies to improve outcomes, supporting its use in immunodeficiency and immunodysregulatory syndromes. The recent pandemic of coronavirus disease 2019 affected patients with IEIs, in particular those with deficiency in the interferon-mediated activation of the immune response. Initial data suggest that coronavirus disease 2019 vaccines might elicit anti-coronavirus disease 2019-neutralizing antibody responses in some patients with IEI conditions.
Collapse
Affiliation(s)
- Neha Seth
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex
| | - Karen S Tuano
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex
| | - Javier Chinen
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex.
| |
Collapse
|
140
|
Abstract
Clinically and pathologically, the patients with hyper-IgE syndrome present similar skin manifestations to common atopic dermatitis. The original hyper-IgE syndrome is characterized by diminished inflammatory response, in combination with Staphylococcus aureus skin abscess and pneumonia followed by pneumatocele formation. These immunological manifestations are frequently associated with skeletal and connective tissue abnormalities. We previously identified that major causal variants of the hyper-IgE syndrome are dominant negative variants in the STAT3. In addition to the identification of new causative variants for the disorders similar to the original hyper-IgE syndrome, causative variants for new types of hyper-IgE syndrome centered only on atopy, high serum IgE levels, and susceptibility to infection, but not associated with diminished inflammatory response, pneumatocele formation, and connective tissue manifestations, have been identified. Recent discovery identified a novel zinc finger protein that regulates STAT3 transcription. Investigation of IL6ST variants disclosed that IL6ST/IL6R cytokine receptor plays a crucial role for the signal transduction upstream of STAT3 in the pathogenesis of the original hyper-IgE syndrome. Even if the same IL6ST variants are used for the signal transduction of IL-6 family cytokines, the signaling defect is more severe in IL-6/IL-11 and milder in LIF. The fact that the non-immune manifestations of the gain-of-function mutations of TGFBR1 and TGFBR2 are similar to the those of dominant negative mutations of STAT3 provide a clue to elucidate molecular mechanisms of non-immune manifestations of hyper-IgE syndrome. Research on this hereditary atopic syndrome is being actively conducted to elucidate the molecular mechanisms and to develop new therapeutic approaches.
Collapse
|
141
|
Delafontaine S, Meyts I. Infection and autoinflammation in inborn errors of immunity: brothers in arms. Curr Opin Immunol 2021; 72:331-339. [PMID: 34543865 DOI: 10.1016/j.coi.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
The binary view of inborn errors of immunity classified as either autoinflammatory conditions or primary immunodeficiency in the strict sense, that is, increased susceptibility to infection is challenged by the description of recent inborn errors of immunity (IEI) triggers leading to activation and disruption of cell death pathways, play a major part in the pathophysiology of infection and autoinflammation. In addition, molecules with a double role in the extracellular versus intracellular milieu add to the complexity. In all, in-depth study of human inborn errors of immunity will continue to instruct us on fundamental immunology and lead to novel therapeutic targets and approaches that can be used in other monogenic and polygenic/complex immune disorders.
Collapse
Affiliation(s)
- Selket Delafontaine
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
142
|
Hadjadj J, Frémond ML, Neven B. Emerging Place of JAK Inhibitors in the Treatment of Inborn Errors of Immunity. Front Immunol 2021; 12:717388. [PMID: 34603291 PMCID: PMC8484879 DOI: 10.3389/fimmu.2021.717388] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Among inborn errors of immunity (IEIs), some conditions are characterized by inflammation and autoimmunity at the front line and are particularly challenging to treat. Monogenic diseases associated with gain-of-function mutations in genes critical for cytokine signaling through the JAK-STAT pathway belong to this group. These conditions represent good candidates for treatment with JAK inhibitors. Type I interferonopathies, a group of recently identified monogenic auto-inflammatory diseases characterized by excessive secretion of type I IFN, are also good candidates with growing experiences reported in the literature. However, many questions remain regarding the choice of the drug, the dose (in particular in children), the efficacy on the various manifestations, the monitoring of the treatment, and the management of potent side effects in particular in patients with infectious susceptibility. This review will summarize the current experiences reported and will highlight the unmet needs.
Collapse
Affiliation(s)
- Jérôme Hadjadj
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Hôpital Cochin, APHP-Centre Université de Paris (CUP), Paris, France
- Université de Paris, Institut Imagine, INSERMU1163, Laboratory of Immunogenetics of Pediatric Autoimmuninity, Paris, France
| | - Marie-Louise Frémond
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France
- Université de Paris, Institut Imagine, Laboratory of Neurogenetics and Neuroinflammation, Paris, France
| | - Bénédicte Neven
- Université de Paris, Institut Imagine, INSERMU1163, Laboratory of Immunogenetics of Pediatric Autoimmuninity, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France
| |
Collapse
|
143
|
Blom M, Zetterström RH, Stray-Pedersen A, Gilmour K, Gennery AR, Puck JM, van der Burg M. Recommendations for uniform definitions used in newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol 2021; 149:1428-1436. [PMID: 34537207 DOI: 10.1016/j.jaci.2021.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Public health newborn screening (NBS) programs continuously evolve, taking advantage of international shared learning. NBS for severe combined immunodeficiency (SCID) has recently been introduced in many countries. However, comparison of screening outcomes has been hampered by use of disparate terminology and imprecise or variable case definitions for non-SCID conditions with T-cell lymphopenia. OBJECTIVES This study sought to determine whether standardized screening terminology could overcome a Babylonian confusion and whether improved case definitions would promote international exchange of knowledge. METHODS A systematic literature review highlighted the diverse terminology in SCID NBS programs internationally. While, as expected, individual screening strategies and tests were tailored to each program, we found uniform terminology to be lacking in definitions of disease targets, sensitivity, and specificity required for comparisons across programs. RESULTS The study's recommendations reflect current evidence from literature and existing guidelines coupled with opinion of experts in public health screening and immunology. Terminologies were aligned. The distinction between actionable and nonactionable T-cell lymphopenia among non-SCID cases was clarified, the former being infants with T-cell lymphopenia who could benefit from interventions such as protection from infections, antibiotic prophylaxis, and live-attenuated vaccine avoidance. CONCLUSIONS By bringing together the previously unconnected public health screening community and clinical immunology community, these SCID NBS deliberations bridged the gaps in language and perspective between these disciplines. This study proposes that international specialists in each disorder for which NBS is performed join forces to hone their definitions and recommend uniform registration of outcomes of NBS. Standardization of terminology will promote international exchange of knowledge and optimize each phase of NBS and follow-up care, advancing health outcomes for children worldwide.
Collapse
Affiliation(s)
- Maartje Blom
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway; Department of Pediatrics, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Kimberly Gilmour
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom; National Institute for Health Research-Great Ormond Street Hospital Biomedical Research Center, London, United Kingdom
| | - Andrew R Gennery
- Children's Bone Marrow Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jennifer M Puck
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco School of Medicine, San Francisco, Calif; University of California, San Francisco Benioff Children's Hospital San Francisco, San Francisco, Calif
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
144
|
Ren A, Yin W, Miller H, Westerberg LS, Candotti F, Park CS, Lee P, Gong Q, Chen Y, Liu C. Novel Discoveries in Immune Dysregulation in Inborn Errors of Immunity. Front Immunol 2021; 12:725587. [PMID: 34512655 PMCID: PMC8429820 DOI: 10.3389/fimmu.2021.725587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
With the expansion of our knowledge on inborn errors of immunity (IEI), it gradually becomes clear that immune dysregulation plays an important part. In some cases, autoimmunity, hyperinflammation and lymphoproliferation are far more serious than infections. Thus, immune dysregulation has become significant in disease monitoring and treatment. In recent years, the wide application of whole-exome sequencing/whole-genome sequencing has tremendously promoted the discovery and further studies of new IEI. The number of discovered IEI is growing rapidly, followed by numerous studies of their pathogenesis and therapy. In this review, we focus on novel discovered primary immune dysregulation diseases, including deficiency of SLC7A7, CD122, DEF6, FERMT1, TGFB1, RIPK1, CD137, TET2 and SOCS1. We discuss their genetic mutation, symptoms and current therapeutic methods, and point out the gaps in this field.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
145
|
Abolhassani H, Wang Y, Hammarström L, Pan-Hammarström Q. Hallmarks of Cancers: Primary Antibody Deficiency Versus Other Inborn Errors of Immunity. Front Immunol 2021; 12:720025. [PMID: 34484227 PMCID: PMC8416062 DOI: 10.3389/fimmu.2021.720025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023] Open
Abstract
Inborn Errors of Immunity (IEI) comprise more than 450 inherited diseases, from which selected patients manifest a frequent and early incidence of malignancies, mainly lymphoma and leukemia. Primary antibody deficiency (PAD) is the most common form of IEI with the highest proportion of malignant cases. In this review, we aimed to compare the oncologic hallmarks and the molecular defects underlying PAD with other IEI entities to dissect the impact of avoiding immune destruction, genome instability, and mutation, enabling replicative immortality, tumor-promoting inflammation, resisting cell death, sustaining proliferative signaling, evading growth suppressors, deregulating cellular energetics, inducing angiogenesis, and activating invasion and metastasis in these groups of patients. Moreover, some of the most promising approaches that could be clinically tested in both PAD and IEI patients were discussed.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
146
|
Tuano KS, Seth N, Chinen J. Secondary immunodeficiencies: An overview. Ann Allergy Asthma Immunol 2021; 127:617-626. [PMID: 34481993 DOI: 10.1016/j.anai.2021.08.413] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To review the different causes of secondary immunodeficiencies and provide clinicians with an updated overview of potential factors that contribute to immunodeficiency. DATA SOURCES Recent published literature obtained through PubMed database searches, including research articles, review articles, and case reports. STUDY SELECTIONS PubMed database searches were conducted using the following keywords: immunodeficiency, antibody deficiency, immunosuppressive drugs, genetic syndrome, malignancy, HIV infection, viral infection, secondary immunodeficiency, nutrition, prematurity, aging, protein-losing enteropathy, nephropathy, trauma, space travel, high altitude, and ultraviolet light. Studies published in the last decade and relevant to the pathogenesis, epidemiology, and clinical characteristics of secondary immunodeficiencies were selected and reviewed. RESULTS Researchers continue to investigate and report abnormal immune parameters in the different entities collectively known as secondary immunodeficiencies. Immunodeficiency might occur as a consequence of malnutrition, metabolic disorders, use of immunosuppressive medications, chronic infections, malignancies, severe injuries, and exposure to adverse environmental conditions. The neonate and the elderly may have decreased immune responses relative to healthy adults. Each of these conditions may present with different immune defects of variable severity. The acquired immunodeficiency syndrome results from infections by the human immunodeficiency virus, which targets CD4 T cells leading to defective immune responses. Rituximab is a monoclonal antibody that targets CD20 B cells, and its use might result in persistent hypogammaglobulinemia. CONCLUSION Clinicians should consider secondary immunodeficiencies in the differential diagnosis of a patient with recurrent infections and abnormal immunologic evaluation. The use of biological agents for the treatment of inflammatory conditions and malignancies is an increasingly important cause of secondary immunodeficiency.
Collapse
Affiliation(s)
- Karen S Tuano
- Section of Allergy, Immunology and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital, The Woodlands, Texas
| | - Neha Seth
- Section of Allergy, Immunology and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital, The Woodlands, Texas
| | - Javier Chinen
- Section of Allergy, Immunology and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital, The Woodlands, Texas.
| |
Collapse
|
147
|
Jamilloux Y. [Delenda nosologia! The programmed disintegration of nosology]. Rev Med Interne 2021; 42:675-677. [PMID: 34419322 DOI: 10.1016/j.revmed.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Y Jamilloux
- Service de médecine interne, hôpital de la Croix-Rousse, hospices Civils de Lyon, université Claude Bernard Lyon 1, 103, grande rue de la Croix-Rousse, 69004 Lyon, France.
| |
Collapse
|
148
|
Boisson-Dupuis S, Bustamante J. Mycobacterial diseases in patients with inborn errors of immunity. Curr Opin Immunol 2021; 72:262-271. [PMID: 34315005 DOI: 10.1016/j.coi.2021.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
Clinical disease caused by the agent of tuberculosis, Mycobacterium tuberculosis, and by less virulent mycobacteria, such as bacillus Calmette-Guérin (BCG) vaccines and environmental mycobacteria, can result from inborn errors of immunity (IEIs). IEIs underlie more than 450 conditions, each associated with an impairment of the development and/or function of hematopoietic and/or non-hematopoietic cells involved in host defense. Only a minority of IEIs confer predisposition to mycobacterial disease. The IEIs underlying susceptibility to bona fide tuberculosis are less well delineated than those responsible for susceptibility to less virulent mycobacteria. However, all these IEIs share a defining feature: the impairment of immunity mediated by interferon gamma (IFN-γ). More profound IFN-γ deficiency is associated with a greater vulnerability to weakly virulent mycobacteria, whereas more selective IFN-γ deficiency is associated with a more selective predisposition to mycobacterial disease. We review here recent progress in the study of IEIs underlying mycobacterial diseases.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU, France; University of Paris, Imagine Institute, Paris, EU, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU, France; University of Paris, Imagine Institute, Paris, EU, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.
| |
Collapse
|
149
|
Cotsapas C, Saarela J, Farmer JR, Scaria V, Abraham RS. Do monogenic inborn errors of immunity cause susceptibility to severe COVID-19? J Clin Invest 2021; 131:e149459. [PMID: 34061775 DOI: 10.1172/jci149459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 virus, which causes COVID-19, has been associated globally with substantial morbidity and mortality. Numerous reports over the past year have described the clinical and immunological profiles of COVID-19 patients, and while some trends have emerged for risk stratification, they do not provide a complete picture. Therefore, efforts are ongoing to identify genetic susceptibility factors of severe disease. In this issue of the JCI, Povysil et al. performed a large, multiple-country study, sequencing genomes from patients with mild and severe COVID-19, along with population controls. Contrary to previous reports, the authors observed no enrichment of predicted loss-of-function variants in genes in the type I interferon pathway, which might predispose to severe disease. These studies suggest that more evidence is needed to substantiate the hypothesis for a genetic immune predisposition to severe COVID-19, and highlights the importance of considering experimental design when implicating a monogenic basis for severe disease.
Collapse
Affiliation(s)
- Chris Cotsapas
- Yale University School of Medicine, New Haven, Connecticut, USA.,The Broad Institute, Cambridge, Massachusetts, USA
| | - Janna Saarela
- Center for Molecular Medicine, University of Oslo, Oslo, Norway
| | | | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,The Ohio State University Wexner College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
150
|
Tangye SG, Ma CS. Molecular regulation and dysregulation of T follicular helper cells - learning from inborn errors of immunity. Curr Opin Immunol 2021; 72:249-261. [PMID: 34284230 DOI: 10.1016/j.coi.2021.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
The production of high-affinity antibodies is a key feature of the vertebrate immune system. Antibodies neutralize and clear pathogens, thereby protecting against infectious diseases. However, dysregulated production of antibodies can cause immune pathologies, such as autoimmunity and immune deficiency. Long-lived humoral immunity depends on B-cell help provided by T follicular helper (Tfh) cells, which support the differentiation of antigen (Ag)-specific B cells into memory and plasma cells. Tfh cells are generated from naïve CD4+ T cells following the receipt of inputs from various cell surface receptors, and can undergo further differentiation into subsets with specialised effector functions to induce and maintain serological memory. While genetically modified mice have provided great understanding of the requirements for generating Tfh cells, it is critical that requirements for human Tfh cell generation and function are also established. Key insights into the molecular requirements for human Tfh cells have been elucidated from the systematic analysis of humans with monogenic germline variants that cause inborn errors of immunity characterised by impaired humoral immunity following infection or vaccination or immune dysregulation and autoimmunity. In this review we will discuss how studying rare 'experiments of nature' has enabled discovery of non-redundant molecules and pathways necessary for Tfh cell generation, differentiation, regulation and function in humans, and how these findings inform us about basic and clinical immunology.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, NSW 2010 Australia; CIRCA (Clinical Immunogenomics Consortium of Australasia), Australia.
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, NSW 2010 Australia; CIRCA (Clinical Immunogenomics Consortium of Australasia), Australia
| |
Collapse
|