101
|
Kobylarek D, Iwanowski P, Lewandowska Z, Limphaibool N, Szafranek S, Labrzycka A, Kozubski W. Advances in the Potential Biomarkers of Epilepsy. Front Neurol 2019; 10:685. [PMID: 31312171 PMCID: PMC6614180 DOI: 10.3389/fneur.2019.00685] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a group of chronic neurological disorders characterized by recurrent, spontaneous, and unpredictable seizures. It is one of the most common neurological disorders, affecting tens of millions of people worldwide. Comprehensive studies on epilepsy in recent decades have revealed the complexity of epileptogenesis, in which immunological processes, epigenetic modifications, and structural changes in neuronal tissues have been identified as playing a crucial role. This review discusses the recent advances in the biomarkers of epilepsy. We evaluate the possible molecular background underlying the clinical changes observed in recent studies, focusing on therapeutic investigations, and the evidence of their safety and efficacy in the human population. This article reviews the pathophysiology of epilepsy, including recent reports on the effects of oxidative stress and hypoxia, and focuses on specific biomarkers and their clinical implications, along with further perspectives in epilepsy research.
Collapse
Affiliation(s)
- Dominik Kobylarek
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
102
|
Andersen JV, Skotte NH, Aldana BI, Nørremølle A, Waagepetersen HS. Enhanced cerebral branched-chain amino acid metabolism in R6/2 mouse model of Huntington's disease. Cell Mol Life Sci 2019; 76:2449-2461. [PMID: 30830240 PMCID: PMC11105563 DOI: 10.1007/s00018-019-03051-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/23/2019] [Accepted: 02/19/2019] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a hereditary and fatal disease causing profound neurodegeneration. Deficits in cerebral energy and neurotransmitter metabolism have been suggested to play a central role in the neuronal dysfunction and death associated with HD. The branched-chain amino acids (BCAAs), leucine, isoleucine and valine, are important for cerebral nitrogen homeostasis, neurotransmitter recycling and can be utilized as energy substrates in the tricarboxylic acid (TCA) cycle. Reduced levels of BCAAs in HD have been validated by several reports. However, it is still unknown how cerebral BCAA metabolism is regulated in HD. Here we investigate the metabolism of leucine and isoleucine in the R6/2 mouse model of HD. Acutely isolated cerebral cortical and striatal slices of control and R6/2 mice were incubated in media containing 15N- or 13C-labeled leucine or isoleucine and slice extracts were analyzed by gas chromatography-mass spectrometry (GC-MS) to determine isotopic enrichment of derived metabolites. Elevated BCAA transamination was found from incubations with [15N]leucine and [15N]isoleucine, in both cerebral cortical and striatal slices of R6/2 mice compared to controls. Metabolism of [U-13C]leucine and [U-13C]isoleucine, entering oxidative metabolism as acetyl CoA, was maintained in R6/2 mice. However, metabolism of [U-13C]isoleucine, entering the TCA cycle as succinyl CoA, was elevated in both cerebral cortical and striatal slices of R6/2 mice, suggesting enhanced metabolic flux via this anaplerotic pathway. To support the metabolic studies, expression of enzymes in the BCAA metabolic pathway was assessed from a proteomic resource. Several enzymes related to BCAA metabolism were found to exhibit augmented expression in the R6/2 brain, particularly related to isoleucine metabolism, suggesting an increase in the BCAA metabolic machinery. Our results show that the capacity for cerebral BCAA metabolism, predominantly of isoleucine, is amplified in the R6/2 brain and indicates that perturbations in cerebral BCAA homeostasis could have functional consequences for HD pathology.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Niels H Skotte
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
103
|
Souza DG, Almeida RF, Souza DO, Zimmer ER. The astrocyte biochemistry. Semin Cell Dev Biol 2019; 95:142-150. [PMID: 30951895 DOI: 10.1016/j.semcdb.2019.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Astrocytes are a unique and dynamic subtype of glial cells in the central nervous system (CNS). Understanding their biochemical reactions and their influence in the surrounding cells is extremely important in the neuroscience field. They exert important influence in the neurotransmission, ionic homeostasis and also release neuroactive molecules termed gliotransmitters. Additionally, they metabolize, store and release metabolic substrates to meet high brain energy requirements. In this review, we highlight the main biochemical reactions regarding energy metabolism that take place in astrocytes. Special attention is given to synthesis, storage and catabolism of glucose, release of lactate, oxidation of fatty acids, production of ketone bodies, and metabolism of the main neurotransmitters, glutamate and GABA. The recent findings allow proposing these cells as key players controlling the energetic homeostasis in the CNS.
Collapse
Affiliation(s)
- Débora G Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Roberto F Almeida
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Exact and Biological Sciences Institute, Biological Sciences Department, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Biochemistry, UFRGS, Porto Alegre, Brazil
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Pharmacology, UFRGS, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
104
|
Deletion of Neuronal GLT-1 in Mice Reveals Its Role in Synaptic Glutamate Homeostasis and Mitochondrial Function. J Neurosci 2019; 39:4847-4863. [PMID: 30926746 DOI: 10.1523/jneurosci.0894-18.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 02/07/2019] [Accepted: 03/10/2019] [Indexed: 01/19/2023] Open
Abstract
The glutamate transporter GLT-1 is highly expressed in astrocytes but also in neurons, primarily in axon terminals. We generated a conditional neuronal GLT-1 KO using synapsin 1-Cre (synGLT-1 KO) to elucidate the metabolic functions of GLT-1 expressed in neurons, here focusing on the cerebral cortex. Both synaptosomal uptake studies and electron microscopic immunocytochemistry demonstrated knockdown of GLT-1 in the cerebral cortex in the synGLT-1 KO mice. Aspartate content was significantly reduced in cerebral cortical extracts as well as synaptosomes from cerebral cortex of synGLT-1 KO compared with control littermates. 13C-Labeling of tricarboxylic acid cycle intermediates originating from metabolism of [U-13C]-glutamate was significantly reduced in synGLT-1 KO synaptosomes. The decreased aspartate content was due to diminished entry of glutamate into the tricarboxylic acid cycle. Pyruvate recycling, a pathway necessary for full glutamate oxidation, was also decreased. ATP production was significantly increased, despite unaltered oxygen consumption, in isolated mitochondria from the synGLT-1 KO. The density of mitochondria in axon terminals and perisynaptic astrocytes was increased in the synGLT-1 KO. Intramitochondrial cristae density of synGLT-1 KO mice was increased, suggesting increased mitochondrial efficiency, perhaps in compensation for reduced access to glutamate. SynGLT-1 KO synaptosomes exhibited an elevated oxygen consumption rate when stimulated with veratridine, despite a lower baseline oxygen consumption rate in the presence of glucose. GLT-1 expressed in neurons appears to be required to provide glutamate to synaptic mitochondria and is linked to neuronal energy metabolism and mitochondrial function.SIGNIFICANCE STATEMENT All synaptic transmitters need to be cleared from the extracellular space after release, and transporters are used to clear glutamate released from excitatory synapses. GLT-1 is the major glutamate transporter, and most GLT-1 is expressed in astrocytes. Only 5%-10% is expressed in neurons, primarily in axon terminals. The function of GLT-1 in axon terminals remains unknown. Here, we used a conditional KO approach to investigate the significance of the expression of GLT-1 in neurons. We found multiple abnormalities of mitochondrial function, suggesting impairment of glutamate utilization by synaptic mitochondria in the neuronal GLT-1 KO. These data suggest that GLT-1 expressed in axon terminals may be important in maintaining energy metabolism and biosynthetic activities mediated by presynaptic mitochondria.
Collapse
|
105
|
Campisi A, Acquaviva R, Raciti G, Duro A, Rizzo M, Santagati NA. Antioxidant Activities of Solanum Nigrum L. Leaf Extracts Determined in in vitro Cellular Models. Foods 2019; 8:foods8020063. [PMID: 30744041 PMCID: PMC6406898 DOI: 10.3390/foods8020063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/06/2023] Open
Abstract
Several medicinal foods abound in traditional medicine with antioxidant potentials that could be of importance for the management of several diseases but with little or no scientific justification to substantiate their use. Thus, the objective of this study was the assessment of the antioxidant effect of two leave extracts of Solanum nigrum L. (SN), which is a medicinal plant member of the Solanaceae family, mainly used for soup preparation in different parts of the world. Then methanolic/water (80:20) (SN1) and water (SN2) leaves extracts were prepared. The total polyphenolic content and the concentration of phenolic acids and flavones compounds were determined. In order to verify whether examined extracts were able to restore the oxidative status, modified by glutamate in primary cultures of astrocytes, the study evaluated the glutathione levels, the intracellular oxidative stress, and the cytotoxicity of SN1 and SN2 extracts. Both extracts were able to quench the radical in an in vitro free cellular system and restore the oxidative status in in vitro primary cultures of rat astroglial cells exposed to glutamate. These extracts prevented the increase in glutamate uptake and inhibited glutamate excitotoxicity, which leads to cell damage and shows a notable antioxidant property.
Collapse
Affiliation(s)
- Agata Campisi
- Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Rosaria Acquaviva
- Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Giuseppina Raciti
- Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Anna Duro
- Department of Biological, Geological and Environmental Sciences, University of Catania,Via A. Longo 19, 95125 Catania, Italy.
| | - Milena Rizzo
- Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | |
Collapse
|
106
|
Verkhratsky A, Parpura V, Rodriguez-Arellano JJ, Zorec R. Astroglia in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:273-324. [PMID: 31583592 DOI: 10.1007/978-981-13-9913-8_11] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease is the most common cause of dementia. Cellular changes in the brains of the patients suffering from Alzheimer's disease occur well in advance of the clinical symptoms. At the cellular level, the most dramatic is a demise of neurones. As astroglial cells carry out homeostatic functions of the brain, it is certain that these cells are at least in part a cause of Alzheimer's disease. Historically, Alois Alzheimer himself has recognised this at the dawn of the disease description. However, the role of astroglia in this disease has been understudied. In this chapter, we summarise the various aspects of glial contribution to this disease and outline the potential of using these cells in prevention (exercise and environmental enrichment) and intervention of this devastating disease.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.,University of Rijeka, Rijeka, Croatia
| | - Jose Julio Rodriguez-Arellano
- BioCruces Health Research Institute, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Department of Neuroscience, The University of the Basque Country UPV/EHU, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica BIOMEDICAL, Ljubljana, Slovenia
| |
Collapse
|
107
|
Mahan VL. Neurointegrity and neurophysiology: astrocyte, glutamate, and carbon monoxide interactions. Med Gas Res 2019; 9:24-45. [PMID: 30950417 PMCID: PMC6463446 DOI: 10.4103/2045-9912.254639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Astrocyte contributions to brain function and prevention of neuropathologies are as extensive as that of neurons. Astroglial regulation of glutamate, a primary neurotransmitter, is through uptake, release through vesicular and non-vesicular pathways, and catabolism to intermediates. Homeostasis by astrocytes is considered to be of primary importance in determining normal central nervous system health and central nervous system physiology - glutamate is central to dynamic physiologic changes and central nervous system stability. Gasotransmitters may affect diverse glutamate interactions positively or negatively. The effect of carbon monoxide, an intrinsic central nervous system gasotransmitter, in the complex astrocyte homeostasis of glutamate may offer insights to normal brain development, protection, and its use as a neuromodulator and neurotherapeutic. In this article, we will review the effects of carbon monoxide on astrocyte homeostasis of glutamate.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Division of Pediatric Cardiothoracic Surgery in the Department of Surgery, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
108
|
Darmaun D, Torres-Santiago L, Mauras N. Glutamine and type 1 diabetes mellitus: is there a role in glycemic control? Curr Opin Clin Nutr Metab Care 2019; 22:91-95. [PMID: 30461450 DOI: 10.1097/mco.0000000000000530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Recent literature suggests dietary glutamine supplementation may lower blood glucose in patients with type 1 diabetes (T1D), who have no residual insulin secretion. The mechanisms and potential relevance to the care of T1D remain unclear. RECENT FINDINGS Glutamine is involved in multiple pathways including gluconeogenesis, lipolysis, antioxidant defense, the production of nitric oxide, the secretion of peptides (e.g., glucagon-like peptide 1, GLP-1), or neuromediators (e.g., [Latin Small Letter Gamma]-aminobutyric acid), all processes that may impact insulin sensitivity and/or glucose homeostasis. The article reviews potential mechanisms and literature evidence suggesting a role in improving glucose tolerance in patients with illness associated with insulin resistance, as well as the preliminary evidence for the increased incidence of postexercise hypoglycemia in T1D after oral glutamine. SUMMARY Further studies are warranted to determine whether the lowering effect of glutamine on blood glucose is sustained over time. If so, long-term randomized trials would be warranted to determine whether there is a role for glutamine as an adjunct dietary supplement to improve glucose control in patients with T1D.
Collapse
Affiliation(s)
- Dominique Darmaun
- Department of Pediatric Endocrinology and Metabolism, Nemours Children's Health System, Jacksonville, Florida, USA
- INRA and University of Nantes, IMAD, CRNH-Ouest, Nantes, France
| | - Lournaris Torres-Santiago
- Department of Pediatric Endocrinology and Metabolism, Nemours Children's Health System, Jacksonville, Florida, USA
| | - Nelly Mauras
- Department of Pediatric Endocrinology and Metabolism, Nemours Children's Health System, Jacksonville, Florida, USA
| |
Collapse
|
109
|
Circadian Clocks and Sleep: Impact of Rhythmic Metabolism and Waste Clearance on the Brain. Trends Neurosci 2018; 41:677-688. [DOI: 10.1016/j.tins.2018.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/20/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
|
110
|
Mir JF, Zagmutt S, Lichtenstein MP, García-Villoria J, Weber M, Gracia A, Fabriàs G, Casas J, López M, Casals N, Ribes A, Suñol C, Herrero L, Serra D. Ghrelin Causes a Decline in GABA Release by Reducing Fatty Acid Oxidation in Cortex. Mol Neurobiol 2018; 55:7216-7228. [PMID: 29396649 PMCID: PMC6096967 DOI: 10.1007/s12035-018-0921-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/21/2018] [Indexed: 10/26/2022]
Abstract
Lipid metabolism, specifically fatty acid oxidation (FAO) mediated by carnitine palmitoyltransferase (CPT) 1A, has been described to be an important actor of ghrelin action in hypothalamus. However, it is not known whether CPT1A and FAO mediate the effect of ghrelin on the cortex. Here, we show that ghrelin produces a differential effect on CPT1 activity and γ-aminobutyric acid (GABA) metabolism in the hypothalamus and cortex of mice. In the hypothalamus, ghrelin enhances CPT1A activity while GABA transaminase (GABAT) activity, a key enzyme in GABA shunt metabolism, is unaltered. However, in cortex CPT1A activity and GABAT activity are reduced after ghrelin treatment. Furthermore, in primary cortical neurons, ghrelin reduces GABA release through a CPT1A reduction. By using CPT1A floxed mice, we have observed that genetic ablation of CPT1A recapitulates the effect of ghrelin on GABA release in cortical neurons, inducing reductions in mitochondrial oxygen consumption, cell content of citrate and α-ketoglutarate, and GABA shunt enzyme activity. Taken together, these observations indicate that ghrelin-induced changes in CPT1A activity modulate mitochondrial function, yielding changes in GABA metabolism. This evidence suggests that the action of ghrelin on GABA release is region specific within the brain, providing a basis for differential effects of ghrelin in the central nervous system.
Collapse
Affiliation(s)
- Joan Francesc Mir
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-30, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-30, E-08028, Barcelona, Spain
| | - Mathieu P Lichtenstein
- Institut d'Investigacions Biomèdiques de Barcelona, Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Judit García-Villoria
- Sección de Errores Congénitos del Metabolismo - IBC, Servicio de Bioquímica y Genética Molecular, Hospital Clínic, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Minéia Weber
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-30, E-08028, Barcelona, Spain
| | - Ana Gracia
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
- Nutrition and Food Science Area, School of Pharmacy, Universidad del País Vasco/Euskal Herriko Unibersitatea, Leioa, Spain
| | - Gemma Fabriàs
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC)/CSIC, Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC)/CSIC, Barcelona, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- Departament de Ciències Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Núria Casals
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
- Departament de Ciències Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Antònia Ribes
- Sección de Errores Congénitos del Metabolismo - IBC, Servicio de Bioquímica y Genética Molecular, Hospital Clínic, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Cristina Suñol
- Institut d'Investigacions Biomèdiques de Barcelona, Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-30, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-30, E-08028, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain.
| |
Collapse
|
111
|
Fonseca BM, Cristóvão AC, Alves G. An easy-to-use liquid chromatography method with fluorescence detection for the simultaneous determination of five neuroactive amino acids in different regions of rat brain. J Pharmacol Toxicol Methods 2018; 91:72-79. [DOI: 10.1016/j.vascn.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 11/17/2022]
|
112
|
Zhu B, Cao H, Sun L, Li B, Guo L, Duan J, Zhu H, Zhang Q. Metabolomics-based mechanisms exploration of Huang-Lian Jie-Du decoction on cerebral ischemia via UPLC-Q-TOF/MS analysis on rat serum. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:147-156. [PMID: 29360497 DOI: 10.1016/j.jep.2018.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian Jie-Du decoction (HLJDD), a traditional formula of Chinese medicine constituted with Rhizoma Coptidis, RadixScutellariae, CortexPhellodendri amurensis and Fructus Gardeniae, exhibits unambiguous therapeutic effect on cerebral ischemia via multi-targets action. Further investigation, however, is still required to explore the relationship between those mechanisms and targets through system approaches. MATERIALS AND METHODS Rats of cerebral ischemia were completed by middle cerebral artery occlusion (MCAO) with reperfusion. Following evaluation of pharmacological actions of HLJDD on MCAO rats, the plasma samples from rats of control, MCAO and HLJDD-treated MCAO groups were prepared strictly and subjected to ultra-performance liquid chromatography quadrupole time of flight mass spectrometry for metabolites analysis. The raw mass data were imported to MassLynx software for peak detection and alignment, and further introduced to EZinfo 2.0 software for orthogonal projection to latent structures analysis, principal component analysis and partial least-squares-discriminant analysis. The metabolic pathways assay of those potential biomarkers were performed with MetaboAnalyst through the online database, HMDB, Metlin, KEGG and SMPD. Those intriguing metabolic pathways were further investigated via biochemical assay. RESULTS HLJDD ameliorated the MCAO-induce cerebral damage and blocked the severe inflammation response. There were nineteen different biomarkers identified among control, MCAO and HLJDD-treated MCAO groups. Ten metabolic pathways were proposed from these significant metabolites. Incorporation with the biochemical assay of cerebral tissue, modulation of metabolic stress, regulation glutamate/GABA-glutamine cycle and enhancement of cholinergic neurons function were explored that involved in the actions of HLJDD on cerebral ischemia. CONCLUSION HLJDD achieves therapeutic action on cerebral ischemia via coordinating the basic pathophysiological network of metabolic stress, glutamate metabolism, and acetylcholine levels and function.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Animals
- Behavior, Animal/drug effects
- Biomarkers/blood
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Chromatography, Liquid
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Energy Metabolism/drug effects
- Glutamic Acid/metabolism
- Infarction, Middle Cerebral Artery/blood
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/psychology
- Inflammation Mediators/blood
- Least-Squares Analysis
- Male
- Metabolomics/methods
- Multivariate Analysis
- Neuroprotective Agents/pharmacology
- Principal Component Analysis
- Rats, Sprague-Dawley
- Spectrometry, Mass, Electrospray Ionization
- Stress, Physiological/drug effects
- Time Factors
Collapse
Affiliation(s)
- Baojie Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huiting Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Limin Sun
- School of Traditional Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| | - Bo Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Liwei Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qichun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
113
|
Araya S, Kuster E, Gluch D, Mariotta L, Lutz C, Reding TV, Graf R, Verrey F, Camargo SMR. Exocrine pancreas glutamate secretion help to sustain enterocyte nutritional needs under protein restriction. Am J Physiol Gastrointest Liver Physiol 2018; 314:G517-G536. [PMID: 29167114 DOI: 10.1152/ajpgi.00135.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutamine (Gln) is the most concentrated amino acid in blood and considered conditionally essential. Its requirement is increased during physiological stress, such as malnutrition or illness, despite its production by muscle and other organs. In the malnourished state, Gln has been suggested to have a trophic effect on the exocrine pancreas and small intestine. However, the Gln transport capacity, the functional relationship of these two organs, and the potential role of the Gln-glutamate (Glu) cycle are unknown. We observed that pancreatic acinar cells express lower levels of Glu than Gln transporters. Consistent with this expression pattern, the rate of Glu influx into acinar cells was approximately sixfold lower than that of Gln. During protein restriction, acinar cell glutaminase expression was increased and Gln accumulation was maintained. Moreover, Glu secretion by acinar cells into pancreatic juice and thus into the lumen of the small intestine was maintained. In the intestinal lumen, Glu absorption was preserved and Glu dehydrogenase expression was augmented, potentially providing the substrates for increasing energy production via the TCA cycle. Our findings suggest that one mechanism by which Gln exerts a positive effect on exocrine pancreas and small intestine involves the Gln metabolism in acinar cells and the secretion of Glu into the small intestine lumen. The exocrine pancreas acinar cells not only avidly accumulate Gln but metabolize Gln to generate energy and to synthesize Glu for secretion in the pancreatic juice. Secreted Glu is suggested to play an important role during malnourishment in sustaining small intestinal homeostasis. NEW & NOTEWORTHY Glutamine (Gln) has been suggested to have a trophic effect on exocrine pancreas and small intestine in malnourished states, but the mechanism is unknown. In this study, we suggest that this trophic effect derives from an interorgan relationship between exocrine pancreas and small intestine for Gln-glutamate (Glu) utilization involving the uptake and metabolism of Gln in acinar cells and secretion of Glu into the lumen of the small intestine.
Collapse
Affiliation(s)
- S Araya
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich , Zurich , Switzerland
| | - E Kuster
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich , Zurich , Switzerland
| | - D Gluch
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich , Zurich , Switzerland
| | - L Mariotta
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich , Zurich , Switzerland
| | - C Lutz
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich , Zurich , Switzerland
| | - T V Reding
- Department of Surgery, University Hospital Zurich , Zurich , Switzerland
| | - R Graf
- Department of Surgery, University Hospital Zurich , Zurich , Switzerland
| | - F Verrey
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich , Zurich , Switzerland
| | - S M R Camargo
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich , Zurich , Switzerland
| |
Collapse
|
114
|
Cabrera-Pastor A, Balzano T, Hernández-Rabaza V, Malaguarnera M, Llansola M, Felipo V. Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Brain Behav Immun 2018; 69:386-398. [PMID: 29288802 DOI: 10.1016/j.bbi.2017.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 11/28/2022] Open
Abstract
Hyperammonemia is a main contributor to cognitive impairment and motor in-coordination in patients with hepatic encephalopathy. Hyperammonemia-induced neuroinflammation mediates the neurological alterations in hepatic encephalopathy. Intracerebral administration of extracellular cGMP restores some but not all types of cognitive impairment. Motor in-coordination, is mainly due to increased GABAergic tone in cerebellum. We hypothesized that extracellular cGMP would restore motor coordination in hyperammonemic rats by normalizing GABAergic tone in cerebellum and that this would be mediated by reduction of neuroinflammation. The aims of this work were to assess whether chronic intracerebral administration of cGMP to hyperammonemic rats: 1) restores motor coordination; 2) reduces neuroinflammation in cerebellum; 3) reduces extracellular GABA levels and GABAergic tone in cerebellum; and also 4) to provide some advance in the understanding on the molecular mechanisms involved. The results reported show that rats with chronic hyperammonemia show neuroinflammation in cerebellum, including microglia and astrocytes activation and increased levels of IL-1b and TNFa and increased membrane expression of the TNFa receptor. This is associated with increased glutaminase expression and extracellular glutamate, increased amount of the GABA transporter GAT-3 in activated astrocytes, increased extracellular GABA in cerebellum and motor in-coordination. Chronic intracerebral administration of extracellular cGMP to rats with chronic hyperammonemia reduces neuroinflammation, including microglia and astrocytes activation and membrane expression of the TNFa receptor. This is associated with reduced nuclear NF-κB, glutaminase expression and extracellular glutamate, reduced amount of the GABA transporter GAT-3 in activated astrocytes and reduced extracellular GABA in cerebellum and restoration of motor coordination. The data support that extracellular cGMP restores motor coordination in hyperammonemic rats by reducing microglia activation and neuroinflammation, leading to normalization of extracellular glutamate and GABA levels in cerebellum and of motor coordination.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Tiziano Balzano
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | | | - Michele Malaguarnera
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Marta Llansola
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Vicente Felipo
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain.
| |
Collapse
|
115
|
Papageorgiou IE, Valous NA, Lahrmann B, Janova H, Klaft ZJ, Koch A, Schneider UC, Vajkoczy P, Heppner FL, Grabe N, Halama N, Heinemann U, Kann O. Astrocytic glutamine synthetase is expressed in the neuronal somatic layers and down-regulated proportionally to neuronal loss in the human epileptic hippocampus. Glia 2018; 66:920-933. [DOI: 10.1002/glia.23292] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Ismini E. Papageorgiou
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326; Heidelberg D-69120 Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 364; Heidelberg D-69120 Germany
- Present address: Institute of Radiology, Südharz Klinikum Nordhausen gGmbH, Dr.-Robert-Koch-Str. 39; Nordhausen D-99734 Germany
| | - Nektarios A. Valous
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases, German Cancer Research Center, Im Neuenheimer Feld 460; Heidelberg D-69120 Germany
- Department of Medical Oncology; National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460; Heidelberg D-69120 Germany
| | - Bernd Lahrmann
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), National Center for Tumor Diseases, BIOQUANT, Im Neuenheimer Feld 267, University of Heidelberg; Heidelberg D-69120 Germany
- Steinbeis Transfer Center for Medical Systems Biology, Heckerstr. 9; Heidelberg D-69124 Germany
| | - Hana Janova
- Division of Clinical Neuroscience; Max Planck Institute of Experimental Medicine, Hermann-Rein-str. 3; Göttingen D-37075 Germany
| | - Zin-Juan Klaft
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1; Berlin D-10117 Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1; Berlin D-10117 Germany
| | - Arend Koch
- Institute of Neuropathology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1; Berlin D-10117 Germany
| | - Ulf C. Schneider
- Department of Neurosurgery; Charité-Universitätsmedizin Berlin, Campus Virchow Medical Center, Augustenplatz 1; Berlin D-11353 Germany
| | - Peter Vajkoczy
- Department of Neurosurgery; Charité-Universitätsmedizin Berlin, Campus Virchow Medical Center, Augustenplatz 1; Berlin D-11353 Germany
| | - Frank L. Heppner
- Institute of Neuropathology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1; Berlin D-10117 Germany
| | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), National Center for Tumor Diseases, BIOQUANT, Im Neuenheimer Feld 267, University of Heidelberg; Heidelberg D-69120 Germany
- Steinbeis Transfer Center for Medical Systems Biology, Heckerstr. 9; Heidelberg D-69124 Germany
| | - Niels Halama
- Department of Medical Oncology; National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460; Heidelberg D-69120 Germany
| | - Uwe Heinemann
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1; Berlin D-10117 Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1; Berlin D-10117 Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326; Heidelberg D-69120 Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 364; Heidelberg D-69120 Germany
| |
Collapse
|
116
|
González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L. Involvement of Astrocytes in Alzheimer's Disease from a Neuroinflammatory and Oxidative Stress Perspective. Front Mol Neurosci 2017; 10:427. [PMID: 29311817 PMCID: PMC5742194 DOI: 10.3389/fnmol.2017.00427] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Alzheimer disease (AD) is a frequent and devastating neurodegenerative disease in humans, but still no curative treatment has been developed. Although many explicative theories have been proposed, precise pathophysiological mechanisms are unknown. Due to the importance of astrocytes in brain homeostasis they have become interesting targets for the study of AD. Changes in astrocyte function have been observed in brains from individuals with AD, as well as in AD in vitro and in vivo animal models. The presence of amyloid beta (Aβ) has been shown to disrupt gliotransmission, neurotransmitter uptake, and alter calcium signaling in astrocytes. Furthermore, astrocytes express apolipoprotein E and are involved in the production, degradation and removal of Aβ. As well, changes in astrocytes that precede other pathological characteristics observed in AD, point to an early contribution of astroglia in this disease. Astrocytes participate in the inflammatory/immune responses of the central nervous system. The presence of Aβ activates different cell receptors and intracellular signaling pathways, mainly the advanced glycation end products receptor/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, responsible for the transcription of pro-inflammatory cytokines and chemokines in astrocytes. The release of these pro-inflammatory agents may induce cellular damage or even stimulate the production of Aβ in astrocytes. Additionally, Aβ induces the appearance of oxidative stress (OS) and production of reactive oxygen species and reactive nitrogen species in astrocytes, affecting among others, intracellular calcium levels, NADPH oxidase (NOX), NF-κB signaling, glutamate uptake (increasing the risk of excitotoxicity) and mitochondrial function. Excessive neuroinflammation and OS are observed in AD, and astrocytes seem to be involved in both. The Aβ/NF-κB interaction in astrocytes may play a central role in these inflammatory and OS changes present in AD. In this paper, we also discuss therapeutic measures highlighting the importance of astrocytes in AD pathology. Several new therapeutic approaches involving phenols (curcumin), phytoestrogens (genistein), neuroesteroids and other natural phytochemicals have been explored in astrocytes, obtaining some promising results regarding cognitive improvements and attenuation of neuroinflammation. Novel strategies comprising astrocytes and aimed to reduce OS in AD have also been proposed. These include estrogen receptor agonists (pelargonidin), Bambusae concretio Salicea, Monascin, and various antioxidatives such as resveratrol, tocotrienol, anthocyanins, and epicatechin, showing beneficial effects in AD models.
Collapse
Affiliation(s)
- Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Daniel Ariza-Salamanca
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Laura Mora-Muñoz
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
117
|
Hsieh YJ, Wu LC, Ke CC, Chang CW, Kuo JW, Huang WS, Chen FD, Yang BH, Tai HT, Chen SCJ, Liu RS. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain. Alcohol Clin Exp Res 2017; 42:329-337. [PMID: 29205407 DOI: 10.1111/acer.13573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1-11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1-11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. METHODS [1-11 C]-acetate positron emission tomography (PET) with dynamic measurement of K1 and k2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. RESULTS PET imaging demonstrated decreased [1-11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K1 and clearance rate constant k2 were decreased in acutely intoxicated rats. No significant change was noted in K1 and k2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. CONCLUSIONS In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1-11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1-11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain.
Collapse
Affiliation(s)
- Ya-Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Liang-Chih Wu
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Chih Ke
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Chi-Wei Chang
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jung-Wen Kuo
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Wen-Sheng Huang
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fu-Du Chen
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Bang-Hung Yang
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Ting Tai
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sharon Chia-Ju Chen
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ren-Shyan Liu
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Biophotonic and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Nuclear Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
118
|
Fang H, Wang ZH, Bu YJ, Yuan ZJ, Wang GQ, Guo Y, Cheng XY, Qiu WJ. Repeated inhalation of sevoflurane inhibits the information transmission of Purkinje cells and delays motor development via the GABAA receptor ε subunit in neonatal mice. Mol Med Rep 2017; 17:1083-1092. [PMID: 29115488 PMCID: PMC5780070 DOI: 10.3892/mmr.2017.7941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/19/2017] [Indexed: 11/21/2022] Open
Abstract
General anesthesia is widely used in pediatric surgery, although the influence of general anesthesia on cerebellar information transmission and motor function is unclear. In the present study, neonatal mice received repeated inhalation of sevoflurane, and electrophysiological alterations in Purkinje cells (PCs) and the development of motor functions were detected. In addition, γ-aminobutyric acidA receptor ε (GABAA-R ε) subunit knockout mice were used to investigate the mechanism of action of sevoflurane on cerebellar function. In the neonatal mice, the field potential response of PCs induced by sensory stimulation and the motor function indices were markedly inhibited by sevoflurane, and the inhibitory effect was positively associated with the number of repetitions of anesthesia. In additional the GABAA-R ε subunit level of PCs was promoted by sevoflurane in a dose-dependent manner, and the inhibitory effects of sevoflurane on PC field potential response and motor function were alleviated in GABAA-R ε subunit knockout mice. The GABAA-R ε subunit was activated by sevoflurane, leading to inhibition of sensory information transmission in the cerebellar cortex, field potential responses of PCs and the development of cerebellar motor function. The present study provided experimental evidence for the safe usage of sevoflurane in clinical anesthesia, and suggested that GABAA-R ε subunit antagonists may be considered for combined application with general anesthesia with repeated inhalation of sevoflurane, for adverse effect prevention in the clinic.
Collapse
Affiliation(s)
- Hong Fang
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Ze-Hua Wang
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Ying-Jiang Bu
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Zhi-Jun Yuan
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Guo-Qiang Wang
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Yan Guo
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Xiao-Yun Cheng
- Department of Anesthesiology, The Suburban People's Hospital, Changzhi, Shanxi 046011, P.R. China
| | - Wen-Jie Qiu
- Department of Anesthesiology, The Suburban People's Hospital, Changzhi, Shanxi 046011, P.R. China
| |
Collapse
|
119
|
Betaine in the Brain: Characterization of Betaine Uptake, its Influence on Other Osmolytes and its Potential Role in Neuroprotection from Osmotic Stress. Neurochem Res 2017; 42:3490-3503. [PMID: 28918494 DOI: 10.1007/s11064-017-2397-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/15/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023]
Abstract
Betaine (N-trimethylglycine), a common osmolyte, has received attention because of the number of clinical reports associating betaine supplementation with improved cognition, neuroprotection and exercise physiology. However, tissue analyses report little accumulation of betaine in brain tissue despite the presence of betaine/GABA transporters (BGT1) at the blood brain barrier and in nervous tissue, calling into question whether betaine influences neuronal function directly or indirectly. Therefore, the focus of this study was to determine what capacity nervous tissue has to accumulate betaine, specifically in the hippocampus, a region of the brain associated with learning and memory and one that is particularly susceptible to damage (e.g., seizure activity). Here we report that hippocampal slices actively accumulate betaine in a time, dose and osmolality dependent manner, resulting in peak intracellular concentrations four times extracellular concentrations within 8 h. Our data also indicate that betaine uptake differentially influences the accumulation of other osmolytes. Under isosmotic conditions, betaine uptake minimally impacted some osmolytes (e.g., glycerylphosphorylcholine and glutamate) while significantly reducing others (taurine, creatine, and myo-inositol). Under osmotic stress (hyperosmotic) conditions, we observed dramatic changes in osmolytes like glycine and glutamine-key players in inhibitory neurotransmission-and little change in osmolytes such as taurine, creatine and myo-inositol when betaine was available. These data suggest that betaine may influence pathways of inhibitory neurotransmitter production/recycling in addition to serving as an osmolyte and metabolic intermediate. In sum, our data provide detailed characterization of betaine uptake in the hippocampus that implicates betaine in the modulation of hippocampal neurophysiology and neuroprotection.
Collapse
|
120
|
Liu B, Teschemacher AG, Kasparov S. Neuroprotective potential of astroglia. J Neurosci Res 2017; 95:2126-2139. [PMID: 28836687 DOI: 10.1002/jnr.24140] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022]
Abstract
Astroglia are the homoeostatic cells of the central nervous system, which participate in all essential functions of the brain. Astrocytes support neuronal networks by handling water and ion fluxes, transmitter clearance, provision of antioxidants, and metabolic precursors and growth factors. The critical dependence of neurons on constant support from the astrocytes confers astrocytes with intrinsic neuroprotective properties. On the other hand, loss of astrocytic support or their pathological transformation compromises neuronal functionality and viability. Manipulating neuroprotective functions of astrocytes is thus an important strategy to enhance neuronal survival and improve outcomes in disease states. © 2017 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Beihui Liu
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom
| | - A G Teschemacher
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom
| | - Sergey Kasparov
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom.,Institute of Living Systems, School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| |
Collapse
|
121
|
Influences of glutamine administration on response selection and sequence learning: a randomized-controlled trial. Sci Rep 2017; 7:2693. [PMID: 28578427 PMCID: PMC5457419 DOI: 10.1038/s41598-017-02957-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/21/2017] [Indexed: 01/08/2023] Open
Abstract
Precursors of neurotransmitters are increasingly often investigated as potential, easily-accessible methods of neuromodulation. However, the amino-acid glutamine, precursor to the brain’s main excitatory and inhibitory neurotransmitters glutamate and GABA, remains notably little investigated. The current double-blind, randomized, placebo-controlled study provides first evidence 2.0 g glutamine administration in healthy adults affects response selection but not motor sequence learning in a serial reaction time task. Specifically, glutamine increased response selection errors when the current target response required a different hand than the directly preceding target response, which might indicate enhanced cortical excitability via a presumed increase in glutamate levels. These results suggest glutamine can alter cortical excitability but, despite the critical roles of glutamate and GABA in motor learning, at its current dose glutamine does not affect sequence learning.
Collapse
|
122
|
Kaczor PT, Mozrzymas JW. Key Metabolic Enzymes Underlying Astrocytic Upregulation of GABAergic Plasticity. Front Cell Neurosci 2017; 11:144. [PMID: 28559800 PMCID: PMC5432623 DOI: 10.3389/fncel.2017.00144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/02/2017] [Indexed: 11/30/2022] Open
Abstract
GABAergic plasticity is recognized as a key mechanism of shaping the activity of the neuronal networks. However, its description is challenging because of numerous neuron-specific mechanisms. In particular, while essential role of glial cells in the excitatory plasticity is well established, their involvement in GABAergic plasticity only starts to emerge. To address this problem, we used two models: neuronal cell culture (NC) and astrocyte-neuronal co-culture (ANCC), where we chemically induced long-term potentiation at inhibitory synapses (iLTP). iLTP could be induced both in NC and ANCC but in ANCC its extent was larger. Importantly, this functional iLTP manifestation was accompanied by an increase in gephyrin puncta size. Furthermore, blocking astrocyte Krebs cycle with fluoroacetate (FA) in ANCC prevented enhancement of both mIPSC amplitude and gephyrin puncta size but this effect was not observed in NC, indicating a key role in neuron-astrocyte cross-talk. Blockade of monocarboxylate transport with α-Cyano-4-hydroxycinnamic acid (4CIN) abolished iLTP both in NC and ANCC and in the latter model prevented also enlargement of gephyrin puncta. Similarly, blockade of glycogen phosphorylase with BAYU6751 prevented enlargement of gephyrin puncta upon iLTP induction. Finally, block of glutamine synthetase with methionine sulfoxide (MSO) nearly abolished mIPSC increase in both NMDA stimulated cell groups but did not prevent enlargement of gephyrin puncta. In conclusion, we provide further evidence that GABAergic plasticity is strongly regulated by astrocytes and the underlying mechanisms involve key metabolic enzymes. Considering the strategic role of GABAergic interneurons, the plasticity described here indicates possible mechanism whereby metabolism regulates the network activity.
Collapse
Affiliation(s)
- Przemysław T Kaczor
- Department of Molecular Physiology and Neurobiology, Faculty of Biological Sciences, University of WrocławWrocław, Poland
| | - Jerzy W Mozrzymas
- Department of Molecular Physiology and Neurobiology, Faculty of Biological Sciences, University of WrocławWrocław, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical UniversityWrocław, Poland
| |
Collapse
|
123
|
Hellsten SV, Hägglund MG, Eriksson MM, Fredriksson R. The neuronal and astrocytic protein SLC38A10 transports glutamine, glutamate, and aspartate, suggesting a role in neurotransmission. FEBS Open Bio 2017; 7:730-746. [PMID: 28593130 PMCID: PMC5458457 DOI: 10.1002/2211-5463.12219] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 12/21/2022] Open
Abstract
In brain cells, glutamine transporters are vital to monitor and control the levels of glutamate and GABA. There are 11 members of the SLC38 family of amino acid transporters of which eight have been functionally characterized. Here, we report the first histological and functional characterization of the previously orphan member, SLC38A10. We used pairwise global sequence alignments to determine the sequence identity between the SLC38 family members. SLC38A10 was found to share 20–25% transmembrane sequence identity with several family members, and was predicted to have 11 transmembrane helices. SLC38A10 immunostaining was abundant in mouse brain using a custom‐made anti‐SLC38A10 antibody and colocalization of SLC38A10 immunoreactivity with markers for neurons and astrocytes was detected. Using Xenopus laevis oocytes overexpressing SLC38A10, we show that SLC38A10 mediates bidirectional transport of l‐glutamine, l‐alanine, l‐glutamate, and d‐aspartate, and efflux of l‐serine. This profile mostly resembles system A members of the SLC38 family. In conclusion, the bidirectional transport of glutamine, glutamate, and aspartate by SLC38A10, and the immunostaining detected in neurons and astrocytes, suggest that SLC38A10 plays a role in pathways involved in neurotransmission.
Collapse
Affiliation(s)
- Sofie V Hellsten
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology Uppsala University Sweden
| | - Maria G Hägglund
- Department of Neuroscience, Functional Pharmacology Uppsala University Sweden
| | - Mikaela M Eriksson
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology Uppsala University Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology Uppsala University Sweden
| |
Collapse
|
124
|
Szutowicz A, Bielarczyk H, Zyśk M, Dyś A, Ronowska A, Gul-Hinc S, Klimaszewska-Łata J. Early and Late Pathomechanisms in Alzheimer's Disease: From Zinc to Amyloid-β Neurotoxicity. Neurochem Res 2017; 42:891-904. [PMID: 28039593 PMCID: PMC5357490 DOI: 10.1007/s11064-016-2154-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022]
Abstract
There are several systemic and intracerebral pathologic conditions, which limit provision and utilization of energy precursor metabolites in neuronal cells. Energy deficits cause excessive depolarization of neuronal cells triggering glutamate-zinc evoked excitotoxic cascade. The intracellular zinc excess hits several intraneuronal targets yielding collapse of energy balance and impairment functional and structural impairments cholinergic neurons. Disturbances in metabolism of acetyl-CoA, which is a direct precursor for energy, acetylcholine, N-acetyl-L-aspartate and acetylated proteins synthesis, play an important role in these pathomechanisms. Disruption of brain homeostasis activates slow accumulation of amyloid-β 1-42 , which extra and intracellular oligomeric deposits disrupt diverse transporting and signaling processes in all membrane structures of the cell. Both neurotoxic signals may combine aggravating detrimental effects on neuronal cell. Different neuroglial and neuronal cell types may display differential susceptibility to similar pathogenic insults depending on specific features of their energy and functional parameters. This review, basing on findings gained from cellular and animal models of Alzheimer's disease, discusses putative energy/acetyl-CoA dependent mechanism in early and late stages of neurodegeneration.
Collapse
Affiliation(s)
- Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland.
| | - Hanna Bielarczyk
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Marlena Zyśk
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Sylwia Gul-Hinc
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Joanna Klimaszewska-Łata
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| |
Collapse
|
125
|
Wijtenburg SA, West J, Korenic SA, Kuhney F, Gaston FE, Chen H, Roberts M, Kochunov P, Hong LE, Rowland LM. Glutamatergic metabolites are associated with visual plasticity in humans. Neurosci Lett 2017; 644:30-36. [PMID: 28189743 DOI: 10.1016/j.neulet.2017.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
Abstract
Long-term potentiation (LTP) is a basic cellular mechanism underlying learning and memory. LTP-like plasticity in the visual cortex can be induced by high frequency visual stimulation in rodents and humans. Since glutamate plays a fundamental role in LTP, this study investigated if visual cortical glutamate and glutamine levels, measured by proton magnetic resonance spectroscopy (MRS), relate to visual plasticity in humans. Since plasticity requires a delicate excitation and inhibition balance, GABA was also explored. Eighteen healthy participants completed MRS and a visual fMRI paradigm. Results revealed enhanced fMRI activations after high frequency visual stimulation, suggesting visual plasticity occurred. Higher activations were associated with higher resting glutamine levels after family wise error-correction. Exploratory analyses revealed that higher resting glutamate and GABA levels were associated with visual plasticity, suggesting there may be a critical excitation-inhibition balance necessary for experience dependent plasticity. This is the first empirical evidence that resting glutamine levels and potentially glutamate and GABA levels are associated with visual plasticity in humans.
Collapse
Affiliation(s)
- S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA.
| | - Jeffrey West
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA
| | - Stephanie A Korenic
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA
| | - Franchesca Kuhney
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA
| | - Frank E Gaston
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA
| | - Hongji Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA
| | - Meredith Roberts
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA; Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N. Caroline Street, Baltimore, MD 21287, USA; Department of Psychology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
126
|
Yudkoff M. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS. Neurochem Res 2017; 42:10-18. [PMID: 27696119 PMCID: PMC5285401 DOI: 10.1007/s11064-016-2057-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 01/17/2023]
Abstract
Glutamatergic neurotransmission entails a tonic loss of glutamate from nerve endings into the synapse. Replacement of neuronal glutamate is essential in order to avoid depletion of the internal pool. In brain this occurs primarily via the glutamate-glutamine cycle, which invokes astrocytic synthesis of glutamine and hydrolysis of this amino acid via neuronal phosphate-dependent glutaminase. This cycle maintains constancy of internal pools, but it does not provide a mechanism for inevitable losses of glutamate N from brain. Import of glutamine or glutamate from blood does not occur to any appreciable extent. However, the branched-chain amino acids (BCAA) cross the blood-brain barrier swiftly. The brain possesses abundant branched-chain amino acid transaminase activity which replenishes brain glutamate and also generates branched-chain ketoacids. It seems probable that the branched-chain amino acids and ketoacids participate in a "glutamate-BCAA cycle" which involves shuttling of branched-chain amino acids and ketoacids between astrocytes and neurons. This mechanism not only supports the synthesis of glutamate, it also may constitute a mechanism by which high (and potentially toxic) concentrations of glutamate can be avoided by the re-amination of branched-chain ketoacids.
Collapse
Affiliation(s)
- Marc Yudkoff
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
127
|
Patel AB, Lai JCK, Chowdhury GIM, Rothman DL, Behar KL. Comparison of Glutamate Turnover in Nerve Terminals and Brain Tissue During [1,6- 13C 2]Glucose Metabolism in Anesthetized Rats. Neurochem Res 2016; 42:173-190. [PMID: 28025798 DOI: 10.1007/s11064-016-2103-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/05/2023]
Abstract
The 13C turnover of neurotransmitter amino acids (glutamate, GABA and aspartate) were determined from extracts of forebrain nerve terminals and brain homogenate, and fronto-parietal cortex from anesthetized rats undergoing timed infusions of [1,6-13C2]glucose or [2-13C]acetate. Nerve terminal 13C fractional labeling of glutamate and aspartate was lower than those in whole cortical tissue at all times measured (up to 120 min), suggesting either the presence of a constant dilution flux from an unlabeled substrate or an unlabeled (effectively non-communicating on the measurement timescale) glutamate pool in the nerve terminals. Half times of 13C labeling from [1,6-13C2]glucose, as estimated by least squares exponential fitting to the time course data, were longer for nerve terminals (GluC4, 21.8 min; GABAC2 21.0 min) compared to cortical tissue (GluC4, 12.4 min; GABAC2, 14.5 min), except for AspC3, which was similar (26.5 vs. 27.0 min). The slower turnover of glutamate in the nerve terminals (but not GABA) compared to the cortex may reflect selective effects of anesthesia on activity-dependent glucose use, which might be more pronounced in the terminals. The 13C labeling ratio for glutamate-C4 from [2-13C]acetate over that of 13C-glucose was twice as large in nerve terminals compared to cortex, suggesting that astroglial glutamine under the 13C glucose infusion was the likely source of much of the nerve terminal dilution. The net replenishment of most of the nerve terminal amino acid pools occurs directly via trafficking of astroglial glutamine.
Collapse
Affiliation(s)
- Anant B Patel
- Department of Diagnostic Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA. .,CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| | - James C K Lai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID, 83209, USA
| | - Golam I M Chowdhury
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, PO Box 208043, New Haven, CT, 06520, USA
| | - Douglas L Rothman
- Department of Diagnostic Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Kevin L Behar
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, PO Box 208043, New Haven, CT, 06520, USA.
| |
Collapse
|
128
|
Xu H, Zhang H, Zhang J, Huang Q, Shen Z, Wu R. Evaluation of neuron-glia integrity by in vivo proton magnetic resonance spectroscopy: Implications for psychiatric disorders. Neurosci Biobehav Rev 2016; 71:563-577. [PMID: 27702600 DOI: 10.1016/j.neubiorev.2016.09.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/05/2023]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) has been widely applied in human studies. There is now a large literature describing findings of brain MRS studies with mental disorder patients including schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders. However, the findings are mixed and cannot be reconciled by any of the existing interpretations. Here we proposed the new theory of neuron-glia integrity to explain the findings of brain 1H-MRS stuies. It proposed the neurochemical correlates of neuron-astrocyte integrity and axon-myelin integrity on the basis of update of neurobiological knowledge about neuron-glia communication and of experimental MRS evidence for impairments in neuron-glia integrity from the authors and the other investigators. Following the neuron-glia integrity theories, this review collected evidence showing that glutamate/glutamine change is a good marker for impaired neuron-astrocyte integrity and that changes in N-acetylaspartate and lipid precursors reflect impaired myelination. Moreover, this new theory enables us to explain the differences between MRS findings in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Haiyun Xu
- The Mental Health Center, Shantou University Medical College, China.
| | - Handi Zhang
- The Mental Health Center, Shantou University Medical College, China
| | - Jie Zhang
- The Mental Health Center, Shantou University Medical College, China
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, China
| | - Zhiwei Shen
- The Department of Radiology, the second affiliated hospital, Shantou University Medical College, China
| | - Renhua Wu
- The Department of Radiology, the second affiliated hospital, Shantou University Medical College, China
| |
Collapse
|
129
|
Kajimoto M, Ledee DR, Olson AK, Isern NG, Robillard-Frayne I, Des Rosiers C, Portman MA. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion. J Cereb Blood Flow Metab 2016; 36:1992-2004. [PMID: 27604310 PMCID: PMC5094314 DOI: 10.1177/0271678x16666846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022]
Abstract
Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography-mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis.
Collapse
Affiliation(s)
- Masaki Kajimoto
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | - Dolena R Ledee
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | - Aaron K Olson
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Nancy G Isern
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratories, Richland, WA, USA
| | | | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montréal, QC, Canada
| | - Michael A Portman
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA .,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
130
|
Minireview on Glutamine Synthetase Deficiency, an Ultra-Rare Inborn Error of Amino Acid Biosynthesis. BIOLOGY 2016; 5:biology5040040. [PMID: 27775558 PMCID: PMC5192420 DOI: 10.3390/biology5040040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
Glutamine synthetase (GS) is a cytosolic enzyme that produces glutamine, the most abundant free amino acid in the human body. Glutamine is a major substrate for various metabolic pathways, and is thus an important factor for the functioning of many organs; therefore, deficiency of glutamine due to a defect in GS is incompatible with normal life. Mutations in the human GLUL gene (encoding for GS) can cause an ultra-rare recessive inborn error of metabolism—congenital glutamine synthetase deficiency. This disease was reported until now in only three unrelated patients, all of whom suffered from neonatal onset severe epileptic encephalopathy. The hallmark of GS deficiency in these patients was decreased levels of glutamine in body fluids, associated with chronic hyperammonemia. This review aims at recapitulating the clinical history of the three known patients with congenital GS deficiency and summarizes the findings from studies done along with the work-up of these patients. It is the aim of this paper to convince the reader that (i) this disorder is possibly underdiagnosed, since decreased concentrations of metabolites do not receive the attention they deserve; and (ii) early detection of GS deficiency may help to improve the outcome of patients who could be treated early with metabolites that are lacking in this condition.
Collapse
|
131
|
Horzmann KA, Freeman JL. Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity. TOXICS 2016; 4:19. [PMID: 28730152 PMCID: PMC5515482 DOI: 10.3390/toxics4030019] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmission is the basis of neuronal communication and is critical for normal brain development, behavior, learning, and memory. Exposure to drugs and chemicals can alter neurotransmission, often through unknown pathways and mechanisms. The zebrafish (Danio rerio) model system is increasingly being used to study the brain and chemical neurotoxicity. In this review, the major neurotransmitter systems, including glutamate, GABA, dopamine, norepinephrine, serotonin, acetylcholine, histamine, and glutamate are surveyed and pathways of synthesis, transport, metabolism, and action are examined. Differences between human and zebrafish neurochemical pathways are highlighted. We also review techniques for evaluating neurological function, including the measurement of neurotransmitter levels, assessment of gene expression through transcriptomic analysis, and the recording of neurobehavior. Finally examples of chemical toxicity studies evaluating alterations in neurotransmitter systems in the zebrafish model are reviewed.
Collapse
Affiliation(s)
| | - Jennifer L. Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
132
|
Hohnholt MC, Andersen VH, Bak LK, Waagepetersen HS. Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals. Neurochem Res 2016; 42:191-201. [DOI: 10.1007/s11064-016-2036-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 12/28/2022]
|
133
|
Koob M, Viola A, Le Fur Y, Viout P, Ratiney H, Confort-Gouny S, Cozzone PJ, Girard N. Creatine, Glutamine plus Glutamate, and Macromolecules Are Decreased in the Central White Matter of Premature Neonates around Term. PLoS One 2016; 11:e0160990. [PMID: 27547969 PMCID: PMC4993494 DOI: 10.1371/journal.pone.0160990] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/28/2016] [Indexed: 11/18/2022] Open
Abstract
Preterm birth represents a high risk of neurodevelopmental disabilities when associated with white-matter damage. Recent studies have reported cognitive deficits in children born preterm without brain injury on MRI at term-equivalent age. Understanding the microstructural and metabolic underpinnings of these deficits is essential for their early detection. Here, we used diffusion-weighted imaging and single-voxel 1H magnetic resonance spectroscopy (MRS) to compare brain maturation at term-equivalent age in premature neonates with no evidence of white matter injury on conventional MRI except diffuse excessive high-signal intensity, and normal term neonates. Thirty-two infants, 16 term neonates (mean post-conceptional age at scan: 39.8±1 weeks) and 16 premature neonates (mean gestational age at birth: 29.1±2 weeks, mean post-conceptional age at scan: 39.2±1 weeks) were investigated. The MRI/MRS protocol performed at 1.5T involved diffusion-weighted MRI and localized 1H-MRS with the Point RESolved Spectroscopy (PRESS) sequence. Preterm neonates showed significantly higher ADC values in the temporal white matter (P<0.05), the occipital white matter (P<0.005) and the thalamus (P<0.05). The proton spectrum of the centrum semiovale was characterized by significantly lower taurine/H2O and macromolecules/H2O ratios (P<0.05) at a TE of 30 ms, and reduced (creatine+phosphocreatine)/H2O and (glutamine+glutamate)/H2O ratios (P<0.05) at a TE of 135 ms in the preterm neonates than in full-term neonates. Our findings indicate that premature neonates with normal conventional MRI present a delay in brain maturation affecting the white matter and the thalamus. Their brain metabolic profile is characterized by lower levels of creatine, glutamine plus glutamate, and macromolecules in the centrum semiovale, a finding suggesting altered energy metabolism and protein synthesis.
Collapse
Affiliation(s)
- Meriam Koob
- Service de Neuroradiologie, AP-HM Timone, Aix-Marseille Université, Marseille, France
- Service de Radiopédiatrie-Imagerie 2, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
- Laboratoire ICube, UMR 7357, FMTS, Université de Strasbourg-CNRS, Strasbourg, France
| | - Angèle Viola
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
- * E-mail: (NG); (AV)
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
| | - Patrick Viout
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
| | - Hélène Ratiney
- Laboratoire CREATIS, CNRS UMR 5220, Inserm U1044, Université Claude Bernard Lyon I, INSA-Lyon, Lyon, France
| | - Sylviane Confort-Gouny
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
| | - Patrick J. Cozzone
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
| | - Nadine Girard
- Service de Neuroradiologie, AP-HM Timone, Aix-Marseille Université, Marseille, France
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
- * E-mail: (NG); (AV)
| |
Collapse
|
134
|
Lee YY, Chao TB, Sheu MJ, Tian YF, Chen TJ, Lee SW, He HL, Chang IW, Hsing CH, Lin CY, Li CF. Glutamate Decarboxylase 1 Overexpression as a Poor Prognostic Factor in Patients with Nasopharyngeal Carcinoma. J Cancer 2016; 7:1716-1723. [PMID: 27698909 PMCID: PMC5039393 DOI: 10.7150/jca.15667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022] Open
Abstract
Background: Glutamate decarboxylase 1 (GAD1) which serves as a rate-limiting enzyme involving in the production of γ-aminobutyric acid (GABA), exists in the GABAergic neurons in the central nervous system (CNS). Little is known about the relevance of GAD1 to nasopharyngeal carcinoma (NPC). Through data mining on a data set derived from a published transcriptome database, this study first identified GAD1 as a differentially upregulated gene in NPC. We aimed to evaluate GAD1 expression and its prognostic effect on patients with early and locoregionally advanced NPC. Methods: We evaluated GAD1 immunohistochemistry and performed an H-score analysis on biopsy specimens from 124 patients with nonmetastasized NPC receiving treatment. GAD1 overexpression was defined as an H score higher than the median value. The findings of such an analysis are correlated with clinicopathological behaviors and survival rates, namely disease-specific survival (DSS), distant-metastasis-free survival (DMeFS), and local recurrence-free survival (LRFS) rates. Results: GAD1 overexpression was significantly associated with an increase in the primary tumor status (p < 0.001) and American Joint Committee on Cancer (AJCC) stages III-IV (p = 0.002) and was a univariate predictor of adverse outcomes of DSS (p = 0.002), DMeFS (p < 0.0001), and LRFS (p = 0.001). In the multivariate comparison, in addition to advanced AJCC stages III-IV, GAD1 overexpression remained an independent prognosticator of short DSS (p = 0.004, hazard ratio = 2.234), DMeFS (p < 0.001, hazard ratio = 4.218), and LRFS (p = 0.013, hazard ratio = 2.441) rates. Conclusions: Our data reveal that GAD1 overexpression was correlated with advanced disease status and may thus be a critical prognostic indicator of poor outcomes in NPC and a potential therapeutic target to facilitate the development of effective treatment modalities.
Collapse
Affiliation(s)
- Yi-Ying Lee
- Department of Pathology, Chi-Mei Medical Center, Liouying, Taiwan
| | - Tung-Bo Chao
- Departments of Colorectal Surgery, Yuan's General Hospital, Kaohsiung, Taiwan
- Department of Health Business Administration, Meiho University, Pingtung, Taiwan
| | - Ming-Jen Sheu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yu-Feng Tian
- Division of General Surgery, Chi Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Hong-Lin He
- Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - I-Wei Chang
- Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Yih Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Leisure, Recreation, and Tourism Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
135
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
136
|
Myers JF, Nutt DJ, Lingford-Hughes AR. γ-aminobutyric acid as a metabolite: Interpreting magnetic resonance spectroscopy experiments. J Psychopharmacol 2016; 30:422-7. [PMID: 27005308 DOI: 10.1177/0269881116639298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current rise in the prevalence of magnetic resonance spectroscopy experiments to measure γ-aminobutyric acid in the living human brain is an exciting and productive area of research. As research spreads into clinical populations and cognitive research, it is important to fully understand the source of the magnetic resonance spectroscopy signal and apply appropriate interpretation to the results of the experiments. γ-aminobutyric acid is present in the brain not only as a neurotransmitter, but also in high intracellular concentrations, both as a transmitter precursor and a metabolite. γ-aminobutyric acid concentrations measured by magnetic resonance spectroscopy are not necessarily implicated in neurotransmission and therefore may reflect a very different brain activity to that commonly suggested. In this perspective, we examine some of the considerations to be taken in the interpretation of any γ-aminobutyric acid signal measured by magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- James Fm Myers
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - David J Nutt
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - Anne R Lingford-Hughes
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
137
|
Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain. Biomolecules 2016; 6:biom6020016. [PMID: 27023624 PMCID: PMC4919911 DOI: 10.3390/biom6020016] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Glutamate is present in the brain at an average concentration—typically 10–12 mM—far in excess of those of other amino acids. In glutamate-containing vesicles in the brain, the concentration of glutamate may even exceed 100 mM. Yet because glutamate is a major excitatory neurotransmitter, the concentration of this amino acid in the cerebral extracellular fluid must be kept low—typically µM. The remarkable gradient of glutamate in the different cerebral compartments: vesicles > cytosol/mitochondria > extracellular fluid attests to the extraordinary effectiveness of glutamate transporters and the strict control of enzymes of glutamate catabolism and synthesis in well-defined cellular and subcellular compartments in the brain. A major route for glutamate and ammonia removal is via the glutamine synthetase (glutamate ammonia ligase) reaction. Glutamate is also removed by conversion to the inhibitory neurotransmitter γ-aminobutyrate (GABA) via the action of glutamate decarboxylase. On the other hand, cerebral glutamate levels are maintained by the action of glutaminase and by various α-ketoglutarate-linked aminotransferases (especially aspartate aminotransferase and the mitochondrial and cytosolic forms of the branched-chain aminotransferases). Although the glutamate dehydrogenase reaction is freely reversible, owing to rapid removal of ammonia as glutamine amide, the direction of the glutamate dehydrogenase reaction in the brain in vivo is mainly toward glutamate catabolism rather than toward the net synthesis of glutamate, even under hyperammonemia conditions. During hyperammonemia, there is a large increase in cerebral glutamine content, but only small changes in the levels of glutamate and α-ketoglutarate. Thus, the channeling of glutamate toward glutamine during hyperammonemia results in the net synthesis of 5-carbon units. This increase in 5-carbon units is accomplished in part by the ammonia-induced stimulation of the anaplerotic enzyme pyruvate carboxylase. Here, we suggest that glutamate may constitute a buffer or bulwark against changes in cerebral amine and ammonia nitrogen. Although the glutamate transporters are briefly discussed, the major emphasis of the present review is on the enzymology contributing to the maintenance of glutamate levels under normal and hyperammonemic conditions. Emphasis will also be placed on the central role of glutamate in the glutamine-glutamate and glutamine-GABA neurotransmitter cycles between neurons and astrocytes. Finally, we provide a brief and selective discussion of neuropathology associated with altered cerebral glutamate levels.
Collapse
|
138
|
Muñoz MD, Antolín-Vallespín M, Tapia-González S, Sánchez-Capelo A. Smad3 deficiency inhibits dentate gyrus LTP by enhancing GABAA neurotransmission. J Neurochem 2016; 137:190-9. [PMID: 26826552 DOI: 10.1111/jnc.13558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/07/2016] [Accepted: 01/20/2016] [Indexed: 11/29/2022]
Abstract
Transforming growth factor-β signaling through intracellular Smad3 has been implicated in Parkinson's disease (PD) and it fulfills an important role in the neurogenesis and synaptic plasticity that occurs in the adult dentate gyrus (DG). The long-term potentiation (LTP) induced in the DG by high-frequency stimulation of the medial perforant pathway is abolished in the DG of Smad3-deficient mice, but not in the CA1 hippocampal region. Here, we show that NMDA- and AMPA-type glutamate receptors do not participate in the inhibition of LTP associated with Smad3 deficiency. Moreover, there is no difference in the hippocampal GAD65 and GAD67 content, suggesting that GABA biosynthesis remains unaffected. Increased conductance and higher action potential firing thresholds were evident in intracellular recordings of granule cells from Smad3 deficient mice. Interestingly, phasic and tonic GABAA receptor (GABAA R)-mediated neurotransmission is enhanced in the DG of Smad3-deficient mice, and LTP induction can be rescued by inhibiting GABAA R with picrotoxin. Hence, Smad3 signaling in the DG appears to be necessary to induce LTP by regulating GABAA neurotransmission, suggesting a central role of this intracellular signaling pathway in the hippocampal brain plasticity related to learning and memory. Smad3 deficient mice represent a new and interesting model of Parkinson's disease, displaying hippocampal dysfunctions that include decreased neurogenesis and the failure to induce LTP in the dentate gyrus. Here we show that Smad3 deficiency inhibits LTP induction by enhancing phasic and tonic GABAA receptor-mediated neurotransmission, while LTP induction can be rescued with a GABAA receptor antagonist. Alteration of GABA neurotransmission is thought to produce hippocampal cognitive dysfunction in Down's syndrome or Alzheimer's disease, and here we provide new insights into the hippocampal changes in an animal model of Parkinson's disease.
Collapse
Affiliation(s)
- M Dolores Muñoz
- Unidad de Neurología Experimental, Hospital Universitario Ramón y Cajal - IRYCIS, Madrid, Spain
| | - Mónica Antolín-Vallespín
- CIBERNED - Ser. Neurobiología - Investigación, Hospital Universitario Ramón y Cajal - IRYCIS, Madrid, Spain
| | - Silvia Tapia-González
- CIBERNED - Ser. Neurobiología - Investigación, Hospital Universitario Ramón y Cajal - IRYCIS, Madrid, Spain
| | - Amelia Sánchez-Capelo
- CIBERNED - Ser. Neurobiología - Investigación, Hospital Universitario Ramón y Cajal - IRYCIS, Madrid, Spain
| |
Collapse
|
139
|
Albrecht A, Ivens S, Papageorgiou IE, Çalışkan G, Saiepour N, Brück W, Richter-Levin G, Heinemann U, Stork O. Shifts in excitatory/inhibitory balance by juvenile stress: A role for neuron-astrocyte interaction in the dentate gyrus. Glia 2016; 64:911-22. [PMID: 26875694 DOI: 10.1002/glia.22970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 12/25/2022]
Abstract
Childhood trauma is a well-described risk factor for the development of stress-related psychopathology such as posttraumatic stress disorder or depression later in life. Childhood adversity can be modeled in rodents by juvenile stress (JS) protocols, resulting in impaired coping with stressful challenges in adulthood. In the current study, we investigated the long-lasting impact of JS on the expression of molecular factors for glutamate and γ-aminobutyric acid (GABA) uptake and turnover in sublayers of the dentate gyrus (DG) using laser microdissection and quantitative real-time polymerase chain reaction. We observed reduced mRNA expression levels after JS for factors mediating astrocytic glutamate and GABA uptake and degradation. These alterations were prominently observed in the dorsal but not ventral DG granule cell layer, indicating a lasting change in astrocytic GABA and glutamate metabolism that may affect dorsal DG network activity. Indeed, we observed increased inhibition and a lack of facilitation in response to paired-pulse stimulation at short interstimulus intervals in the dorsal DG after JS, while no alterations were evident in basal synaptic transmission or forms of long-term plasticity. The shift in paired-pulse response was mimicked by pharmacologically blocking the astrocytic GABA transporter GAT-3 in naïve animals. Accordingly, reduced expression levels of GAT-3 were confirmed at the protein level in the dorsal granule cell layer of rats stressed in juvenility. Together, these data demonstrate a lasting shift in the excitatory/inhibitory balance of dorsal DG network activity by JS that appears to be mediated by decreased GABA uptake into astrocytes.
Collapse
Affiliation(s)
- Anne Albrecht
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,The Institute for the Study of Affective Neuroscience (ISAN), Haifa, Israel.,Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sebastian Ivens
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ismini E Papageorgiou
- Institute of Diagnostic and Interventional Neuroradiology, University of Göttingen, Göttingen, Germany
| | - Gürsel Çalışkan
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nasrin Saiepour
- Institute of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,The Institute for the Study of Affective Neuroscience (ISAN), Haifa, Israel.,Department of Psychology, University of Haifa, Haifa, Israel
| | - Uwe Heinemann
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Stork
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, Germany
| |
Collapse
|
140
|
Dal-Cim T, Martins WC, Thomaz DT, Coelho V, Poluceno GG, Lanznaster D, Vandresen-Filho S, Tasca CI. Neuroprotection Promoted by Guanosine Depends on Glutamine Synthetase and Glutamate Transporters Activity in Hippocampal Slices Subjected to Oxygen/Glucose Deprivation. Neurotox Res 2016; 29:460-8. [PMID: 26858177 DOI: 10.1007/s12640-015-9595-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 12/02/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022]
Abstract
Guanosine (GUO) has been shown to act as a neuroprotective agent against glutamatergic excitotoxicity by increasing glutamate uptake and decreasing its release. In this study, a putative effect of GUO action on glutamate transporters activity modulation was assessed in hippocampal slices subjected to oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia. Slices subjected to OGD showed increased excitatory amino acids release (measured by D-[(3)H]aspartate release) that was prevented in the presence of GUO (100 µM). The glutamate transporter blockers, DL-TBOA (10 µM), DHK (100 µM, selective inhibitor of GLT-1), and sulfasalazine (SAS, 250 µM, Xc(-) system inhibitor) decreased OGD-induced D-aspartate release. Interestingly, DHK or DL-TBOA blocked the decrease in glutamate release induced by GUO, whereas SAS did not modify the GUO effect. GUO protected hippocampal slices from cellular damage by modulation of glutamate transporters, however selective blockade of GLT-1 or Xc- system only did not affect this protective action of GUO. OGD decreased hippocampal glutamine synthetase (GS) activity and GUO recovered GS activity to control levels without altering the kinetic parameters of GS activity, thus suggesting GUO does not directly interact with GS. Additionally, the pharmacological inhibition of GS activity with methionine sulfoximine abolished the effect of GUO in reducing D-aspartate release and cellular damage evoked by OGD. Altogether, results in hippocampal slices subjected to OGD show that GUO counteracts the release of excitatory amino acids, stimulates the activity of GS, and decreases the cellular damage by modulation of glutamate transporters activity.
Collapse
Affiliation(s)
- Tharine Dal-Cim
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Wagner C Martins
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Daniel T Thomaz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Victor Coelho
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Gabriela Godoy Poluceno
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Débora Lanznaster
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Samuel Vandresen-Filho
- Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil. .,Programa de pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil. .,Programa de pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
141
|
Moeller SJ, London ED, Northoff G. Neuroimaging markers of glutamatergic and GABAergic systems in drug addiction: Relationships to resting-state functional connectivity. Neurosci Biobehav Rev 2016; 61:35-52. [PMID: 26657968 PMCID: PMC4731270 DOI: 10.1016/j.neubiorev.2015.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/05/2015] [Accepted: 11/21/2015] [Indexed: 12/29/2022]
Abstract
Drug addiction is characterized by widespread abnormalities in brain function and neurochemistry, including drug-associated effects on concentrations of the excitatory and inhibitory neurotransmitters glutamate and gamma-aminobutyric acid (GABA), respectively. In healthy individuals, these neurotransmitters drive the resting state, a default condition of brain function also disrupted in addiction. Here, our primary goal was to review in vivo magnetic resonance spectroscopy and positron emission tomography studies that examined markers of glutamate and GABA abnormalities in human drug addiction. Addicted individuals tended to show decreases in these markers compared with healthy controls, but findings also varied by individual characteristics (e.g., abstinence length). Interestingly, select corticolimbic brain regions showing glutamatergic and/or GABAergic abnormalities have been similarly implicated in resting-state functional connectivity deficits in drug addiction. Thus, our secondary goals were to provide a brief review of this resting-state literature, and an initial rationale for the hypothesis that abnormalities in glutamatergic and/or GABAergic neurotransmission may underlie resting-state functional deficits in drug addiction. In doing so, we suggest future research directions and possible treatment implications.
Collapse
Affiliation(s)
- Scott J Moeller
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Edythe D London
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Departments of Psychiatry and Biobehavioral Sciences, and Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Georg Northoff
- Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Ottawa, Canada.
| |
Collapse
|
142
|
Jayakumar AR, Norenberg MD. Glutamine Synthetase: Role in Neurological Disorders. ADVANCES IN NEUROBIOLOGY 2016; 13:327-350. [PMID: 27885636 DOI: 10.1007/978-3-319-45096-4_13] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glutamine synthetase (GS) is an ATP-dependent enzyme found in most species that synthesizes glutamine from glutamate and ammonia. In brain, GS is exclusively located in astrocytes where it serves to maintain the glutamate-glutamine cycle, as well as nitrogen metabolism. Changes in the activity of GS, as well as its gene expression, along with excitotoxicity, have been identified in a number of neurological conditions. The literature describing alterations in the activation and gene expression of GS, as well as its involvement in different neurological disorders, however, is incomplete. This review summarizes changes in GS gene expression/activity and its potential contribution to the pathogenesis of several neurological disorders, including hepatic encephalopathy, ischemia, epilepsy, Alzheimer's disease, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and astroglial neoplasms. This review also explores the possibility of targeting GS in the therapy of these conditions.
Collapse
Affiliation(s)
| | - Michael D Norenberg
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA.
- Departments of Pathology, University of Miami School of Medicine, 016960, Miami, FL, 33101, USA.
- Departments of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
143
|
Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle. ADVANCES IN NEUROBIOLOGY 2016; 13:9-42. [PMID: 27885625 DOI: 10.1007/978-3-319-45096-4_2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.
Collapse
|
144
|
Guerriero RM, Giza CC, Rotenberg A. Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep 2015; 15:27. [PMID: 25796572 DOI: 10.1007/s11910-015-0545-1] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury (TBI) leads to multiple short- and long-term changes in neuronal circuits that ultimately conclude with an imbalance of cortical excitation and inhibition. Changes in neurotransmitter concentrations, receptor populations, and specific cell survival are important contributing factors. Many of these changes occur gradually, which may explain the vulnerability of the brain to multiple mild impacts, alterations in neuroplasticity, and delays in the presentation of posttraumatic epilepsy. In this review, we provide an overview of normal glutamate and GABA homeostasis and describe acute, subacute, and chronic changes that follow injury. We conclude by highlighting opportunities for therapeutic interventions in this paradigm.
Collapse
Affiliation(s)
- Réjean M Guerriero
- Division Epilepsy, Department of Neurology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA,
| | | | | |
Collapse
|
145
|
Zielińska M, Dąbrowska K, Hadera MG, Sonnewald U, Albrecht J. System N transporters are critical for glutamine release and modulate metabolic fluxes of glucose and acetate in cultured cortical astrocytes: changes induced by ammonia. J Neurochem 2015; 136:329-38. [DOI: 10.1111/jnc.13376] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/25/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Katarzyna Dąbrowska
- Department of Neurotoxicology; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Mussie Ghezu Hadera
- Department of Neuroscience; Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| | - Ursula Sonnewald
- Department of Neuroscience; Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jan Albrecht
- Department of Neurotoxicology; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
146
|
Derouiche A, Haseleu J, Korf HW. Fine Astrocyte Processes Contain Very Small Mitochondria: Glial Oxidative Capability May Fuel Transmitter Metabolism. Neurochem Res 2015; 40:2402-13. [PMID: 25894677 DOI: 10.1007/s11064-015-1563-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 02/04/2023]
Abstract
The peripheral astrocyte process (PAP) is the glial compartment largely handling inactivation of transmitter glutamate, and supplying glutamate to the axon terminal. It is not clear how these energy demanding processes are fueled, and whether the PAP exhibits oxidative capability. Whereas the GFAP-positive perinuclear cytoplasm and stem process are rich in mitochondria, the PAP is often considered too narrow to contain mitochondria and might thus not rely on oxidative metabolism. Applying high resolution light microscopy, we investigate here the presence of mitochondria in the PAPs of freshly dissociated, isolated astrocytes. We provide an overview of the subcellular distribution and the approximate size of astrocytic mitochondria. A substantial proportion of the astrocyte's mitochondria are contained in the PAPs and, on the average, they are smaller there than in the stem processes. The majority of mitochondria in the stem and peripheral processes are surprisingly small (0.2-0.4 µm), spherical and not elongate, or tubular, which is supported by electron microscopy. The density of mitochondria is two to several times lower in the PAPs than in the stem processes. Thus, PAPs do not constitute a mitochondria free glial compartment but contain mitochondria in large numbers. No juxtaposition of mitochondria-containing PAPs and glutamatergic synapses has been reported. However, the issue of sufficient ATP concentrations in perisynaptic PAPs can be seen in the light of (1) the rapid, activity dependent PAP motility, and (2) the recently reported activity-dependent mitochondrial transport and immobilization leading to spatial, subcellular organisation of glutamate uptake and oxidative metabolism.
Collapse
Affiliation(s)
- Amin Derouiche
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität, Frankfurt am Main, Germany. .,Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Frankfurt am Main, Germany. .,Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany.
| | - Julia Haseleu
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany.,Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Horst-Werner Korf
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität, Frankfurt am Main, Germany.,Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
147
|
Leke R, Escobar TDC, Rao KVR, Silveira TR, Norenberg MD, Schousboe A. Expression of glutamine transporter isoforms in cerebral cortex of rats with chronic hepatic encephalopathy. Neurochem Int 2015; 88:32-7. [PMID: 25842041 DOI: 10.1016/j.neuint.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs due to acute and chronic liver diseases, the hallmark of which is the increased levels of ammonia and subsequent alterations in glutamine synthesis, i.e. conditions associated with the pathophysiology of HE. Under physiological conditions, glutamine is fundamental for replenishment of the neurotransmitter pools of glutamate and GABA. The different isoforms of glutamine transporters play an important role in the transfer of this amino acid between astrocytes and neurons. A disturbance in the GABA biosynthetic pathways has been described in bile duct ligated (BDL) rats, a well characterized model of chronic HE. Considering that glutamine is important for GABA biosynthesis, altered glutamine transport and the subsequent glutamate/GABA-glutamine cycle efficacy might influence these pathways. Given this potential outcome, the aim of the present study was to investigate whether the expression of the glutamine transporters SAT1, SAT2, SN1 and SN2 would be affected in chronic HE. We verified that mRNA expression of the neuronal glutamine transporters SAT1 and SAT2 was found unaltered in the cerebral cortex of BDL rats. Similarly, no changes were found in the mRNA level for the astrocytic transporter SN1, whereas the gene expression of SN2 was increased by two-fold in animals with chronic HE. However, SN2 protein immuno-reactivity did not correspond with the increase in gene transcription since it remained unaltered. These data indicate that the expression of the glutamine transporter isoforms is unchanged during chronic HE, and thus likely not to participate in the pathological mechanisms related to the imbalance in the GABAergic neurotransmitter system observed in this neurologic condition.
Collapse
Affiliation(s)
- Renata Leke
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil; Department of Pathology, University of Miami School of Medicine and Veterans Administration Medical Center, Miami, FL 33101, USA.
| | - Thayssa D C Escobar
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| | - Kakulavarapu V Rama Rao
- Department of Pathology, University of Miami School of Medicine and Veterans Administration Medical Center, Miami, FL 33101, USA
| | - Themis Reverbel Silveira
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil; Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Michael D Norenberg
- Department of Pathology, University of Miami School of Medicine and Veterans Administration Medical Center, Miami, FL 33101, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|