101
|
Abstract
Lysosomal membrane glycoproteins are highly glycosylated proteins decorating the luminal surface of lysosomal membranes. Their biosynthetic route from the rough endoplasmic reticulum to the lysosomal compartment has been elucidated during recent years. Signals for intracellular sorting have been identified and characterized. The function of these proteins remains to be determined. Besides resident proteins the lysosomal membrane harbours at least one transient passenger, lysosomal acid phosphatase, which is sorted as a membrane-bound precursor like resident lysosomal membrane proteins and liberated from the membrane by limited proteolysis upon arrival in dense lysosomes.
Collapse
Affiliation(s)
- C Peters
- Universität Göttingen, Zentrum Biochemie und Molekulare Zellbiologie, Germany
| | | |
Collapse
|
102
|
Shum L, Reeves SA, Kuo AC, Fromer ES, Derynck R. Association of the transmembrane TGF-alpha precursor with a protein kinase complex. J Biophys Biochem Cytol 1994; 125:903-16. [PMID: 8188754 PMCID: PMC2120079 DOI: 10.1083/jcb.125.4.903] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A variety of growth factors including transforming growth factor-alpha (TGF-alpha) are synthesized as transmembrane precursors. The short cytoplasmic domain of the transmembrane TGF-alpha precursor lacks any apparent motif associated with signal transduction. However, the sequence conservation of this cytoplasmic domain and its abundance of cysteine residues, reminiscent of the cytoplasmic domains of CD4 and CD8, suggest a biological function. In this study, we showed that transmembrane TGF-alpha was rapidly internalized after interaction with a specific antibody and that this internalization was greatly decreased when the COOH-terminal 31 amino acids were removed. Chemical cross-linking experiments revealed two associated proteins of 86 and 106 kD which coimmunoprecipitated with the TGF-alpha precursor. The association of p86 was dependent on the presence of the COOH-terminal cytoplasmic 31 amino acids of the TGF-alpha precursor, whereas p106 still remained associated when this segment was deleted. In addition, p106 was tyrosine-phosphorylated and exposed on the cell surface. The protein complex associated with transmembrane TGF-alpha displayed kinase activities towards tyrosine, serine, and threonine residues. These activities were not associated with transmembrane TGF-alpha when the COOH-terminal segment was truncated. The association of a protein kinase complex with transmembrane TGF-alpha may provide the basic elements for a "reverse" mode of signaling through the cytoplasmic domain of this growth factor, which may lead to two-directional communication during ligand-receptor interaction.
Collapse
Affiliation(s)
- L Shum
- Department of Growth and Development, Anatomy, University of California at San Francisco 94143-0640
| | | | | | | | | |
Collapse
|
103
|
Dietrich J, Hou X, Wegener AM, Geisler C. CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor. EMBO J 1994; 13:2156-66. [PMID: 8187769 PMCID: PMC395069 DOI: 10.1002/j.1460-2075.1994.tb06492.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Several cell surface receptors including the T cell receptor (TCR) are phosphorylated and down-regulated following activation of protein kinase C (PKC). Among other substrates the activated PKC in T cells phosphorylates the CD3 gamma subunit of the TCR. To investigate the role of CD3 gamma phosphorylation in PKC-mediated TCR down-regulation, point mutated CD3 gamma cDNA was transfected into the CD3 gamma-negative T cell line JGN and CD3 gamma transfectants were analysed. Phosphorylation at S126 but not S123 in the cytoplasmic tail of CD3 gamma was required for PKC-mediated down-regulation of the TCR. Furthermore, analysis of a series of CD3 gamma truncation mutants indicated that in addition to S126 phosphorylation a motif C-terminal of S126 was required for TCR down-regulation. Point mutation analyses confirmed this observation and demonstrated that a membrane-proximal di-leucine motif (L131 and L132) in the cytoplasmic tail of CD3 gamma was required for PKC-mediated TCR down-regulation in addition to phosphorylation at S126. Incubation of T cells in hypertonic medium known to disrupt normal clathrin lattices severely inhibited PKC-mediated TCR down-regulation in non-mutated T cells, indicating that the TCR was down-regulated by endocytosis via clathrin coated pits. Based on the present results and previously published observations on intracellular receptor sorting, a general model for intracellular sorting of receptors containing di-leucine- or tyrosine-based motifs is proposed.
Collapse
Affiliation(s)
- J Dietrich
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
104
|
Welsh JB, Worthylake R, Wiley HS, Gill GN. Specific factors are required for kinase-dependent endocytosis of insulin receptors. Mol Biol Cell 1994; 5:539-47. [PMID: 7919536 PMCID: PMC301066 DOI: 10.1091/mbc.5.5.539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mouse B82 cells that support high affinity saturable endocytosis of epidermal growth factor receptors (EGFR) exhibited only low rates of nonsaturable internalization of insulin receptors (InsR). To investigate the defect in endocytosis of InsR in B82 cells, we examined the role of sequence motifs and tyrosine kinase, the two receptor components shown to be required for efficient saturable endocytosis of InsR in Rat 1 cells. Placement of residues encoded by exon 16 of the InsR onto an EGFR truncated to residue 958 restored EGF-induced internalization of this mutant receptor indicating that the sequence codes in exon 16 are recognized by B82 cells. To determine whether the kinase function could be provided in trans, a B82 cell expressing both receptors was established. EGF-activated EGFR kinase was not able to restore insulin-dependent rapid endocytosis to InsR. However, fusion of untransfected Rat1 cells with InsR-expressing B82 cells enabled rapid endocytosis of InsR, indicating that the internalization defect can be complemented. These results indicate that, although internalization codes can function in the context of other receptors, activation of tyrosine kinase receptors requires an additional specific component.
Collapse
Affiliation(s)
- J B Welsh
- Department of Pathology, University of California San Diego, La Jolla 92093-0650
| | | | | | | |
Collapse
|
105
|
Regulation of postendocytic trafficking of the epidermal growth factor receptor through endosomal retention. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99956-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
106
|
Cooke SV, Shur BD. Cell Surface beta1,4-Galactosyltransferase: Expression and Function. (cell surface galactosyltransferase/cell interactions/fertilization/migration/adhesion). Dev Growth Differ 1994. [DOI: 10.1111/j.1440-169x.1994.00125.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
107
|
Wilde A, Dempsey C, Banting G. The tyrosine-containing internalization motif in the cytoplasmic domain of TGN38/41 lies within a nascent helix. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37257-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
108
|
The residues Leu(Ile)475-Ile(Leu, Val, Ala)476, contained in the extended carboxyl cytoplasmic tail, are critical for targeting of the resident lysosomal membrane protein LIMP II to lysosomes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37418-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
109
|
Naim H, Roth M. Characteristics of the internalization signal in the Y543 influenza virus hemagglutinin suggest a model for recognition of internalization signals containing tyrosine. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41722-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
110
|
A tyrosine residue in the juxtamembrane segment of the platelet-derived growth factor beta-receptor is critical for ligand-mediated endocytosis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37632-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
111
|
Affiliation(s)
- M Fukuda
- La Jolla Cancer Research Foundation, Cancer Research Center, California 92037
| |
Collapse
|
112
|
Affiliation(s)
- G von Heijne
- Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
113
|
Wang LH, Rothberg KG, Anderson RG. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 1993; 123:1107-17. [PMID: 8245121 PMCID: PMC2119875 DOI: 10.1083/jcb.123.5.1107] [Citation(s) in RCA: 945] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The clathrin-coated pit lattice is held onto the plasma membrane by an integral membrane protein that binds the clathrin AP-2 subunit with high affinity. In vitro studies have suggested that this protein controls the assembly of the pit because membrane bound AP-2 is required for lattice assembly. If so, the AP-2 binding site must be a resident protein of the coated pit and recycle with other receptors that enter cells through this pathway. Proper recycling, however, would require the switching off of AP-2 binding to allow the binding site to travel through the endocytic pathway unencumbered. Evidence for this hypothesis has been revealed by the cationic amphiphilic class of drugs (CAD), which have previously been found to inhibit receptor recycling. Incubation of human fibroblasts in the presence of these drugs caused clathrin lattices to assemble on endosomal membranes and at the same time prevented coated pit assembly at the cell surface. These effects suggest that CADs reverse an on/off switch that controls AP-2 binding to membranes. We conclude that cells have a mechanism for switching on and off AP-2 binding during the endocytic cycle.
Collapse
Affiliation(s)
- L H Wang
- Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | |
Collapse
|
114
|
Aroeti B, Kosen PA, Kuntz ID, Cohen FE, Mostov KE. Mutational and secondary structural analysis of the basolateral sorting signal of the polymeric immunoglobulin receptor. J Cell Biol 1993; 123:1149-60. [PMID: 8245123 PMCID: PMC2119873 DOI: 10.1083/jcb.123.5.1149] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The 17-juxtamembrane cytoplasmic residues of the polymeric immunoglobulin receptor contain an autonomous basolateral targeting signal that does not mediate rapid endocytosis (Casanova, J. E., G. Apodaca, and K. E. Mostov. Cell. 66:65-75). Alanine-scanning mutagenesis identifies three residues in this region, His656, Arg657, and Val660, that are most essential for basolateral sorting and two residues, Arg655 and Tyr668, that play a lesser role in this process. Progressive truncations suggested that Ser664 and Ile665 might also play a role in basolateral sorting. However, mutation of these residues to Ala or internal deletions of these residues did not affect basolateral sorting, indicating that these residues are probably not required for basolateral sorting. Two-dimensional NMR spectroscopy of a peptide corresponding to the 17-mer signal indicates that the sequence Arg658-Asn-Val-Asp661 has a propensity to adopt a beta-turn in solution. Residues COOH-terminal to the beta-turn (Arg662 to Arg669) seem to take up a nascent helix structure in solution. Substitution of Val660 with Ala destabilizes the turn, while mutation of Arg657 to Ala does not appear to affect the turn structure. Neither mutation detectably altered the stability of the nascent helix in the COOH-terminal portion of the peptide.
Collapse
Affiliation(s)
- B Aroeti
- Department of Anatomy, University of California, San Francisco 94143
| | | | | | | | | |
Collapse
|
115
|
Pieters J, Bakke O, Dobberstein B. The MHC class II-associated invariant chain contains two endosomal targeting signals within its cytoplasmic tail. J Cell Sci 1993; 106 ( Pt 3):831-46. [PMID: 8308066 DOI: 10.1242/jcs.106.3.831] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The oligomeric complex formed by major histocompatibility complex (MHC) class II alpha and beta chains and invariant chain (Ii) assembles in the endoplasmic reticulum and is then transported via the Golgi complex to compartments of the endocytic pathway. When Ii alone is expressed in CV1 cells it is sorted to endosomes. The Ii cytoplasmic tail has been found to be essential for targeting to these compartments. In order to characterize further the signals responsible for endosomal targeting, we have deleted various segments of the cytoplasmic tail. The Ii mutants were transiently expressed and the cellular location of the proteins was analyzed biochemically and morphologically. The cytoplasmic tail of Ii was found to contain two endosomal targeting sequences within its cytoplasmic tail; one targeting sequence was present within amino acid residues 12–29 and deletion of this segment revealed the presence of a second endosomal targeting sequence, located within the first 11 amino acid residues. The presence of a leucine-isoleucine pair at positions 7 and 8 within this sequence was found to be essential for endosomal targeting. In addition, the presence of this L-I motif lead to accumulation of Ii molecules in large endosomal vacuoles containing lysosomal marker proteins. Both wild type Ii and Ii mutant molecules containing only one endosomal targeting sequence were rapidly internalized from the plasma membrane. When the Ii cytoplasmic tail was fused to the membrane-spanning region of neuraminidase, a resident plasma membrane protein, the resulting chimera (INA) was found in endocytic compartments containing lysosomal marker proteins. Thus the cytoplasmic tail of Ii is sufficient for targeting to the endocytic/lysosomal pathway.
Collapse
Affiliation(s)
- J Pieters
- Cell Biology Programme, European Molecular Biology Laboratory Heidelberg, FRG
| | | | | |
Collapse
|
116
|
Clathrin-coated pit-mediated receptor internalization. Role of internalization signals and receptor mobility. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)49446-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
117
|
Abstract
In the kidney, polarized epithelial cells play critical roles in ion, fluid and solute reabsorption from the ultrafiltrate to the blood supply. Detailed analysis of protein distributions has revealed that ion channels, transporters and pumps are restricted to distinct domains of the plasma membrane that face either the ultrafiltrate (apical membrane) or the blood supply (basal-lateral membrane). The importance of the development and maintenance of the polarized distributions of these proteins in renal epithelia for normal cell function is demonstrated by the fact that several disease states are characterized by abnormal distributions of proteins; for example in polycystic kidney disease, Na+/K(+)-ATPase has been detected in the apical and lateral membranes, compared with normal cells where Na+/K(+)-ATPase is localized in the basal-lateral membrane domain. Recent studies indicate that the development of restricted distributions of proteins at the cell surface of Madin Darby canine kidney epithelial cells is determined by direct sorting of proteins in the trans Golgi network into vesicles that are delivered vectorially to either the apical or basal-lateral membrane. Upon arrival at the plasma membrane, some proteins, such as Na+/K(+)-ATPase, may be selectively retained by binding to the membrane cytoskeleton.
Collapse
Affiliation(s)
- W J Nelson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305-5426
| |
Collapse
|
118
|
Collawn J, Lai A, Domingo D, Fitch M, Hatton S, Trowbridge I. YTRF is the conserved internalization signal of the transferrin receptor, and a second YTRF signal at position 31-34 enhances endocytosis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80596-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
119
|
|
120
|
Carpentier JL, Paccaud JP, Backer J, Gilbert A, Orci L, Kahn CR, Baecker J [corrected to Backer J]. Two steps of insulin receptor internalization depend on different domains of the beta-subunit. J Cell Biol 1993; 122:1243-52. [PMID: 8376461 PMCID: PMC2119852 DOI: 10.1083/jcb.122.6.1243] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The internalization of signaling receptors such as the insulin receptor is a complex, multi-step process. The aim of the present work was to determine the various steps in internalization of the insulin receptor and to establish which receptor domains are implicated in each of these by the use of receptors possessing in vitro mutations. We find that kinase activation and autophosphorylation of all three regulatory tyrosines 1146, 1150, and 1151, but not tyrosines 1316 and 1322 in the COOH-terminal domain, are required for the ligand-specific stage of the internalization process; i.e., the surface redistribution of the receptor from microvilli where initial binding occurs to the nonvillous domain of the cell. Early intracellular steps in insulin signal transduction involving the activation of phosphatidylinositol 3'-kinase are not required for this redistribution. The second step of internalization consists in the anchoring of the receptors in clathrin-coated pits. In contrast to the first ligand specific step, this step is common to many receptors including those for transport proteins and occurs in the absence of kinase activation and receptor autophosphorylation, but requires a juxta-membrane cytoplasmic segment of the beta-subunit of the receptor including a NPXY sequence. Thus, there are two independent mechanisms controlling insulin receptor internalization which depend on different domains of the beta-subunit.
Collapse
Affiliation(s)
- J L Carpentier
- Department of Morphology, University of Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
121
|
Ligand-induced internalization of the epidermal growth factor receptor is mediated by multiple endocytic codes analogous to the tyrosine motif found in constitutively internalized receptors. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36515-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
122
|
Brakch N, Boileau G, Simonetti M, Nault C, Joseph-Bravo P, Rholam M, Cohen P. Prosomatostatin processing in Neuro2A cells. Role of beta-turn structure in the vicinity of the Arg-Lys cleavage site. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:39-47. [PMID: 8103453 DOI: 10.1111/j.1432-1033.1993.tb18114.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proline residues located near the processing sites of human prosomatostatin were previously shown to be important for cleavage of the precursor into somatostatin 28 and somatostatin 14 [Gomez, S., Boileau, G., Zollinger, L., Nault, C., Rholam, M. & Cohen, P. (1989) EMBO J. 8, 2911-2916]. In this study, site-directed and regional mutagenesis of the human prosomatostatin cDNA coupled with analysis by circular-dichroism and Fourier-transform-infrared spectroscopies of the native and mutated peptide sequences were used to elucidate the role of proline in proteolytic processing. Glycine was substituted for proline a position -5 and the beta-turn-promoting sequence Pro-Arg-Glu-Arg, located near the somatostatin-14 cleavage site and predicted to form a beta-turn structure, was replaced by Ser-Ser-Asn-Arg or Tyr-Lys-Gly-Arg, which have been shown by X-ray diffraction to form beta turns in other proteins. Analysis of the prosomatostatin-derived peptides produced by expression of the mutated cDNA species in Neuro2A cells indicated that while Pro-5-->Ala abolished cleavage at the dibasic site, the formation of mutants [Gly-5] prosomatostatin, [Ser-5, Ser-4, Arg-3] prosomatostatin and [Tyr-5, Lys-4, Gly-3] prosomatostatin did not affect cleavage at the dibasic site but produced modifications in both the relative proportions of the generated hormones and in precursor processing efficiency. Moreover, spectroscopical analysis showed that whereas these substitutions did not modify the presence of a beta turn structure in the corresponding peptide sequences, replacement of Pro-5-->Ala resulted in a dramatic increase in alpha-helix accompanied by the significant decrease of other structures including beta turn. The data support the hypothesis that the proline residue near the processing site for somatostatin-14 production is an important structural feature for conferring on the cleavage domain the adequate conformation for accessibility to processing enzymes and permitting production of equivalent amounts of both hormones.
Collapse
Affiliation(s)
- N Brakch
- Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
123
|
Schulze-Garg C, Böker C, Nadimpalli SK, von Figura K, Hille-Rehfeld A. Tail-specific antibodies that block return of 46,000 M(r) mannose 6-phosphate receptor to the trans-Golgi network. J Biophys Biochem Cytol 1993; 122:541-51. [PMID: 7687604 PMCID: PMC2119672 DOI: 10.1083/jcb.122.3.541] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recycling of 46,000 M(r) mannose 6-phosphate receptor (MPR 46) was investigated by microinjection of Fab fragments against small epitopes within the cytoplasmic domain of the receptor. Fab fragments against the peptide 43-47 (Ala-Tyr-Arg-Gly-Val) efficiently blocked return of MPR 46 to the TGN. Antibody-induced redistribution resulted in accumulation of MPR 46 within an endosomal compartment, from which it recycled to the plasma membrane. Rab5 and rab7, markers for early and late endosomes, respectively, were not detectable in the compartment of redistributed MPR 46, suggesting that it represents a specialized endosomal subcompartment. The bulk of redistributed MPR 46 did not colocalize with endocytosed fluid-phase marker, suggesting that it accumulates at a site where MPR 46 has been segregated from endocytosed material, which is destined for transport to lysosomes. Peptide 43-47 contains a tyrosine (residue 44) which has been shown earlier to be part of an internalization signal for MPR 46 (Johnson, K. F., W. Chan, and S. Kornfeld. 1990. Proc. Natl. Acad. Sci. USA. 87:10010-10014). The role of tyrosine residue 44 as part of a putative multifunctional sorting signal is discussed.
Collapse
|
124
|
Lamaze C, Baba T, Redelmeier TE, Schmid SL. Recruitment of epidermal growth factor and transferrin receptors into coated pits in vitro: differing biochemical requirements. Mol Biol Cell 1993; 4:715-27. [PMID: 8400457 PMCID: PMC300981 DOI: 10.1091/mbc.4.7.715] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The biochemical requirements for epidermal growth factor (EGF) and transferrin receptor-mediated endocytosis were compared using perforated human A431 cells. Morphological studies showed that horseradish peroxidase (HRP)-conjugated EGF and gold-labeled antitransferrin (Tfn) receptor antibodies were colocalized during endocytosis in vitro. The sequestration of both ligands into deeply invaginated coated pits required ATP hydrolysis and cytosolic factors and was inhibited by GTP gamma S, indicating mechanistic similarities. Importantly, several differences in the biochemical requirements for sequestration of EGF and Tfn were also detected. These included differing requirements for soluble AP (clathrin assembly protein) complexes, differing cytosolic requirements, and differing sensitivities to the tyrosine kinase inhibitor, genistein. The biochemical differences detected between EGF and Tfn sequestration most likely reflect specific requirements for the recruitment of EGF-receptors (R) into coated pits. This assay provides a novel means to identify the molecular bases for these biochemical distinctions and to elucidate the mechanisms involved in ligand-induced recruitment of EGF-R into coated pits.
Collapse
Affiliation(s)
- C Lamaze
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | |
Collapse
|
125
|
Valiquette M, Bonin H, Bouvier M. Mutation of tyrosine-350 impairs the coupling of the beta 2-adrenergic receptor to the stimulatory guanine nucleotide binding protein without interfering with receptor down-regulation. Biochemistry 1993; 32:4979-85. [PMID: 8388251 DOI: 10.1021/bi00070a002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Long-term stimulation of the beta 2-adrenergic receptor (beta 2AR) leads to an internalization and degradation of the receptor. This down-regulation of the beta 2AR number contributes to the desensitization of the adenylyl cyclase activity induced by chronic exposure to agonists. It was proposed that two tyrosine residues (Tyr-350 and Tyr-354) located in the cytoplasmic tail of the beta 2AR play a crucial role in agonist-induced down-regulation. In addition to perturbation of the down-regulation, the substitution of these tyrosines for alanines also led to a functional uncoupling of the receptor from Gs [Valiquette et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 5089-5093]. To further characterize the relative contribution of Tyr-350 and Tyr-354 to the receptor interaction with Gs and agonist-promoted down-regulation, both tyrosines were individually replaced by alanines and mutant receptors expressed in CHW cells. We show here that mutation of Tyr-350 but not that of Tyr-354 significantly decreased the ability of the beta 2AR to be functionally coupled to Gs and thereby to stimulate the adenylyl cyclase. Moreover, in contrast to the double tyrosine mutation, neither of the single-point mutations affected the agonist-induced down-regulation pattern. These data suggest that the presence of either Tyr-350 or Tyr-354 is sufficient to maintain normal agonist-induced down-regulation whereas the integrity of Tyr-350 is required for an appropriate coupling to Gs.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Valiquette
- Département de Biochimie, Université de Montréal, Quebec, Canada
| | | | | |
Collapse
|
126
|
Brakch N, Rholam M, Boussetta H, Cohen P. Role of beta-turn in proteolytic processing of peptide hormone precursors at dibasic sites. Biochemistry 1993; 32:4925-30. [PMID: 8490028 DOI: 10.1021/bi00069a029] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteolytic activation of prohormones and proproteins occurs most frequently at the level of basic amino acids arranged in doublets. Previous predictions by Rholam et al. [Rholam, M., Nicolas, P., & Cohen, P. (1986) FEBS Lett. 207. 1-6] have indicated, on the basis of 20 prohormone sequences containing 53 dibasic potential processing sites, that dibasic sites situated in, or next to, beta-turns were cleaved in vivo, whereas sites included in ordered structures like beta-sheets or alpha-helices were not. We have used peptide analogs of the proocytocin/neurophysin processing domain and a purified preparation of the putative proocytocin convertase from bovine tissues as a model to demonstrate that (1) processing at dibasic sites is associated with a prohormone sequence organized in a beta-turn structure; (2) the beta-turn is an interchangeable motif since the original sequence could be replaced by an heterologous one possessing the ability to organize as a beta-turn; and (3) this particular secondary structure participates in the catalytic reaction, most likely by favoring the interactions of the substrate with the processing endoprotease. It is concluded that, in addition to the dibasic and other amino acids around the cleavage loci, the beta-turn constitutes a key feature in the proteolytic processing reaction in participating as the favorable conformation for optimal substrate-enzyme active site recognition.
Collapse
Affiliation(s)
- N Brakch
- Université Pierre et Marie Curie, Unité de Recherches Associée au CNRS 1682, Paris, France
| | | | | | | |
Collapse
|
127
|
Holness C, da Silva R, Fawcett J, Gordon S, Simmons D. Macrosialin, a mouse macrophage-restricted glycoprotein, is a member of the lamp/lgp family. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98400-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
128
|
van de Winkel JG, Capel PJ. Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. IMMUNOLOGY TODAY 1993; 14:215-21. [PMID: 8517920 DOI: 10.1016/0167-5699(93)90166-i] [Citation(s) in RCA: 476] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Receptors for the Fc domain of IgG (Fc gamma R) provide a critical link between specific humoral responses and the cellular branch of the immune system. When hFc gamma R interact with immunoglobulin, a variety of biological responses are triggered. These include phagocytosis, endocytosis, antibody-dependent cellular cytotoxicity (ADCC), release of inflammatory mediators, and enhancement of antigen presentation. In the last few years our understanding of the Fc gamma receptor structure has increased dramatically, due to the availability of monoclonal antibodies (mAb) and cDNA probes. Fc gamma R are members of the immunoglobulin superfamily and three main classes, hFc gamma RI, hFc gamma RII, and hFc gamma RIII are recognized in man generating at least 12 different isoforms. A further level of complexity is introduced by various genetic polymorphisms and, importantly, recent evidence points at the relevance of this Fc gamma R heterogeneity.
Collapse
|
129
|
Bos K, Wraight C, Stanley KK. TGN38 is maintained in the trans-Golgi network by a tyrosine-containing motif in the cytoplasmic domain. EMBO J 1993; 12:2219-28. [PMID: 8491209 PMCID: PMC413443 DOI: 10.1002/j.1460-2075.1993.tb05870.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sorting of proteins destined for different plasma membrane domains, lysosomes and secretory pathways takes place in the trans-Golgi network (TGN). TGN38 is an integral membrane protein found in this intracellular compartment. We show that TGN38 contains an autonomous targeting signal within its cytoplasmic domain which determines its intracellular location. Deletion analysis and site-directed mutagenesis of this domain demonstrate that a tyrosine motif homologous to the internalization signal of surface receptors is necessary and sufficient for correct localization. These findings suggest that TGN38 is maintained in the TGN by retrieval from the plasma membrane and employs a different mechanism for retention from that of the transferase enzymes of the trans-Golgi.
Collapse
Affiliation(s)
- K Bos
- Heart Research Institute, Camperdown, NSW, Sydney, Australia
| | | | | |
Collapse
|
130
|
De Strooper B, Umans L, Van Leuven F, Van Den Berghe H. Study of the synthesis and secretion of normal and artificial mutants of murine amyloid precursor protein (APP): cleavage of APP occurs in a late compartment of the default secretion pathway. J Biophys Biochem Cytol 1993; 121:295-304. [PMID: 8468348 PMCID: PMC2200101 DOI: 10.1083/jcb.121.2.295] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Amyloid precursor protein (APP) secretase plays a pivotal role in the processing of APP since its activity precludes the formation of amyloid peptide in Alzheimer's Disease. The identity and the subcellular localization of this enzyme are at this moment unknown. It is also unclear how APP escapes the activity of this enzyme when amyloid is formed. We have previously shown that APP-secretase activity is not inhibited by exogenously added proteinase inhibitors of different specificity (De Strooper, B., F. Van Leuven, and H. Van Den Berghe. 1992. FEBS (Fed. Eur. Biochem. Soc.) Lett. 308:50-53). We show here that the primary amine methylamine inhibits the secretion of APP into the medium. Furthermore, we show that a truncated form of APP, devoid of the cytoplasmic domain, is more efficiently cleaved and secreted than wild-type APP, which together with the methylamine block, shows that APP-secretase is located in a late compartment of the default constitutional secretion pathway. The sorting signals in the cytoplasmic domain of APP are therefore important in the deviation of APP from the secretase pathway. Finally we show that mutation of Arg609 to Asp in combination with Lys612 to Glu makes APP a less efficiently cleaved substrate for APP-secretase. The results are discussed in the context of recent findings on the targeting of APP and a parallel is drawn with some lysosomal glycoproteins that follow similar pathways.
Collapse
Affiliation(s)
- B De Strooper
- Center for Human Genetics, University of Leuven, Belgium
| | | | | | | |
Collapse
|
131
|
|
132
|
Vihko P, Kurkela R, Porvari K, Herrala A, Lindfors A, Lindqvist Y, Schneider G. Rat acid phosphatase: overexpression of active, secreted enzyme by recombinant baculovirus-infected insect cells, molecular properties, and crystallization. Proc Natl Acad Sci U S A 1993; 90:799-803. [PMID: 8430088 PMCID: PMC45757 DOI: 10.1073/pnas.90.3.799] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rat prostatic acid phosphatase (rPAP; orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2) was expressed in the baculovirus expression vector system. Recombinant protein was secreted into the medium at a high yield by infected insect cells, which were cultured at high density in a 30-liter bioreactor allowing high oxygen content for rapidly growing cells. About 20% of the cell protein produced was rPAP. Partial sequence determination of the N terminus of the purified recombinant secreted protein revealed identity to the native secreted protein, showing that the signal peptide is recognized and properly cleaved in insect cells. The enzyme was purified by using L-(+)-tartrate affinity chromatography. The purified protein had a high specific activity of 2620 mumol.min-1.mg-1 with p-nitrophenyl phosphate at the substrate, and it also showed phosphotyrosine phosphatase activity. The molecular mass of the recombinant rPAP was 155 kDa. Two subunits of 46 kDa and 48 kDa could be detected in SDS/PAGE, but only one subunit of 41 kDa was present after digestion with N-glycosidase. The active enzyme is a trimer of subunits differing only in glycosylation. When recombinant rPAP was crystallized with polyethylene glycol 6000 as the precipitant, the crystals were trigonal (space group P3(1)21) with cell dimensions a = 89.4 A and c = 152.0 A. The observed diffraction pattern extends to a resolution of at least 3 A.
Collapse
Affiliation(s)
- P Vihko
- Department of Clinical Chemistry, University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
133
|
Cloning of a novel surface antigen from the insect stages of Trypanosoma brucei by expression in COS cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53938-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
134
|
Méresse S, Hoflack B. Phosphorylation of the cation-independent mannose 6-phosphate receptor is closely associated with its exit from the trans-Golgi network. J Cell Biol 1993; 120:67-75. [PMID: 8416996 PMCID: PMC2119483 DOI: 10.1083/jcb.120.1.67] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have previously shown that two serine residues present in two conserved regions of the bovine cation-independent mannose 6-phosphate receptor (CI-MPR) cytoplasmic domain are phosphorylated in vivo (residues 2421 and 2492 of the full length bovine CI-MPR precursor). In this study, we have used CHO cells to investigate the phosphorylation state of these two serines along the different steps of the CI-MPR exocytic and endocytic recycling pathways. Transport and phosphorylation of the CI-MPR in the biosynthetic pathway were examined using deoxymannojirimycin (dMM), a specific inhibitor of the cis-Golgi processing enzyme alpha-mannosidase I which leads to the accumulation of N-linked high mannose oligosaccharides on glycoproteins. Upon removal of dMM, normal processing to complex-type oligosaccharides (galactosylation and then sialylation) occurs on the newly synthesized glycoproteins, including the CI-MPR which could then be purified and analyzed on lectin affinity columns. Phosphorylation of the newly synthesized CI-MPR was concomitant with the sialylation of its oligosaccharides and appeared as a major albeit transient modification. Phosphorylation of the cell surface CI-MPR was examined during its endocytosis as well as its return to the Golgi using antibody tagging and exogalactosylation. The cell surface CI-MPR was not phosphorylated when it entered clathrin-coated pits or when it moved to the early and late endosomes. In contrast, the surface CI-MPR was phosphorylated when it had been resialylated upon its return to the trans-Golgi network. Subcellular fractionation experiments showed that the phosphorylated CI-MPR and the corresponding kinase were found in clathrin-coated vesicles. Collectively, these results indicate that phosphorylation of the two serines in the CI-MPR cytoplasmic domain is associated with a single step of transport of its recycling pathways and occurs when this receptor is in the trans-Golgi network and/or has left this compartment via clathrin-coated vesicles.
Collapse
Affiliation(s)
- S Méresse
- European Molecular Biology Laboratory, Cell Biology Programme, Heidelberg, Germany
| | | |
Collapse
|
135
|
Kruskal BA, Sastry K, Warner AB, Mathieu CE, Ezekowitz RA. Phagocytic chimeric receptors require both transmembrane and cytoplasmic domains from the mannose receptor. J Exp Med 1992; 176:1673-80. [PMID: 1460425 PMCID: PMC2119468 DOI: 10.1084/jem.176.6.1673] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phagocytosis has traditionally been viewed as a specialized function of myeloid and monocytic cells. The mannose receptor (MR) is an opsonin-independent phagocytic receptor expressed on tissue macrophages. When human MR cDNA is transfected into Cos cells, these usually non-phagocytic cells express cell surface MR and bind and ingest MR ligands such as zymosan, yeast, and Pneumocystis carinii. Expression of cDNA for Fc gamma RI (CD64), the high-affinity Fc receptor, in Cos cells confers binding but barely detectable phagocytosis of antibody-opsonized erythrocytes (EA). We report here that chimeric receptors containing the ligand-binding ectodomain of the Fc receptor and the transmembrane and cytoplasmic domains of the MR ingest bound EA very efficiently, whereas chimeras with the Fc receptor ecto- and transmembrane domains and the MR tail, or the Fc receptor ecto- and cytoplasmic domains and the MR transmembrane region, are significantly less phagocytic. All of the chimeric receptors bind ligand with equal avidity, but gain of functional phagocytosis is only conferred by the MR transmembrane and cytoplasmic domains. Endocytosis of monomeric immunoglobulin G by chimeric receptors demonstrates a similar pattern, with optimal uptake by the chimera containing both tail and transmembrane regions from the MR. The chimeric receptors with only the transmembrane or the cytoplasmic domain contributed by the MR were less efficient. Site-directed mutagenesis of the single tyrosine residue in the cytoplasmic tail (which is present in a motif homologous to an endocytosis consensus motif in the LDL receptor cytoplasmic tail [Chen, W.-J., J. L. Goldstein, and M. S. Brown. 1990. J. Biol. Chem. 265:3116]) reduces the efficiency of phagocytosis and endocytosis to a similar extent.
Collapse
Affiliation(s)
- B A Kruskal
- Department of Hematology/Oncology, Children's Hospital, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
136
|
Wilcox CA, Redding K, Wright R, Fuller RS. Mutation of a tyrosine localization signal in the cytosolic tail of yeast Kex2 protease disrupts Golgi retention and results in default transport to the vacuole. Mol Biol Cell 1992; 3:1353-71. [PMID: 1493334 PMCID: PMC275705 DOI: 10.1091/mbc.3.12.1353] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Kex2 protease processes pro-alpha-factor in a late Golgi compartment in Saccharomyces cerevisiae. The first approximately 30 residues of the 115 amino acid CO2H-terminal cytosolic tail (C-tail) of the Kex2 protein (Kex2p) contain a Golgi retention signal that resembles coated-pit localization signals in mammalian cell surface receptors. Mutation of one (Tyr713) of two tyrosine residues in the C-tail or deletion of sequences adjacent to Tyr713 results in loss of normal Golgi localization. Surprisingly, loss of the Golgi retention signal resulted in transport of C-tail mutant Kex2p to the vacuole (yeast lysosome), as judged by kinetics of degradation and by indirect immunofluorescence. Analysis of the loss of Kex2 function in vivo after shutting off expression of wild-type or mutant forms proved that mutations that cause rapid vacuolar turnover do so by increasing the rate of exit of the enzyme from the pro-alpha-factor processing compartment. The most likely explanation for these results is that mutation of the Golgi retention signal in the C-tail results in transport of Kex2p to the vacuole by default. Wild-type Kex2p also was transported to the vacuole at an increased rate when overproduced, although apparently not due to saturation of a Golgi-retention mechanism. Instead, the wild-type and C-tail mutant forms of Kex2p may follow distinct paths to the vacuole.
Collapse
Affiliation(s)
- C A Wilcox
- Department of Biochemistry, Stanford University School of Medicine, California 94305-5307
| | | | | | | |
Collapse
|
137
|
Abstract
The generation of unique domains on the cell, cell surface polarity, is critical for differentiation into the diversity of cell structures and functions found in a wide variety of organisms and cells, including the bacterium Caulobacter crescentus, the budding yeast Saccharomyces cerevisiae, and mammalian polarized epithelial cells. Comparison of the mechanisms for establishing polarity in these cells indicates that restricted membrane protein distributions are generated by selective protein targeting to, and selective protein retention at, the cell surface. Initiation of these mechanisms involves reorientation of components of the cytoskeleton and protein transport pathways toward restricted sites at the cell surface and formation of a targeting patch at those sites for selective recruitment and retention of proteins.
Collapse
Affiliation(s)
- W J Nelson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305-5426
| |
Collapse
|
138
|
Abstract
A polyomavirus middle T-antigen (MTAg) mutant containing a substitution of Leu for Pro at amino acid 248 has previously been described as completely transformation defective (B. J. Druker, L. Ling, B. Cohen, T. M. Roberts, and B. S. Schaffhausen, J. Virol. 64:4454-4461, 1990). This mutant had no alterations in associated proteins or associated kinase activities compared with wild-type MTAg. Pro-248 lies in a tetrameric sequence, NPTY, which is reminiscent of the so-called NPXY sequence in the low-density-lipoprotein receptor. In the low-density-lipoprotein receptor, mutations in the NPXY motif but not in the surrounding amino acids abolish receptor function, apparently by decreasing receptor internalization (W. Chen, J. L. Goldstein, and M. S. Brown, J. Biol. Chem. 265:3116-3123, 1990). To determine whether this sequence represents a functional motif in MTAg as well, a series of single amino acid substitutions was constructed in this region of MTAg. All of the mutations of N, P, T, or Y, including the relatively conservative substitution of Ser for Thr at amino acid 249, resulted in a transformation-defective MTAg, whereas mutations outside of this sequence allowed mutants to retain near-wild-type transformation capabilities. Transformation-defective mutants with mutations in the NPTY region behaved similarly to the mutant with the original Pro-248-to-Leu-248 mutation when assayed for associated proteins and activities in vitro; that is, they retained a full complement of wild-type activities and associated proteins. Further, insertion of the tetrameric sequence NPTY downstream of the mutated motif restored transforming abilities to these mutants. Thus, the tetrameric sequence NPTY in MTAg appears to represent a well-defined functional motif of MTAg.
Collapse
Affiliation(s)
- B J Druker
- Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | |
Collapse
|
139
|
Backer JM, Shoelson SE, Weiss MA, Hua QX, Cheatham RB, Haring E, Cahill DC, White MF. The insulin receptor juxtamembrane region contains two independent tyrosine/beta-turn internalization signals. J Cell Biol 1992; 118:831-9. [PMID: 1500426 PMCID: PMC2289561 DOI: 10.1083/jcb.118.4.831] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have investigated the role of tyrosine residues in the insulin receptor cytoplasmic juxtamembrane region (Tyr953 and Tyr960) during endocytosis. Analysis of the secondary structure of the juxtamembrane region by the Chou-Fasman algorithms predicts that both the sequences GPLY953 and NPEY960 form tyrosine-containing beta-turns. Similarly, analysis of model peptides by 1-D and 2-D NMR show that these sequences form beta-turns in solution, whereas replacement of the tyrosine residues with alanine destabilizes the beta-turn. CHO cell lines were prepared expressing mutant receptors in which each tyrosine was mutated to phenylalanine or alanine, and an additional mutant contained alanine at both positions. These mutations had no effect on insulin binding or receptor autophosphorylation. Replacements with phenylalanine had no effect on the rate of [125I]insulin endocytosis, whereas single substitutions with alanine reduced [125I]insulin endocytosis by 40-50%. Replacement of both tyrosines with alanine reduced internalization by 70%. These data suggest that the insulin receptor contains two tyrosine/beta-turns which contribute independently and additively to insulin-stimulated endocytosis.
Collapse
Affiliation(s)
- J M Backer
- Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
The efficient endocytosis of transmembrane receptor proteins requires a signal sequence in the cytoplasmic domain of the protein to promote clustering into coated pits. Analysis of the clustering of receptors with natural or engineered mutations in their cytoplasmic domains implicates an aromatic residue in a particular context as the necessary clustering signal. Recent detailed studies of mutants have led to computer predictions of a plausible structural motif. These predictions have now been elegantly supported by using NMR to determine the structure of synthetic peptides. New evidence that this sorting signal performs multiple functions suggests that this may not be the whole story.
Collapse
Affiliation(s)
- D Vaux
- Sir William Dunn School of Pathology, Oxford, UK
| |
Collapse
|
141
|
Letourneur F, Klausner RD. A novel di-leucine motif and a tyrosine-based motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 1992; 69:1143-57. [PMID: 1535555 DOI: 10.1016/0092-8674(92)90636-q] [Citation(s) in RCA: 450] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Partial complexes of the T cell antigen receptor lacking zeta chains are delivered to lysosomes. Chimeric proteins composed of the Tac antigen fused to the cytoplasmic domains of each CD3 chain has allowed the identification of lysosomal targeting sequences. Tac-gamma and Tac-delta chimeras are retained in the endoplasmic reticulum because of the presence of basic residues reminiscent of sequences responsible for the localization of endoplasmic reticulum resident proteins. Truncation of these retention motifs revealed lysosomal targeting of both Tac-gamma and delta chimeras. A di-leucine- and a tyrosine-based motif are individually sufficient to induce both endocytosis and delivery to lysosomes of Tac. In contrast with chimeras containing only one of these motifs, the chimera containing both was predominantly delivered directly to lysosomes without going through the cell surface. These two sequences may represent two families of targeting motifs that determine the fate of proteins within the peripheral membrane system.
Collapse
Affiliation(s)
- F Letourneur
- Cell Biology and Metabolism Branch, National Institute of Child Health, Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
142
|
Naglich JG, Metherall JE, Russell DW, Eidels L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 1992; 69:1051-61. [PMID: 1606612 DOI: 10.1016/0092-8674(92)90623-k] [Citation(s) in RCA: 395] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A monkey cDNA (pDTS) encoding a diphtheria toxin (DT) sensitivity determinant was isolated by expression cloning in mouse L-M cells. Mouse cells are naturally resistant to DT, because they lack functional cell surface receptors for the toxin. Unlike wild-type L-M cells, pDTS-transfected mouse cells are extremely toxin sensitive and specifically bind radioiodinated DT. Intoxication of the transfected cells requires receptor-mediated endocytosis of the bound toxin. The cDNA is predicted to encode an integral membrane protein that is identical to the precursor of a heparin-binding EGF-like growth factor. The DT sensitivity protein is thus a growth factor precursor that DT exploits as a receptor.
Collapse
Affiliation(s)
- J G Naglich
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | |
Collapse
|
143
|
Rehaber V, Jaenicke R. Stability and reconstitution of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49866-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
144
|
Characterization of the signal for rapid internalization of the bovine mannose 6-phosphate/insulin-like growth factor-II receptor. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49876-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
145
|
Bansal A, Gierasch LM. The NPXY internalization signal of the LDL receptor adopts a reverse-turn conformation. Cell 1991; 67:1195-201. [PMID: 1760844 DOI: 10.1016/0092-8674(91)90295-a] [Citation(s) in RCA: 219] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peptides corresponding to the proposed coated pit internalization signal of the native low density lipoprotein receptor, NPVY, take up in aqueous solution a reverse-turn conformation with the Asn in position i and the Tyr in position i + 3. By contrast, peptides derived from receptors that are defective for endocytosis do not adopt the reverse turn. These internalization-defective receptors include those with a nonaromatic residue substituted for the Tyr and those with Asn----Ala or Pro----Ala substitutions. While the tendency of an Asn-Pro sequence to induce a reverse turn was anticipated, the structural importance of an aromatic residue in position i + 3 was not. The sequences associated with the internalization signal thus appear to play a critical conformational role that is required for endocytosis, probably by enabling binding to adaptor molecules. With the results presented in the accompanying paper on lysosomal acid phosphatase, we now have direct evidence for previous proposals of a general correlation of internalization signals with a turn conformational motif.
Collapse
Affiliation(s)
- A Bansal
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9038
| | | |
Collapse
|