101
|
Huber SM, Duranton C, Lang F. Patch-clamp analysis of the "new permeability pathways" in malaria-infected erythrocytes. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:59-134. [PMID: 16164967 DOI: 10.1016/s0074-7696(05)46003-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intraerythrocytic amplification of the malaria parasite Plasmodium falciparum induces new pathways of solute permeability in the host cell's membrane. These pathways play a pivotal role in parasite development by supplying the parasite with nutrients, disposing of the parasite's metabolic waste and organic osmolytes, and adapting the host's electrolyte composition to the parasite's needs. The "new permeability pathways" allow the fast electrogenic diffusion of ions and thus can be analyzed by patch-clamp single-channel or whole-cell recording. By employing these techniques, several ion-channel types with different electrophysiological profiles have been identified in P. falciparum-infected erythrocytes; they have also been identified in noninfected cells. This review discusses a possible contribution of these channels to the new permeability pathways on the one hand and their supposed functions in noninfected erythrocytes on the other.
Collapse
Affiliation(s)
- Stephan M Huber
- Department of Physiology, Eberhard-Karls-University, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
102
|
Huber SM, Duranton C, Henke G, Van De Sand C, Heussler V, Shumilina E, Sandu CD, Tanneur V, Brand V, Kasinathan RS, Lang KS, Kremsner PG, Hübner CA, Rust MB, Dedek K, Jentsch TJ, Lang F. Plasmodium Induces Swelling-activated ClC-2 Anion Channels in the Host Erythrocyte. J Biol Chem 2004; 279:41444-52. [PMID: 15272009 DOI: 10.1074/jbc.m407618200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intraerythrocytic growth of the human malaria parasite Plasmodium falciparum depends on delivery of nutrients. Moreover, infection challenges cell volume constancy of the host erythrocyte requiring enhanced activity of cell volume regulatory mechanisms. Patch clamp recording demonstrated inwardly and outwardly rectifying anion channels in infected but not in control erythrocytes. The molecular identity of those channels remained elusive. We show here for one channel type that voltage dependence, cell volume sensitivity, and activation by oxidation are identical to ClC-2. Moreover, Western blots and FACS analysis showed protein and functional ClC-2 expression in human erythrocytes and erythrocytes from wild type (Clcn2(+/+)) but not from Clcn2(-/-) mice. Finally, patch clamp recording revealed activation of volume-sensitive inwardly rectifying channels in Plasmodium berghei-infected Clcn2(+/+) but not Clcn2(-/-) erythrocytes. Erythrocytes from infected mice of both genotypes differed in cell volume and inhibition of ClC-2 by ZnCl(2) (1 mm) induced an increase of cell volume only in parasitized Clcn2(+/+) erythrocytes. Lack of ClC-2 did not inhibit P. berghei development in vivo nor substantially affect the mortality of infected mice. In conclusion, activation of host ClC-2 channels participates in the altered permeability of Plasmodium-infected erythrocytes but is not required for intraerythrocytic parasite survival.
Collapse
Affiliation(s)
- Stephan M Huber
- Departments of Physiology and Parasitology, Institute of Tropical Medicine, University of Tübingen, 72076 Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Vangapandu S, Sachdeva S, Jain M, Singh S, Singh PP, Kaul CL, Jain R. 8-quinolinamines and their pro prodrug conjugates as potent blood-schizontocidal antimalarial agents. Bioorg Med Chem 2004; 11:4557-68. [PMID: 14527552 DOI: 10.1016/j.bmc.2003.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and antimalarial activities of N8-(4-amino-1-methylbutyl)-5-alkoxy-4-ethyl-6-methoxy-8-quinolinamines (5) and their pro prodrug analogues (6-7) prepared by covalently linking 5 to the redox-sensitive (8) and esterase-sensitive (9) linkers through the amide linkage are reported. The most effective 8-quinolinamines [5c (R=C5H11) and 5f (R=C8H17)] have exhibited in vitro and in vivo biological efficacy superior to that of the standard drug chloroquine against both drug-sensitive and drug-resistant malaria strains. Analogues 6-7 were evaluated for in vivo blood-schizontocidal activity as potential pro prodrug models for the primary amino group containing 8-quinolinamines (5). The most effective pro prodrug analogue (6c) has displayed promising activities against drug-sensitive and drug-resistant strains of Plasmodia in vivo.
Collapse
Affiliation(s)
- Suryanarayana Vangapandu
- National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | | | | | | | | | | | | |
Collapse
|
104
|
Sibmooh N, Yamanont P, Krudsood S, Leowattana W, Brittenham G, Looareesuwan S, Udomsangpetch R. Increased fluidity and oxidation of malarial lipoproteins: relation with severity and induction of endothelial expression of adhesion molecules. Lipids Health Dis 2004; 3:15. [PMID: 15219229 PMCID: PMC449728 DOI: 10.1186/1476-511x-3-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 06/25/2004] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Oxidative stress has been demonstrated in malaria. The potential oxidative modification of lipoproteins derived from malaria patients was studied. These oxidized lipids may have role in pathogenesis of malaria. METHOD The plasma lipid profile and existence of oxidized forms of very low density lipoprotein (VLDL), low density lipoprotein (LDL) and high density lipoprotein (HDL) were investigated in malaria (17 mild and 24 severe patients) and 37 control subjects. Thiobarbituric acid reactive substances (TBARs), conjugated dienes, tryptophan fluorescence and fluidity of lipoproteins were determined as markers of oxidation. The biological effect of malarial lipoproteins was assessed by the expression of adhesion molecules on endothelial cells. RESULTS Malarial lipoproteins had decreased cholesterol (except in VLDL) and phospholipid. The triglyceride levels were unchanged. The cholesterol/phospholipid ratio of LDL was decreased in malaria, but increased in VLDL and HDL. TBARs and conjugate dienes were increased in malarial lipoproteins, while the tryptophan fluorescence was decreased. The fluidity of lipoproteins was increased in malaria. These indicated the presence of oxidized lipoproteins in malaria by which the degree of oxidation was correlated with severity. Of three lipoproteins from malarial patients, LDL displayed the most pronounced oxidative modification. In addition, oxidized LDL from malaria patients increased endothelial expression of adhesion molecules. CONCLUSION In malaria, the lipoproteins are oxidatively modified, and the degree of oxidation is related with severity. Oxidized LDL from malarial patients increases the endothelial expression of adhesion molecules. These suggest the role of oxidized lipoproteins, especially LDL, on the pathogenesis of disease.
Collapse
Affiliation(s)
- Nathawut Sibmooh
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Paveena Yamanont
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Srivicha Krudsood
- Department of Clinical Tropical Medicine, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Wattana Leowattana
- Department of Clinical Tropical Medicine, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Gary Brittenham
- Department of Medicine and Pediatrics, Columbia University, College of Physicians and Surgeons, New York, USA
| | - Sornchai Looareesuwan
- Department of Clinical Tropical Medicine, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Thailand
| | | |
Collapse
|
105
|
Abstract
The malaria parasite Plasmodium falciparum is still a major threat to human health in the non-industrialised world mainly due to the increasing incidence of drug resistance. Therefore, there is an urgent need to identify and validate new potential drug targets in the parasite's metabolism that are suitable for the design of new anti-malarial drugs. It is known that infection with P. falciparum leads to increased oxidative stress in red blood cells, implying that the parasite requires efficient antioxidant and redox systems to prevent damage caused by reactive oxygen species. In recent years, it has been shown that P. falciparum possess functional thioredoxin and glutathione systems. Using genetic and chemical tools, it was demonstrated that thioredoxin reductase, the first step of the thioredoxin redox cycle, and gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting step of glutathione synthesis, are essential for parasite survival. Indeed, the mRNA levels of gamma-GCS are elevated in parasites that are oxidatively stressed, indicating that glutathione plays an important antioxidant role in P. falciparum. In addition to this antioxidant function, glutathione is important for detoxification processes and is possibly involved in the development of resistance against drugs such as chloroquine.
Collapse
Affiliation(s)
- Sylke Müller
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
106
|
Abstract
Heterozygosity for the mutant sickle hemoglobin confers protection from severe Plasmodium falciparum malaria. It is here proposed that this protection derives from the instability of sickle hemoglobin, which clusters red cell membrane protein band 3 and triggers accelerated removal by phagocytic cells. This explanation requires that sickle trait cells manifest greater hemoglobin instability than normal red cells, something that could derive from their content of sickle hemoglobin. The mechanism also implicates splenic function as a determinant of the protective effect.
Collapse
Affiliation(s)
- Robert P Hebbel
- Division of Hematology-Oncology and Transplantation, Department of Medicine, and Vascular Biology Center, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
107
|
Lew VL, Macdonald L, Ginsburg H, Krugliak M, Tiffert T. Excess haemoglobin digestion by malaria parasites: a strategy to prevent premature host cell lysis. Blood Cells Mol Dis 2004; 32:353-9. [PMID: 15121091 DOI: 10.1016/j.bcmd.2004.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Indexed: 10/26/2022]
Abstract
To understand the osmotic stability of a Plasmodium falciparum-infected red blood cell, whose membrane permeability becomes highly increased during parasite growth, we developed an integrated mathematical model of the homeostasis of an infected red cell. The model encoded the known time courses of red cell membrane permeabilisation and of haemoglobin digestion, as well as alternative options for parasite volume growth. Model simulations revealed that excess haemoglobin digestion, by reducing the colloid-osmotic pressure within the host red cell, is essential to preserve the osmotic stability of the infected cell for the duration of the parasite asexual cycle. We present here experimental tests of the model predictions and discuss the available evidence in the context of the interpretations provided by the model.
Collapse
Affiliation(s)
- Virgilio L Lew
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | | | | | | | |
Collapse
|
108
|
Lang F, Lang PA, Lang KS, Brand V, Tanneur V, Duranton C, Wieder T, Huber SM. Channel-induced apoptosis of infected host cells-the case of malaria. Pflugers Arch 2004; 448:319-24. [PMID: 15042371 DOI: 10.1007/s00424-004-1254-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 02/13/2004] [Accepted: 02/17/2004] [Indexed: 12/16/2022]
Abstract
Infection of erythrocytes by the malaria pathogen Plasmodium falciparum leads to activation of several distinct anion channels and a non-selective, Ca2+-permeable cation channel. All channel types are presumably activated by the oxidative stress generated by the pathogen. Similar or identical channels are activated by oxidation of non-infected erythrocytes. Activation of the non-selective cation channel allows entry of Ca2+ and Na+, both of which are required for intracellular growth of the pathogen. The entry of Ca2+ stimulates an intraerythrocytic scramblase that facilitates bi-directional phospholipid migration across the bilayer, resulting in breakdown of the phosphatidylserine asymmetry of the cell membrane. The exposure of phosphatidylserine at the outer surface of the cell membrane is presumably followed by binding to phosphatidylserine receptors on macrophages and subsequent phagocytosis of the affected erythrocyte. The lysosomal degradation may eventually eliminate the pathogen. The channel may thus play a dual role in pathogen survival. Absence of the channels is not compatible with pathogen growth, enhanced channel activity accelerates erythrocyte "apoptosis" that may represent a host defence mechanism serving to eliminate infected erythrocytes.
Collapse
Affiliation(s)
- Florian Lang
- Physiologisches Institut der Universität Tübingen, Gmelinstrasse 5, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H. Oxidative stress in malaria parasite-infected erythrocytes: host–parasite interactions. Int J Parasitol 2004; 34:163-89. [PMID: 15037104 DOI: 10.1016/j.ijpara.2003.09.011] [Citation(s) in RCA: 425] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 09/18/2003] [Accepted: 09/18/2003] [Indexed: 01/09/2023]
Abstract
Experimenta naturae, like the glucose-6-phosphate dehydrogenase deficiency, indicate that malaria parasites are highly susceptible to alterations in the redox equilibrium. This offers a great potential for the development of urgently required novel chemotherapeutic strategies. However, the relationship between the redox status of malarial parasites and that of their host is complex. In this review article we summarise the presently available knowledge on sources and detoxification pathways of reactive oxygen species in malaria parasite-infected red cells, on clinical aspects of redox metabolism and redox-related mechanisms of drug action as well as future prospects for drug development. As delineated below, alterations in redox status contribute to disease manifestation including sequestration, cerebral pathology, anaemia, respiratory distress, and placental malaria. Studying haemoglobinopathies, like thalassemias and sickle cell disease, and other red cell defects that provide protection against malaria allows insights into this fine balance of redox interactions. The host immune response to malaria involves phagocytosis as well as the production of nitric oxide and oxygen radicals that form part of the host defence system and also contribute to the pathology of the disease. Haemoglobin degradation by the malarial parasite produces the redox active by-products, free haem and H(2)O(2), conferring oxidative insult on the host cell. However, the parasite also supplies antioxidant moieties to the host and possesses an efficient enzymatic antioxidant defence system including glutathione- and thioredoxin-dependent proteins. Mechanistic and structural work on these enzymes might provide a basis for targeting the parasite. Indeed, a number of currently used drugs, especially the endoperoxide antimalarials, appear to act by increasing oxidant stress, and novel drugs such as peroxidic compounds and anthroquinones are being developed.
Collapse
Affiliation(s)
- Katja Becker
- Interdisciplinary Research Center, Heinrich-Buff-Ring 26-32, Justus-Liebig University, D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
110
|
Becker K, Rahlfs S, Nickel C, Schirmer RH. Glutathione--functions and metabolism in the malarial parasite Plasmodium falciparum. Biol Chem 2003; 384:551-66. [PMID: 12751785 DOI: 10.1515/bc.2003.063] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
When present as a trophozoite in human erythrocytes, the malarial parasite Plasmodium falciparum exhibits an intense glutathione metabolism. Glutathione plays a role not only in antioxidative defense and in maintaining the reducing environment of the cytosol. Many of the known glutathione-dependent processes are directly related to the specific lifestyle of the parasite. Reduced glutathione (GSH) supports rapid cell growth by providing electrons for deoxyribonucleotide synthesis and it takes part in detoxifying heme, a product of hemoglobin digestion. Free radicals generated in the parasite can be scavenged in reaction sequences involving the thiyl radical GS* as well as the thiolate GS-. As a substrate of glutathione S-transferase, glutathione is conjugated to non-degradable compounds including antimalarial drugs. Furthermore, it is the coenzyme of the glyoxalase system which detoxifies methylglyoxal, a byproduct of the intense glycolysis taking place in the trophozoite. Proteins involved in GSH-dependent processes include glutathione reductase, glutaredoxins, glyoxalase I and II, glutathione S-transferases, and thioredoxins. These proteins, as well as the ATP-dependent enzymes of glutathione synthesis, are studied as factors in the pathophysiology of malaria but also as potential drug targets. Methylene blue, an inhibitor of the structurally known P. falciparum glutathione reductase, appears to be a promising antimalarial medication when given in combination with chloroquine.
Collapse
Affiliation(s)
- Katja Becker
- Interdisciplinary Research Center, Justus-Liebig-University, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
111
|
Krugliak M, Zhang J, Nissani E, Steiner-Mordoch S, Ginsburg H. Killing of intraerythrocytic Plasmodium falciparum by lysosomotropic amino acid esters. Parasitol Res 2003; 89:451-8. [PMID: 12658456 DOI: 10.1007/s00436-002-0794-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 10/25/2002] [Indexed: 10/25/2022]
Abstract
Esters of amino acids are known to penetrate into cells by simple diffusion. Subsequently, they are hydrolyzed by hydrolases to release the parent amino acid. Due to the abundance of hydrolases in phagolysosomes, amino acids accumulate, there because the rate of influx and hydrolysis exceed the rate of amino acid efflux through specific carriers. The osmotic effect of this accumulation results in the disruption of the organelles. This mechanism has been demonstrated to be responsible for the killing of Leishmania amastigotes by amino acid esters. In this investigation, it is shown that all esters tested, including alcohol esters, N-acetyl esters and the esters of some dipeptides, inhibit the growth of Plasmodium falciparum in culture. Inhibition is time-dependent and, in some cases, ring-stage parasites are more sensitive than trophozoites. Similar to the findings with Leishmania, alcohol esters of Glu, Leu, Met, Phe and Trp are more toxic to Plasmodium whereas Ala, Gly, His and Ile are much less noxious. Esters caused the release of acridine orange that selectively accumulates in the phagolysosome-like food vacuole of the parasite, attesting the ostensible destruction of this organelle by osmotic lysis. The toxicity of the N-acetyl esters is probably associated in part to their ability to inhibit cytosolic proteases. Since excess of amino acids can also inhibit proteolysis, the effect of free amino acids on parasite growth was also tested. Of the 19 odd amino acids tested, only three, namely Cys, His and Trp, were found to be toxic to the parasites at millimolar concentrations and the reasons for their possible specific toxicity are discussed.
Collapse
Affiliation(s)
- Miriam Krugliak
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
112
|
Abstract
AIM To compare oxidative stress in adults with non-complicated malaria and healthy controls. METHODOLOGY We measured malondialdehyde (MDA), total antioxidant status (TAS), catalase, superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX). Oxidative stress was calculated based on MDA/TAS, MDA/GSH-PX and SOD/catalase indexes. RESULTS Mean MDA in patients was 3.9 micromol/L (controls = 1.3 micromol/L). Mean TAS was 0.9 mmol/L in patients and controls. Malaria patients had less catalase activity when compared to controls (209.4 vs. 320.4 k/gr), while SOD and GSH-PX activity was higher (79.4 U/mL, 11,884.2U/L vs. 54.3 U/mL, 9,672.6 U/L). MDA/TAS index was 3.5 fold more in patients than in controls, MDA/GSH-PX and SOD/catalase indexes were increased by 6 and 2.8 fold. MDA levels and MDA/TAS index showed no differences according to malarial history, parasitaemia, Plasmodium species, parasite's stage, place of residence and drinking or smoking habits. CONCLUSIONS During acute non-complicated P. falciparum or P. vivax malaria, we observed high oxidative stress. This resulted from lipid peroxidation rather than from a reduced TAS. We propose MDA/TAS index as a useful marker of oxidative stress during malaria infection.
Collapse
Affiliation(s)
- Adriana Pabón
- Grupo Malaria, Universidad de Antioquia, Medellín-Colombia, Colombia
| | | | | | | |
Collapse
|
113
|
Schwarzer E, Kuhn H, Valente E, Arese P. Malaria-parasitized erythrocytes and hemozoin nonenzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions. Blood 2003; 101:722-8. [PMID: 12393662 DOI: 10.1182/blood-2002-03-0979] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum digests up to 75% of erythrocyte (red blood cell [RBC]) hemoglobin and forms hemozoin. Phagocytosed hemozoin and trophozoites inhibit important monocyte functions. Delipidized trophozoites and hemozoin were remarkably less toxic to monocytes. Parasitized RBCs and hemozoin contained large amounts of mostly esterified monohydroxy derivatives (OH-PUFAs), the stable end products of peroxidation of polyenoic fatty acids. The concentrations of OH-PUFA were 1.8 micromoles per liter RBCs in nonparasitized RBCs, 11.1 micromoles per liter RBCs in rings, 35 micromoles per liter RBCs in trophozoites; and approximately 90 micromoles per liter RBC equivalents in hemozoin. In parasitized RBCs and hemozoin a complex mixture of monohydroxy derivatives of arachidonic (HETEs) and linoleic (HODEs) acid was determined. Respectively, 13- and 9-HODE and 9- and 12-HETE were predominant in hemozoin and parasitized RBCs. The estimated concentrations of all HETE isomers were 33 and 39 micromoles per liter RBCs or RBC equivalents in trophozoites and hemozoin, respectively. No evidence of lipoxygenase activity was found, whereas the large number of positional and optical isomers, the racemic structure, and their generation by incubation of arachidonic acid with hemozoin indicated nonenzymatic origin via heme-catalysis. Sub/low micromolar concentrations of 12- and 15-HETE were toxic to monocytes, whereas HODE isomers were ineffective. Low micromolar concentrations of HETE isomers were estimated to be similarly present in monocytes after phagocytosis of trophozoites or hemozoin. Thus, specific products of heme-catalyzed lipid peroxidation appear to contribute to hemozoin toxicity to phagocytes and may thus play a role in increased cytoadherence, vascular permeability, and chemotaxis, as well as in immunodepression in malaria.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Institute of Biochemistry, Humboldt University-Charité, Berlin, Germany
| | | | | | | |
Collapse
|
114
|
Abstract
Haeme metabolism remains a vulnerable problem for the intraerythrocytic Plasmodium which catabolises haemoglobin as a source of amino acids in an acidic, oxygen-rich lysosome-like digestive vacuole. Haeme monomer, capable of generating oxygen radicals, transforms into an inert crystal named malarial pigment or haemozoin by forming unique dimers that then crystalise. Laveran first described pigmented bodies in humans to define a protozoan as the aetiologic agent of malaria. The trail of malaria pigment enabled Ross to implicate the mosquito in the life cycle of Plasmodium. In 1991, Slater and Cerami postulated a unique iron-carboxylate bond between two haemes in haemozoin crystals based on infrared and X-ray spectroscopy data. Additionally, parasite extracts were shown to possess a 'haeme polymerase' enzymatic activity as the process of crystal formation was then termed. Importantly, the quinolines, such as choloroquine, inhibit haemozoin formation. A Plasmodium falciparum derived histidine-rich protein II, which binds haeme and initiates haemozoin formation, is present in the digestive vacuole. Pfhistidine-rich protein II and Pfhistidine-rich protein III are sufficient, but not necessary for haemozoin formation as a laboratory clone lacking both still makes the haeme crystals. The reduvid bug, and the Schistosoma and Haemoproteus genera also make haemozoin. Recently, Bohle and coworkers used X-ray diffraction to document the iron-carboxylate bond in intact desiccated parasites and to show that a Fe1-O41 head to tail haeme dimer is the unit building block of haemozoin. The role of the Plasmodium histidine-rich protein family members, lipids or potential novel proteins in the exact molecular assembly of the large molecular weight haeme crystals in the protein rich digestive vacuole needs to be solved. Accurate experimental determination of the role of haemozoin formation and inhibition as the target of chloroquine is fundamental to determination of the mechanism of quinoline drug action and resistance. The enhanced understanding of the biosynthetic pathway leading to haemozoin formation using functional proteomic tools and the mechanisms through which existing antimalarial drugs affect Plasmodium haeme chemistry will help design improved chaemotherapeutic agents.
Collapse
Affiliation(s)
- David J Sullivan
- The Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
115
|
Wissing F, Sanchez CP, Rohrbach P, Ricken S, Lanzer M. Illumination of the malaria parasite Plasmodium falciparum alters intracellular pH. Implications for live cell imaging. J Biol Chem 2002; 277:37747-55. [PMID: 12140286 DOI: 10.1074/jbc.m204845200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Live cell fluorescence microscopy has been widely used to study physiological processes in the human malarial parasite Plasmodium falciparum, including pH homeostasis, Ca(2+) signaling and protein targeting. However, the reproducibility of the data is often poor. Controversial statements exist regarding cytosolic and vacuolar baseline pH, as well as regarding the subcellular localization of some of the fluorochromes used. When trying to reproduce published baseline values, we observed an unexpected light sensitivity of P. falciparum, which manifests itself in the form of a strong cytoplasmic acidification. Even short exposure times with moderate to low light intensities caused the parasite cytosol to acidify. We show that this effect arises from the selective disruption of the parasite's acidic food vacuole, brought about by lipid peroxidation initiated by light-induced generation of hydroxyl radicals. Our data suggest that heme serves as a photosensitizer in this process. Our findings have major implications for the use of live cell microscopy in P. falciparum and add a cautionary note to previous studies where live cell fluorometry has been used to determine physiological parameters in P. falciparum.
Collapse
Affiliation(s)
- Frank Wissing
- Hygiene Institut, Abteilung Parasitology, Universität Heidelberg, Im Neuenheimer Feld 324, Heidelberg D-69120, Germany
| | | | | | | | | |
Collapse
|
116
|
Hamza A. Homology modeling and docking mechanism of the mercaptosuccinate and methotrexate to P. falciparum 1-Cys peroxiredoxin: a preliminary molecular study. J Biomol Struct Dyn 2002; 20:7-20. [PMID: 12144348 DOI: 10.1080/07391102.2002.10506818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A three-dimensional (3-D) model of 1-Cys peroxiredoxin from P. falciparum (Pf-Prx) has been constructed by homology modeling. The model building was based on a structural alignment with the human 1-Cys peroxiredoxin ray structure. First, mercaptosuccinate was docked by Molecular and Quantum Mechanics at the active site in both isozymes, evidencing the role of different residues in the ligand-protein interaction. Stable conformation of the inhibitor in the active site was obtained from the conformational analysis by molecular dynamics. Next, The complex was reoptimized by semiempirical molecular orbital AM1 method. Conformational and frontier orbitals analyses of the ligand-protein complex were carried out in an attempt to obtain structural insight into the inhibition mechanism. Finally, the docking study of the methotrexate (MTX), an anticancer drug also used as an antimalarial inhibitor, into the modes binding site was performed. From the resulting stable complex structure, it was found that the glutamate ring of MTX fits the active site with high complementarity. The glutamate ring formed two hydrogen bonds to the imidazol group of His41 and the amino groups of Arg129. The side-chain of glutamate was in close proximity to the sulfur atom of the catalytic residue, Cys47. This binding mode suggests a possible inhibition mechanism, whereby the cysteine residue is covered with the glutamate ring of the MTX inhibitor, forming an enzyme-ligand adduct. In addition, the higher interaction energies and the molecular orbitals localization between the Pf-Prx active site and the inhibitors alluded to the probable binding sites of the ligand nucleophilic ring.
Collapse
Affiliation(s)
- A Hamza
- Unité Modélisation Moculaire, Institut Pasteur de Tunis 13, Place Pasteur 1002 Tunis-Belvédère, Tunisia.
| |
Collapse
|
117
|
Shenai BR, Rosenthal PJ. Reducing requirements for hemoglobin hydrolysis by Plasmodium falciparum cysteine proteases. Mol Biochem Parasitol 2002; 122:99-104. [PMID: 12076775 DOI: 10.1016/s0166-6851(02)00075-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Bhaskar R Shenai
- Department of Medicine, San Francisco General Hospital, Box 0811 University of California, San Francisco, CA 94143-0811, USA
| | | |
Collapse
|
118
|
Oliveira MF, Timm BL, Machado EA, Miranda K, Attias M, Silva JR, Dansa-Petretski M, de Oliveira MA, de Souza W, Pinhal NM, Sousa JJF, Vugman NV, Oliveira PL. On the pro-oxidant effects of haemozoin. FEBS Lett 2002; 512:139-44. [PMID: 11852068 DOI: 10.1016/s0014-5793(02)02243-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Haemozoin (Hz) is a haem aggregate produced in some blood-feeding organisms. There is a general belief that Hz formation would be a protective mechanism against haem toxicity. Here we show that when aggregated into Hz, haem is less deleterious than its free form. When haem was added to phosphatidylcholine (PC) liposomes, there was an intense stimulation of oxygen consumption, which did not occur when Hz was incubated with the same preparation. Evaluation of oxygen radical attack to lipids, by measurement of thiobarbituric acid reactive substances (TBARS), showed significantly lower levels of lipid peroxidation in samples containing PC liposomes incubated with Hz than with haem. However, TBARS production induced by Hz was much higher when using 2-deoxyribose (2-DR) as substrate, than with PC liposomes. Spin-trapping analysis by electron paramagnetic resonance (EPR) of Hz and tert-butylhydroperoxide (tert-BuOOH) showed that production of methoxyl and tert-butoxyl radicals was only slightly reduced compared to what was observed with haem. Interestingly, when large Hz crystals were used in 2-DR TBARS assays and tert-BuOOH EPR experiments, the pro-oxidant effects of Hz were strongly reduced. Moreover, increasing concentrations of Hz did not induce erythrocyte lysis, as occurred with haem. Thus, the reduced capacity of Hz to impose radical damage seems to result from steric hindrance of substrates to access the aggregated haem, that becomes less available to participate in redox reactions.
Collapse
Affiliation(s)
- Marcus F Oliveira
- Departamento de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Brigadeiro Trompowsky, s/n, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Huber SM, Uhlemann AC, Gamper NL, Duranton C, Kremsner PG, Lang F. Plasmodium falciparum activates endogenous Cl(-) channels of human erythrocytes by membrane oxidation. EMBO J 2002; 21:22-30. [PMID: 11782422 PMCID: PMC125814 DOI: 10.1093/emboj/21.1.22] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intraerythrocytic survival of the malaria parasite Plasmodium falciparum requires that host cells supply nutrients and dispose of waste products. This solute transport is accomplished by infection-induced new permeability pathways (NPP) in the erythrocyte membrane. Here, whole-cell patch-clamp and hemolysis experiments were performed to define properties of the NPP. Parasitized but not control erythrocytes constitutively expressed two types of anion conductances, differing in voltage dependence and sensitivity to inhibitors. In addition, infected but not control cells hemolyzed in isosmotic sorbitol solution. Both conductances and hemolysis of infected cells were inhibited by reducing agents. Conversely, oxidation induced identical conductances and hemolysis in non-infected erythrocytes. In conclusion, P.falciparum activates endogenous erythrocyte channels by applying oxidative stress to the host cell membrane.
Collapse
Affiliation(s)
- Stephan M. Huber
- Department of Physiology, University of Tübingen, Gmelinstrasse 5, D-72076 Tübingen and
Department of Parasitology, Institute for Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, D-72074 Tübingen, Germany Corresponding author e-mail:
| | | | | | | | - Peter G. Kremsner
- Department of Physiology, University of Tübingen, Gmelinstrasse 5, D-72076 Tübingen and
Department of Parasitology, Institute for Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, D-72074 Tübingen, Germany Corresponding author e-mail:
| | | |
Collapse
|
120
|
Carlton JM, Muller R, Yowell CA, Fluegge MR, Sturrock KA, Pritt JR, Vargas-Serrato E, Galinski MR, Barnwell JW, Mulder N, Kanapin A, Cawley SE, Hide WA, Dame JB. Profiling the malaria genome: a gene survey of three species of malaria parasite with comparison to other apicomplexan species. Mol Biochem Parasitol 2001; 118:201-10. [PMID: 11738710 DOI: 10.1016/s0166-6851(01)00371-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have undertaken the first comparative pilot gene discovery analysis of approximately 25,000 random genomic and expressed sequence tags (ESTs) from three species of Plasmodium, the infectious agent that causes malaria. A total of 5482 genome survey sequences (GSSs) and 5582 ESTs were generated from mung bean nuclease (MBN) and cDNA libraries, respectively, of the ANKA line of the rodent malaria parasite Plasmodium berghei, and 10,874 GSSs generated from MBN libraries of the Salvador I and Belem lines of Plasmodium vivax, the most geographically wide-spread human malaria pathogen. These tags, together with 2438 Plasmodium falciparum sequences present in GenBank, were used to perform first-pass assembly and transcript reconstruction, and non-redundant consensus sequence datasets created. The datasets were compared against public protein databases and more than 1000 putative new Plasmodium proteins identified based on sequence similarity. Homologs of previously characterized Plasmodium genes were also identified, increasing the number of P. vivax and P. berghei sequences in public databases at least 10-fold. Comparative studies with other species of Apicomplexa identified interesting homologs of possible therapeutic or diagnostic value. A gene prediction program, Phat, was used to predict probable open reading frames for proteins in all three datasets. Predicted and non-redundant BLAST-matched proteins were submitted to InterPro, an integrated database of protein domains, signatures and families, for functional classification. Thus a partial predicted proteome was created for each species. This first comparative analysis of Plasmodium protein coding sequences represents a valuable resource for further studies on the biology of this important pathogen.
Collapse
Affiliation(s)
- J M Carlton
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Giribaldi G, Ulliers D, Mannu F, Arese P, Turrini F. Growth of Plasmodium falciparum induces stage-dependent haemichrome formation, oxidative aggregation of band 3, membrane deposition of complement and antibodies, and phagocytosis of parasitized erythrocytes. Br J Haematol 2001; 113:492-9. [PMID: 11380422 DOI: 10.1046/j.1365-2141.2001.02707.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plasmodium falciparum-parasitized erythrocytes (RBCs) are progressively transformed into non-self cells, phagocytosed by human monocytes. Haemichromes, aggregated band 3 (Bd3) and membrane-bound complement fragment C3c and IgG were assayed in serum-opsonized stage-separated parasitized RBCs. All parameters progressed from control to rings to trophozoites to schizonts: haemichromes, nil; 0.64 +/- 0.12; 5.6 +/- 1.91; 8.4 +/- 2.8 (nmol/ml membrane); Bd3, 1 +/- 0.1; 4.3 +/- 1.5; 23 +/- 5; 25 +/- 6 (percentage aggregated); C3c, 31 +/- 11; 223 +/- 86; 446 +/- 157; 620 +/- 120 (mOD405/min/ml membrane); IgG, 35 +/- 12; 65 +/- 23; 436 +/- 127; 590 +/- 196 (mOD405/min/ml membrane). All increments in rings versus controls and in trophozoites versus rings were highly significant. Parasite development in the presence of 100 micromol/l beta-mercaptoethanol largely reverted haemichrome formation, Bd3 aggregation, C3c and IgG deposition and phagocytosis. Membrane proteins extracted by detergent C12E8 were separated on Sepharose CL-6B. Haemichromes, C3c and IgG were present exclusively in the high-molecular-weight fractions together with approximately 30% of Bd3, indicating the oxidative formation of immunogenic Bd3 aggregates. Immunoblots of separated membrane proteins with anti-Bd3 antibodies confirmed Bd3 aggregates that, in part, did not enter the gel. Immunoprecipitated antibodies eluted from trophozoites reacted preferentially with aggregated Bd3. Changes in parasitized RBC membranes and induction of phagocytosis were similar to oxidatively damaged, senescent or thalassaemic RBC, indicating that parasite-induced oxidative modifications of Bd3 were per se sufficient to induce and enhance phagocytosis of malaria-parasitized RBC.
Collapse
Affiliation(s)
- G Giribaldi
- Department of Genetics, Biology and Biochemistry, University of Torino Medical School, Torino, Italy
| | | | | | | | | |
Collapse
|
122
|
Francis SE, Sullivan DJ, Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol 2001; 51:97-123. [PMID: 9343345 DOI: 10.1146/annurev.micro.51.1.97] [Citation(s) in RCA: 566] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hemoglobin degradation in intraerythrocytic malaria parasites is a vast process that occurs in an acidic digestive vacuole. Proteases that participate in this catabolic pathway have been defined. Studies of protease biosynthesis have revealed unusual targeting and activation mechanisms. Oxygen radicals and heme are released during proteolysis and must be detoxified by dismutation and polymerization, respectively. The quinoline antimalarials appear to act by preventing sequestration of this toxic heme. Understanding the disposition of hemoglobin has allowed identification of essential processes and metabolic weakpoints that can be exploited to combat this scourge of mankind.
Collapse
Affiliation(s)
- S E Francis
- Howard Hughes Medical Institute, Department of Molecular Microbiology and Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
123
|
Wright AD, Wang H, Gurrath M, König GM, Kocak G, Neumann G, Loria P, Foley M, Tilley L. Inhibition of heme detoxification processes underlies the antimalarial activity of terpene isonitrile compounds from marine sponges. J Med Chem 2001; 44:873-85. [PMID: 11300869 DOI: 10.1021/jm0010724] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of terpene isonitriles, isolated from marine sponges, have previously been shown to exhibit antimalarial activities. Molecular modeling studies employing 3D-QSAR with receptor modeling methodologies performed with these isonitriles showed that the modeled molecules could be used to generate a pharmacophore hypothesis consistent with the experimentally derived biological activities. It was also shown that one of the modeled compounds, diisocyanoadociane (4), as well as axisonitrile-3 (2), both of which have potent antimalarial activity, interacts with heme (FP) by forming a coordination complex with the FP iron. Furthermore, these compounds were shown to inhibit sequestration of FP into beta-hematin and to prevent both the peroxidative and glutathione-mediated destruction of FP under conditions designed to mimic the environment within the malaria parasite. By contrast, two of the modeled diterpene isonitriles, 7-isocyanoamphilecta-11(20),15-diene (12) and 7-isocyano-15-isothiocyanatoamphilecta-11(20)-ene (13), that displayed little antimalarial activity also showed little inhibitory activity in these FP detoxification assays. These studies suggest that the active isonitrile compounds, like the quinoline antimalarials, exert their antiplasmodial activity by preventing FP detoxification. Molecular dynamics simulations performed with diisocyanoadociane (4) and axisonitrile-3 (2) allowed their different binding to FP to be distinguished.
Collapse
Affiliation(s)
- A D Wright
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn 53115, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Sztajer H, Gamain B, Aumann KD, Slomianny C, Becker K, Brigelius-Flohé R, Flohé L. The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 2001; 276:7397-403. [PMID: 11087748 DOI: 10.1074/jbc.m008631200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A putative glutathione peroxidase gene (Swiss-Prot accession number Z 68200) of Plasmodium falciparum, the causative agent of tropical malaria, was expressed in Escherichia coli and purified to electrophoretic homogeneity. Like phospholipid hydroperoxide glutathione peroxidase of mammals, it proved to be monomeric. It was active with H(2)O(2) and organic hydroperoxides but, unlike phospholipid hydroperoxide glutathione peroxidase, not with phosphatidylcholine hydroperoxide. With glutathione peroxidases it shares the ping-pong mechanism with infinite V(max) and K(m) when analyzed with GSH as substrate. As a homologue with selenocysteine replaced by cysteine, its reactions with hydroperoxides and GSH are 3 orders of magnitude slower than those of the selenoperoxidases. Unexpectedly, the plasmodial enzyme proved to react faster with thioredoxins than with GSH and most efficiently with thioredoxin of P. falciparum (Swiss-Prot accession number 202664). It is therefore reclassified as thioredoxin peroxidase. With plasmodial thioredoxin, the enzyme also displays ping-pong kinetics, yet with a limiting K(m) of 10 microm and a k(1)' of 0.55 s(-)1. The apparent k(1)' for oxidation with cumene, t-butyl, and hydrogen peroxides are 2.0 x 10(4) m(-1) s(-1), 3.3 x 10(3) m(-1) s(-1), and 2.5 x 10(3) m (-1) s(-1), respectively. k(2)' for reduction by autologous thioredoxin is 5.4 x 10(4) m(-1) s(-1) (21.2 m(-1) s(-1) for GSH). The newly discovered enzymatic function of the plasmodial gene product suggests a reconsideration of its presumed role in parasitic antioxidant defense.
Collapse
Affiliation(s)
- H Sztajer
- Department of Biochemistry, Technical University of Braunschweig, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
125
|
Rahlfs S, Becker K. Thioredoxin peroxidases of the malarial parasite Plasmodium falciparum. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1404-9. [PMID: 11231293 DOI: 10.1046/j.1432-1327.2001.02005.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The open reading frames of two different proteins with homologies to 2-Cys peroxiredoxins have been identified in the P. falciparum genome. Both genes, with a length of 585 and 648 bp, respectively, were amplified from a gametocyte cDNA and overexpressed in Escherichia coli. The gene products (deduced m 21.8 and 24.6 kDa) with an overall identity of 51.8% were found to be active in the glutamine synthetase protector assay. The smaller protein (named Pf-thioredoxin peroxidase 1; PfTPx1) is reduced by P. falciparum thioredoxin (PfTrx) and accepts H(2)O(2), t-butylhydroperoxide, and cumene hydroperoxide as substrates, the respective k(cat) values for the N-terminally His-tagged protein in the presence of 10 microM PfTrx and 200 microM substrate being 67, 56, and 41 min(-1) at 25 degrees C. As described for many peroxiredoxins, PfTPx1 does not follow saturation kinetics. Furthermore, in oxidizing milieu both proteins are converted to another protein species migrating faster in SDS gel electrophoresis. For PfTPx1 also this second species was found to be active, however, with different kinetic properties which might indicate a mechanism of enzyme regulation in vivo.
Collapse
Affiliation(s)
- S Rahlfs
- Interdisciplinary Research Center, Justus-Liebig-University, Giessen, Germany
| | | |
Collapse
|
126
|
Krnajski Z, Gilberger TW, Walter RD, Müller S. The malaria parasite Plasmodium falciparum possesses a functional thioredoxin system. Mol Biochem Parasitol 2001; 112:219-28. [PMID: 11223129 DOI: 10.1016/s0166-6851(00)00372-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The thioredoxin system consists of the NADPH dependent disulphide oxidoreductase thioredoxin reductase (TrxR) which catalyses the reduction of the small protein thioredoxin. This system is involved in a variety of biological reactions including the reduction of deoxyribonucleotides, transcription factors and hydrogen peroxide. In recent years the TrxR of the malaria parasite Plasmodium falciparum was isolated and characterised using model substrates like 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) and Escherichia coli thioredoxin. Here we report on the isolation of a cDNA encoding for P. falciparum thioredoxin (PfTrx) and the expression and characterisation of the recombinant protein, the natural substrate of PfTrxR. The deduced amino acid sequence of PfTrx encodes for a polypeptide of 11715 Da and possesses the typical thioredoxin active site motif CysGlyProCys. Both cysteine residues are essential for catalytic activity of the protein, as shown by mutational analyses. Steady state kinetic analyses with PfTrxR and PfTrx in several coupled assay systems resulted in K(m)-values for PfTrx in the range of 0.8--2.1 microM which is about 250-fold lower than for the model substrate E. coli thioredoxin. Since the turnover of both substrates is similar, the catalytic efficiency of PfTrxR to reduce the isolated PfTrx is at least 250-fold higher than to reduce E. coli thioredoxin. PfTrx contains a cysteine residue in position 43 in addition to the active-site cysteine residues, which is partially responsible for dimer formation of the protein as demonstrated by changing this amino acid into an alanine residue. Using DTNB we showed that all three cysteine residues present in PfTrx are accessible to modification by this compound. Surprisingly the first cysteine residue of the active site motif (Cys30) is less accessible than the second cysteine (Cys33), which is highly prone to the modification. These results suggest a difference in the structure and reaction mechanism of PfTrx compared to other known thioredoxins.
Collapse
Affiliation(s)
- Z Krnajski
- Bernhard Nocht Institute for Tropical Medicine, Biochemical Parasitology, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
| | | | | | | |
Collapse
|
127
|
Baert CB, Deloron P, Viscogliosi E, Dauchez M, Camus D, Dive D. Analysis of genetic diversity at the iron-containing superoxide dismutase locus in Plasmodium falciparum wild isolates. FEMS Microbiol Lett 1999; 181:237-43. [PMID: 10585544 DOI: 10.1111/j.1574-6968.1999.tb08850.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In order to investigate the genetic diversity of iron-containing superoxide dismutase (FeSOD) from Plasmodium falciparum, a potential anti-malarial therapeutic target, we cloned and sequenced Plasmodium FeSOD from 26 blood samples from non-infected patients. Fifteen clones had the same nucleotide sequence as that of the FeSOD gene of the P. falciparum strain HB3 cultivated in vitro. The other 11 clones presented mutations responsible for punctual amino acid changes which did not modify key residues for the function or the structure of the enzyme. The high sequence conservation between FeSOD from the isolates confirms that this enzyme could represent a therapeutic target.
Collapse
Affiliation(s)
- C B Baert
- Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon
| | | | | | | | | | | |
Collapse
|
128
|
Loyevsky M, John C, Dickens B, Hu V, Miller JH, Gordeuk VR. Chelation of iron within the erythrocytic Plasmodium falciparum parasite by iron chelators. Mol Biochem Parasitol 1999; 101:43-59. [PMID: 10413042 DOI: 10.1016/s0166-6851(99)00053-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To examine the site of action of antimalarial iron chelators, iron ligands were added to control erythrocytes and to erythrocytes parasitized with Plasmodium falciparum, and the concentration of intracellular labile iron was monitored with the fluorescent probe, calcein. The fluorescence of calcein quenches upon binding iron and increases upon releasing iron. The chelators included desferrioxamine B, 2',2'-bipyridyl, and aminophenol II, a compound that is being newly reported as having anti-plasmodial properties. Calcein-loaded parasitized cells displayed fluorescence predominantly within the cytosol of both rings and trophozoites. The addition of chelators to both control and parasitized erythrocytes led to significant increases of fluorescence (P < 0.001). Fluorescence was observed to increase within the parasite itself after addition of iron chelators, indicating that these agents bound labile iron within the plasmodium. The relative increases of fluorescence after addition of chelators were greater in control than parasitized erythrocytes (P < 0.05) as were the estimated labile iron concentrations (P < or = 0.001). These results suggest that (i) the anti-malarial action of iron chelators might result from the ability to reach the infected cell's parasite compartment and bind iron within the parasite cytosol, and (ii) the labile iron pool of the host red cell may be either utilized or stored during plasmodial growth.
Collapse
Affiliation(s)
- M Loyevsky
- Department of Medicine, The George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | | | | | | | |
Collapse
|
129
|
Ginsburg H, Krugliak M. Chloroquine - some open questions on its antimalarial mode of action and resistance. Drug Resist Updat 1999; 2:180-187. [PMID: 11504489 DOI: 10.1054/drup.1999.0085] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During the digestion of its host cell hemoglobin, large amounts of toxic ferriprotoporphyrin IX (FPIX) are generated in the intraerythrocytic malaria parasite. FPIX is detoxified either by being polymerized into hemozoin inside the food vacuole, or through its degradation by glutathione in the cytosol. Chloroquine is able to complex with FPIX, thus inhibiting both processes and thereby generating receptors for its own uptake. These leads to the accumulation of FPIX in the membrane fraction of infected cells that results in membrane permeabilization and disruption of cation homeostasis and concluded in parasite death. Several unresolved questions, such as the site of FPIX:chloroquine complex formation, the role of pH gradient in drug accumulation and resistance, the role of Pgh-1 in resistance, the mode of action of reversers and the involvement of proteins and their mutants in resistance, are discussed. Copyright 1999 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Hagai Ginsburg
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | |
Collapse
|
130
|
Zhang J, Krugliak M, Ginsburg H. The fate of ferriprotorphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. Mol Biochem Parasitol 1999; 99:129-41. [PMID: 10215030 DOI: 10.1016/s0166-6851(99)00008-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The intraerythrocytic malaria parasite digests considerable amounts of its host cell cytosol, which consists mostly of hemoglobin. In order to avert the toxicity of ferriprotorphyrin IX (FP) thus produced, it is generally accepted that FP is polymerized to the non-toxic hemozoin. Investigating the fate of FP in cultured Plasmodium falciparum -infected human red blood cells, revealed a straight correlation between amounts of digested hemoglobin and hemozoin, but the latter contained less FP than produced. The efficacy of FP polymerization is stage-dependent, increasing with parasite maturation. Different strains display dissimilar efficacy in hemozoin production. Unpolymerized FP possibly exits the food vacuole and is degraded by glutathione, thus accounting for the low levels of free FP found in infected cells. 4-aminoquinoline antimalarials demonstrably form complexes with FP and inhibit hemozoin production in vitro. Chloroquine, amodiaquine, quinine and mefloquine were found to inhibit hemozoin production in intact infected cells, but only the first two drugs caused a dose-dependent accumulation of FP in the membrane fraction of infected cells that correlated well with parasite killing, due to the permeabilization of membranes to ions. This differential effect is explained by the ability of chloroquine and amodiaquine to inhibit the degradation of membrane-associated FP by glutathione and the incapacity of quinine and mefloquine to do so. This discrepancy implies that the antimalarial mode of action of chloroquine and amodiaquine is different in its mechanistic details from that of quinine and mefloquine and is compatible with the diametric sensitivity of most strains to chloroquine and mefloquine and the disparate interaction of these drugs with enhancers of their antimalarial action.
Collapse
Affiliation(s)
- J Zhang
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
131
|
Vennerstrom JL, Nuzum EO, Miller RE, Dorn A, Gerena L, Dande PA, Ellis WY, Ridley RG, Milhous WK. 8-Aminoquinolines active against blood stage Plasmodium falciparum in vitro inhibit hematin polymerization. Antimicrob Agents Chemother 1999; 43:598-602. [PMID: 10049273 PMCID: PMC89166 DOI: 10.1128/aac.43.3.598] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From the Walter Reed Army Institute of Research (WRAIR) inventory, thirteen 8-aminoquinoline analogs of primaquine were selected for screening against a panel of seven Plasmodium falciparum clones and isolates. Six of the 13 8-aminoquinolines had average 50% inhibitory concentrations between 50 and 100 nM against these P. falciparum clones and were thus an order of magnitude more potent than primaquine. However, excluding chloroquine-resistant clones and isolates, these 8-aminoquinolines were all an order of magnitude less potent than chloroquine. None of the 8-aminoquinolines was cross resistant with either chloroquine or mefloquine. In contrast to the inactive primaquine prototype, 8 of the 13 8-aminoquinolines inhibited hematin polymerization more efficiently than did chloroquine. Although alkoxy or aryloxy substituents at position 5 uniquely endowed these 13 8-aminoquinolines with impressive schizontocidal activity, the structural specificity of inhibition of both parasite growth and hematin polymerization was low.
Collapse
Affiliation(s)
- J L Vennerstrom
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha 68198-6025.
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Lüersen K, Walter RD, Müller S. The putative gamma-glutamylcysteine synthetase from Plasmodium falciparum contains large insertions and a variable tandem repeat. Mol Biochem Parasitol 1999; 98:131-42. [PMID: 10029315 DOI: 10.1016/s0166-6851(98)00161-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tripeptide glutathione plays a pivotal role in the maintenance of the thiol redox state of the cell and for the detoxification of reactive oxygen species. Glutathione is synthesized in two consecutive reactions by y-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase, respectively. The former enzyme represents the rate limiting step of the synthetic pathway. We have cloned the cDNA and gene of a putative gamma-GCS from Plasmodium falciparum. The contiguous cDNA sequences obtained from various cDNA libraries of P. falciparum K1 and 3D7 encompass 4206 bp or 4038 bp and encode polypeptides of 1119 and 1063 amino acids, respectively. The deduced amino acid sequences show four regions of homology (identity: 31.3-43.9%) to human and Trypanosoma brucei gamma-GCS. These regions are interrupted by three large insertions between 94 and 239 amino acids. Within the first insert a variable repetitive motif was identified, which is responsible for the differing sizes of the sequences. We have analysed this phenomenon in five additional P. falciparum strains and found a high degree of variability in the number of the repeated octamer (Y/C)S(N/D)LQQ(Q/R). Therefore the predicted molecular mass of the proteins from different P. falciparum strains ranges from 124.4 to 133.2 kDa, which is almost twice that of the catalytic subunit of the human host enzyme. Isolation of three genomic clones revealed that the gene does not contain introns. P. falciparum gamma-GCS transcription peaks in trophozoites (24-30 h) suggesting that the antioxidant glutathione is predominantly produced at a time where hemoglobin degradation and the simultaneous formation of reactive oxygen species is maximal.
Collapse
Affiliation(s)
- K Lüersen
- Bernhard Nocht Institute for Tropical Medicine, Biochemical Parasitology, Hamburg, Germany
| | | | | |
Collapse
|
133
|
Das BS, Nanda NK. Evidence for erythrocyte lipid peroxidation in acute falciparum malaria. Trans R Soc Trop Med Hyg 1999; 93:58-62. [PMID: 10492792 DOI: 10.1016/s0035-9203(99)90180-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To assess the extent of oxidative stress in erythrocytes of patients with acute Plasmodium falciparum malaria, erythrocyte thiobarbituric acid-reactive substance (ETBAR), and intracellular, membrane and extracellular antioxidants were estimated in 102 cases of P. falciparum malaria and 50 control subjects. The mean concentration of ETBAR was significantly higher (P < 0.001) and many of the antioxidants were significantly lower in patients than controls. Among the erythrocyte antioxidants, catalase, reduced glutathione (GSH) and tocopherol were significantly lower in the patients (P < 0.05, 0.001, 0.001, respectively). Erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were not reduced to a statistically significant level. Similarly, the plasma antioxidants ascorbate and albumin were significantly lower (P < 0.001) but not urate. ETBAR correlated inversely with erythrocyte GSH and tocopherol (P < 0.001), and plasma ascorbate and albumin (P < 0.001) but not with the erythrocyte enzymic antioxidants. However, on multiple regression analysis only tocopherol correlated strongly with ETBAR, followed by GSH and plasma ascorbate. ETBAR also correlated well with haemolytic indices such as haemoglobin, plasma unconjugated bilirubin and haptoglobin concentrations (P < 0.001, for all). On follow-up after 2 weeks, ETBAR and different antioxidants reached near control levels. These observations indicate an enhanced oxidative stress on erythrocytes in acute falciparum malaria that may contribute substantially to haemolysis and anaemia.
Collapse
Affiliation(s)
- B S Das
- Department of Biochemistry, Ispat General Hospital, Orissa, India
| | | |
Collapse
|
134
|
Ginsburg H, Famin O, Zhang J, Krugliak M. Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochem Pharmacol 1998; 56:1305-13. [PMID: 9825729 DOI: 10.1016/s0006-2952(98)00184-1] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We propose here a new and detailed model for the antimalarial action of chloroquine (CQ), based on the its ability to inhibit degradation of heme by glutathione. Heme, which is toxic to the malaria parasite, is formed when the intraerythrocytic malaria parasite ingests and digests inside its food vacuole its host cell cytosol, which consists mainly of hemoglobin. The parasite protects itself against the toxicity of heme by polymerizing some of it to insoluble hemozoin (HZ). We show here that in Plasmodium falciparum at the trophozoite stage only ca. 30% of the heme is converted into hemozoin. We suggest that nonpolymerized heme exits the food vacuole and is subsequently degraded by glutathione, as has been shown before for uninfected erythrocytes. Marginal amounts of free heme could be detected in the membrane fraction of infected cells but nowhere else. It is well established that CQ and amodiaquine (AQ) accumulate in the parasite's food vacuole and inhibit heme polymerization, thereby increasing its efflux out of the food vacuole. We found that these drugs competitively inhibit the degradation of heme by glutathione, thus allowing heme to accumulate in membranes. Incubation of intact infected cells with CQ and AQ results in a marked increase in membrane-associated heme in a dose- and time-dependent manner, and a relationship exists between membrane heme levels and the extent of parasite killing. Heme has been shown to disrupt the barrier properties of membranes and to upset ion homeostasis in CQ-treated malaria-infected cells. In agreement with the predictions of our model, increasing the cellular levels of glutathione leads to increased resistance to CQ, whereas decreasing them results in enhanced sensitivity to the drug. These results insinuate a novel mechanism of drug resistance.
Collapse
Affiliation(s)
- H Ginsburg
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.
| | | | | | | |
Collapse
|
135
|
Clarebout G, Slomianny C, Delcourt P, Leu B, Masset A, Camus D, Dive D. Status of Plasmodium falciparum towards catalase. Br J Haematol 1998; 103:52-9. [PMID: 9792289 DOI: 10.1046/j.1365-2141.1998.00946.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of endogenous and internalized catalase in the protection of Plasmodium against oxidant stress was studied. Catalase activities were measured in isolated Plasmodium falciparum at different stages of intererythrocytic development. Activities measured at late schizont stages were compared to parasite markers (glutamate dehydrogenase, SOD) and to red blood cell markers (haemoglobin, Cu/Zn-SOD). The fate of the host cell catalase in the parasite digestive system was studied by immunoelectron microscopy using monoclonal antibodies. The internalized catalase appeared to be dissociated in the digestive system of the parasite and inactivated. To examine the protective role of the endogenous and internalized catalase in the parasite protection against oxidant stress, parasites were cultivated at two oxygen concentrations (5% and 20%) in inhibited catalase red blood cells. These experiments suggested that the catalases present both in red blood cell and parasite are not essential when parasites are cultivated under 5% oxygen, but are necessary to protect the parasite under 20% oxygen. Catalase may not be the main protective enzyme involved in the protection of P. falciparum in standard in vitro culture conditions, but may become critical under the higher oxygen tensions conditions encountered in vivo.
Collapse
|
136
|
Golenser J, Peled-Kamar M, Schwartz E, Friedman I, Groner Y, Pollack Y. Transgenic mice with elevated level of CuZnSOD are highly susceptible to malaria infection. Free Radic Biol Med 1998; 24:1504-10. [PMID: 9641269 DOI: 10.1016/s0891-5849(98)00026-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Copper/zinc superoxide dismutase (CuZnSOD) catalyses the conversion of O2.- into H2O2. Constitutive overexpression of CuZnSOD in cells and animals creates an indigenous oxidative stress that predisposes them to added insults. In this study, we used transgenic CuZnSOD (Tg-CuZnSOD) mice with elevated levels of CuZnSOD to determine whether overexpression of CuZnSOD affected the susceptibility of these mice to plasmodium infection. Acute malaria is associated with oxidative stress, mediated by redox-active iron released from the infected RBC. Two independently derived Tg-CuZnSOD lines showed higher sensitivity than control mice to infection by Plasmodium berghei (P. berghei), reflected by an earlier onset and increased rate of mortality. Nevertheless, while Tg-CuZnSOD mice were more vulnerable than control mice, the levels of parasitemia were comparable in both strains. Moreover, treatment of infected red blood cells (RBC) with oxidative stress inducers, such as ascorbate or paraquat, reduced the viability of parasites equally in both transgenic and control RBC. This further confirms that increased CuZnSOD does not support plasmodia development. The data are consistent with the possibility that the combination of increased redox-active iron and elevated H2O2 in the plasmodium-infected Tg-CuZnSOD mice, led to an enhanced Fenton's reaction-mediated HO. production, and the resulting oxidative injury renders the transgenic mice more vulnerable to parasite infection.
Collapse
Affiliation(s)
- J Golenser
- The Kuvin Centre for Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
137
|
Atamna H, Ginsburg H. The malaria parasite supplies glutathione to its host cell--investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:670-9. [PMID: 9461289 DOI: 10.1111/j.1432-1033.1997.00670.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malaria-infected red blood cells are under a substantial oxidative stress. Glutathione metabolism may play an important role in antioxidant defense in these cells, as it does in other eukaryotes. In this work, we have determined the levels of reduced and oxidized glutathione (GSH and GSSG, respectively) and their distributions in the parasite, and in the host-cell compartments of human erythrocytes infected with the malaria parasite Plasmodium falciparum. In intact trophozoite-infected erythrocytes, [GSH] is low and [GSSG] is high, compared with the levels in normal erythrocytes. Normal erythrocytes and the parasite compartment display high GSH/GSSG ratios of 321.6 and 284.5, respectively, indicating adequate antioxidant defense. This ratio drops to 26.7 in the host-cell compartment, indicating a forceful oxidant challenge, the low ratios resulting from an increase in GSSG and a decline in GSH concentrations. On the other hand, the concentrations of GSH and GSSG in the parasite compartment remain physiological and comparable to their concentrations in normal red blood cells. This results from de novo glutathione synthesis and its recycling, assisted by the intensive activity of the hexose monophosphate shunt in the parasite. A large efflux of GSSG from infected cells has been observed, its rate being similar from free parasites and from intact infected cells. This result suggests that de novo synthesis by the parasite is the dominating process in infected cells. GSSG efflux from the intact infected cell is more than 60-fold higher than the rate observed in normal erythrocytes, and is mediated by permeability pathways that the parasite induces in the erythrocyte's membrane. The main route for GSSG efflux through the cytoplasmic membrane of the parasite seems to be due to a specific transport system and occurs against a concentration gradient. Gamma-glutamylcysteine [Glu(-Cys)] and GSH can penetrate through the pathways from the extracellular space into the host cytosol, but not into that of the parasite. This implies that the parasite membrane is impermeable to these peptides, and that the host cannot supply GSH to the parasite as suggested previously. Exogenous Glu(-Cys) is not converted into GSH in the host cell, arguing that GSH synthetase may not be functional. Compartment analysis of Mg2+ in infected erythrocytes revealed that the host compartment exhibits a low concentration of Mg2+ (0.5 mM) in comparison with the parasite compartment (4 mM) and the normal erythrocytes (1.5-3 mM). The drop in [Mg2+] results in cessation of Glu(-Cys) synthesis, and hence of GSH synthesis in the host-cell compartment. The decrease in [Mg2+] can affect other Mg2+-ATP-dependent functions, such as Na+ and Ca2+ active efflux. The present investigation confirms that the host-cell compartment is oxidatively distressed, whereas the parasite is efficiently equipped with anti-oxidant means that protect the parasite from the oxidative injury. The parasite has a huge capacity for de novo synthesis of GSH and for the reduction of GSSG. Part of the GSSG that is actively extruded from the parasite is reduced to GSH in the host cell whose own GSH synthesis is crippled.
Collapse
Affiliation(s)
- H Atamna
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | | |
Collapse
|
138
|
Erel O, Kocyigit A, Avci S, Aktepe N, Bulut V. Oxidative stress and antioxidative status of plasma and erythrocytes in patients with vivax malaria. Clin Biochem 1997; 30:631-9. [PMID: 9455617 DOI: 10.1016/s0009-9120(97)00119-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To investigate the oxidative stress and antioxidative status of plasma and erythrocytes in patients with vivax malaria and healthy persons. DESIGN AND METHODS Activities of antioxidative enzymes, rates of pathways of hexose monophosphate shunt and purine salvage, levels of lipid peroxidation, reduced glutathione, methemoglobin and sulfhemoglobin of erythrocytes were determined. Lipid peroxidation and levels of antioxidant substances were measured. RESULTS Antioxidants levels and antioxidative enzymes activities were lower and lipid peroxidation, purine salvage rate were higher in patients group than controls. Erythrocyte glucose-6 phosphate dehydrogenase (G-6-PD) activity was not different from that of healthy subjects. CONCLUSIONS Oxidative mechanisms were observed to be dominant compared with antioxidative mechanisms in patients with vivax malaria. Therefore, oxidative stress may be produced and maintained by the host defense mechanisms against malarial infection.
Collapse
Affiliation(s)
- O Erel
- Department of Clinical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa-Turkey.
| | | | | | | | | |
Collapse
|
139
|
Abstract
AbstractMalaria-parasitized erythrocytes have increased endothelial adherence due to exposure of previously buried intramembranous sites of band 3. Because sickle erythrocytes also show increased adhesiveness and because the membrane portion of band 3 is aggregated in both types of cells, we examined the role of band 3 in sickle cell adhesiveness. Synthetic peptides derived from the second and third exofacial, interhelical regions of band 3 completely inhibited the abnormal adherence of sickle cells to an endothelial monolayer in a static assay. This effect was observed independently of plasma factors, required micromolar levels of peptide, was sequence-specific, and was found with both L- and D-isomers. The active peptides also inhibited the increased adherence induced by low-dose calcium loading of normal red blood cells. Finally, a monoclonal antibody against an active peptide specifically immunostained a fraction of sickle cells. These findings implicate a role for band 3 in at least one type of sickle cell adhesiveness via the exposure of normally cryptic membrane sites.
Collapse
|
140
|
Francis SE, Gluzman IY, Oksman A, Banerjee D, Goldberg DE. Characterization of native falcipain, an enzyme involved in Plasmodium falciparum hemoglobin degradation. Mol Biochem Parasitol 1996; 83:189-200. [PMID: 9027752 DOI: 10.1016/s0166-6851(96)02772-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In Plasmodium falciparum, a cysteine protease known as falcipain has been implicated in the essential metabolic process of hemoglobin degradation. Parallel lines of investigation, using native or recombinant enzyme, have led to differing conclusions about the specificity and role of this protease. We have now determined that (1) Native falcipain does not cleave hemoglobin unless this substrate has first been denatured by reducing agents, acid-acetone treatment or plasmepsin action. (2) Reducing agents such as glutathione cannot denature hemoglobin in the presence of catalase, which is accumulated in the digestive vacuole. (3) The purified native enzyme has kinetics similar to those obtained with trophozoite extract, but substantially different from those of recombinant enzyme. (4) Although there are numerous cysteine protease genes in the P. falciparum genome, the falcipain gene is the only one whose transcript can be detected in the early intraerythrocytic parasites. We conclude that falcipain likely works by degrading hemoglobin fragments after initial aspartic protease attack has denatured the substrate. We propose that falcipain inhibitors block the initial steps of degradation indirectly by promoting vacuolar accumulation of osmotically active hemoglobin peptides.
Collapse
Affiliation(s)
- S E Francis
- Howard Hughes Medical Institute, Department of Molecular Microbiology, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
141
|
Shalmiev G, Krugliak M, Turrini F, Ginsburg H. Antimalarial drugs inhibit the phagocytosis of erythrocytes infected with Plasmodium falciparum. Trans R Soc Trop Med Hyg 1996; 90:558-62. [PMID: 8944274 DOI: 10.1016/s0035-9203(96)90324-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phagocytic cells constitute the first line of defence against malarial parasites. They perform their role by delivering oxidative radicals and by phagocytosing infected red blood cells (IRBC). Phagocytosis is mediated by antibody binding to clustered band 3 antigen in the IRBC membrane and activation of the alternative complement pathway. In this study we showed that treatment of IRBC containing Plasmodium falciparum with therapeutically-relevant concentrations of antimalarial drugs considerably reduced the binding of immunoglobulin G (IgG) to, and the phagocytosis of, IRBC. Opsonization of IRBC by fresh serum before drug treatment prevented this inhibitory action of drugs. Removal of the drug restored IgG binding and the phagocytic susceptibility of IRBC in a time-dependent fashion. Direct measurement of the effect of chloroquine on the clustering of band 3 in IRBC, however, failed to reveal any disruption of the aggregation. We conclude that antimalarial drugs are able to alter, by an as yet unresolved mechanism, the affinity of IgG to clustered band 3. This affinity of IRBC seems to be determined by a dynamic process that depends on the metabolic activity of the parasite.
Collapse
Affiliation(s)
- G Shalmiev
- Department of Biological Chemistry, Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
142
|
Postma NS, Mommers EC, Eling WM, Zuidema J. Oxidative stress in malaria; implications for prevention and therapy. PHARMACY WORLD & SCIENCE : PWS 1996; 18:121-9. [PMID: 8873227 DOI: 10.1007/bf00717727] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Malaria affects world-wide more than 200 million people, of which 1-2 million die every year. New drugs and treatment strategies are needed to face the rapidly increasing problems of drug resistance. During a malaria infection, both host and parasite are under oxidative stress. Increased production levels of reactive oxygen species (ROS, e.g superoxide anion and the hydroxyl radical) are produced by activated neutrophils in the host and during degradation of haemoglobin in the parasite. The effects of ROS in malaria can be both beneficial and pathological, depending on the amount and place of production. Enhanced ROS production after the administration of pro-oxidants, which is directed against the intra-erythrocytic parasite, inhibits the infection both in vitro and in vivo. However, ROS are also involved in pathological changes in host tissue like damage of the vascular endothelial lining during a malaria infection (cerebral malaria). Pro-oxidants support the host defense against the parasite when working in or near the infected cell but potentially cause vascular damage when working on or near the vascular lining. Examples of pro-oxidants are found among xenobiotics and food components. Important new drugs belonging to the class of pro-oxidants are artemisinin and its derivatives. Anti-oxidants potentially counteract these agents. Treatment with anti-oxidants or chelators of metals to prevent their catalytic function in the generation of ROS may prevent vascular pathology. In addition, the iron chelator desferrioxamine, exhibits an antiparasitic activity, because iron is also essential for the proliferation of the parasite. Cytokines play an important role in ROS-related pathology of malaria, though their mechanism of action is not completely elucidated. This field might bring up new treatment concepts and drugs. Drugs which prevent host pathology, such as the cerebral complications might be life saving.
Collapse
Affiliation(s)
- N S Postma
- Department of Pharmaceutics, University of Utrechi, The Netherlands
| | | | | | | |
Collapse
|
143
|
Färber PM, Becker K, Müller S, Schirmer RH, Franklin RM. Molecular cloning and characterization of a putative glutathione reductase gene, the PfGR2 gene, from Plasmodium falciparum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:655-61. [PMID: 8774709 DOI: 10.1111/j.1432-1033.1996.0655u.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recently, glutathione reductase (GR) has emerged as a promising target for antiparasitic drugs. The central role of GR in cellular antioxidant defence, the particular susceptibility of intracellular parasites like Plasmodium falciparum to oxidative stress, and successful inhibitor studies substantiate this approach. However, more information is required on the structural and functional characteristics of GR from malarial parasites and differences from the enzyme of host erythrocytes. We have identified a putative P. falciparum GR gene coding for a polypeptide (PfGR2) of 500 amino acids that exhibits 40-45% sequence identity with GR enzymes from other species. 18 out of 19 residues contributing to glutathione binding are identical in the putative PfGR2 and human GR. According to Southern blot analysis, the PfGR2 gene is present as a single-copy gene. It is expressed during the intraerythrocytic life cycle. Stage-specific Northern blot analysis demonstrates that the PfGR2 gene is only weakly transcribed in ring, early trophozoite, and segmenter stages; major transcription occurs in the late trophozoite/early schizont stage. This is consistent with the high glutathione reductase activity found in early schizonts. Other data also suggest that PfGR2 corresponds to the enzyme isolated from parasitized erythrocytes. These criteria include the subunit molecular mass (56.2 kDa), the N-terminal sequence (VYDLIVIGGGSGGMA), the presence of specific sequence motifs at ligand-binding sites, and, as demonstrated by Western blotting, the occurrence of a unique chain segment in the core of the central domain. In view of these data, the function(s) of PfGR2 as well as PfGR1, the product of another GR-like gene of P. falciparum (Müller et al., 1995) should be carefully assessed.
Collapse
Affiliation(s)
- P M Färber
- Biozentrum der Universität Basel, Switzerland
| | | | | | | | | |
Collapse
|
144
|
Gamain B, Langsley G, Fourmaux MN, Touzel JP, Camus D, Dive D, Slomianny C. Molecular characterization of the glutathione peroxidase gene of the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 1996; 78:237-48. [PMID: 8813693 DOI: 10.1016/s0166-6851(96)02632-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this paper we report the isolation and the characterization of a gene encoding the antioxidant enzyme glutathione peroxidase from the human malaria parasite Plasmodium falciparum. This gene contains two introns of 208 and 168 bp and is present in a single copy on chromosome 13. The open reading frame encodes a protein with a predicted length of 205 amino acids, which possesses a potential cleavage site between residues 21 and 22 after a hydrophobic region with the characteristics of a signal sequence. Therefore, the mature protein is predicted to be 184 residues long with a molecular mass of 21404 Da. In comparison with other known glutathione peroxidases many amino acid residues implicated in catalysis are conserved in the malarial enzyme. Phylogenetic analysis indicates that the deduced protein sequence is more closely related to plant glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase. A 1.5-kb transcript was identified in asynchronous erythrocytic stages.
Collapse
Affiliation(s)
- B Gamain
- Institut National de la Santé et de la Recherche Médicale Unité 42, Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
145
|
Winter RW, Cornell KA, Johnson LL, Ignatushchenko M, Hinrichs DJ, Riscoe MK. Potentiation of the antimalarial agent rufigallol. Antimicrob Agents Chemother 1996; 40:1408-11. [PMID: 8726010 PMCID: PMC163340 DOI: 10.1128/aac.40.6.1408] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have discovered a remarkable synergistic antimalarial interaction between rufigallol and the structurally similar compound exifone. The synergistic effects were produced in chloroquine-susceptible and chloroquine-resistant clones of Plasmodium falciparum. The degree of potentiation as estimated by standard isobolar analysis was approximately 60-fold for experiments initiated with asynchronous parasites. The most pronounced synergism was observed in experiments with synchronized trophozoite-infected erythrocytes, in which the degree of synergy was at least 300-fold. While the mechanism underlying this drug potentiation remains unresolved, it is hypothesized that rufigallol acts in pro-oxidant fashion to produce oxygen radicals inside parasitized erythrocytes. These radicals would attack exifone, thereby initiating its transformation into a more potent compound, a xanthone.
Collapse
Affiliation(s)
- R W Winter
- Medical Research Service, Department of Veterans Affairs Medical Center, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
146
|
Destro-Bisol G, Giardina B, Sansonetti B, Spedini G. Interaction between oxidized hemoglobin and the cell membrane: A common basis for severalfalciparum malaria-linked genetic traits. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1996. [DOI: 10.1002/(sici)1096-8644(1996)23+<137::aid-ajpa5>3.0.co;2-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
147
|
Gamain B, Arnaud J, Favier A, Camus D, Dive D, Slomianny C. Increase in glutathione peroxidase activity in malaria parasite after selenium supplementation. Free Radic Biol Med 1996; 21:559-65. [PMID: 8886808 DOI: 10.1016/0891-5849(96)00120-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Glutathione peroxidase (GPx), a key enzyme involved in the detoxification of many peroxides, has been investigated in two malaria parasite species: P. yoelii in vivo (murine malaria) and P. falciparum in vitro (human malaria). We demonstrate the presence of an endogenous GPx activity in these two Plasmodia species. Enzymatic assays and the use of specific substrates and inhibitors allowed us to determine that the activity is selenium dependent. As this activity was shown to be lower in P. falciparum than in P. yoelii, and selenium levels were found to be low in culture medium and culture red blood cells, we hypothesized that a severe selenium deficiency could be responsible for this difference. After selenium supplementation, with either sodium selenite or selenocystine, we observed an increase in growth of P. falciparum only in with sodium selenite, whereas higher GPx activities were noted in parasites grown in media supplemented with both. An increase in GPx activities was also observed in parasites that had undergone an experimental oxidative stress with TBOOH. As the erythrocyte is unable to synthesize new proteins, these results provide further evidence for the existence of an endogenous parasitic selenium-dependent glutathione peroxidase.
Collapse
Affiliation(s)
- B Gamain
- Institut National de la Santé et de la Recherche Médicale Unité 42, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
148
|
Abstract
Many of the parasitic protozoa, such as Entamoeba histolytica, Giardia, Trypanosoma, Leishmania, and Plasmodium, are considered to be anaerobes because they can be grown in vitro only under conditions of reduced oxygen tension. However, these parasitic protozoa have been found to be aerotolerant or microaerophilic, and also to consume oxygen to a certain extent. Furthermore, these organisms are highly susceptible to exogenous reactive oxygen species, such as hydrogen peroxide. They must, therefore, detoxify both oxygen and free radical products of enzymatic reactions. However, they lack some or all of the usual antioxidant defense mechanisms present in aerobic or other aerotolerant cells, such as catalase, superoxide dismutase, reduced glutathione, and the glutathione-recycling enzymes glutathione peroxidase and glutathione reductase. Instead, they possess alternative mechanisms for detoxification similar to those known to exist in certain prokaryotes. Although the functional aspects of these alternative mechanisms are yet to be understood completely, they could provide new insights into the biochemical peculiarities of these enigmatic pathogens.
Collapse
Affiliation(s)
- R K Mehlotra
- Division of Geographic Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4983, USA
| |
Collapse
|
149
|
Abstract
Intralipid and Ivelip are commercial preparations of soy-bean lipid extracts used for intravenous supplementation of lipids in various clinical conditions. They were found to inhibit the growth of Plasmodium falciparum in culture with an IC50 of 8.07 +/- 2.13 and 13.32 +/- 2.05 mg.ml-1, respectively. Intralipid rapidly and efficiently inhibited nucleic acid synthesis in cultured P. falciparum, exhibiting full inhibitory activity in less than 2 h. Ivelip injected intraperitoneally, was found by the 4-day suppressive test to be active in vivo against P. vinckei petteri within the normal recommended regimen for dietary lipid supply (0.5-4 g.kg-1), but it was impossible to obtain a radical cure even with very high doses (6.4 g.kg-1). Ivelip was less effective against P. berghei and P. yoelii nigeriensis. As Ivelip showed no interference with the antimalarial activity of chloroquine, it could be considered for use in the treatment of severe human malaria in association with 4-aminoquinolines to expedite the clearance of parasites.
Collapse
Affiliation(s)
- E Deharo
- Laboratoire de Biologie Parasitaire associé au CNRS, (URA 114), Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | |
Collapse
|
150
|
Müller S, Becker K, Bergmann B, Schirmer RH, Walter RD. Plasmodium falciparum glutathione reductase exhibits sequence similarities with the human host enzyme in the core structure but differs at the ligand-binding sites. Mol Biochem Parasitol 1995; 74:11-8. [PMID: 8719241 DOI: 10.1016/0166-6851(95)02476-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The homodimeric flavoenzyme glutathione reductase (GR) which catalyzes the reduction of glutathione disulfide is a cornerstone of the malaria parasite antioxidant defense and repair mechanisms. Here we report on the identification of the GR gene from Plasmodium falciparum. A 1.4-kb fragment of the gene was amplified by polymerase chain reaction (PCR). Using this PCR fragment as a probe a full length cDNA clone (2085 bp) was isolated from a P. falciparum gametocyte library. The deduced amino acid sequence of 541 residues shows an overall identity of 35% when compared to the human enzyme. Most amino acids of known function are identical. However, notable differences between human and parasite protein occur in the glutathione-binding pocket (for instance, Glu374 instead of the expected basic residue) and at the intersubunit contact area. These regions are of particular interest since they represent binding sites of known GR inhibitors. Consequently, parasite GR can serve as a target structure for the design of antimalarial drugs.
Collapse
Affiliation(s)
- S Müller
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | |
Collapse
|