101
|
Vanegas H, Schaible HG. Prostaglandins and cyclooxygenases [correction of cycloxygenases] in the spinal cord. Prog Neurobiol 2001; 64:327-63. [PMID: 11275357 DOI: 10.1016/s0301-0082(00)00063-0] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spinal cord is one of the sites where non-steroidal anti-inflammatory drugs (NSAIDs) act to produce analgesia and antinociception. Expression of cyclooxygenase(COX)-1 and COX-2 in the spinal cord and primary afferents suggests that NSAIDs act here by inhibiting the synthesis of prostaglandins (PGs). Basal release of PGD(2), PGE(2), PGF(2alpha) and PGI(2) occurs in the spinal cord and dorsal root ganglia. Prostaglandins then bind to G-protein-coupled receptors located in intrinsic spinal neurons (receptor types DP and EP2) and primary afferent neurons (EP1, EP3, EP4 and IP). Acute and chronic peripheral inflammation, interleukins and spinal cord injury increase the expression of COX-2 and release of PGE(2) and PGI(2). By activating the cAMP and protein kinase A pathway, PGs enhance tetrodotoxin-resistant sodium currents, inhibit voltage-dependent potassium currents and increase voltage-dependent calcium inflow in nociceptive afferents. This decreases firing threshold, increases firing rate and induces release of excitatory amino acids, substance P, calcitonin gene-related peptide (CGRP) and nitric oxide. Conversely, glutamate, substance P and CGRP increase PG release. Prostaglandins also facilitate membrane currents and release of substance P and CGRP induced by low pH, bradykinin and capsaicin. All this should enhance elicitation and synaptic transfer of pain signals in the spinal cord. Direct administration of PGs to the spinal cord causes hyperalgesia and allodynia, and some studies have shown an association between induction of COX-2, increased PG release and enhanced nociception. NSAIDs diminish both basal and enhanced PG release in the spinal cord. Correspondingly, spinal application of NSAIDs generally diminishes neuronal and behavioral responses to acute nociceptive stimulation, and always attenuates behavioral responses to persistent nociception. Spinal application of specific COX-2 inhibitors sometimes diminishes behavioral responses to persistent nociception.
Collapse
Affiliation(s)
- H Vanegas
- Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, 1020A, Caracas, Venezuela.
| | | |
Collapse
|
102
|
Chaban VV, McRoberts JA, Ennes HS, Mayer EA. Nitric oxide synthase inhibitors enhance mechanosensitive Ca(2+) influx in cultured dorsal root ganglion neurons. Brain Res 2001; 903:74-85. [PMID: 11382390 DOI: 10.1016/s0006-8993(01)02407-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) can have opposite effects on peripheral sensory neuron sensitivity depending on the concentration and source of NO, and the experimental setting. The aim of this study was to determine the role of endogenous NO production in the regulation of mechanosensitive Ca(2+) influx of dorsal root ganglion (DRG) neurons. Adult mouse DRG neurons were grown in primary culture for 2-5 days, loaded with Fura-2, and tested for mechanically mediated changes in [Ca(2+)](i) by fluorescent ratio imaging. In the presence of the NOS inhibitors L-NAME, TRIM, or 7-NI, but not the inactive analogue D-NAME, peak [Ca(2+)](i) transients to mechanical stimulation were increased more than 2-fold. Neither La(3+) (25 microM), an inhibitor of voltage activated Ca(2+) channels, or tetrodotoxin (TTX, 1 microM), a selective inhibitor of voltage-gated Na(+) channels, had an effect on mechanically activated [Ca(2+)](i) transients under control conditions. However, in the presence of L-NAME, both La(3+) and TTX partially blocked the [Ca(2+)](i) response. Addition of Gd(3+), a blocker of mechanosensitive cation channels and L-type Ca(2+) channels, at a concentration (100 microM) that markedly inhibited the mechanical response under control conditions, only partially inhibited the response in the presence of L-NAME. The combination of either La(3+) or TTX with Gd(3+) caused near complete inhibition of mechanically stimulated [Ca(2+)](i) transients in the presence of L-NAME. We conclude that focal mechanical stimulation of DRG neurons causes Ca(2+) influx occurs primarily through mechanosensitive cation channels under control conditions. In the presence of NOS inhibitors, additional Ca(2+) influx occurs through voltage-sensitive Ca(2+) channels. These results suggest that endogenously produced NO in cultured DRG neurons decreases mechanosensitivity by inhibiting voltage-gated Na(+) and Ca(2+) channels.
Collapse
Affiliation(s)
- V V Chaban
- UCLA/CURE Neuroenteric Disease Program, Division of Digestive Diseases, Department of Medicine, University of California, VAGLAHS, West Los Angeles, Room 223, Building 115, 11301 Wilshire Boulevard, , Los Angeles, CA 90073, USA
| | | | | | | |
Collapse
|
103
|
Rowlands DK, Kao CL, Wise H. Regulation of prostacyclin and prostaglandin E(2) receptor mediated responses in adult rat dorsal root ganglion cells, in vitro. Br J Pharmacol 2001; 133:13-22. [PMID: 11325789 PMCID: PMC1572751 DOI: 10.1038/sj.bjp.0704028] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Primary cultures of adult rat dorsal root ganglia (DRG) were prepared to examine the properties of prostacyclin (IP) receptors and prostaglandin E(2) (EP) receptors in sensory neurones. 2. IP receptor agonists, cicaprost and iloprost, stimulated adenylyl cyclase activity with EC(50) values of 22 and 28 nM, respectively. Prostaglandin E(1) (PGE(1)) and prostaglandin E(2) (PGE(2)) were 7 fold less potent than cicaprost and iloprost, with PGE(2) displaying a lower maximal response. 3. Adenylyl cyclase activation by iloprost, PGE(1) and PGE(2), but not by forskolin, was highly dependent on DRG cell density. Although the potency of iloprost and PGE(2) for stimulating adenylyl cyclase was unchanged, their maximal responses were significantly increased at low cell density. 4. Both IP and EP(2/4) receptors could be down-regulated by agonist pretreatment, however the presence of cyclo-oxygenase (COX) inhibitors did not prevent this apparent down-regulation of IP and EP(2/4) receptors at high DRG cell densities. 5. Stimulation of adenylyl cyclase by the neuropeptide calcitonin gene-related peptide was also decreased at high DRG cell density, whereas the responses to beta-adrenoceptor agonists were increased at high DRG cell density. 6. Addition of nerve growth factor (NGF), or the addition of anti-neurotrophin antibodies during the 5-day culture of DRG cells, had no effect on IP receptor-mediated responses. 7. These results indicate that G(s)-coupled receptors involved in nociception are regulated in a variable manner in adult rat sensory neurones, and that this cell density-dependent regulation may be agonist-independent for IP and EP(2/4) receptors.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Aging/physiology
- Alprostadil/pharmacology
- Animals
- Antineoplastic Agents/pharmacology
- Cell Count
- Cells, Cultured
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Cyclooxygenase Inhibitors/pharmacology
- Dinoprostone/analogs & derivatives
- Dinoprostone/pharmacology
- Down-Regulation/drug effects
- Enzyme Activation/drug effects
- Epoprostenol/analogs & derivatives
- Epoprostenol/pharmacology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/enzymology
- Ganglia, Spinal/metabolism
- Iloprost/pharmacology
- Male
- Neurons, Afferent/drug effects
- Neurons, Afferent/enzymology
- Neurons, Afferent/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Epoprostenol
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/metabolism
Collapse
Affiliation(s)
- Dewi K Rowlands
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong S.A.R., China
| | - Chung-lei Kao
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong S.A.R., China
| | - Helen Wise
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong S.A.R., China
- Author for correspondence:
| |
Collapse
|
104
|
de Plater GM, Milburn PJ, Martin RL. Venom from the platypus, Ornithorhynchus anatinus, induces a calcium-dependent current in cultured dorsal root ganglion cells. J Neurophysiol 2001; 85:1340-5. [PMID: 11248005 DOI: 10.1152/jn.2001.85.3.1340] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The platypus (Ornithorhynchus anatinus), a uniquely Australian species, is one of the few living venomous mammals. Although envenomation of humans by many vertebrate and invertebrate species results in pain, this is often not the principal symptom of envenomation. However, platypus envenomation results in an immediate excruciating pain that develops into a very long-lasting hyperalgesia. We have previously shown that the venom contains a C-type natriuretic peptide that causes mast cell degranulation, and this probably contributes to the development of the painful response. Now we demonstrate that platypus venom has a potent action on putative nociceptors. Application of the venom to small to medium diameter dorsal root ganglion cells for 10 s resulted in an inward current lasting several minutes when the venom was diluted in buffer at pH 6.1 but not at pH 7.4. The venom itself has a pH of 6.3. The venom activated a current with a linear current-voltage relationship between -100 and -25 mV and with a reversal potential of -11 mV. Ion substitution experiments indicate that the current is a nonspecific cationic current. The response to the venom was blocked by the membrane-permeant Ca(2+)-ATPase inhibitor, thapsigargin, and by the tyrosine- and serine-kinase inhibitor, k252a. Thus the response appears to be dependent on calcium release from intracellular stores. The identity of the venom component(s) that is responsible for the responses we have described is yet to be determined but is probably not the C-type natriuretic peptide or the defensin-like peptides that are present in the venom.
Collapse
Affiliation(s)
- G M de Plater
- Division of Neuroscience, Australian National University, Canberra, ACT 0200, Australia
| | | | | |
Collapse
|
105
|
Hiruma H, Ichikawa T, Kobayashi H, Hoka S, Takenaka T, Kawakami T. Prostaglandin E(2) enhances axonal transport and neuritogenesis in cultured mouse dorsal root ganglion neurons. Neuroscience 2001; 100:885-91. [PMID: 11036222 DOI: 10.1016/s0306-4522(00)00347-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of prostaglandin E(2) on axonal transport in cultured mouse dorsal root ganglion neurons were investigated by analysing the number of axonally transported particles under video-enhanced microscopy. Application of prostaglandin E(2) increased the number of particles transported in anterograde and retrograde directions. The EP(2) prostaglandin receptor agonist butaprost mimicked the effect of prostaglandin E(2), but the EP(1)/EP(3) prostaglandin receptor agonist 17-phenyl trinor prostaglandin E(2) and the EP(3) prostaglandin receptor agonist M&B 28767 had no effect. The membrane-permeable cyclic AMP analogue dibutyryl cyclic AMP and the adenylate cyclase activator forskolin mimicked the effect of prostaglandin E(2). The protein kinase A inhibitor H-89 reversibly reduced the number of particles in both anterograde and retrograde directions. The effects of prostaglandin E(2) and dibutyryl cyclic AMP were blocked by H-89. Taken together with previous biochemical studies showing that prostaglandin E(2) increases cyclic AMP levels, the present results suggest that prostaglandin E(2) enhances axonal transport via the EP(2) receptor and cyclic AMP-dependent protein kinase A pathway. We further investigated the role of prostaglandin E(2) in neurite growth. Prostaglandin E(2) increased both the number of cells exhibiting neurites and the neurite growth rate, operating by a similar mechanism to stimulation of axonal transport. Prostaglandin E(2) may modulate axonal transport to supply materials for morphogenesis as well as other functions in sensory neurons.
Collapse
Affiliation(s)
- H Hiruma
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, 228-8555, Sagamihara, Japan.
| | | | | | | | | | | |
Collapse
|
106
|
Liu L, Oortgiesen M, Li L, Simon SA. Capsaicin inhibits activation of voltage-gated sodium currents in capsaicin-sensitive trigeminal ganglion neurons. J Neurophysiol 2001; 85:745-58. [PMID: 11160509 DOI: 10.1152/jn.2001.85.2.745] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Capsaicin, the pungent ingredient in hot pepper, activates nociceptors to produce pain and inflammation. However, repeated exposures of capsaicin will cause desensitization to nociceptive stimuli. In cultured trigeminal ganglion (TG) neurons, we investigated mechanisms underlying capsaicin-mediated inhibition of action potentials (APs) and modulation of voltage-gated sodium channels (VGSCs). Capsaicin (1 microM) inhibited APs and VGSCs only in capsaicin-sensitive neurons. Repeated applications of capsaicin produced depolarizing potentials but failed to evoke APs. The capsaicin-induced inhibition of VGSCs was prevented by preexposing the capsaicin receptor antagonist, capsazepine (CPZ). The magnitude of the capsaicin-induced inhibition of VGSCs was dose dependent, having a K(1/2) = 0.45 microM. The magnitude of the inhibition of VGSCs was proportional to the capsaicin induced current (for -I(CAP) < 0.2 nA). Capsaicin inhibited activation of VGSCs without changing the voltage dependence of activation or markedly changing channel inactivation and use-dependent block. To explore the changes leading to this inhibition, it was found that capsaicin increased cAMP with a K(1/2) = 0.18 microM. At 1 microM capsaicin, this cAMP generation was inhibited 64% by10 microM CPZ, suggesting that activation of capsaicin receptors increased cAMP. The addition of 100 microM CPT-cAMP increased the capsaicin-activated currents but inhibited the VGSCs in both capsaicin-sensitive and -insensitive neurons. In summary, the inhibitory effects of capsaicin on VGSCs and the generation of APs are mediated by activation of capsaicin receptors. The capsaicin-induced activation of second messengers, such as cAMP, play a part in this modulation. These data distinguish two pathways by which neuronal sensitivity can be diminished by capsaicin: by modulation of the capsaicin receptor sensitivity, since the block of VGSCs is proportional to the magnitude of the capsaicin-evoked currents, and by modulation of VGSCs through second messengers elevated by capsaicin receptor activation. These mechanisms are likely to be important in understanding the analgesic effects of capsaicin.
Collapse
Affiliation(s)
- L Liu
- Department of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
107
|
Hiruma H, Saito A, Ichikawa T, Kiriyama Y, Hoka S, Kusakabe T, Kobayashi H, Kawakami T. Effects of substance P and calcitonin gene-related peptide on axonal transport in isolated and cultured adult mouse dorsal root ganglion neurons. Brain Res 2000; 883:184-91. [PMID: 11074047 DOI: 10.1016/s0006-8993(00)02892-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Substance P and calcitonin gene-related peptide (CGRP) released from primary sensory neurons are known to play important roles in nociception and nociceptive transmission. In the present study, we attempted to clarify the roles of these neuropeptides in the regulation of axonal transport in sensory neurons. Cells were isolated from adult mouse dorsal root ganglia and cultured in F-12 medium containing fetal bovine serum for 48 h until their neurites were grown. These isolated and cultured DRG cells were mostly (>98%) small (diameter <25 microm) and medium (diameter, 25-40 microm) in size, and were immunoreactive for substance P and CGRP (85.9 and 66. 0% of total cells, respectively). Video-enhanced microscopy was applied to observe particles transported within neurites. Application of substance P (100 nM) decreased the number of particles transported in both anterograde and retrograde directions in each of DRG neurons tested (n=5). The instantaneous velocities of individual particles transported in anterograde and retrograde directions were also reduced by substance P. In contrast, alpha-CGRP (100 nM) increased the number of particles transported in both directions in each of DRG neurons tested (n=5), and also increased the instantaneous velocities of particles transported bidirectionally. Application of beta-CGRP (100-1000 nM) did not elicit any effect on axonal transport. Therefore, axonal transport in sensory neurons seems to be modulated by substance P and alpha-CGRP, both of which can be derived from its own and adjacent sensory neurons.
Collapse
Affiliation(s)
- H Hiruma
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, 228-8555, Sagamihara, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Veronesi B, Oortgiesen M, Roy J, Carter JD, Simon SA, Gavett SH. Vanilloid (capsaicin) receptors influence inflammatory sensitivity in response to particulate matter. Toxicol Appl Pharmacol 2000; 169:66-76. [PMID: 11076698 DOI: 10.1006/taap.2000.9040] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signs of airway inflammation and hyperresponsiveness that occur in animals exposed to air pollutants are often strain- and species-specific. To investigate the underlying causes of this phenomenon, BALB/c and C57bl/6 mice were exposed intratracheally to residual oil fly ash (ROFA, 3 mg/kg) and examined after 24 h for signs of airway inflammation. BALB/c showed significantly higher numbers of neutrophils and increased airway hyperresponsiveness in response to methacholine challenge, whereas B6 mice showed no significant change in either inflammatory endpoint. To determine the underlying cause of this strain specificity, cultures of dorsal root ganglion (DRG) sensory neurons, which innervate the upper airways in situ, were explanted from both BALB/c and B6 fetal mice. After 5-7 days in culture, they were exposed to ROFA, other urban and industrial particulate matter (PM; e.g., oil fly ash, woodstove, Mt. St. Helen, St. Louis, Ottawa, coal fly ash) or to prototype irritants (e.g., capsaicin 3-10 microM, pH 5.0 and 6.5). In all instances (except for woodstove), DRG neurons from BALB/c mice released significantly higher levels of the pro-inflammatory cytokine IL-6 into their nutrient media relative to neurons from B6 mice. This cytokine release could be significantly reduced for all PM treated cultures (except woodstove) by pretreatment of cultures with capsazepine (CPZ), a competitive antagonist of vanilloid receptors. DRG neurons, cultured from BALB/c and B6 neonates, were loaded with Fluo-3 AM and exposed to the prototype irritants, acid pH (5.0, 6.5), or capsaicin (3, 10 microM). Analysis of their increases in intracellular calcium showed that significantly higher numbers of BALB/c neurons responded to these prototype irritants, relative to B6 neurons. Morphometric analysis of BALB/c neurons, histochemically stained with cobalt to label neurons bearing capsaicin-sensitive receptors, showed a significantly higher level of stained neurons relative to B6 neurons. Finally, semiquantitative RT-PCR showed a higher expression of VR1 receptor mRNA in DRG and spinal cord taken from neonatal BALB/c mice relative to B6 mice. Taken together, these data suggest that capsaicin and acid-sensitive irritant receptors, located on somatosensory cell bodies and their nerve fiber terminals, subserve PM-induced airway inflammation and are quantitatively different in responsive and nonresponsive mouse strains.
Collapse
MESH Headings
- Air Pollutants/toxicity
- Animals
- Animals, Newborn
- Bronchial Hyperreactivity/chemically induced
- Bronchial Hyperreactivity/physiopathology
- Capsaicin/metabolism
- Carbon/administration & dosage
- Carbon/toxicity
- Cell Survival/drug effects
- Cells, Cultured
- Coal Ash
- Dose-Response Relationship, Drug
- Female
- Fetus/cytology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/embryology
- Ganglia, Spinal/metabolism
- Interleukin-6/metabolism
- Intubation, Intratracheal
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Particulate Matter
- Pregnancy
- RNA/metabolism
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Species Specificity
Collapse
Affiliation(s)
- B Veronesi
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
109
|
Schwarz S, Greffrath W, Büsselberg D, Treede RD. Inactivation and tachyphylaxis of heat-evoked inward currents in nociceptive primary sensory neurones of rats. J Physiol 2000; 528:539-49. [PMID: 11060130 PMCID: PMC2270164 DOI: 10.1111/j.1469-7793.2000.00539.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2000] [Accepted: 07/20/2000] [Indexed: 01/25/2023] Open
Abstract
Membrane currents evoked by repeated noxious heat stimuli (43-47 degrees C) of 3 s duration were investigated in acutely dissociated dorsal root ganglion (DRG) neurones of adult rats. The heat stimuli generated by a fast solution exchanger had a rise time of 114 +/- 6 ms and a fall time of 146 +/- 13 ms. When heat stimuli were applied to heat-sensitive small (< or = 32.5 microm) DRG neurones, an inward membrane current (I(heat)) with a mean peak of 2430 +/- 550 pA was observed (n = 19). This current started to activate and deactivate with no significant latency with respect to the heat stimulus. The peak of I(heat) was reached with a rise time of 625 +/- 115 ms. When the heat stimulus was switched off I(heat) deactivated with a fall time of 263 +/- 17 ms. During constant heat stimulation I(heat) decreased with time constants of 4-5 s (inactivation). At the end of a 3 s heat stimulus the peak current was reduced by 44 +/- 5 % (n = 19). Current-voltage curves revealed outward rectifying properties of I(heat) and a reversal potential of -6.3 +/- 2.2 mV (n = 6). Inactivation was observed at all membrane potentials investigated (-80 to 60 mV); however, inactivation was more pronounced for inward currents (37 +/- 5 %) than for outward currents (23 +/- 6 %, P < 0.05). When neurones were investigated with repeated heat stimuli (3 to 5 times) of the same temperature, the peak current relative to the first I(heat) declined by 48 +/- 6 % at the 3rd stimulus (n = 19) and by 54 +/- 18 % at the 5th stimulus (n = 4; tachyphylaxis). In the absence of extracellular Ca2+ (buffered with 10 mM EGTA) inactivation (by 53 +/- 6 %) and tachyphylaxis (by 42 +/- 7 % across three stimuli) were still observed (n = 8). The same was true when intracellular Ca2+ was buffered by 10 mM BAPTA (inactivation by 49 +/- 4 %, tachyphylaxis by 52 +/- 7 % across three stimuli; n = 13). Thus, inactivation and tachyphylaxis were mainly independent of intra- and extracellular Ca2+. These results indicate that inactivation and tachyphylaxis of heat-evoked inward currents can be observed in vitro, similar to adaptation and suppression of action potential discharges elicited by comparably fast heat stimuli in vivo. Whereas the voltage dependence of I(heat) resembles that of capsaicin-induced membrane currents (I(Caps)), the independence of inactivation and tachyphylaxis of I(heat) from calcium is in clear contrast to I(Caps). A similar difference in calcium dependence of inactivation has been reported between heat-evoked and capsaicin-induced currents through the cloned capsaicin receptor channel VR1. Thus, the properties of I(heat) and of VR1 largely account for the adaptation and suppression of heat-evoked nociceptor discharges.
Collapse
Affiliation(s)
- S Schwarz
- Institute of Physiology and Pathophysiology, Johannes Gutenberg University, D-55099 Mainz, Germany
| | | | | | | |
Collapse
|
110
|
Zapata P, Larraín C, Iturriaga R, Alcayaga J, Eyzaguirre C. Interactions between acetylcholine and dopamine in chemoreception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 475:495-505. [PMID: 10849690 DOI: 10.1007/0-306-46825-5_48] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- P Zapata
- Laboratory of Neurobiology, Catholic University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
111
|
Hogan QH, McCallum JB, Sarantopoulos C, Aason M, Mynlieff M, Kwok WM, Bosnjak ZJ. Painful neuropathy decreases membrane calcium current in mammalian primary afferent neurons. Pain 2000; 86:43-53. [PMID: 10779659 DOI: 10.1016/s0304-3959(99)00313-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hyperexcitability of the primary afferent neuron leads to neuropathic pain following injury to peripheral axons. Changes in calcium channel function of sensory neurons following injury have not been directly examined at the channel level, even though calcium is a primary second messenger-regulating neuronal function. We compared calcium currents (I(Ca)) in 101 acutely isolated dorsal root ganglion neurons from 31 rats with neuropathic pain following chronic constriction injury (CCI) of the sciatic nerve, to cells from 25 rats with normal sensory function following sham surgery. Cells projecting to the sciatic nerve were identified with a fluorescent label applied at the CCI site. Membrane function was determined using patch-clamp techniques in current clamp mode, and in voltage-clamp mode using solutions and conditions designed to isolate I(Ca). Somata of peripheral sensory neurons from hyperalgesic rats demonstrated decreased I(Ca). Peak calcium channel current density was diminished by injury from 3.06+/-0.30 pS/pF to 2. 22+/-0.26 pS/pF in medium neurons, and from 3.93+/-0.38 pS/pF to 2. 99+/-0.40 pS/pF in large neurons. Under these voltage and pharmacologic conditions, medium-sized neuropathic cells lacked obvious T-type calcium currents which were present in 25% of medium-sized cells from control animals. Altered Ca(2+) signalling in injured sensory neurons may contribute to hyperexcitability leading to neuropathic pain.
Collapse
Affiliation(s)
- Q H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
112
|
Gschossmann JM, Chaban VV, McRoberts JA, Raybould HE, Young SH, Ennes HS, Lembo T, Mayer EA. Mechanical activation of dorsal root ganglion cells in vitro: comparison with capsaicin and modulation by kappa-opioids. Brain Res 2000; 856:101-10. [PMID: 10677616 DOI: 10.1016/s0006-8993(99)02353-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to characterize plasma membrane pathways involved in the intracellular calcium ([Ca(2+)](i)) response of small DRG neurons to mechanical stimulation and the modulation of these pathways by kappa-opioids. [Ca(2+)](i) responses were measured by fluorescence video microscopy of Fura-2 labeled lumbosacral DRG neurons obtained from adult rats in short-term primary culture. Transient focal mechanical stimulation of the soma, or brief superfusion with 300 nM capsaicin, resulted to [Ca(2+)](i) increases which were abolished in Ca(2+)-free solution, but unaffected by lanthanum (25 microM) or tetrodotoxin (10(-6) M). 156 out of 465 neurons tested (34%) showed mechanosensitivity while 55 out of 118 neurons (47%) were capsaicin-sensitive. Ninty percent of capsaicin-sensitive neurons were mechanosensitive. Gadolinium (Gd(3+); 250 microM) and amiloride (100 microM) abolished the [Ca(2+)](i) transient in response to mechanical stimulation, but had no effect on capsaicin-induced [Ca(2+)](i) transients. The kappa-opioid agonists U50,488 and fedotozine showed a dose-dependent inhibition of mechanically stimulated [Ca(2+)](i) transients but had little effect on capsaicin-induced [Ca(2+)](i) transients. The inhibitory effect of U50,488 was abolished by the kappa-opioid antagonist nor-Binaltorphimine dihydrochloride (nor-BNI; 100 nM), and by high concentrations of naloxone (30-100 nM), but not by low concentrations of naloxone (3 nM). We conclude that mechanically induced [Ca(2+)](i) transients in small diameter DRG somas are mediated by influx of Ca(2+) through a Gd(3+)- and amiloride-sensitive plasma membrane pathway that is co-expressed with capsaicin-sensitive channels. Mechanical-, but not capsaicin-mediated, Ca(2+) transients are sensitive to kappa-opioid agonists.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Amiloride/pharmacology
- Animals
- Benzyl Compounds/pharmacology
- Calcium/metabolism
- Capsaicin/pharmacology
- Cells, Cultured
- Gadolinium/pharmacology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/physiology
- In Vitro Techniques
- Kinetics
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Neurons/drug effects
- Neurons/physiology
- Physical Stimulation
- Propylamines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
Collapse
Affiliation(s)
- J M Gschossmann
- CURE Digestive Diseases Research Center/Neuroenteric Disease Program, Department of Medicine, University of California, Los Angeles, Los Angeles CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Su X, Wachtel RE, Gebhart GF. Capsaicin sensitivity and voltage-gated sodium currents in colon sensory neurons from rat dorsal root ganglia. Am J Physiol Gastrointest Liver Physiol 2000; 277:G1180-8. [PMID: 10600815 DOI: 10.1152/ajpgi.1999.277.6.g1180] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
DiI-labeled colon sensory neurons were acutely dissociated from S1 rat dorsal root ganglia (DRG) and studied using perforated whole cell patch-clamp techniques. Forty-six percent (54/116) of labeled sensory neurons responded to capsaicin (10(-8)- 10(-5) M) with an increase in inward current, which was a nonspecific cation conductance. Responses to capsaicin applied by puffer ejection were dependent on dose, with a half-maximal response at 4.9 x 10(-7) M; bath application was characterized by marked desensitization. Voltage-gated Na(+) currents in 23 of 30 DRG cells exhibited both TTX-sensitive and TTX-resistant components. In these cells, capsaicin induced an inward current in 11 of 17 cells tested. Of the cells containing only a TTX-sensitive component, none of six cells tested was sensitive to capsaicin. In all cells that responded to capsaicin with an increase in inward current, capsaicin abolished voltage-gated Na(+) currents (n = 21). Capsazepine (10(-6) M) significantly attenuated both the increase in inward current and the reduction in Na(+) currents. Na(+) currents were not significantly altered by adenosine, bradykinin, histamine, PGE(2), or serotonin at 10(-6) M and 10(-5) M. These findings may have important implications for understanding both the irritant and analgesic properties of capsaicin.
Collapse
Affiliation(s)
- X Su
- Department of Pharmacology, College of Medicine, University of Iowa, Iowa City 52242, Iowa.
| | | | | |
Collapse
|
114
|
Segond von Banchet G, Petrow PK, Bräuer R, Schaible HG. Monoarticular antigen-induced arthritis leads to pronounced bilateral upregulation of the expression of neurokinin 1 and bradykinin 2 receptors in dorsal root ganglion neurons of rats. ARTHRITIS RESEARCH 2000; 2:424-7. [PMID: 11056677 PMCID: PMC17819 DOI: 10.1186/ar121] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2000] [Revised: 07/03/2000] [Accepted: 07/07/2000] [Indexed: 11/10/2022]
Abstract
STATEMENT OF FINDINGS: This study describes the upregulation of neurokinin 1 and bradykinin 2 receptors in dorsal root ganglion (DRG) neurons in the course of antigen-induced arthritis (AIA) in the rat knee. In the acute phase of AIA, which was characterized by pronounced hyperalgesia, there was a substantial bilateral increase in the proportion of lumbar DRG neurons that express neurokinin 1 receptors (activated by substance P) and bradykinin 2 receptors. In the chronic phase the upregulation of bradykinin 2 receptors persisted on the side of inflammation. The increase in the receptor expression is relevant for the generation of acute and chronic inflammatory pain.
Collapse
|
115
|
Kirschstein T, Greffrath W, Büsselberg D, Treede RD. Inhibition of rapid heat responses in nociceptive primary sensory neurons of rats by vanilloid receptor antagonists. J Neurophysiol 1999; 82:2853-60. [PMID: 10601424 DOI: 10.1152/jn.1999.82.6.2853] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies demonstrated that heat-sensitive nociceptive primary sensory neurons respond to the vanilloid receptor (VR) agonist capsaicin, and the first cloned VR is a heat-sensitive ion channel. Therefore we studied to what extent heat-evoked currents in nociceptive dorsal root ganglion (DRG) neurons can be attributed to the activation of native vanilloid receptors. Heat-evoked currents were investigated in 89 neurons acutely dissociated from adult rat DRGs as models for their own terminals using the whole cell patch-clamp technique. Locally applied heated extracellular solution (effective temperature approximately 53 degrees C) rapidly activated reversible and reproducible inward currents in 80% (62/80) of small neurons (< or = 32.5 microm), but in none of nine large neurons (P < 0.001, chi(2) test). Heat and capsaicin sensitivity were significantly coexpressed in this subpopulation of small DRG neurons (P < 0.001, chi(2) test). Heat-evoked currents were accompanied by an increase of membrane conductance (320 +/- 115%; mean +/- SE, n = 7), had a reversal potential of 5 +/- 2 mV (n = 5), which did not differ from that of capsaicin-induced currents in the same neurons (4 +/- 3 mV), and were carried at least by Na(+) and Ca(2+) (pCa(2+) > pNa(+)). These observations are consistent with the opening of temperature-operated nonselective cation channels. The duration of action potentials was significantly higher in heat-sensitive (10-90% decay time: 4.45 +/- 0.39 ms, n = 12) compared with heat-insensitive neurons (2.18 +/- 0.19 ms, n = 6; P < 0.005, Student's t-test), due to an inflection in the repolarizing phase. This property as well as capsaicin sensitivity and small cell size are characteristics of nociceptive DRG neurons. When coadministered with heat stimuli, the competitive VR antagonist capsazepine (1 microM to 1 mM) significantly reduced heat-evoked currents in a dose-dependent manner (IC(50) 13 microM, Hill slope -0.58, maximum effect 75%). Preincubation for 12-15 s shifted the IC(50) by approximately 0.5 log(10) units to an estimated IC(50) of approximately 4 microM. The noncompetitive VR antagonist ruthenium red (5 microM) significantly reduced heat-evoked currents by 33 +/- 6%. The effects of both VR antagonists were rapidly reversible. Our results provide evidence for a specific activation of native VRs in nociceptive primary sensory neurons by noxious heat. The major proportion of the rapid heat-evoked currents can be attributed to the activation of these temperature-operated channels, and noxious heat may be the signal detected by VRs under physiological conditions.
Collapse
Affiliation(s)
- T Kirschstein
- Institute of Physiology and Pathophysiology, Johannes Gutenberg University, D-55099 Mainz, Germany
| | | | | | | |
Collapse
|
116
|
McCarter GC, Reichling DB, Levine JD. Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci Lett 1999; 273:179-82. [PMID: 10515188 DOI: 10.1016/s0304-3940(99)00665-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although it is generally presumed that mechanical sensitivity of somatosensory nerve fibers results from the activation of mechanosensitive ion channels, a mechanically-gated whole-cell current has never been demonstrated in dorsal root ganglion (DRG) neurons. We performed patch clamp experiments on rat DRG neurons in culture, and report the first mechanically-activated current in somatosensory neurons (I(mech)). This whole-cell current is observed in most dorsal root ganglion neurons but not in non-sensory sympathetic ganglion neurons. The current-voltage relation of I(mech) indicates that it is a non-selective cation current. Sensitivity of I(mech) to block by gadolinium suggests that it may be mediated by a member of a family of mechanosensitive non-selective cation channels observed in many cell types. Sensitivity to benzamil supports this idea, and further suggests that the current might be mediated by a member of the degenerin/ epithelial sodium channel (DEG/ENaC) family.
Collapse
Affiliation(s)
- G C McCarter
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, CA 94143-0440, USA
| | | | | |
Collapse
|
117
|
Abstract
Small-diameter sensory neurons that are primarily nociceptors can be divided neurochemically into two populations: isolectin B(4) (IB(4))-positive nonpeptidergic neurons, and IB(4)-negative peptidergic neurons. It has been shown that IB(4)-positive neurons depend on glial-derived neurotrophic factor (GDNF), whereas IB(4)-negative neurons depend on NGF for survival during postnatal development (Molliver et al., 1997). Furthermore, these two populations of nociceptors terminate in distinct regions of the superficial spinal cord. To date, however, no evidence exists that indicates whether these two groups of nociceptors have distinct functional roles in the process of nociception (Snider and McMahon, 1998). To search for functional differences, we performed whole-cell voltage and current-clamp recordings on acutely isolated adult mouse dorsal root ganglion neurons that were labeled with fluorescent IB(4). We found that IB(4)-positive neurons have longer-duration action potentials, higher densities of TTX-resistant sodium currents, and smaller noxious heat-activated currents than IB(4)-negative neurons. Furthermore, we show that NGF, but not GDNF, directly increases the number of neurons that respond to noxious heat. The different electrophysiological properties expressed by IB(4)-positive and -negative small neurons, including their different heat sensitivities, indicates that they may relay distinct aspects of noxious stimuli both acutely and after injury in vivo.
Collapse
|
118
|
Abstract
One of the most important advances in our understanding of the pain experience was the introduction of the 'gate control' theory which stimulated analysis of activity pattern in nociceptive pathways and its modulation. Advances in cellular and molecular biology have recently begun to provide detailed information on the mechanisms of stimulus transduction within primary afferent nociceptors as well as mechanisms that modulate the transduction process. From these new insights into the sensory physiology of the nociceptive nerve ending emerges a concept of the primary afferent as the first site of pattern generation in the nociceptive pathway, in which dynamic tuning of gain in the mosaic of inputs to individual primary afferents occurs. The electrical properties of the nociceptor membrane that converts the generator potential to a pattern of action potentials is also actively adjusted. Our present understanding of the intracellular mechanisms that modulate the pattern of activity in nociceptive primary afferents is summarized, and implications for future efforts to unravel the meaning of patterning in nociceptor activity are discussed.
Collapse
Affiliation(s)
- David B Reichling
- NIH Pain Center, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
119
|
Abstract
Several mechanisms have been identified that may underlie inflammation-induced sensitization of high-threshold primary afferent neurons, including the modulation of voltage- and Ca2+-dependent ion channels and ion channels responsible for the production of generator potentials. One such mechanism that has recently received a lot of attention is the modulation of a tetrodotoxin (TTX)-resistant voltage-gated Na+ current. Evidence supporting a role for TTX-resistant Na+ currents in the sensitization of primary afferent neurons and inflammatory hyperalgesia is reviewed. Such evidence is derived from studies on the distribution of TTX-resistant Na+ currents among primary afferent neurons and other tissues of the body that suggest that these currents are expressed only in a subpopulation of primary afferent neurons that are likely to be involved in nociception. Data from studies on the biophysical properties of these currents suggest that they are ideally suited to mediate the repetitive discharge associated with prolonged membrane depolarizations. Data from studies on the effects of inflammatory mediators and antinociceptive agents on TTX-resistant Na+ currents suggest that modulation of these currents is an underlying mechanism of primary afferent neuron sensitization. In addition, the second-messenger pathways underlying inflammatory mediator-induced modulation of these currents appear to underlie inflammatory mediator-induced hyperalgesia. Finally, recent antisense studies have also yielded data supporting a role for TTX-resistant Na+ currents in inflammatory hyperalgesia. Although data from these studies are compelling, data presented at the Neurobiology of Pain colloquium raised a number of interesting questions regarding the role of TTX-resistant Na+ currents in inflammatory hyperalgesia; implications of three of these questions are discussed.
Collapse
Affiliation(s)
- M S Gold
- Department of Oral and Craniofacial Biological Sciences, University of Maryland Dental School, 666 West Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
120
|
Increased excitability of afferent neurons innervating rat urinary bladder after chronic bladder inflammation. J Neurosci 1999. [PMID: 10341262 DOI: 10.1523/jneurosci.19-11-04644.1999] [Citation(s) in RCA: 276] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The properties of bladder afferent neurons in L6 and S1 dorsal root ganglia of adult rats were evaluated after chronic bladder inflammation induced by 2 week treatment with cyclophosphamide (CYP; 75 mg/kg). Whole-cell patch-clamp recordings revealed that most (70%) of the dissociated bladder afferent neurons from control rats were capsaicin sensitive, with high-threshold long-duration action potentials that were not blocked by tetrodotoxin (TTX; 1 microM). These neurons exhibited membrane potential relaxations during voltage responses elicited by depolarizing current pulses and phasic firing during sustained membrane depolarization. After CYP treatment, a similar proportion (71%) of bladder afferent neurons were capsaicin sensitive with TTX-resistant spikes. However, the neurons were significantly larger in size (diameter 29.6 +/- 1.0 micrometer vs 23.6 +/- 0.8 micrometer in controls). TTX-resistant bladder afferent neurons from CYP-treated rats exhibited lower thresholds for spike activation (-25.4 +/- 0.5 mV) than those from control rats (-21.4 +/- 0.9 mV) and did not exhibit membrane potential relaxation during depolarization. Seventy percent of TTX-resistant bladder afferent neurons from CYP-treated rats exhibited tonic firing (average 12.3 +/- 1.4 spikes during a 500 msec depolarizing pulse) versus phasic firing (1.2 +/- 0.2 spikes) in normal bladder afferent neurons. Application of 4-aminopyridine (1 mM) to normal TTX-resistant bladder afferent neurons mimicked the changes in firing properties after CYP treatment. The peak density of an A-type K+ current (IA) during depolarizations to 0 mV in TTX-resistant bladder afferent neurons from CYP-treated rats was significantly smaller (42.9 pA/pF) than that from control rats (109.4 pA/pF), and the inactivation curve of the IA current was displaced to more hyperpolarized levels by approximately 15 mV after CYP treatment. These data suggest that chronic inflammation induces somal hypertrophy and increases the excitability of C-fiber bladder afferent neurons by suppressing IA channels. Similar electrical changes in sensory pathways may contribute to cystitis-induced pain and hyperactivity of the bladder.
Collapse
|
121
|
Chen X, Tanner K, Levine JD. Mechanical sensitization of cutaneous C-fiber nociceptors by prostaglandin E2 in the rat. Neurosci Lett 1999; 267:105-8. [PMID: 10400223 DOI: 10.1016/s0304-3940(99)00345-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
While it is generally assumed that nociceptor sensitization underlies peripheral hyperalgesia, there is disagreement regarding the ability of inflammatory mediators to sensitize nociceptors to mechanical stimuli. In this in vivo electrophysiological study, mechanical threshold and response to sustained threshold and sustained suprathreshold mechanical stimuli were measured before and after intradermal administration of prostaglandin E2 (PGE2) into the receptive field of cutaneous C-fiber nociceptors in the rat. PGE2 produced a decrease in mechanical threshold and an increase in response to sustained threshold but not sustained suprathreshold mechanical stimulation. These data suggest that while inflammatory mediators produce a decrease in mechanical threshold and/or an increase in number of action potentials to sustained threshold stimuli, they do not increase the maximal response to mechanical stimuli in C-fiber nociceptors.
Collapse
Affiliation(s)
- X Chen
- Department of Anatomy, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
122
|
Segond von Banchet G, Petersen M, Schaible HG. Expression of neurokinin-1 receptors on cultured dorsal root ganglion neurons from the adult rat. Neuroscience 1999; 90:677-84. [PMID: 10215169 DOI: 10.1016/s0306-4522(98)00408-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression of neurokinin-1 receptors in isolated dorsal root ganglion neurons of adult rats was investigated using substance P covalently bound to a 1.4-nm gold particle. Binding of substance P-gold was determined in neurons after 0.8, 1.8 or 3.8 days under culture conditions. Substance P-gold binding sites were identified in 9.5 +/- 1.8% of the neurons that were cultured for 0.8 days. The proportion of neurons with substance P-gold binding sites increased to 21.5 +/- 3.6% after 1.8 days in culture and returned to the initial values (9.2 +/- 2.1%) after 3.8 days in culture. Binding of substance P-gold was suppressed by co-administration of [Sar9, Met(O2)11] substance P, a specific agonist at the neurokinin-1 receptor, but not by co-administration of [beta-Ala8] Neurokinin A (4-10), an agonist at the neurokinin-2 receptor, and senktide, an agonist at the neurokinin-3 receptor. This indicates that substance P-gold was bound specifically to neurokinin-1 receptors. Double-labelling with RT97, an antibody that selectively labels somata of A-fibres revealed that substance P binding sites were present in small neurons with myelinated and unmyelinated axons. These data show that a proportion of dorsal root ganglion neurons of adult rat in culture exhibit neurokinin-1 receptors. A transient increase in the proportion of neurons expressing neurokinin-1 receptors after 1.8 days in culture suggests that the expression of neurokinin-1 receptors is subjected to regulation.
Collapse
|
123
|
Gee MD, Lynn B, Basile S, Pierau FK, Cotsell B. The relationship between axonal spike shape and functional modality in cutaneous C-fibres in the pig and rat. Neuroscience 1999; 90:509-18. [PMID: 10215155 DOI: 10.1016/s0306-4522(98)00454-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Axonal spike shape was examined in identified cutaneous C-fibres dissected from the saphenous nerves of anaesthetized pigs and rats, and was found to vary with functional class. In the pig, the action potential duration for heat nociceptor units (duration at half peak amplitude, 1.25 +/- 0.16 ms, mean +/- S.E.M., n=32) was significantly longer than the duration for polymodal nociceptive units (0.88 +/- 0.11 ms, n=32). Both classes of nociceptive C-fibre had action potentials of longer duration than the low-threshold mechanoreceptor units (0.49 +/- 0.04 ms, n=24) and the inexcitable C-fibres (0.56 +/- 0.06 ms, n=19). Undershoot durations were also longer in nociceptive than non-nociceptive C-fibres. In contrast, spike amplitudes were similar in all classes of C-afferent. In the rat, as in the pig, the polymodal nociceptor units had action potentials of longer duration (0.75 +/- 0.05 ms, n=73) than the mechanoreceptor units (0.60 +/- 0.01 ms, n=23). C-fibres identified as spontaneously active sympathetic efferent units had wider action potentials (main initial peak: 1.01 +/- 0.12 ms, n=22; undershoot: 4.1 +/- 1.23 ms, n=20) than the afferent C-fibres (main peak: 0.69 +/- 0.03 ms, n=130; undershoot: 1.4 +/- 0.09 ms, n=111). All rat C-fibre types had action potentials with main initial peaks of a similar height. However, cold thermoreceptor units had spikes with significantly smaller undershoots compared to nociceptive or inexcitable C-fibres. It is concluded that there are clear differences in axonal spike shape between the different functional classes of C-fibre and, in particular, that nociceptive C-afferents tend to have axonal action potentials of longer duration than non-nociceptive afferents. The ion channels responsible for the longer duration action potentials may provide a target for the development of highly selective analgesic drugs.
Collapse
Affiliation(s)
- M D Gee
- Department of Physiology, University College London, UK
| | | | | | | | | |
Collapse
|
124
|
Abstract
Although the initiation of inflammatory pain (hyperalgesia) has been demonstrated to require the cAMP second messenger signaling cascade, whether this mechanism and/or other mechanisms underlie the continued maintenance of the induced hyperalgesia is unknown. We report that injection of adenylyl cyclase inhibitors before but not after injection of direct-acting hyperalgesic agents (prostaglandin E2 and purine and serotonin receptor agonists) resulted in reduction in hyperalgesia, evaluated by the Randall-Selitto paw-withdrawal test. In contrast, injection of protein kinase A (PKA) inhibitors either before or after these hyperalgesic agents resulted in reduced hyperalgesia, suggesting that hyperalgesia after its activation was maintained by persistent PKA activity but not by adenylyl cyclase activity. To evaluate further the role of PKA activity in the maintenance of hyperalgesia, we injected the catalytic subunit of PKA (PKACS) that resulted in hyperalgesia similar in magnitude to that induced by the direct-acting hyperalgesic agents but much longer in duration (>48 vs 2 hr). Injection of WIPTIDE (a PKA inhibitor) at 24 hr after PKACS reduced hyperalgesia, suggesting that PKACS hyperalgesia is not independently maintained by steps downstream from PKA. In summary, our results indicate that, once established, inflammatory mediator-induced hyperalgesia is no longer maintained by adenylyl cyclase activity but rather is dependent on ongoing PKA activity. An understanding of the mechanism maintaining hyperalgesia may provide important insight into targets for the treatment of persistent pain.
Collapse
|
125
|
Abstract
Nociceptors are the first cells in the series of neurons that lead to the sensation of pain. The essential functions of nociceptors--transducing noxious stimuli into depolarizations that trigger action potentials, conducting the action potentials from the peripheral sensory site to the synapse in the central nervous system, and converting the action potentials into neurotransmitter release at the presynaptic terminal--all depend on ion channels. This review discusses recent results in the converging fields of nociception and ion channel biology. It focuses on (a) the capsaicin receptor and its possible role in thermosensation, (b) ATP-gated channels, (c) proton-gated channels, and (d) nociceptor-specific Na+ channels.
Collapse
Affiliation(s)
- E W McCleskey
- Vollum Institute, Oregon Health Sciences University, Portland 97201-3098, USA.
| | | |
Collapse
|
126
|
Yoshimura N. Bladder afferent pathway and spinal cord injury: possible mechanisms inducing hyperreflexia of the urinary bladder. Prog Neurobiol 1999; 57:583-606. [PMID: 10221783 DOI: 10.1016/s0301-0082(98)00070-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lower urinary tract dysfunction is a common problem in patients with spinal cord injury (SCI). Since the coordination of the urinary bladder and urethra is controlled by the complex mechanisms in spinal and supraspinal neural pathways, SCI rostral to the lumbosacral level disrupts voluntary and supraspinal control of voiding and induces a considerable reorganization of the micturition reflex pathway. Following SCI, the urinary bladder is initially areflexic. but then becomes hyperreflexic because of the emergence of a spinal micturition reflex pathway. Recent electrophysiologic and histologic studies in rats have revealed that chronic SCI induces various phenotypic changes in bladder afferent neurons such as: (1) somal hypertrophy along with increased expression of neurofilament protein; and (2) increased excitability due to the plasticity of Na+ and K+ ion channels. These results have now provided detailed information to support the previous notion that capsaicin-sensitive, unmyelinated C-fiber afferents innervating the urinary bladder change their properties after SCI and are responsible for inducing bladder hyperreflexia in both humans and animals. It is also suggested that the changes in bladder reflex pathways following SCI are influenced by neural-target organ interactions probably mediated by neurotrophic signals originating in the hypertrophied bladder. Thus, increased knowledge of the plasticity in bladder afferent pathways may help to explain the pathogenesis of lower urinary tract dysfunctions after SCI and may provide valuable insights into new therapeutic strategies for urinary symptoms in spinal cord-injured patients.
Collapse
Affiliation(s)
- N Yoshimura
- Department of Pharmacology, University of Pittsburgh School of Medicine, PA 15261, USA. nyos+@pitt.edu
| |
Collapse
|
127
|
Dirig DM, Yaksh TL. In vitro prostanoid release from spinal cord following peripheral inflammation: effects of substance P, NMDA and capsaicin. Br J Pharmacol 1999; 126:1333-40. [PMID: 10217526 PMCID: PMC1565904 DOI: 10.1038/sj.bjp.0702427] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Spinal prostanoids are implicated in the development of thermal hyperalgesia after peripheral injury, but the specific prostanoid species that are involved are presently unknown. The current study used an in vitro spinal superfusion model to investigate the effect of substance P (SP), N-methyl-d-aspartate (NMDA), and capsaicin on multiple prostanoid release from dorsal spinal cord of naive rats as well as rats that underwent peripheral injury and inflammation (knee joint kaolin/carrageenan). 2. In naive rat spinal cords, PGE2 and 6-keto-PGF1alpha, but not TxB2, levels were increased after inclusion of SP, NMDA, or capsaicin in the perfusion medium. 3. Basal PGE2 levels from spinal cords of animals that underwent 5-72 h of peripheral inflammation were elevated relative to age-matched naive cohorts. The time course of this increase in basal PGE2 levels coincided with peripheral inflammation, as assessed by knee joint circumference. Basal 6-keto-PGF1alpha levels were not elevated after injury. 4. From this inflammation-evoked increase in basal PGE2 levels, SP and capsaicin significantly increased spinal PGE2 release in a dose-dependent fashion. Capsaicin-evoked increases were blocked dose-dependently by inclusion of S(+) ibuprofen in the capsaicin-containing perfusate. 5. These data suggest a role for spinal PGE2 and NK-1 receptor activation in the development of hyperalgesia after injury and demonstrate that this relationship is upregulated in response to peripheral tissue injury and inflammation.
Collapse
Affiliation(s)
- David M Dirig
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, Mail Code 0818 La Jolla, California 92093-0818, U.S.A
| | - Tony L Yaksh
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, Mail Code 0818 La Jolla, California 92093-0818, U.S.A
- Department of Anesthesiology, University of California San Diego, 9500 Gilman Drive, Mail Code 0818 La Jolla, California 92093-0818, U.S.A
- Author for correspondence:
| |
Collapse
|
128
|
Khasar SG, McCarter G, Levine JD. Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophysiol 1999; 81:1104-12. [PMID: 10085337 DOI: 10.1152/jn.1999.81.3.1104] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperalgesic and nociceptor sensitizing effects mediated by the beta-adrenergic receptor were evaluated in the rat. Intradermal injection of epinephrine, the major endogenous ligand for the beta-adrenergic receptor, into the dorsum of the hindpaw of the rat produced a dose-dependent mechanical hyperalgesia, quantified by the Randall-Selitto paw-withdrawal test. Epinephrine-induced hyperalgesia was attenuated significantly by intradermal pretreatment with propranolol, a beta-adrenergic receptor antagonist, but not by phentolamine, an alpha-adrenergic receptor antagonist. Epinephrine-induced hyperalgesia developed rapidly; it was statistically significant by 2 min after injection, reached a maximum effect within 5 min, and lasted 2 h. Injection of a more beta-adrenergic receptor-selective agonist, isoproterenol, also produced dose-dependent hyperalgesia, which was attenuated by propranolol but not phentolamine. Epinephrine-induced hyperalgesia was not affected by indomethacin, an inhibitor of cyclo-oxygenase, or by surgical sympathectomy. It was attenuated significantly by inhibitors of the adenosine 3',5'-cyclic monophosphate signaling pathway (the adenylyl cyclase inhibitor, SQ 22536, and the protein kinase A inhibitors, Rp-adenosine 3',5'-cyclic monophosphate and WIPTIDE), inhibitors of the protein kinase C signaling pathway (chelerythrine and bisindolylmaleimide) and a mu-opioid receptor agonist DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin). Consistent with the hypothesis that epinephrine produces hyperalgesia by a direct action on primary afferent nociceptors, it was found to sensitize small-diameter dorsal root ganglion neurons in culture, i. e., to produce an increase in number of spikes and a decrease in latency to firing during a ramped depolarizing stimulus. These effects were blocked by propranolol. Furthermore epinephrine, like several other direct-acting hyperalgesic agents, caused a potentiation of tetrodotoxin-resistant sodium current, an effect that was abolished by Rp-adenosine 3',5'-cyclic monophosphate and significantly attenuated by bisindolylmaleimide. Isoproterenol also potentiated tetrodotoxin-resistant sodium current. In conclusion, epinephrine produces cutaneous mechanical hyperalgesia and sensitizes cultured dorsal root ganglion neurons in the absence of nerve injury via an action at a beta-adrenergic receptor. These effects of epinephrine are mediated by both the protein kinase A and protein kinase C second-messenger pathways.
Collapse
Affiliation(s)
- S G Khasar
- Department of Medicine, Division of Neuroscience and Biomedical Sciences Program, National Institutes of Health Pain Center (UCSF), University of California, San Francisco, California 94143-0440, USA
| | | | | |
Collapse
|
129
|
Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci 1999. [PMID: 9852572 DOI: 10.1523/jneurosci.18-24-10345.1998] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A tetrodotoxin-resistant voltage-gated Na+ current (TTX-R INa) appears to be the current primarily responsible for action potential generation in the cell body and terminals of nociceptive afferents. Although other voltage-gated Na+ currents are modulated by the activation of protein kinase C (PKC), protein kinase A (PKA), or both, the second messenger pathways involved in the modulation of TTX-R INa are still being defined. We have examined the modulation of TTX-R INa in isolated sensory neurons with whole-cell voltage-clamp recording. Activation of either PKC or PKA increased TTX-R INa. PKA activation also produced a leftward shift in the conductance-voltage relationship of TTX-R INa and an increase in the rates of current activation, deactivation, and inactivation. Inhibitors of PKC decreased TTX-R INa, whereas inhibitors of PKA had no effect on the current. Investigating the interaction between PKC and PKA revealed that although inhibitors of PKA had little effect on PKC-induced modulation of TTX-R INa, inhibitors of PKC significantly attenuated PKA-induced modulation of the current. Finally, although PGE2-induced modulation of TTX-R INa was more similar to PKA-induced modulation of the current than to PKC-induced modulation, PGE2-induced effects were inhibited by inhibitors of both PKC and PKA. Thus, although TTX-R INa is a common target for cellular processes involving the activation of either PKA or PKC, PKC activity is necessary to enable subsequent PKA-mediated modulation of TTX-R INa.
Collapse
|
130
|
Strassman AM, Raymond SA. Electrophysiological evidence for tetrodotoxin-resistant sodium channels in slowly conducting dural sensory fibers. J Neurophysiol 1999; 81:413-24. [PMID: 10036248 DOI: 10.1152/jn.1999.81.2.413] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A tetrodotoxin (TTX)-resistant sodium channel was recently identified that is expressed only in small diameter neurons of peripheral sensory ganglia. The peripheral axons of sensory neurons appear to lack this channel, but its presence has not been investigated in peripheral nerve endings, the site of sensory transduction in vivo. We investigated the effect of TTX on mechanoresponsiveness in nerve endings of sensory neurons that innervate the intracranial dura. Because the degree of TTX resistance of axonal branches could potentially be affected by factors other than channel subtype, the neurons were also tested for sensitivity to lidocaine, which blocks both TTX-sensitive and TTX-resistant sodium channels. Single-unit activity was recorded from dural afferent neurons in the trigeminal ganglion of urethan-anesthetized rats. Response thresholds to mechanical stimulation of the dura were determined with von Frey monofilaments while exposing the dura to progressively increasing concentrations of TTX or lidocaine. Neurons with slowly conducting axons were relatively resistant to TTX. Application of 1 microM TTX produced complete suppression of mechanoresponsiveness in all (11/11) fast A-delta units [conduction velocity (c.v.) 5-18 m/s] but only 50% (5/10) of slow A-delta units (1.5 <c.v.<5 m/s) and 13% (2/15) of C units (c.v. </=1.5 m/s). The mean TTX concentration that produced complete suppression of mechanoresponsiveness was approximately 270-fold higher in C units than in fast A-delta units. In contrast, no significant difference was found between C and A-delta units in the concentration of lidocaine required for complete suppression of mechanoresponsiveness, indicating that the greater TTX resistance of mechanoresponsiveness in C units is not attributable to differences in safety factor unrelated to channel subtype. These data offer indirect evidence that a TTX-resistant channel subtype is expressed in the terminal axonal branches of many of the more slowly conducting (C and slow A-delta) dural afferents. The channel appears to be present in these fibers, but not in the faster A-delta fibers, in sufficient numbers to support the initiation and propagation of mechanically induced impulses. Comparison with previous data on the absence of TTX resistance in peripheral nerve fibers suggests that the TTX-resistant sodium channel may be a distinctive feature of the receptive rather than the conductive portion of the sensory neuron's axonal membrane.
Collapse
Affiliation(s)
- A M Strassman
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
131
|
Khasar SG, Gold MS, Levine JD. A tetrodotoxin-resistant sodium current mediates inflammatory pain in the rat. Neurosci Lett 1998; 256:17-20. [PMID: 9832206 DOI: 10.1016/s0304-3940(98)00738-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report evidence for a contribution of tetrodotoxin-resistant sodium current (TTX-R INa) to prostaglandin E2 (PGE2)-induced hyperalgesia. Behavioral experiments were performed in rats chronically implanted with spinal cannulae. The study employed intrathecal administration of oligodeoxynucleotide (ODN) antisense to the recently cloned channel underlying TTX-R INa (PN3/SNS). The nociceptive flexion reflex was employed to determine changes in mechanical stimulus-induced paw-withdrawal threshold. Administration of antisense but not of sense or mismatch ODN, led to a decrease in PGE2-induced hyperalgesia. PGE2-induced hyperalgesia returned to normal 7 days after the last injection of antisense ODN. Antisense ODN selectively and significantly reduced TTX-R INa current density in cultured sensory neurons. Our observations support the hypothesis that modulation of TTX-R INa, present in peripheral terminals of primary afferent nociceptors, contributes, at least in part, to inflammatory hyperalgesia. Since TTX-R INa is found only in primary afferent nociceptors, our findings suggest TTX-R INa as a promising target for novel therapeutic interventions for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- S G Khasar
- Department of Anatomy, Medicine and Oral Maxillofacial Surgery, Graduate Program in Neuroscience, NIH Pain Center (UCSF), University of California, San Francisco 94143-0440, USA
| | | | | |
Collapse
|
132
|
Abstract
We investigated the role of nitric oxide (NO) in inflammatory hyperalgesia. Coinjection of prostaglandin E2 (PGE2) with the nitric oxide synthase (NOS) inhibitor NG-methyl-L-arginine (L-NMA) inhibited PGE2-induced hyperalgesia. L-NMA was also able to reverse that hyperalgesia. This suggests that NO contributes to the maintenance of, as well as to the induction of, PGE2-induced hyperalgesia. Consistent with the hypothesis that the NO that contributes to PGE2-induced sensitization of primary afferents is generated in the dorsal root ganglion (DRG) neurons themselves, L-NMA also inhibited the PGE2-induced increase in tetrodotoxin-resistant sodium current in patch-clamp electrophysiological studies of small diameter DRG neurons in vitro. Although NO, the product of NOS, often activates guanylyl cyclase, we found that PGE2-induced hyperalgesia was not inhibited by coinjection of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a guanylyl cyclase inhibitor. We then tested whether the effect of NO depended on interaction with the adenylyl cyclase-protein kinase A (PKA) pathway, which is known to mediate PGE2-induced hyperalgesia. L-NMA inhibited hyperalgesia produced by 8-bromo-cAMP (a stable membrane permeable analog of cAMP) or by forskolin (an adenylyl cyclase activator). However, L-NMA did not inhibit hyperalgesia produced by injection of the catalytic subunit of PKA. Therefore, the contribution of NO to PGE2-induced hyperalgesia may occur in the cAMP second messenger pathway at a point before the action of PKA. We next performed experiments to test whether administration of exogenous NO precursor or donor could mimic the hyperalgesic effect of endogenous NO. Intradermal injection of either the NOS substrate L-arginine or the NO donor 3-(4-morphinolinyl)-sydnonimine hydrochloride (SIN-1) produced hyperalgesia. However, this hyperalgesia differed from PGE2-induced hyperalgesia, because it was independent of the cAMP second messenger system and blocked by the guanylyl cyclase inhibitor ODQ. Therefore, although exogenous NO induces hyperalgesia, it acts by a mechanism different from that by which endogenous NO facilitates PGE2-induced hyperalgesia. Consistent with the hypothesis that these mechanisms are distinct, we found that inhibition of PGE2-induced hyperalgesia caused by L-NMA could be reversed by a low dose of the NO donor SIN-1. The following facts suggest that this dose of SIN-1 mimics a permissive effect of basal levels of NO with regard to PGE2-induced hyperalgesia: (1) this dose of SIN-1 does not produce hyperalgesia when administered alone, and (2) the effect was not blocked by ODQ. In conclusion, we have shown that low levels of NO facilitate cAMP-dependent PGE2-induced hyperalgesia, whereas higher levels of NO produce a cGMP-dependent hyperalgesia.
Collapse
|
133
|
Trezise DJ, John VH, Xie XM. Voltage- and use-dependent inhibition of Na+ channels in rat sensory neurones by 4030W92, a new antihyperalgesic agent. Br J Pharmacol 1998; 124:953-63. [PMID: 9692781 PMCID: PMC1565468 DOI: 10.1038/sj.bjp.0701919] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. Whole cell patch clamp techniques were used to study the effects of 4030W92 (2,4-diamino-5-(2,3-dichlorophenyl)-6-fluoromethylpyrimidine), a new antihyperalgesic agent, on rat dorsal root ganglion (DRG) neurones. 2. In small diameter, presumably nociceptive DRG neurones under voltage-clamp, 4030W92 (1-100 microM) produced a concentration-related inhibition of slow tetrodotoxin-resistant Na+ currents (TTXR). From a holding potential (Vh) of -90 mV, currents evoked by test pulses to 0 mV were inhibited by 4030W92 with a mean IC50 value of approximately 103 microM. 3. The inhibitory effect of 4030W92 on TTX(R) was both voltage- and use-dependent. Currents evoked from a Vh of -60 mV were inhibited by 4030W92 with a mean IC50 value of 22 microM, which was 5 fold less than the value obtained at -90 mV. Repeated activation of TTX(R) by a train of depolarizing pulses (5 Hz, 20 ms duration) enhanced the inhibitory effects of 4030W92. These data could be explained by a preferential interaction of the drug with inactivation states of the channel. In support of this hypothesis 4030W92 (30 microM) produced a significant hyperpolarizing shift of 10 mV in the slow inactivation curve for TTX(R) and markedly slowed the recovery from channel inactivation. 4. Fast TTX-sensitive Na+ currents (TTXs) were also inhibited by 4030W92 in a voltage-dependent manner. The IC50 values obtained from Vhs of -90 mV and -70 mV were 37 microM and 5 microM, respectively. 4030W92 (30 microM) produced a 13 mV hyperpolarizing shift in the steady-state inactivation curve of TTXs. 5. High threshold voltage-gated Ca2+ currents were only weakly inhibited by 4030W92. The reduction in peak Ca2+ current amplitude produced by 100 microM 4030W92 was 20+/-6% (n=6). Low threshold T-type Ca2+ currents were inhibited by 17+/-8% and 43+/-3% by concentrations of 4030W92 of 30 microM and 100 microM, respectively (n=6). 6. Under current clamp, some cells exhibited broad TTX-resistant action potentials whilst others showed fast TTX-sensitive action potentials in response to a depolarizing current injection. In most cells a long duration (800 ms) supramaximal current injection evoked a train of action potentials. 4030W92 (10-30 microM) had little effect on the first spike in the train but produced a concentration-related inhibition of the later spikes. The number of spikes per train was significantly reduced from 9.7+/-1.5 to 4.2+/-1.0 and 2.6+/-1.1 in the presence of 10 microM and 30 microM 4030W92, respectively (n=5). 7. Thus, 4030W92 is a potent voltage- and use-dependent inhibitor of Na+ channels in sensory neurones. This profile can be explained by a preferential action of the drug on a slow inactivation state of the channel that results in a delayed recovery to the resting state. This state-dependent modulation by 4030W92 of Na+ channels that are important in sensory neurone function may underlie or contribute to the antihyperalgesic profile of this compound observed in vivo.
Collapse
Affiliation(s)
- D J Trezise
- Neurosciences Unit, Glaxo Wellcome Research and Development, Stevenage, Hertfordshire
| | | | | |
Collapse
|
134
|
Jiang M, Gold MS, Boulay G, Spicher K, Peyton M, Brabet P, Srinivasan Y, Rudolph U, Ellison G, Birnbaumer L. Multiple neurological abnormalities in mice deficient in the G protein Go. Proc Natl Acad Sci U S A 1998; 95:3269-74. [PMID: 9501252 PMCID: PMC19731 DOI: 10.1073/pnas.95.6.3269] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The G protein Go is highly expressed in neurons and mediates effects of a group of rhodopsin-like receptors that includes the opioid, alpha2-adrenergic, M2 muscarinic, and somatostatin receptors. In vitro, Go is also activated by growth cone-associated protein of Mr 43,000 (GAP43) and the Alzheimer amyloid precursor protein, but it is not known whether this occurs in intact cells. To learn about the roles that Go may play in intact cells and whole body homeostasis, we disrupted the gene encoding the alpha subunits of Go in embryonic stem cells and derived Go-deficient mice. Mice with a disrupted alphao gene (alphao-/- mice) lived but had an average half-life of only about 7 weeks. No Goalpha was detectable in homogenates of alphao-/- mice by ADP-ribosylation with pertussis toxin. At the cellular level, inhibition of cardiac adenylyl cyclase by carbachol (50-55% at saturation) was unaffected, but inhibition of Ca2+ channel currents by opioid receptor agonist in dorsal root ganglion cells was decreased by 30%, and in 25% of the alphao-/- cells examined, the Ca2+ channel was activated at voltages that were 13.3 +/- 1.7 mV lower than in their counterparts. Loss of alphao was not accompanied by appearance of significant amounts of active free betagamma dimers (prepulse test). At the level of the living animal, Go-deficient mice are hyperalgesic (hot-plate test) and display a severe motor control impairment (falling from rotarods and 1-inch wide beams). In spite of this deficiency, alphao-/- mice are hyperactive and exhibit a turning behavior that has them running in circles for hours on end, both in cages and in open-field tests. Except for one, all alphao-/- mice turned only counterclockwise. These findings indicate that Go plays a major role in motor control, in motor behavior, and in pain perception and also predict involvement of Go in Ca2+ channel regulation by an unknown mechanism.
Collapse
Affiliation(s)
- M Jiang
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Alcayaga J, Iturriaga R, Varas R, Arroyo J, Zapata P. Selective activation of carotid nerve fibers by acetylcholine applied to the cat petrosal ganglion in vitro. Brain Res 1998; 786:47-54. [PMID: 9554949 DOI: 10.1016/s0006-8993(97)01424-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The petrosal ganglion innervates carotid body chemoreceptors through the carotid (sinus) nerve. These primary sensory neurons are activated by transmitters released from receptor (glomus) cells, acetylcholine (ACh) having been proposed as one of the transmitters involved in this process. Since the perikarya of primary sensory neurons share several properties with peripheral sensory endings, we studied the electrical responses of the carotid nerve and glossopharyngeal branch to ACh locally applied to the cat petrosal ganglion superfused in vitro. Ganglionar applications of AChCl (1 microg-1 mg) generated bursts of action potentials conducted along the carotid nerve, while only a few spikes were exceptionally recorded from the glossopharyngeal branch in response to the largest doses. Carotid nerve responses to ACh were dose-dependent, the higher doses inducing transient desensitization. Application of nicotine to the petrosal ganglion also evoked dose-dependent excitatory responses in the carotid nerve. Responses to ACh were reversibly antagonized by adding hexamethonium to the superfusate, more intense and prolonged block of ACh responses being produced by mecamylamine. Ganglionar applications of gamma-amino butyric acid and serotonin, in doses of up to 5 mg, did not induce firing of action potentials in any of the branches of the glossopharyngeal nerve. Our results indicate that petrosal ganglion neurons projecting through the carotid nerve are selectively activated by ACh acting on nicotinic ACh receptors located in the somata of these neurons. Thus, cholinosensitivity would be shared by the membranes of peripheral endings and perikarya of primary sensory neurons involved in arterial chemoreception.
Collapse
Affiliation(s)
- J Alcayaga
- Laboratory of Neurobiology, Faculty of Sciences, University of Chile, P.O. Box 653, Santiago 1, Chile.
| | | | | | | | | |
Collapse
|
136
|
5HT4 receptors couple positively to tetrodotoxin-insensitive sodium channels in a subpopulation of capsaicin-sensitive rat sensory neurons. J Neurosci 1997. [PMID: 9295364 DOI: 10.1523/jneurosci.17-19-07181.1997] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The distribution of tetrodotoxin (TTX)-sensitive and -insensitive Na+ currents and their modulation by serotonin (5HT) and prostaglandin E2 (PGE2) was studied in four different types of dorsal root ganglion (DRG) cell bodies (types 1, 2, 3, and 4), which were previously identified on the basis of differences in membrane properties (). Types 1 and 2 DRG cells expressed TTX-insensitive Na+ currents, whereas types 3 and 4 DRG cells exclusively expressed TTX-sensitive Na+ currents. Application of 5HT (1-10 microM) increased TTX-insensitive Na+ currents in type 2 DRG cells but did not affect Na+ currents in type 1, 3, or 4 DRG cells. The 5HT receptor involved resembled the 5HT4 subtype. It was activated by 5-methoxy-N,N-dimethyltryptamine (10 microM) but not by 5-carboxyamidotryptamine (1 microM), (+)-8-hydroxydipropylaminotetralin (10 microM), or 2-methyl-5HT (10 microM), and was blocked by ICS 205-930 with an EC50 of approximately 2 microM but not by ketanserin (1 microM). PGE2 (4 or 10 microM) also increased Na+ currents in varying portions of cells in all four groups. The effect of 5HT and PGE2 on Na+ currents was delayed for 20-30 sec after exposure to 5HT, suggesting the involvement of a cytosolic diffusible component in the signaling pathway. The agonist-mediated increase in Na+ current, however, was not mimicked by 8-chlorophenylthio-cAMP (200 microM), suggesting the possibility that cAMP was not involved. The data suggest that the 5HT- and PGE2-mediated increase in Na+ current may be involved in hyperesthesia in different but overlapping subpopulations of nociceptors.
Collapse
|
137
|
Kirschstein T, Büsselberg D, Treede RD. Coexpression of heat-evoked and capsaicin-evoked inward currents in acutely dissociated rat dorsal root ganglion neurons. Neurosci Lett 1997; 231:33-6. [PMID: 9280161 DOI: 10.1016/s0304-3940(97)00533-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Noxious heat is able to activate heat-sensitive nociceptors in the skin very rapidly, but little is known about the mechanisms by which heat is transduced. We used the whole-cell patch-clamp technique to study the effects of noxious heat and capsaicin on freshly dissociated rat dorsal root ganglion neurons in vitro. Using temperatures between 41 degrees C and 53 degrees C, 8 of 19 small neurons (phi < or = 30 microm) exhibited a heat-evoked inward current. All heat-sensitive neurons tested were also capsaicin-sensitive. Moreover, the heat response tended to be enhanced after capsaicin (360 +/- 150 pA versus 125 +/- 45 pA, P < 0.1, n = 7). Two of five heat-insensitive neurons were excited by capsaicin; both neurons developed a heat response after capsaicin. Large neurons (phi > 30 microm) did not respond to heat (0/7), and were not sensitive to capsaicin either. These findings indicate that heat stimuli may directly activate capsaicin-sensitive primary nociceptive afferents.
Collapse
Affiliation(s)
- T Kirschstein
- Institute of Physiology and Pathophysiology, Johannes Gutenberg University, Mainz, Germany
| | | | | |
Collapse
|
138
|
Abstract
Our understanding of the cellular and molecular bases of transduction of painful stimuli has burgeoned in the past year, mainly as a result of studies on isolated sensory neurones in culture. The ion channels underlying neuronal responses to noxious heat, to protons and to ATP have recently been characterized. The typical increase in nociceptor sensitivity produced by tissue damage has been found to be mediated by at least two distinct mechanisms. In the first, bradykinin augments the current activated by heat through a mechanism that involves activation of protein kinase C. In a second sensitization mechanism, prostaglandin E2 alters the voltage threshold of several ion channels, including a novel tetrodotoxin-insensitive Na+ channel, in such a way that initiation of action potentials is facilitated.
Collapse
Affiliation(s)
- P Cesare
- Neuroscience Research Centre, Physiology Group, Division of Biomedical Sciences, Kings College London, Strand, London, WC2R 2LS, UK
| | | |
Collapse
|
139
|
Reichling DB, Levine JD. Heat transduction in rat sensory neurons by calcium-dependent activation of a cation channel. Proc Natl Acad Sci U S A 1997; 94:7006-11. [PMID: 9192682 PMCID: PMC21275 DOI: 10.1073/pnas.94.13.7006] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanism of heat transduction in vertebrate sensory neurons was investigated in vitro by using cultured dorsal root ganglion neurons from adult rat. In response to a physiologically relevant range of stimulus temperatures (23-45 degrees C), a subpopulation of small dorsal root ganglion neurons are depolarized by a cation current (heat-activated current, Iheat) that is antagonized by extracellular cesium. Heat-induced single-channel currents in cell-attached patches are evoked at a similar range of temperatures. Iheat is a calcium-dependent current activated indirectly by heat-evoked release of calcium from intracellular stores. This suggests that the channel itself is not the transducer of thermal energy. Similar to nociceptive heat sensation in vivo, Iheat is enhanced by the hyperalgesic agent prostaglandin E2 and only partially adapts during prolonged heat stimuli. To our knowledge, these data provide the first demonstration that ion channels can mediate heat transduction in mammalian sensory neurons and provide evidence that heat causes the channels to open via an increase in the intracellular second messenger calcium.
Collapse
Affiliation(s)
- D B Reichling
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
140
|
Reichling DB, Barratt L, Levine JD. Heat-induced cobalt entry: an assay for heat transduction in cultured rat dorsal root ganglion neurons. Neuroscience 1997; 77:291-4. [PMID: 9472390 DOI: 10.1016/s0306-4522(96)00511-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A histochemical stain to detect cobalt in cells was used to investigate the ionic basis of heat transduction in mammalian primary afferent neurons. Cultured dorsal root ganglion neurons from the adult rat were exposed to 10-min heat stimuli in an extracellular solution containing cobalt ions. When accumulated intracellular cobalt was precipitated, a subpopulation of neurons was darkly stained. The number of neurons stained depended on the intensity of the heat stimulus, ranging from 1.9% at 22 degrees C to 24.0% at 45 degrees C, a range of temperatures transduced by primary afferent nerve endings in vivo. Results of Trypan Blue exclusion experiments demonstrate that the heat-induced stain is not due to membrane damage, suggesting that heat opens a divalent-permeable ion channel. Agents that block many multivalent cation-permeable channels (lanthanum, ruthenium red and amiloride) did not reduce the number of cells that exhibited heat-induced cobalt staining. Heat-evoked cobalt staining provides an in vitro model for the investigation of the ionic mechanisms of thermal transduction in sensory neurons.
Collapse
Affiliation(s)
- D B Reichling
- Department of Oral and Maxillofacial Surgery, University of California at San Francisco 94143, USA
| | | | | |
Collapse
|
141
|
Ahlgren SC, Wang JF, Levine JD. C-fiber mechanical stimulus-response functions are different in inflammatory versus neuropathic hyperalgesia in the rat. Neuroscience 1997; 76:285-90. [PMID: 8971778 DOI: 10.1016/s0306-4522(96)00290-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To compare changes in primary afferent nociceptors associated with inflammatory versus neuropathic hyperalgesia, we evaluated in rats the mechanical stimulus-response function of isolated C-fiber primary afferent nociceptors to 10-s stimuli of differing mechanical strengths; 36 fibers after prostaglandin E2, 28 fibers from streptozotocin-diabetic rats and 46 fibers from control, non-treated rats were examined. Intradermal injection of prostaglandin E2 decreased mechanical threshold of 19 of 35 (54%) C-fibers. C-fibers that demonstrated a decrease in the mechanical threshold after prostaglandin E2 also showed an increased response to suprathreshold stimuli. The increase in the number of action potentials in prostaglandin E2-treated C-fibers was greatest at lower magnitude stimulus intensities, i.e. near threshold; the response to higher magnitude stimulus intensities was unchanged from that in control animals. In contrast, an increase in the number of action potentials seen in C-fibers from streptozotocin-diabetic rats was not seen at low-magnitude stimulus intensities; rather, a pronounced increase in response was seen at high-magnitude stimulus intensities. The von Frey hair thresholds for C-fibers in streptozotocin-diabetic rats were not different from those in control C-fibers. These data suggest that the changes in mechanical stimulus-response function of C-fibers are different in inflammatory compared to neuropathic mechanical hyperalgesia. These differences may underlie some of the differences in clinical features between inflammatory and neuropathic hyperalgesias.
Collapse
Affiliation(s)
- S C Ahlgren
- Department of Anatomy, University of California, San Francisco 94143-0452, USA
| | | | | |
Collapse
|
142
|
Cesare P, McNaughton P. A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci U S A 1996; 93:15435-9. [PMID: 8986829 PMCID: PMC26422 DOI: 10.1073/pnas.93.26.15435] [Citation(s) in RCA: 331] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1996] [Accepted: 09/16/1996] [Indexed: 02/03/2023] Open
Abstract
Pain differs from other sensations in many respects. Primary pain-sensitive neurons respond to a wide variety of noxious stimuli, in contrast to the relatively specific responses characteristic of other sensory systems, and the response is often observed to sensitize on repeated presentation of a painful stimulus, while adaptation is typically observed in other sensory systems. In most cases the cellular mechanisms of transduction and sensitization in response to painful stimuli are not understood. We report here that application of pulses of noxious heat to a subpopulation of isolated primary sensory neurons rapidly activates an inward current. The ion channel activated by heat discriminates poorly among alkali cations. Calcium ions both carry current and partially suppress the current carried by other ions. The current is markedly increased by bradykinin, a potent algogenic nonapeptide that is known to be released in vivo by tissue damage. Phosphatase inhibitors prolong the sensitization caused by bradykinin, and a similar sensitization is caused by activators of protein kinase C. We conclude that bradykinin sensitizes the response to heat by activating protein kinase C.
Collapse
Affiliation(s)
- P Cesare
- Department of Physiology, King's College London, Strand, United Kingdom
| | | |
Collapse
|
143
|
Khasar SG, Gold MS, Dastmalchi S, Levine JD. Selective attenuation of mu-opioid receptor-mediated effects in rat sensory neurons by intrathecal administration of antisense oligodeoxynucleotides. Neurosci Lett 1996; 218:17-20. [PMID: 8939470 DOI: 10.1016/0304-3940(96)13111-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To test the hypothesis that the expression of specific proteins on peripheral terminals of primary afferents can be attenuated by intrathecal administration of antisense oligodeoxynucleotides (ODNs), we administered ODNs antisense to the mu-opioid receptor to male Sprague-Dawley rats via chronically implanted intrathecal cannulae. Antisense but not mismatch ODN treatment significantly decreased peripheral (D-Ala2, N-Me-Phe4, Gly5-ol)-enkephalin (DAMGO) inhibition of prostaglandin E2 (PGE2) hyperalgesia. Antisense treatment affected neither the magnitude of PGE2 hyperalgesia nor the antinociception produced by a peripherally administered adenosine A1-agonist. The antinociceptive effects of DAMGO was fully recovered 8 days after cessation of ODN treatment. DAMGO-induced inhibition of voltage-gated Ca2+ currents (VGCC), in cultured dorsal root ganglion (DRG) neurons from rats treated with ODNs, was also significantly reduced by antisense but not mismatch ODNs. Taken together, these observations suggest that intrathecal administration of antisense ODNs can be used to study the function of proteins present in the peripheral terminals of primary afferent neurons.
Collapse
Affiliation(s)
- S G Khasar
- Department of Anatomy, University of California, San Francisco 94143-0452, USA
| | | | | | | |
Collapse
|
144
|
England S, Bevan S, Docherty RJ. PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J Physiol 1996; 495 ( Pt 2):429-40. [PMID: 8887754 PMCID: PMC1160802 DOI: 10.1113/jphysiol.1996.sp021604] [Citation(s) in RCA: 399] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. In current-clamp recordings, 1 microM prostaglandin E2 (PGE2) increased the excitability of neonatal rat dorsal root ganglion neurones. The current threshold for firing was reduced, and the response to a constant suprathreshold stimulation was modified such that a single evoked action potential was converted to a train of action potentials. The excitatory action of PGE2 was still apparent when action potentials were evoked in the presence of 500 nM tetrodotoxin. 2. In voltage-clamp experiments 1 microM PGE2 frequently increased the magnitude of the peak currents recorded, and caused a hyperpolarizing shift (of approximately 6 mV) in the activation curve for the tetrodotoxin-resistant sodium current (TTX-R INa). In some cells, the hyperpolarizing shift in the activation curve was accompanied by a decrease in peak conductance. PGE2 also caused a hyperpolarizing shift in the steady-state inactivation curve for the sodium current. 3. Extracellular application of the cAMP analogue dibutyryl cAMP (dbcAMP) at a concentration of 1 mM produced effects on both the current-voltage relationship and the steady-state inactivation curve for the TTX-R INa which were indistinguishable from those observed with PGE2. Prior exposure of the neurones to dbcAMP occluded the effect of a subsequent treatment with PGE2. 4. Forskolin (10 microM), a direct activator of adenylate cyclase, mimicked the effects of PGE2 and dbcAMP on TTX-R INa. The inactive congener of forskolin, 1, 9-dideoxyforskolin (10 microM), reduced the amplitude of TTX-R INa, but did not evoke a hyperpolarizing shift in the activation curve. 5. Intracellular perfusion of the neurones with an inhibitor of protein kinase A inhibited the effect of PGE2 on TTX-R INa. 6. PGE2 also reduced the amplitude of voltage-gated potassium currents (IK), which will contribute to the excitatory action. The mechanisms underlying the changes in IK have yet to be elucidated. 7. We propose that the PGE2-mediated increase in excitability in sensory neurones may be due, at least in part, to the cAMP-protein kinase A-dependent modulation of the tetrodotoxin-resistant sodium channel.
Collapse
Affiliation(s)
- S England
- Sandoz Institute for Medical Research, London, UK.
| | | | | |
Collapse
|
145
|
Gold MS, Levine JD. DAMGO inhibits prostaglandin E2-induced potentiation of a TTX-resistant Na+ current in rat sensory neurons in vitro. Neurosci Lett 1996; 212:83-6. [PMID: 8832644 DOI: 10.1016/0304-3940(96)12791-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have tested the hypothesis that the mu-opioid agonist, [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAMGO), inhibits prostaglandin E2 (PGE2)-induced modulation of a tetrodotoxin-resistant voltage-gated Na+ current (TTX-R INa) in putative nociceptors in vitro. Patch-clamp electrophysiological techniques were used on cultured dorsal root ganglion neurons from the adult rat. PGE2 (1 microM) induced a 103 +/- 22.8% increase in peak TTX-R INa. The PGE2-induced increase in TTX-R INa in the presence of 1 microM DAMGO (24.9 +/- 7.7%), was significantly less than that induced by PGE2 alone. In contrast, when DAMGO was applied after PGE2, PGE2-induced increase in TTX-R INa (85.3 +/- 19.6%) was not significantly different than the increase in the current induced by PGE2 alone. Preapplication of naloxone (10 microM) blocked DAMGO-induced inhibition of the PGE2-induced increase in TTX-R INa. DAMGO, alone, had no effect on peak TTX-R INa (1.4 +/- 1.5% of baseline). Our observation that DAMGO prevents PGE2-induced potentiation of TTX-R INa is consistent with the suggestion that modulation of TTX-R INa underlies the hyperalgesic agent-induced increase in the excitability of nociceptors associated with sensitization and hyperalgesia. Furthermore, our data suggest that inhibition of hyperalgesic agent induced modulation of TTX-R INa may be a novel mechanism underlying opioid-induced antinociception.
Collapse
Affiliation(s)
- M S Gold
- Department of Anesthesia, University of California, Los Angeles 90095-1778, USA
| | | |
Collapse
|
146
|
Gold MS, Shuster MJ, Levine JD. Role of a Ca(2+)-dependent slow afterhyperpolarization in prostaglandin E2-induced sensitization of cultured rat sensory neurons. Neurosci Lett 1996; 205:161-4. [PMID: 8852583 DOI: 10.1016/0304-3940(96)12401-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To determine if inhibition of a Ca(2+)-dependent slow afterhyperpolarization (AHPslow) contributes to prostaglandin E2 (PGE2)-induced sensitization of DRG neurons, we have used patch-clamp electrophysiological techniques on cultured dorsal root ganglion (DRG) neurons from the adult rat. In support of a role for AHPslow in sensitization of DRG neurons, we demonstrate that: (1) AHPslow expression is restricted to a subpopulation of putative nociceptors; (2) burst duration is controlled by AHPslow in these neurons; and (3) in some neurons, PGE2 decreases AHPslow and produces a concomitant increase in the number of action potentials generated in response to depolarizing current injection. However, our results also demonstrate that AHPslow modulation is not sufficient to explain PGE2-induced sensitization in the majority of DRG neurons because: (1) the size of the population of DRG neurons expressing AHPslow is less than half the size of the population of DRG neurons sensitized by PGE2; (2) PGE2 produces a decrease in action potential threshold as well as an increase in the number of action potentials in response to current injection, while inhibition of AHPslow has little effect on threshold; and (3) the sensitizing effects of PGE2 are dissociated from its effects on AHPslow in more than half of neurons tested. We conclude that PGE2-induced sensitization must involve the modulation of ionic currents in addition to that underlying AHPslow.
Collapse
Affiliation(s)
- M S Gold
- Neuroscience Program, University of California, Los Angeles 90024, USA
| | | | | |
Collapse
|