101
|
Tretyakova NY, Burney S, Pamir B, Wishnok JS, Dedon PC, Wogan GN, Tannenbaum SR. Peroxynitrite-induced DNA damage in the supF gene: correlation with the mutational spectrum. Mutat Res 2000; 447:287-303. [PMID: 10751613 DOI: 10.1016/s0027-5107(99)00221-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tissue inflammation and chronic infection lead to the overproduction of nitric oxide and superoxide. These two species rapidly combine to yield peroxynitrite (ONOO(-)), a powerful oxidizing and nitrating agent that is thought be involved in both cell death and an increased cancer risk observed for inflamed tissues. ONOO(-) has been shown to induce single-strand breaks and base damage in DNA and is mutagenic in the supF gene, inducing primarily G to T transversions clustered at the 5' end of the gene. The mutagenicity of ONOO(-) is believed to result from chemical modifications at guanine nucleobases leading to miscoding DNA lesions. In the present work, we applied a combination of molecular and analytical techniques in an attempt to identify biologically important DNA modifications induced by ONOO(-). pUC19 plasmid treated with ONOO(-) contained single-strand breaks resulting from direct sugar damage at the DNA backbone, as well as abasic sites and nucleobase modifications repaired by Fpg glycosylase. The presence of carbon dioxide in the reaction mixture shifted the ONOO(-) reactivity towards reactions at nucleobases, while suppressing the oxidation of deoxyribose. To further study the chemistry of the ONOO(-) interactions with DNA, synthetic oligonucleotides representing the mutation-prone region of the supF gene were treated with ONOO(-), and the products were analyzed by liquid chromatography-negative ion electrospray ionization mass spectrometry (LC-ESI(-) MS) and tandem mass spectrometry. 8-Nitroguanine (8-nitro-G) was formed in ONOO(-)-treated oligonucleotides in a dose-dependent manner with a maximum at a ratio of [ONOO(-)]: [DNA]=10 and a decline at higher ONOO(-) concentrations, suggesting further reactions of 8-nitro-G with ONOO(-). 8-Nitro-G was spontaneously released from oligonucleotides (t(1/2)=1 h at 37 degrees C) and, when present in DNA, was not recognized by Fpg glycosylase. To obtain more detailed information on ONOO(-)-induced DNA damage, a restriction fragment from the pSP189 plasmid containing the supF gene (135 base pairs) was [32P]-end-labeled and treated with ONOO(-). PAGE analysis of the products revealed sequence-specific lesions at guanine nucleobases, including the sites of mutational "hotspots." These lesions were repaired by Fpg glycosylase and cleaved by hot piperidine treatment, but they were resistant to depurination at 90 degrees C. Since 8-nitro-G is subject to spontaneous depurination, and 8-oxo-guanine is not efficiently cleaved by piperidine, these results suggest that alternative DNA lesion(s) contribute to ONOO(-) mutagenicity. Further investigation of the identities of DNA modifications responsible for the adverse biological effects of ONOO(-) is underway in our laboratory.
Collapse
Affiliation(s)
- N Y Tretyakova
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Betterton EA, Craig D. Kinetics and Mechanism of the Reaction of Azide with Ozone in Aqueous Solution. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 1999; 49:1347-1354. [PMID: 28072375 DOI: 10.1080/10473289.1999.10463958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The stoichiometry of the reaction of aqueous ozone with sodium azide was studied at pH 12 (mainly) where a yellow metastable intermediate is observed. We propose that this is hypoazidite (N3O- ), analogous to hypobromite, and that it plays a central role in the azide catalyzed decompostion of ozone. The yellow intermediate is unstable in acid, in which it rapidly decomposes, generating N2 and NO2-. The rate of reaction was studied at pH 2.0-3.5, with the ionic strength at 0.6 M and temperature at 3-15 ° C. The intrinsic second-order rate constants were found to be k HN3 ≤ ≈ 400 M-1sec-1 and k N3- = (8.7 ± 0.5) × 105 M-1sec-1 (3 °C, 0.6 M), both in agreement with the only other previous study. The rate constant at 25 °C was estimated using the following experimentally determined parameters: ln kN3- (M-1sec-1) = (5.73 ± 0.36) × 103/T (K) + (28.34 ± 1.27). The value of kN3- estimated in this way is (2.5 ± 0.1) × 106 M-1sec-1 at 25 °C and 0.6 M. The enthalpy of reaction (A H) is -48 ± 3 kJ mol-1.
Collapse
Affiliation(s)
- Eric A Betterton
- a Department of Atmospheric Sciences , University of Arizona , Tucson , Arizona , USA
| | - David Craig
- a Department of Atmospheric Sciences , University of Arizona , Tucson , Arizona , USA
| |
Collapse
|
103
|
Jakubowski W, Biliński T, Bartosz G. Sensitivity of antioxidant-deficient yeast Saccharomyces cerevisiae to peroxynitrite and nitric oxide. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1472:395-8. [PMID: 10572961 DOI: 10.1016/s0304-4165(99)00106-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sensitivity of Saccharomyces cerevisiae strains deficient in superoxide dismutases and catalases and of decreased level of glutathione to peroxynitrite and a nitric oxide donor, S-nitrosoglutathione was compared. Moderate but significant differences observed point to increased sensitivity to both agents of yeast deficient in antioxidant defense, the superoxide dismutase-deficient strain showing the highest sensitivity, The sequence of sensitivity of various strains to peroxynitrite and nitric oxide was the same. The results are compatible with the view that cytotoxic effects of peroxynitrite involve formation of secondary reactive oxygen species.
Collapse
Affiliation(s)
- W Jakubowski
- Department of Molecular Biophysics, University of Lódź, Poland.
| | | | | |
Collapse
|
104
|
Niles JC, Burney S, Singh SP, Wishnok JS, Tannenbaum SR. Peroxynitrite reaction products of 3',5'-di-O-acetyl-8-oxo-7, 8-dihydro-2'-deoxyguanosine. Proc Natl Acad Sci U S A 1999; 96:11729-34. [PMID: 10518518 PMCID: PMC18354 DOI: 10.1073/pnas.96.21.11729] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Of the DNA bases, peroxynitrite (ONOO-) is most reactive toward 2'-deoxyguanosine (dGuo), but even more reactive with 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodGuo), requiring a 1,000-fold excess of dGuo to provide 50% protection against the reaction with 8-oxodGuo. Therefore, it seems reasonable that 8-oxodGuo is a potentially important target in DNA and that the structures of the reaction products with ONOO- should be characterized. Using 3', 5'-di-O-Ac-8-oxodGuo as a model compound, the reaction products with ONOO- have been isolated and identified under simulated physiological reaction conditions (phosphate/bicarbonate buffer at pH 7.2). The major reaction product, II, is unstable and undergoes base-mediated hydrolysis to 2,5-diaminoimidazol-4-one, IIa, and 3-(3, 5-di-O-Ac-2-deoxy-beta-D-erythro-pentofuranosyl)-5-iminoimidazolidine -2,4-dione, IIb. The latter compound further hydrolyzes to 3-(3, 5-di-O-Ac-2-deoxy-beta-D-erythro-pentofuranosyl)oxaluric acid, IIc. Other products include 3-(3, 5-di-O-Ac-2-deoxy-beta-D-erythro-pentofuranosyl)-2,4,6-trioxo-[1,3, 5]triazinane-1-carboxamidine, I, which further hydrolyzes to 1-(3, 5-di-O-Ac-2-deoxy-beta-D-erythro-pentofuranosyl)cyanuric acid, Ia. 1-(3,5-di-O-Ac-2-deoxy-beta-D-erythro-pentofuranosyl)parabanic acid, III, is a minor product that also may contribute to formation of IIc. The major products formed in these reactions are biologically uncharacterized but are similar to modified DNA bases that have been shown to be both premutagenic and blocks to DNA polymerization.
Collapse
Affiliation(s)
- J C Niles
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
105
|
Nitration and hydroxylation of substituted phenols by peroxynitrite. Kinetic feature and an alternative mechanistic view. Tetrahedron Lett 1999. [DOI: 10.1016/s0040-4039(99)01238-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
106
|
Tien M, Berlett BS, Levine RL, Chock PB, Stadtman ER. Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. Proc Natl Acad Sci U S A 1999; 96:7809-14. [PMID: 10393903 PMCID: PMC22143 DOI: 10.1073/pnas.96.14.7809] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/1999] [Indexed: 11/18/2022] Open
Abstract
The ability of peroxynitrite to modify amino acid residues in glutamine synthetase (GS) and BSA is greatly influenced by pH and CO2. At physiological concentrations of CO2 (1.3 mM), the generation of carbonyl groups (0.2-0.4 equivalents/subunit) is little affected by pH over the range of 7.2-9.0, but, in the absence of CO2, carbonyl formation increases (from 0.1- 1.2 equivalents/subunit) as the pH is raised from 7.2 to 10.5. This increase is attributable, in part but not entirely, to the increase in peroxynitrite (PN) stability with increasing pH. Of several amino acid polymers tested, only those containing lysine residues yielded carbonyl derivatives. In contrast, the nitration of tyrosine residues of both GS and BSA at pH 7.5 almost completely depends on the presence of CO2. However, the pH profiles of tyrosine nitration in GS and BSA are not the same. With both proteins, nitration decreases approximately 65% with increasing pH over the range of 7.2-8.4, but, then in the case of GS only, there is a 3.4-fold increase in the level of nitration over the range pH 8.4-8.8. The oxidation of methionine residues in both proteins and in the tripeptide Ala-Met-Ala was inhibited by CO2 at both high and low pH values. These results emphasize the importance of controlling the pH and CO2 concentrations in studies involving PN and indicate that PN is not likely to contribute appreciably to carbonyl formation or oxidation of methionine residues of proteins at physiological pH and CO2 concentrations.
Collapse
Affiliation(s)
- M Tien
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802-4500, USA
| | | | | | | | | |
Collapse
|
107
|
Teixeira MM, Cunha FQ, Noronha-Dutra A, Hothersall J. Production of singlet oxygen by eosinophils activated in vitro by C5a and leukotriene B4. FEBS Lett 1999; 453:265-8. [PMID: 10405157 DOI: 10.1016/s0014-5793(99)00728-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using the trans-methoxyvinylpyrene analogues of benzo[a]pyrene-7,8-dihydrodiol (MVP) as a singlet oxygen ((1)O2) chemiluminescence probe, we have demonstrated that guinea pig eosinophils release (1)O2 when activated with the physiological agonists C5a and leukotriene B4. This release, which occurs at agonist concentrations as low as 10(-7) M, occurs more rapidly than activation with phorbol ester (10(-6) M), is similar in level, but is more transitory. In addition, the release of (1)O2 occurs in the absence of added bromide ions and represents, we propose, an important feature of eosinophil-mediated inflammatory damage.
Collapse
Affiliation(s)
- M M Teixeira
- Department of Pharmacology, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Brazil
| | | | | | | |
Collapse
|
108
|
Balavoine GG, Geletii YV. Peroxynitrite scavenging by different antioxidants. Part I: convenient assay. Nitric Oxide 1999; 3:40-54. [PMID: 10355895 DOI: 10.1006/niox.1999.0206] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A convenient "tube" assay to quantify relative antioxidant activities in aqueous solutions has been developed. Peroxynitrite was employed as a biologically relevant source of radicals with Pyrogallol Red as a detecting molecule. A variety of compounds have been examined, namely polyphenols, uric acid, glutathione, and ascorbic acid. Competition kinetics were observed for the majority of examined compounds, except thymol and ascorbic acid. Pyrogallol Red was fully protected by ascorbic acid against the bleaching by peroxynitrite until its total consumption. The deviation from competition kinetics in the case of thymol was due to the formation of radicals from thymol and their subsequent reaction with Pyrogallol Red. Quercetin was the most efficient scavenger of free radicals. The measurements of relative antioxidant activities using Pyrogallol Red and other detecting molecules, such as gallocyanine and carminic acid, were in fair agreement. The assay was successfully used for a screening of antioxidant activity of plant extracts of unknown composition.
Collapse
Affiliation(s)
- G G Balavoine
- Laboratoire de Chimie de Coordination, CNRS, Toulouse, France.
| | | |
Collapse
|
109
|
Hadjivassiliou V, Green MH, James RF, Swift SM, Clayton HA, Green IC. Insulin secretion, DNA damage, and apoptosis in human and rat islets of Langerhans following exposure to nitric oxide, peroxynitrite, and cytokines. Nitric Oxide 1999; 2:429-41. [PMID: 10342486 DOI: 10.1006/niox.1998.0203] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytokine-induced damage may contribute to destruction of insulin-secreting beta-cells in islets of Langerhans during autoimmune diabetes. There is considerable controversy (i) whether human and rat islets respond differently to cytokines, (ii) the extent to which cytokine damage is mediated by induction of nitric oxide formation, and (iii) whether the effects of nitric oxide on islets can be distinguished from those of reactive oxygen species or peroxynitrite. We have analyzed rat and human islet responses in parallel, 48 h after exposure to the nitric oxide donor S-nitrosoglutathione, the mixed donor 3-morpholinosydnonimine, hypoxanthine/xanthine oxidase, peroxynitrite, and combined cytokines (interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma). Insulin secretory response to glucose, insulin content, DNA strand breakage, and early-to-late stage apoptosis were recorded in each experiment. Rat islet insulin secretion was reduced by S-nitrosoglutathione or combined cytokines, but unexpectedly increased by peroxynitrite or hypoxanthine/xanthine oxidase. Effects on human islet insulin secretion were small; cytokines and S-nitrosoglutathione decreased insulin content. Both rat and human islets showed significant and similar levels of DNA damage following all treatments. Apoptosis in neonatal rat islets was increased by every treatment, but was at a low rate in adult rat or human islets and only achieved significance with cytokine treatment of human islets. All cytokine responses were blocked by an arginine analogue. We conclude: (i) Reactive oxygen species increased and nitric oxide decreased insulin secretory responsiveness in rat islets. (ii) Species differences lie mainly in responses to cytokines, applied at a lower dose and shorter time than in most studies of human islets. (iii) Cytokine effects were nitric oxide driven; neither reactive oxygen species nor peroxynitrite reproduced cytokine effects. (iv) Rat and human islets showed equal susceptibility to DNA damage. (v) Apoptosis was not the preferred death pathway in adult islets. (vi) We have found no evidence of human donor variation in the pattern of response to these treatments.
Collapse
Affiliation(s)
- V Hadjivassiliou
- Department of Biochemistry, University of Sussex, Brighton, United Kingdom.
| | | | | | | | | | | |
Collapse
|
110
|
Kanesaki T, Saeki M, Ooi Y, Suematsu M, Matsumoto K, Sakuda M, Saito K, Maeda S. Morphine prevents peroxynitrite-induced death of human neuroblastoma SH-SY5Y cells through a direct scavenging action. Eur J Pharmacol 1999; 372:319-24. [PMID: 10395028 DOI: 10.1016/s0014-2999(99)00206-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
N-ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino)-ethanamine (NOC12), a nitric oxide donor, 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite (ONOO-), and peroxynitrite induced cell death accompanied by DNA fragmentation in human neuroblastoma SH-SY5Y cell cultures. Morphine prevented the cell death induced by SIN-1 or peroxynitrite, but not that induced by NOC12. The protective effect of morphine was concentration-dependent (10-100 microM), but was not antagonized by naloxone. The selective ligands for opioid receptor subtypes, [D-Ala2, N-Me-Phe4, Gly-ol5]enkephalin (DAMGO, micro-opioid receptor agonist), [D-Pen2,5]enkephalin (DPDPE, delta-opioid receptor agonist) and trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)benze neacetamide (U-50488, kappa-opioid receptor agonist) even at the concentration of 100 microM did not prevent the cell death induced by SIN-1. From measurement of the absorbance spectrum of peroxynitrite, the decomposition of peroxynitrite in 0.25 M potassium phosphate buffer (pH 7.4) was very rapid and complete within seconds. However, the absorbance was very stable in the presence of morphine. In addition, morphine inhibited peroxynitrite-induced nitration of tyrosine in a concentration-dependent manner. These results indicate that morphine rapidly reacts with peroxynitrite. The present study showed that morphine prevented peroxynitrite-induced cell death through its direct scavenging action, suggesting that morphine can protect cells against damage caused by peroxynitrite.
Collapse
Affiliation(s)
- T Kanesaki
- The Second Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Koppal T, Drake J, Butterfield DA. In vivo modulation of rodent glutathione and its role in peroxynitrite-induced neocortical synaptosomal membrane protein damage. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1453:407-11. [PMID: 10101259 DOI: 10.1016/s0925-4439(99)00014-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peroxynitrite, formed by the reaction between nitric oxide and superoxide, leads to the oxidation of proteins, lipids, and DNA, and nitrates thiols such as cysteine and glutathione, and amino acids like tyrosine. Previous in vitro studies have shown glutathione to be an efficient scavenger of peroxynitrite, protecting synaptosomal membranes from protein oxidation, the enzyme glutamine synthetase from inactivation, and preventing the death of hippocampal neurons in culture. The current study was undertaken to see if in vivo modulation of glutathione levels would affect brain cortical synaptosomal membrane proteins and their subsequent reaction with peroxynitrite. Glutathione levels were depleted, in vivo, by injecting animals with 2-cyclohexen-1-one (CHX, 100 mg/kg body weight), and levels of glutathione were enhanced by injecting animals with N-acetylcysteine (NAC, 200 mg/kg body weight), which gets metabolized to cysteine, a precursor of glutathione. Changes in membrane protein conformation and structure in synaptosomes subsequently isolated from these animals were examined using electron paramagnetic resonance, before and after in vitro addition of peroxynitrite. The animals injected with the glutathione depletant CHX showed greater damage to the membrane proteins both before and after peroxynitrite treatment, compared to the non-injected controls. The membrane proteins from animals injected with NAC were comparable to controls before peroxynitrite treatment and were partially protected against peroxynitrite-induced damage. This study showed that modulation of endogenous glutathione levels can affect the degree of peroxynitrite-induced brain membrane damage and may have potential therapeutic significance for oxidative stress-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- T Koppal
- Department of Chemistry and Center of Membrane Sciences, 409 Kinkead Hall, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | |
Collapse
|
112
|
Affiliation(s)
- R Kissner
- Laboratorium für Anorganische Chemie, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | |
Collapse
|
113
|
Bolzan RM, Cueto R, Squadrito GL, Uppu RM, Pryor WA. Direct and simultaneous ultraviolet second-derivative spectrophotometric determination of nitrite and nitrate in preparations of peroxynitrite. Methods Enzymol 1999; 301:178-87. [PMID: 9919566 DOI: 10.1016/s0076-6879(99)01081-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have determined the initial concentrations of nitrite and nitrate for three different methods of synthesizing peroxynitrite using an ultraviolet second-derivative spectroscopy method (Fig. 3). As expected, the net nitrogen balance in these preparations (Fig. 4) and the yields of nitrite and nitrate (Table II) indicate that, at pH 6.0, peroxynitrite decomposes to give essentially NO3-. Stock solutions of peroxynitrite prepared using method I (ozonation of azide) consistently contain more NO2- and NO3- than method II (isoamyl nitrite with hydrogen peroxide) and method III (hydrogen peroxide with nitrous acid). Method II gives the least amount of NO2- contaminants, and NO3- impurities are the lowest in method III (Table I).
Collapse
Affiliation(s)
- R M Bolzan
- Biodynamics Institute, Louisiana State University, Baton Rouge 70803-1800, USA
| | | | | | | | | |
Collapse
|
114
|
Kanski J, Koppal T, Butterfield DA. Investigation of Peroxynitrite Induced Oxidative Stress in Red Blood Cells Monitored by Luminol-Dependent Chemiluminescence. ANAL LETT 1999. [DOI: 10.1080/00032719908542887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
115
|
Koppal T, Drake J, Yatin S, Jordan B, Varadarajan S, Bettenhausen L, Butterfield DA. Peroxynitrite-induced alterations in synaptosomal membrane proteins: insight into oxidative stress in Alzheimer's disease. J Neurochem 1999; 72:310-7. [PMID: 9886083 DOI: 10.1046/j.1471-4159.1999.0720310.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peroxynitrite (ONOO ) is a highly reactive, oxidizing anion with a half-life of <1 s that is formed by reaction of superoxide radical anion with nitric oxide. Several reports of ONOO--induced oxidation of lipids, proteins, DNA, sulfhydryls, and inactivation of key enzymes have appeared. ONOO- has also been implicated as playing a role in the pathology of several neurodegenerative disorders, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis, among others. Continuing our laboratory's interest in free radical oxidative stress in brain cells in AD, the present study was designed to investigate the damage to brain neocortical synaptosomal membrane proteins and the oxidation-sensitive enzyme glutamine synthetase (GS) caused by exposure to ONOO-. These synaptosomal proteins and GS have previously been shown by us and others to have been oxidatively damaged in AD brain and also following treatment of synaptosomes with amyloid beta-peptide. The results of the current study showed that exposure to physiological levels of ONOO- induced significant protein conformational changes, demonstrated using electron paramagnetic resonance in conjunction with a protein-specific spin label, and caused oxidation of proteins, measured by the increase in protein carbonyls. ONOO- also caused inactivation of GS and led to neuronal cell death examined in a hippocampal cell culture system. All these detrimental effects of ONOO- were successfully attenuated by the thiol-containing antioxidant tripeptide glutathione. This research shows that ONOO- can oxidatively modify both membranous and cytosolic proteins, affecting both their physical and chemical nature. These findings are discussed with reference to the potential involvement of ONOO- in AD neurodegeneration.
Collapse
Affiliation(s)
- T Koppal
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Uppu RM, Lemercier JN, Squadrito GL, Zhang H, Bolzan RM, Pryor WA. Nitrosation by peroxynitrite: use of phenol as a probe. Arch Biochem Biophys 1998; 358:1-16. [PMID: 9750159 DOI: 10.1006/abbi.1998.0825] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrosation is an important pathway in the metabolism of nitric oxide, producing S-nitrosothiols that may be critical signal transduction species. The reaction of peroxynitrite with aromatic compounds in the pH range of 5 to 8 has long been known to produce hydroxylated and nitrated products. However, we here present evidence that peroxynitrite also can promote the nitrosation of nucleophiles. We chose phenol as a substrate because the nitrosation reaction was first recognized during a study of the CO2-modulation of the patterns of hydroxylation and nitration of phenol by peroxynitrite (Lemercier et al., Arch. Biochem. Biophys. 345, 160-170, 1997). 4-Nitrosophenol, the principal nitrosation product, is detected at pH 7.0, along with 2- and 4-nitrophenols; 4-nitrosophenol becomes the dominant product at pH >/= 8.0. The yield of 4-nitrosophenol continues to increase even after pH 11.1, 1. 2 units above the pKa of phenol, suggesting that the phenolate ion, and not phenol, is involved in the reaction. Hydrogen peroxide is not formed as a by-product. The nitrosation reaction is zero-order in phenol and first-order in peroxynitrite, suggesting the phenolate ion reacts with an activated nitrosating species derived from peroxynitrite, and not with peroxynitrite itself. Under optimal conditions, the yields of 4-nitrosophenol are comparable to those of 2- and 4-nitrophenols, indicating that the nitrosation reaction is as significant as the nitration of phenolic compounds by peroxynitrite. Low concentrations of CO2 facilitate the nitrosation reaction, but excess CO2 dramatically reduces the yield of 4-nitrosophenol. The dual effects of CO2 can be rationalized if O=N-OO- reacts with the peroxynitrite anion-CO2 adduct (O=N-OOCO-2) or secondary intermediates derived from it, including the nitrocarbonate anion (O2N-OCO-2), the carbonate radical (CO*-3), and *NO2. The product resulting from these reactions can be envisioned as an activated intermediate X-N=O (where X is -OONO2, -NO2, or -CO-3) that could transfer a nitrosyl cation (NO+) to the phenolate ion. An alternative mechanism for the nitrosation of phenol involves the one-electron oxidation of the phenolate ion by CO*-3 to give the phenoxyl radical and the oxidation of O=N-OO- by CO*-3 to give a nitrosyldioxyl radical (O=N-OO*), which decomposes to give *NO and O2; the *NO then reacts with the phenoxyl radical giving nitrosophenol. Both mechanisms are consistent with the high yields of NO-2 and O2 during the alkaline decomposition of peroxynitrite and the potent inhibitory effect of N-3 on the nitrosation of phenol by peroxynitrite and peroxynitrite/CO2 adducts. The biological significance of the peroxynitrite-mediated nitrosations is discussed.
Collapse
Affiliation(s)
- R M Uppu
- The Biodynamics Institute, Louisiana State University, Baton Rouge, Louisiana, 70803-1800, USA
| | | | | | | | | | | |
Collapse
|
117
|
Huschenbett J, Zaidi A, Michaelis ML. Sensitivity of the synaptic membrane Na+/Ca2+ exchanger and the expressed NCX1 isoform to reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1374:34-46. [PMID: 9814850 DOI: 10.1016/s0005-2736(98)00121-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two plasma membrane proteins, the Na+/Ca2+ exchanger (NCX) and the Ca2+-ATPase, are major regulators of free intraneuronal Ca2+ levels as they are responsible for extrusion of Ca2+ from the intracellular to the extracellular medium. Because disruption of cellular Ca2+ regulation plays a role in damage occurring under conditions of oxidative stress, studies were conducted to assess the sensitivity of the NCX to reactive oxygen species (ROS). Exchanger activity in brain synaptic plasma membranes and in transfected CHO-K1 cells was inhibited following brief exposure to the peroxyl radical generating azo initiator 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) and to peroxynitrite. Incubation with hydrogen peroxide did not alter NCX activity, even at 800 microM concentration. In CHO-K1 cells transiently transfected with the NCX1 isoform of the exchanger, AAPH treatment decreased the maximal transport capacity (Vmax), whereas the K(act) remained unchanged. Peroxynitrite led to an increase in K(act) with no change in Vmax. Loss of activity following exposure to either AAPH or peroxynitrite was associated with the formation of high molecular weight aggregates of NCX, and AAPH also caused fragmentation of the exchanger protein. These findings suggest that the NCX is sensitive to biologically relevant ROS and could be involved in the loss of Ca2+ homeostasis observed under oxidative stress.
Collapse
Affiliation(s)
- J Huschenbett
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence 66045-2505, USA
| | | | | |
Collapse
|
118
|
Murphy MP, Packer MA, Scarlett JL, Martin SW. Peroxynitrite: a biologically significant oxidant. GENERAL PHARMACOLOGY 1998; 31:179-86. [PMID: 9688457 DOI: 10.1016/s0306-3623(97)00418-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Peroxynitrite is a short-lived and damaging oxidant that forms rapidly from the reaction of superoxide with nitric oxide. 2. In 1990, Joseph Beckman proposed that peroxynitrite contributed significantly to pathological oxidative stress in living tissues, and subsequent evidence strongly supports this proposal. 3. In this review, we outline the properties of peroxynitrite and discuss how it can affect biological systems and contribute to human pathologies.
Collapse
Affiliation(s)
- M P Murphy
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
119
|
Berlett BS, Levine RL, Stadtman ER. Carbon dioxide stimulates peroxynitrite-mediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase: both modifications mimic effects of adenylylation. Proc Natl Acad Sci U S A 1998; 95:2784-9. [PMID: 9501167 PMCID: PMC19646 DOI: 10.1073/pnas.95.6.2784] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The activity of glutamine synthetase (EC 6.3.1.2) from Escherichia coli is regulated by the cyclic adenylylation and deadenylylation of Tyr-397 in each of the enzyme's 12 identical subunits. The nitration of Tyr-397 or of the nearby Tyr-326 by peroxynitrite can convert the unadenylylated enzyme to a form exhibiting regulatory characteristics similar to the form obtained by adenylylation. The adenylylated conformation can also be elicited by the oxidation of surface-exposed methionine residues to methionine sulfoxide. However, the nitration of tyrosine residues and the oxidation of methionine residues are oppositely directed by the presence and absence of CO2. At physiological concentrations of CO2, pH 7.4, nitration occurs but oxidation of methionine residues is inhibited. Conversely, in the absence of CO2 methionine oxidation is stimulated and nitration of tyrosine is prevented. It was further established that adenylylation of Tyr-397 precludes its nitration by peroxynitrite. Furthermore, nitration of Tyr-326 together with either nitration or adenylylation of Tyr-397 leads to inactivation of the enzyme. These results demonstrate that CO2 can alter the course of peroxynitrite-dependent reactions and serve notice that (i) the reactions have physiological significance only if they are shown to occur at physiological concentrations of CO2 and physiological pH; and (ii) the peroxynitrite-dependent nitration of tyrosine residues or the oxidation of methionine residues of metabolically regulated proteins can seriously compromise their biological function.
Collapse
Affiliation(s)
- B S Berlett
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-0342, USA
| | | | | |
Collapse
|
120
|
Saha A, Goldstein S, Cabelli D, Czapski G. Determination of optimal conditions for synthesis of peroxynitrite by mixing acidified hydrogen peroxide with nitrite. Free Radic Biol Med 1998; 24:653-9. [PMID: 9559878 DOI: 10.1016/s0891-5849(97)00365-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The measured parameters for the formation of peroxynitrous acid via the reaction of acidified hydrogen peroxide with nitrous acid and its self-decomposition corroborate with an earlier suggested mechanism in which H2NO2+ nitrosates H2O2. The activation energies for the formation and decay of peroxynitrous acid have been determined to be 15 and 19 kcal/mol, respectively. We found that perchlorate, nitrate, sulfate and phosphate ions have no effect on the formation and decay rates, whereas chloride ions enhance the rate of the formation of peroxynitrous acid at low peroxide concentrations, and have no effect at high peroxide concentrations. This suggests that at relatively low concentration of H2O2, Cl- competes with H2O2 for H2NO+ to yield NOCl, which may also nitrosate H2O2. Simulation of the experimentally observed parameters for the decay and formation rates suggests that it is not possible to obtain 100% yield of peroxynitrite under any condition. High yields of peroxynitrite were obtained at room temperature using an efficient double mixer where acidified peroxide was mixed with nitrite; after an appropriate delay, the reaction was quenched with strong alkali. An excess of more than 10% of H2O2 over nitrite, or vice versa, is sufficient to get ca. 85-90% of peroxynitrite, almost free from nitrite or H2O2, respectively. The results also suggest that conventional use of ice-cold solutions of the reactants and the alkali solutions is not required if an efficient mixer and appropriate quenching times are available.
Collapse
Affiliation(s)
- A Saha
- Department of Physical Chemistry, The Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
121
|
Dikalov S, Fink B, Skatchkov M, Sommer O, Bassenge E. Formation of Reactive Oxygen Species in Various Vascular Cells During Glyceryltrinitrate Metabolism. J Cardiovasc Pharmacol Ther 1998; 3:51-62. [PMID: 10684481 DOI: 10.1177/107424849800300107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND: Anti-ischemic therapy with organic nitrates as nitric oxide (NO) donors is complicated by the induction of tolerance. When nitrates are metabolized to release NO, there is a considerable coproduction of reactive oxygen species (superoxide radical and peroxynitrite) in vessels leading to inactivation of NO, to diminished cyclic quanosine monophosphate production in smooth muscle cells (SMC), to impaired vasomotor responses to the endothelium-derived relaxation factor (EDRF), and to formation of nitrotyrosine as a marker of glyceryltrinitrate (GTN)-induced formation of peroxynitrite. The aim of the study was to analyze in vitro the formation of superoxide radicals and of peroxynitrite in GTN-treated endothelial and smooth muscle cells and in washed ex vivo platelets using electron spin resonance and spin-trapping techniques. METHODS AND RESULTS: Using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap, it was shown that in platelets, smooth muscle, and endothelial cells incubated acutely for 15 minutes with 0.5 mM GTN, the rate of generation of reactive oxygen species (ROS) was twice as high as under control conditions. Using the new spin-trap 2H-imidazole-1-oxide (TMIO), a GTN-induced peroxynitrite formation was detected in SMC and in platelets incubated with 0.5 mM GTN for 15 minutes. Spin-trap 1-hydroxy-3-carboxy-pyrrolidine (CP-H) was used to estimate the rate of ROS formation in platelets incubated for 15 minutes with 0.5 mM GTN; the rate amounted to 14.6 +/- 1.1 nM/min/mg protein compared with 4.0 +/- 0.4 nM/min/mg protein in controls. The rate of ROS formation in SMCs was substantially increased (240 +/- 16%) after initiation of GTN tolerance by treatment of the cells in culture with 100 µM GTN for 24 hours. CONCLUSIONS: GTN increases the formation of superoxide radicals in endothelial cells, SMCs, and platelets. Peroxynitrite is formed during GTN metabolism in vascular cells and may contribute to the development of tolerance. A decrease in the nitrate-induced inhibition of platelet aggregation during GTN tolerance is associated with oxidative actions of ROS formed in platelets during GTN metabolism.
Collapse
Affiliation(s)
- S Dikalov
- Institute of Applied Physiology, Institute of Chemical Kinetics and Combustion, Novosibirsk, Germany
| | | | | | | | | |
Collapse
|
122
|
Dikalov S, Skatchkov M, Fink B, Bassenge E. Quantification of superoxide radicals and peroxynitrite in vascular cells using oxidation of sterically hindered hydroxylamines and electron spin resonance. Nitric Oxide 1997; 1:423-31. [PMID: 9441913 DOI: 10.1006/niox.1997.0139] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reactions of two hydroxylamines, 1-hydroxy-3-carboxy-pyrrolidine (CP-H) and 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine (TEMPONE-H), with superoxide radicals and peroxynitrite were studied. In these reactions corresponding stable nitroxyl radicals 3-carboxy-proxyl (CP) and 1-hydroxy-2,2,6,6-tetramethyl-4-oxopiperidinoxyl (TEMPONE) are formed and the amount of them can be quantified by electron spin resonance (ESR). It was found that CP-H and TEMPONE-H provide almost the same efficacy in assaying peroxynitrite by ESR in vitro at pH 7.4. The formation of superoxide radicals in suspensions of cells was discriminated from that of peroxynitrite using superoxide dismutase or dimethyl sulfoxide as competitive reagents. The stability of the radicals CP and TEMPONE in the presence of ascorbate or thiols was studied in vitro. The reduction rate of CP by ascorbate was 66-fold slower than the rate of reduction of TEMPONE. Therefore, the quantification of the formation of superoxide radicals and of peroxynitrite is much less affected by ascorbic acid when CP-H, but not TEMPONE-H, is used. Both TEMPONE-H and CP-H were used to determine the formation rates of superoxide radicals and peroxynitrite in suspensions of cultured aortic smooth muscle cells and endothelial cells, in washed ex vivo platelets, and in blood treated with glycerol trinitrate (GTN) as an NO donor. It was shown that both the acute addition of GTN (0.5 mM) to vascular cells and the incubation of smooth muscle or endothelial cells in culture with 0.1 mM GTN for 24 h enhance significantly the formation of reactive oxygen species in cells. The rates of of superoxide radical formation were increased at least in two times and peroxynitrite was detected. Hydroxylamines TEMPONE-H and CP-H can be used as nontoxic compounds in ESR assay capable of quantifying the formation of superoxide radicals and peroxynitrite in suspensions of cells and in the whole blood with high sensitivity.
Collapse
Affiliation(s)
- S Dikalov
- Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
123
|
Lemercier JN, Padmaja S, Cueto R, Squadrito GL, Uppu RM, Pryor WA. Carbon dioxide modulation of hydroxylation and nitration of phenol by peroxynitrite. Arch Biochem Biophys 1997; 345:160-70. [PMID: 9281324 DOI: 10.1006/abbi.1997.0240] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have examined the formation of hydroxyphenols, nitrophenols, and the minor products 4-nitrosophenol, benzoquinone, 2,2'-biphenol, and 4,4'-biphenol from the reaction of peroxynitrite with phenol in the presence and absence of added carbonate. In the absence of added carbonate, the product yields of nitrophenols and hydroxyphenols have different pH profiles. The rates of nitration and hydroxylation also have different pH profiles and match the trends observed for the product yields. At a given pH, the sum of the rate constants for nitration and hydroxylation is nearly identical to the rate constant for the spontaneous decomposition of peroxynitrite. The reaction of peroxynitrite with phenol is zero-order in phenol, both in the presence and absence of added carbonate. In the presence of added carbonate, hydroxylation is inhibited, whereas the rate of formation and yield of nitrophenols increase. The combined maximum yield of o- and p-nitrophenols is 20 mol% (based on the initial concentration of peroxynitrite) and is about fourfold higher than the maximal yield obtained in the absence of added carbonate. The o/p ratio of nitrophenols is the same in the presence and absence of added carbonate. These results demonstrate that hydroxylation and nitration occur via two different intermediates. We suggest that the activated intermediate formed in the isomerization of peroxynitrous acid to nitrate, ONOOH*, is the hydroxylating species. We propose that intermediate 1, O=N-OO-CO2-, or secondary products derived from it, is (are) responsible for the nitration of phenol. The possible mechanisms responsible for nitration are discussed.
Collapse
Affiliation(s)
- J N Lemercier
- The Biodynamics Institute, Louisiana State University, Baton Rouge, Louisiana 70803-1800, USA
| | | | | | | | | | | |
Collapse
|
124
|
Karoui H, Hansert B, Sand PJ, Tordo P, Bohle DS, Kalyanaraman B. Spin-trapping of free radicals formed during the oxidation of glutathione by tetramethylammonium peroxynitrite. Nitric Oxide 1997; 1:346-58. [PMID: 9441906 DOI: 10.1006/niox.1997.0140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glutathionyl radical (GS.) formed during the oxidation of glutathione by tetramethylammonium peroxynitrite ([NMe4][ONOO]) was spin-trapped with 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO). This radical reacted with ammonium formate to form the carbon dioxide anion radical (CO2-.). The superoxide anion formed during oxidation of GSH by peroxynitrite salt was trapped with DMPO and detected as the DMPO-hydroxyl adduct. Addition of SOD mimic completely abolished the spectrum of the hydroxyl adduct but not the spectrum of the DMPO-glutathionyl radical adduct. Addition of seleno-DL-cystine or its reduced form caused a dramatic inhibition in the formation of spin adducts, suggesting that seleno-DL-cysteine is a more effective scavenger of peroxynitrite. The oxygen uptake observed during oxidation of GSH by peroxynitrite salt was inhibited by spin traps. In the presence of catalase, approximately 50% of the oxygen consumed was restored, indicating stoichiometric conversion of O2 to H2O2 during oxidation of GSH by peroxynitrite salt. Results indicate that nitrite and glutathione disulfide are formed as the major products during oxidation of GSH by peroxynitrite.
Collapse
Affiliation(s)
- H Karoui
- Biophysics Research Institute, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | | | |
Collapse
|
125
|
Neuzil J, Witting PK, Stocker R. Alpha-tocopheryl hydroquinone is an efficient multifunctional inhibitor of radical-initiated oxidation of low density lipoprotein lipids. Proc Natl Acad Sci U S A 1997; 94:7885-90. [PMID: 9223282 PMCID: PMC21524 DOI: 10.1073/pnas.94.15.7885] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As the oxidation of low density lipoprotein (LDL) lipids may be a key event in atherogenesis, there is interest in antioxidants as potential anti-atherogenic compounds. Here we report that alpha-tocopheryl hydroquinone (alpha-TQH2) strongly inhibited or completely prevented the (per)oxidation of ubiquinol-10 (CoQ10H2), alpha-tocopherol (alpha-TOH), and both surface and core lipids in LDL exposed to either aqueous or lipophilic peroxyl radicals, Cu2+, soybean lipoxygenase, or the transition metal-containing Ham's F-10 medium in the absence or presence of human monocyte-derived macrophages. The antioxidant activity of alpha-TQH2 was superior to that of several other lipophilic hydroquinones, including endogenous CoQ10H2, which is regarded as LDL's first line of antioxidant defence. At least three independent activities contributed to the antioxidant action of alpha-TQH2. First, alpha-TQH2 readily associated with LDL and instantaneously reduced the lipoprotein's ubiquinone-10 to CoQ10H2, thereby maintaining this antioxidant in its active form. Second, alpha-TQH2 directly intercepted aqueous peroxyl radicals, as indicated by the increased rate of its consumption with increasing rates of radical production, independent of LDL's content of CoQ10H2 and alpha-TOH. Third, alpha-TQH2 rapidly quenched alpha-tocopheroxyl radical in oxidizing LDL, as demonstrated directly by electron paramagnetic resonance spectroscopy. Similar antioxidant activities were also seen when alpha-TQH2 was added to high-density lipoprotein or the protein-free Intralipid, indicating that the potent antioxidant activity of alpha-TQH2 was neither lipoprotein specific nor dependent on proteins. These results suggest that alpha-TQH2 is a candidate for a therapeutic lipid-soluble antioxidant. As alpha-tocopherylquinone is formed in vivo at sites of oxidative stress, including human atherosclerotic plaque, and biological systems exist that reduce the quinone to the hydroquinone, our results also suggest that alpha-TQH2 could be a previously unrecognized natural antioxidant.
Collapse
Affiliation(s)
- J Neuzil
- Biochemistry Unit, The Heart Research Institute, 145 Missenden Road, Camperdown, NSW 2050, Australia
| | | | | |
Collapse
|
126
|
Kelm M, Dahmann R, Wink D, Feelisch M. The nitric oxide/superoxide assay. Insights into the biological chemistry of the NO/O-2. interaction. J Biol Chem 1997; 272:9922-32. [PMID: 9092531 DOI: 10.1074/jbc.272.15.9922] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nitric oxide (NO) is a widespread signaling molecule involved in the regulation of an impressive spectrum of diverse cellular functions. Superoxide anions (O-2) not only contribute to the localization of NO action by rapid inactivation, but also give rise to the formation of the potentially toxic species peroxynitrite (ONOO-) and other reactive nitrogen oxide species. The chemistry and biological effect of ONOO- depend on the relative rates of formation of NO and O-2. However, the simultaneous quantification of NO and O-2 has not been achieved yet due to their high rate of interaction, which is almost diffusion-controlled. A sensitive spectrophotometric assay was developed for the simultaneous quantification of NO and O-2 in aqueous solution that is based on the NO-induced oxidation of oxyhemoglobin (oxyHb) to methemoglobin and the O-2-mediated reduction of ferricytochrome c. Using a photodiode array photometer, spectral changes of either reaction were analyzed, and appropriate wavelengths were identified for the simultaneous monitoring of absorbance changes of the individual reactions. oxyHb oxidation was followed at 541.2 nm (isosbestic wavelength for the conversion of ferri- to ferrocytochrome c), and ferricytochrome c reduction was followed at 465 nm (wavelength at which absorbance changes during oxyHb to methemoglobin conversion were negligible), using 525 nm as the isosbestic point for both reactions. At final concentrations of 20 microM ferricytochrome c and 5 microM oxyHb, the molar extinction coefficients were determined to be epsilon465-525 = 7.3 mM-1 cm-1 and epsilon541.2-525 = 6.6 mM-1 cm-1, respectively. The rates of formation of either NO or O-2 determined with the combined assay were virtually identical to those measured with the classical oxyhemoglobin and cytochrome c assays, respectively. The assay was successfully adapted to either kinetic or end point determination in a cuvette or continuous on-line measurement of both radicals in a flow-through system. Maximal assay sensitivity was approximately 25 nM for NO and O-2. Cross-reactivity with ONOO- was controlled for by the presence of L-methionine. Generation of NO from the NO donor spermine diazeniumdiolate could be reliably quantified in the presence and absence of low, equimolar, and high flux rates of O-2. Likewise, O-2 enzymatically generated from hypoxanthine/xanthine oxidase could be specifically quantified with no difference in absolute rates in the presence or absence of concomitant NO generation at different flux rates. Nonenzymatic decomposition of 3-morpholinosydnonimine hydrochloride (100 microM) in phosphate buffer, pH 7.4 (37 degrees C), was found to be associated with almost stoichiometric production of NO and O-2 (1.24 microM NO/min and 1.12 microM O-2/min). Assay selectivity and applicability to biological systems were demonstrated in cultured endothelial cells and isolated aortic tissue using calcium ionophore and NADH for stimulation of NO and O-2 formation, respectively. Based on these data, a computer model was elaborated that successfully predicts the reaction of NO and O-2 with hemoprotein and may thus help to further elucidate these reactions. In conclusion, the nitric oxide/superoxide assay allows the specific, sensitive, and simultaneous detection of NO and O-2. The simulation model developed also allows the reliable prediction of the reaction between NO and O-2 as well as their kinetic interaction with other biomolecules. These new analytical tools will help to gain further insight into the physiological and pathophysiological significance of the formation of these radicals in cell homeostasis.
Collapse
Affiliation(s)
- M Kelm
- Department of Medicine, Division of Cardiology, Pulmonary Diseases, and Angiology, Heinrich Heine University, Moorenstrasse 5, D-40225 Düsseldorf, Federal Republic of Germany
| | | | | | | |
Collapse
|
127
|
Soszyński M, Bartosz G. Peroxynitrite inhibits glutathione S-conjugate transport. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1325:135-41. [PMID: 9106491 DOI: 10.1016/s0005-2736(96)00251-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peroxynitrite was demonstrated to inhibit the active efflux of glutathione S-conjugates (2,4-dinitrophenyl-S-glutathione and bimane-S-glutathione) from human erythrocytes and the erythrocyte membrane ATPase activity stimulated by glutathione S-conjugates. As the multidrug resistance-associated protein (MRP) is responsible for the transport of glutathione S-conjugates in mammalian cells, these results point to the possibility of the effect of peroxynitrite on the MRP function.
Collapse
Affiliation(s)
- M Soszyński
- Department of Molecular Biophysics, University of Lódź, Poland.
| | | |
Collapse
|
128
|
Skatchkov M, Larina LL, Larin AA, Fink N, Bassenge E. Urinary NItrotyrosine Content as a Marker of Peroxynitrite-induced Tolerance to Organic NItrates. J Cardiovasc Pharmacol Ther 1997; 2:85-96. [PMID: 10684446 DOI: 10.1177/107424849700200202] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND: Anti-ischemic therapy with nitrovaasodilators as NO-donors is complicated by the induction of tolerance. When nitrovasodilators are metabolized to release NO there is a considerable coproduction of oxygen-derived radicals leading to a diminished cyclic GMP production and to impaired vasomotory responses. We analyzed in vivo the glyceroltrinitrate-induced generation of strong oxidative/nitrating compounds contributing to development of tolerance. METHODS AND RESULTS: In 16 patients we studied the urinary nitrotyrosine excretion during either (1) placebo control conditions, (2) 2-day nonintermittent transdermal nitroglycerin administration (0.4 mg/h), (3) 2-day nonintermittent glyceroltrinitrate administration (0.4 mg/h) along with a continuous infusion of vitamin C (55 µg/kg/min) as an antioxidant, or (4) with vitamin C but without glyceroltrinitrate (diminished urinary nitrotyrosine content of 34 +/- 18 µg/day observed). Glyceroltrinitrate administration augmented urinary nitrotyrosine from 56 +/- 24 (basal) to 186 +/- 32 µg/day (glyceroltrinitrate tolerance). Coadministration of vitamin C caused complete elimination of tolerance and a decrease in urinary nitrotyrosine to 130 +/- 28 µg/day. Glyceroltrinitrate-induced formation of oxidants was confirmed in vitro comparing glyceroltrinitrate-induced and peroxynitrite-induced tachyphylaxis in isolated perfused rabbit hearts and analyzing tolerance-induced inactivation of solbule guanylyl cyclase in cultured aortic smooth muscle cells. CONCLUSIONS: Augmented urinary nitrotyrosine excretion during glyceroltrinitrate administration reflects enhanced formation of peroxynitrite and of nitrotyrosine. Glyceroltrinitrate-induced tolerance is the result of oxidative stress and can be suppressed by additional antioxidant therapy aimed to prevent glyceroltrinitrate-induced formation and/or actions of peroxynitrite.
Collapse
Affiliation(s)
- M Skatchkov
- Institute of Applied Physiology, University Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
129
|
Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames BN. gamma-tocopherol traps mutagenic electrophiles such as NO(X) and complements alpha-tocopherol: physiological implications. Proc Natl Acad Sci U S A 1997; 94:3217-22. [PMID: 9096373 PMCID: PMC20349 DOI: 10.1073/pnas.94.7.3217] [Citation(s) in RCA: 361] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Peroxynitrite, a powerful mutagenic oxidant and nitrating species, is formed by the near diffusion-limited reaction of .NO and O2.- during activation of phagocytes. Chronic inflammation induced by phagocytes is a major contributor to cancer and other degenerative diseases. We examined how gamma-tocopherol (gammaT), the principal form of vitamin E in the United States diet, and alpha-tocopherol (alphaT), the major form in supplements, protect against peroxynitrite-induced lipid oxidation. Lipid hydroperoxide formation in liposomes (but not isolated low-density lipoprotein) exposed to peroxynitrite or the .NO and O2.- generator SIN-1 (3-morpholinosydnonimine) was inhibited more effectively by gammaT than alphaT. More importantly, nitration of gammaT at the nucleophilic 5-position, which proceeded in both liposomes and human low density lipoprotein at yields of approximately 50% and approximately 75%, respectively, was not affected by the presence of alphaT. These results suggest that despite alphaT's action as an antioxidant gammaT is required to effectively remove the peroxynitrite-derived nitrating species. We postulate that gammaT acts in vivo as a trap for membrane-soluble electrophilic nitrogen oxides and other electrophilic mutagens, forming stable carbon-centered adducts through the nucleophilic 5-position, which is blocked in alphaT. Because large doses of dietary alphaT displace gammaT in plasma and other tissues, the current wisdom of vitamin E supplementation with primarily alphaT should be reconsidered.
Collapse
Affiliation(s)
- S Christen
- Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|
130
|
Padmaja S, Squadrito GL, Lemercier JN, Cueto R, Pryor WA. Peroxynitrite-mediated oxidation of D,L-selenomethionine: kinetics, mechanism and the role of carbon dioxide. Free Radic Biol Med 1997; 23:917-26. [PMID: 9378371 DOI: 10.1016/s0891-5849(97)00099-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peroxynitrite oxidizes D,L-selenomethionine (MetSe) by two competing mechanisms, a one-electron oxidation that leads to ethylene and a two-electron oxidation that gives methionine selenoxide (MetSeO). Kinetic modeling of the experimental data suggests that both peroxynitrous acid and the peroxynitrite anion react with MetSe to form MetSeO with rate constants of 20,460 +/- 440 M-1 s-1 and 200 +/- 170 M-1 s-1, respectively at 25 degrees C. The enthalpy (delta H++) and entropy (delta S++) of activation for the reaction of peroxynitrous acid with MetSe at pH 4.6 are 2.55 +/- 0.08 kcal mol-1 and -30.5 +/- 0.3 cal mol-1 K-1, respectively. With increasing concentrations of MetSe at pH 7.4, the yield of ethylene decreases and that of MetSeO increases, suggesting, as with methionine, the reactions leading to ethylene and MetSeO have different kinetic orders. We propose that the activated form of peroxynitrous acid, HOONO*, is the one-electron oxidant and ground-state peroxynitrite is the two-electron oxidant in the reaction of peroxynitrite with MetSe. The peroxynitrite anion rapidly adds to CO2 to form an adduct, O = N-OO-CO2- (1), capable of generating potent reactive species, and we therefore examined the role of CO2 in the peroxynitrite/MetSe system. In presence of added bicarbonate, the yield of ethylene obtained from the reaction of 0.4 mM peroxynitrite with 1.0 mM MetSe increases slightly with an increase in the concentration of bicarbonate from 0 to 5.0 mM and remains constant with a further increase of bicarbonate up to 20 mM. The yield of MetSeO, from the reaction of 10 mM peroxynitrite with 10 mM MetSe, decreases by 35% with an increase in the concentration of bicarbonate from 0 to 25 mM. Kinetic simulations show that the decrease in the yield of MetSeO is due to reaction of the peroxynitrite anion with CO2. These results suggest that CO2 partially protects MetSe from peroxynitrite-mediated oxidation and that 1 or its derivatives do not mediate the oxidation of MetSe to MetSeO.
Collapse
Affiliation(s)
- S Padmaja
- Biodynamics Institute, Louisiana State University, Baton Rouge 70803-1800, USA
| | | | | | | | | |
Collapse
|
131
|
Landino LM, Crews BC, Timmons MD, Morrow JD, Marnett LJ. Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc Natl Acad Sci U S A 1996; 93:15069-74. [PMID: 8986765 PMCID: PMC26357 DOI: 10.1073/pnas.93.26.15069] [Citation(s) in RCA: 331] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/1996] [Accepted: 10/24/1996] [Indexed: 02/03/2023] Open
Abstract
Peroxynitrite activates the cyclooxygenase activities of constitutive and inducible prostaglandin endoperoxide synthases by serving as a substrate for the enzymes' peroxidase activities. Activation of purified enzyme is induced by direct addition of peroxynitrite or by in situ generation of peroxynitrite from NO coupling to superoxide anion. Cu,Zn-superoxide dismutase completely inhibits cyclooxygenase activation in systems where peroxynitrite is generated in situ from superoxide. In the murine macrophage cell line RAW264.7, the lipophilic superoxide dismutase-mimetic agents, Cu(II) (3,5-diisopropylsalicylic acid)2, and Mn(III) tetrakis(1-methyl-4-pyridyl)porphyrin dose-dependently decrease the synthesis of prostaglandins without affecting the levels of NO synthase or prostaglandin endoperoxide synthase or by inhibiting the release of arachidonic acid. These findings support the hypothesis that peroxynitrite is an important modulator of cyclooxygenase activity in inflammatory cells and establish that superoxide anion serves as a biochemical link between NO and prostaglandin biosynthesis.
Collapse
Affiliation(s)
- L M Landino
- Department of Biochemistry, A.B. Hancock, Jr., Memorial Laboratory for Cancer Research, Vanderbilt Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | |
Collapse
|
132
|
Schmidt HH, Hofmann H, Schindler U, Shutenko ZS, Cunningham DD, Feelisch M. No .NO from NO synthase. Proc Natl Acad Sci U S A 1996; 93:14492-7. [PMID: 8962079 PMCID: PMC26160 DOI: 10.1073/pnas.93.25.14492] [Citation(s) in RCA: 253] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nitric-oxide synthase (NOS; EC 1.14.13.39) reaction is formulated as a partially tetrahydrobiopterin (H4Bip)-dependent 5-electron oxidation of a terminal guanidino nitrogen of L-arginine (Arg) associated with stoichiometric consumption of dioxygen (O2) and 1.5 mol of NADPH to form L-citrulline (Cit) and nitric oxide (.NO). Analysis of NOS activity has relied largely on indirect methods such as quantification of nitrite/nitrate or the coproduct Cit; we therefore sought to directly quantify .NO formation from purified NOS. However, by two independent methods, NOS did not yield detectable .NO unless superoxide dismutase (SOD; EC 1.15.1.1) was present. In the presence of H4Bip, internal .NO standards were only partially recovered and the dismutation of superoxide (O2-.), which otherwise scavenges. .NO to yield ONOO-, was a plausible mechanism of action of SOD. Under these conditions, a reaction between NADPH and ONOO- resulted in considerable overestimation of enzymatic NADPH consumption. SOD lowered the NADPH:Cit stoichiometry to 0.8-1.1, suggesting either that additional reducing equivalents besides NADPH are required to explain Arg oxidation to .NO or that .NO was not primarily formed. The latter was supported by an additional set of experiments in the absence of H4Bip. Here, recovery of internal .NO standards was unaffected. Thus, a second activity of SOD, the conversion of nitroxyl (NO-) to .NO, was a more likely mechanism of action of SOD. Detection of NOS-derived nitrous oxide (N2O) and hydroxylamine (NH2OH), which cannot arise from .NO decomposition, was consistent with formation of an .NO precursor molecule such as NO-. When, in the presence of SOD, glutathione was added, S-nitrosoglutathione was detected. Our results indicate that .NO is not the primary reaction product of NOS-catalyzed Arg turnover and an alternative reaction mechanism and stoichiometry have to be taken into account.
Collapse
Affiliation(s)
- H H Schmidt
- Clinical Biochemistry and Pathobiochemistry, Julius-Maximilians-Universität, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
133
|
Abstract
The action of peroxynitrite on human erythrocytes and erythrocyte membranes was studied. Peroxynitrite (0.1-2 mM) induced a transient decrease of intracellular reduced glutathione, oxidized membrane protein -SH groups, initiated membrane lipid peroxidation and inactivated erythrocyte membrane acetylcholinesterase and ATPase activities. Membranes exposed to peroxynitrite showed aggregation and nitration of proteins and changes in protein organization detectable with a maleimide spin label.
Collapse
Affiliation(s)
- M Soszyński
- Department of Molecular Biophysics, University of Lódź, Poland.
| | | |
Collapse
|
134
|
Fiala ES, Sodum RS, Bhattacharya M, Li H. (-)-Epigallocatechin gallate, a polyphenolic tea antioxidant, inhibits peroxynitrite-mediated formation of 8-oxodeoxyguanosine and 3-nitrotyrosine. EXPERIENTIA 1996; 52:922-6. [PMID: 8841522 DOI: 10.1007/bf01938881] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Reaction with peroxynitrite at pH 7.4 and 37 degrees C was found to increase the 8-oxodeoxyguanosine levels in calf thymus DNA 35- 38-fold. This oxidation of deoxyguanosine, as well as the peroxynitrite-mediated nitration of tyrosine to 3-nitrotyrosine, was significantly inhibited by ascorbic acid, glutathione and (-)-epigallocatechin gallate, a polyphenolic antioxidant present in tea. For 50% inhibition of the oxidation of deoxyguanosine to 8-oxodeoxyguanosine, 1.1, 7.6 or 0.25 mM ascorbate, glutathione or (-)-epigallocatechin gallate, respectively, was required. For 50% inhibition of tyrosine nitration, the respective concentrations were 1.4, 4.6 or 0.11 mM. Thus, (-)-epigallocatechin gallate is a significantly better inhibitor of both reactions than either ascorbate or glutathione. Reaction of (-)-epigallocatechin gallate with peroxynitrite alone resulted in the formation of a number of products. Ultraviolet spectra of two of these suggest that the tea polyphenol and/or its oxidation products are nitrated by peroxynitrite.
Collapse
Affiliation(s)
- E S Fiala
- American Health Foundation, Valhalla, New York 10595, USA
| | | | | | | |
Collapse
|
135
|
Kong SK, Yim MB, Stadtman ER, Chock PB. Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: Lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2(6-20)NH2 peptide. Proc Natl Acad Sci U S A 1996; 93:3377-82. [PMID: 8622943 PMCID: PMC39616 DOI: 10.1073/pnas.93.8.3377] [Citation(s) in RCA: 251] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To determine if nitration of tyrosine residues by peroxynitrite (PN), which can be generated endogenously, can disrupt the phosphorylation of tyrosine residues in proteins involved in cell signaling networks, we studied the effect of PN-promoted nitration of tyrosine residues in a pentadecameric peptide, cdc2(6-20)NH2, on the ability of the peptide to be phosphorylated. cdc2(6-20)NH2 corresponds to the tyrosine phosphorylation site of p34cdc2 kinase, which is phosphorylated by lck kinase (lymphocyte-specific tyrosine kinase, p56lck). PN nitrates both Tyr-15 and Tyr-19 of the peptide in phosphate buffer (pH 7.5) at 37 degrees C. Nitration of Tyr-15. which is the phosphorylated amino acid residue, inhibits completely the phosphorylation of the peptide. The nitration reaction is enhanced by either Fe(III)EDTA or Cu(II)-Zn(II)-superoxide dismutase (Cu,Zn-SOD). The kinetic data are consistent with the view that reactions of Fe(111)EDTA or Cu,Zn-SOD with the cis form of PN yield complexes in which PN decomposes more slowly to form N02+, the nitrating agent. Thus, the nitration efficiency of PN is enhanced. These results are discussed from the point of view that PN-promoted nitration will result in permanent impairment of cyclic cascades that control signal transduction processes and regulate cell cycles.
Collapse
Affiliation(s)
- S K Kong
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
136
|
Viner RI, Hühmer AF, Bigelow DJ, Schöneich C. The oxidative inactivation of sarcoplasmic reticulum Ca(2+)-ATPase by peroxynitrite. Free Radic Res 1996; 24:243-59. [PMID: 8731009 DOI: 10.3109/10715769609088022] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The oxidative inactivation of rabbit skeletal muscle Ca(2+)-ATPase in sarcoplasmic reticulum (SR) vesicles by peroxynitrite (ONOO-) was investigated. The exposure of SR vesicles (10 mg/ml protein) to low peroxynitrite concentrations ( < or = 0.2 mM) resulted in a decrease of Ca(2+)-ATPase activity primarily through oxidation of sulfhydryl groups. Most of this deactivation (ca.70%) could be chemically reversed by subsequent reduction of the enzyme with either dithiothreitol (DTT) or sodium borohydride (NaBH4), indicating that free cysteine groups were oxidized to disulfides. The initial presence of 5 mM glutathione failed to protect the SR Ca(2+)-ATPase activity. However, as long as peroxynitrite concentrations were kept < or = 0.45 mM, the efficacy of DTT to reverse Ca(2+)-ATPase inactivation was enhanced for reaction mixtures which initially contained 5 mM glutathione. At least part of the disulfides were formed intermolecularly since gel electrophoresis revealed protein aggregation which could be reduced under reducing conditions. The application of higher peroxynitrite concentrations ( > or = 0.45 mM) resulted in Ca(2+)-ATPase inactivation which could not be restored by exposure of the modified protein to reducing agents. On the other hand, treatment of modified protein with NaBH4 recovered all SR protein thiols. This result indicates that possibly the oxidation of other amino acids contributes to enzyme inactivation, corroborated by amino acid analysis which revealed some additional targets for peroxynitrite or peroxynitrite-induced processes such as Met, Lys, Phe, Thr, Ser, Leu and Tyr. Tyr oxidation was confirmed by a significant lower sensitivity of oxidized SR proteins to the Lowry assay. However, neither bityrosine nor nitrotyrosine were formed in significant yields, as monitored by fluorescence spectroscopy and immunodetection, respectively. The Ca(2+)-ATPase of SR is involved in cellular Ca(2+)-homeostasis. Thus, peroxynitrite mediated oxidation of the Ca(2+)-ATPase might significantly contribute to the loss of Ca(2+)-homeostasis observed under biological conditions of oxidative stress.
Collapse
Affiliation(s)
- R I Viner
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence 66047, USA
| | | | | | | |
Collapse
|
137
|
Berlett BS, Friguet B, Yim MB, Chock PB, Stadtman ER. Peroxynitrite-mediated nitration of tyrosine residues in Escherichia coli glutamine synthetase mimics adenylylation: relevance to signal transduction. Proc Natl Acad Sci U S A 1996; 93:1776-80. [PMID: 8700834 PMCID: PMC39857 DOI: 10.1073/pnas.93.5.1776] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Treatment of Escherichia coli glutamine synthetase (GS) with peroxynitrite leads to nitration of some tyrosine residues and conversion of some methionine residues to methionine sulfoxide (MSOX) residues. Nitration, but not MSOX formation, is stimulated by Fe-EDTA. In the absence of Fe-EDTA, nitration of only one tyrosine residue per subunit of unadenylylated GS leads to changes in divalent cation requirement, pH-activity profile, affinity for ADP, and susceptibility to feedback inhibition by end products (tryptophan, AMP, CTP), whereas nitration of one tyrosine residue per subunit in the adenylylated GS leads to complete loss of catalytic activity. In the presence of Fe-EDTA, nitration is a more random process: nitration of five to six tyrosine residues per subunit is needed to convert unadenylylated GS to the adenylylated configuration. These results and the fact that nitration of tyrosine residues is an irreversible process serve notice that the regulatory function of proteins that undergo phosphorylation or adenylylation in signal transduction cascades might be seriously compromised by peroxynitrite-promoted nitration.
Collapse
Affiliation(s)
- B S Berlett
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-0342, USA
| | | | | | | | | |
Collapse
|
138
|
Viner RI, Ferrington DA, Hühmer AF, Bigelow DJ, Schöneich C. Accumulation of nitrotyrosine on the SERCA2a isoform of SR Ca-ATPase of rat skeletal muscle during aging: a peroxynitrite-mediated process? FEBS Lett 1996; 379:286-90. [PMID: 8603707 DOI: 10.1016/0014-5793(95)01530-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The SR Ca-ATPase in skeletal muscle SR vesicles isolated from young adult (5 months) and aged (28 months) rats was analyzed for nitrotyrosine. Only the SERCA2a isoform contained significant amounts with approximately one and four nitrotyrosine residues per young and old Ca-ATPase, respectively. The in vitro exposure of SR vesicles of young rats to peroxynitrite yielded selective nitration of the SERCA2a Ca-ATPase even in the presence of excess SERCA1a. No nitration was observed during the exposure of SR vesicles to nitric oxide in the presence of O2. These data suggest the vivo presence of peroxynitrite in skeletal muscle. The greater nitrotyrosine content of SERCA2a from aged tissue implies an age-associated increase in susceptibility to oxidation by this species.
Collapse
Affiliation(s)
- R I Viner
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence 66045, USA
| | | | | | | | | |
Collapse
|
139
|
Padmaja S, Squadrito GL, Lemercier JN, Cueto R, Pryor WA. Rapid oxidation of DL-selenomethionine by peroxynitrite. Free Radic Biol Med 1996; 21:317-22. [PMID: 8855442 DOI: 10.1016/0891-5849(96)00132-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Peroxynitrite, the reaction product of nitric oxide and superoxide, rapidly oxidizes DL-selenomethionine (MetSe) with overall second-order kinetics, first-order in peroxynitrite and first-order in MetSe. The oxidation of MetSe by peroxynitrite goes by two competing mechanism. The first produces ethylene by what we propose to be a one-electron oxidation of MetSe. In the second mechanism, MetSe undergoes a two-electron oxidation that gives methionine selenoxide (MetSe = O); the apparent second-order rate constant, k2(app), for this process is (2.4 +/- 0.1) x 10(3) M-1s-1 at pH 7.4 and 25 degrees C. The kinetic modeling of the experimental data suggests that both peroxynitrous acid (k2 = 20,460 +/- 440 M-1s-1 at 25 degrees C) and the peroxynitrite anion (k3 = 200 +/- 170 M-1s-1 at 25 degrees C) are involved in the second-order reaction leading to selenoxide. These rate constants are 10- to 1,000-fold higher than those for the reactions of methionine (Met) with peroxynitrite. With increasing concentrations of MetSe at pH 7.4, the yield of ethylene decreases, while that of MetSe = O increases, suggesting that the reactions leading to ethylene and selenoxide have different kinetic orders. These results are analogous to those we previously reported for methionine and 2-keto-4-thiomethylbutanoic acid (KTBA),where ethylene is produced in a first-order reaction and sulfoxide in a second-order reaction. Therefore, we suggest that the reaction of peryoxynitrite with MetSe involves a mechanism similar to that we proposed for Met, in which an activated intermediate of peroxynitrous acid (HOONO) is the one-electron oxidant and reacts with first-order kinetics and ground-state peroxynitrite is the two-electron oxidant and reacts with second-order kinetics.
Collapse
Affiliation(s)
- S Padmaja
- Biodynamics Institute, Louisiana State University, Baton Rouge 70803-1800, USA
| | | | | | | | | |
Collapse
|
140
|
Koppenol WH, Kissner R, Beckman JS. Syntheses of peroxynitrite: to go with the flow or on solid grounds? Methods Enzymol 1996; 269:296-302. [PMID: 8791658 DOI: 10.1016/s0076-6879(96)69030-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- W H Koppenol
- Laboratorium für Anorganische Chemie, Eidgenössische Technische Hochshule, Zürich, Switzerland
| | | | | |
Collapse
|
141
|
Affiliation(s)
- D S Bohle
- Department of Chemistry, University of Wyoming, Laramie 82071, USA
| | | | | |
Collapse
|
142
|
Affiliation(s)
- R M Uppu
- Biodynamics Institute, Louisiana State University, Baton Rouge 70803, USA
| | | | | | | |
Collapse
|
143
|
Uppu RM, Squadrito GL, Cueto R, Pryor WA. Selecting the most appropriate synthesis of peroxynitrite. Methods Enzymol 1996; 269:285-96. [PMID: 8791657 DOI: 10.1016/s0076-6879(96)69029-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R M Uppu
- Biodynamics Institute, Louisiana State University, Baton Rouge 70803, USA
| | | | | | | |
Collapse
|
144
|
Uppu RM, Pryor WA. Biphasic synthesis of high concentrations of peroxynitrite using water-insoluble alkyl nitrite and hydrogen peroxide. Methods Enzymol 1996; 269:322-9. [PMID: 8791661 DOI: 10.1016/s0076-6879(96)69033-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R M Uppu
- Biodynamics Institue, Louisiana State University, Baton Rouge 70803, USA
| | | |
Collapse
|
145
|
Uppu RM, Cueto R, Squadrito GL, Salgo MG, Pryor WA. Competitive reactions of peroxynitrite with 2'-deoxyguanosine and 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG): relevance to the formation of 8-oxodG in DNA exposed to peroxynitrite. Free Radic Biol Med 1996; 21:407-11. [PMID: 8855454 DOI: 10.1016/0891-5849(96)00220-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have examined the formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) in reactions of peroxynitrite with 2'-deoxyguanosine (dG) and calf-thymus DNA. Peroxynitrite reacts with dG at neutral pH, but this reaction does not result in the buildup of 8-oxodG. We also do not find any evidence for the formation of 8-oxodG in calf-thymus DNA upon exposure to peroxynitrite. When 8-oxodG is mixed with 1000-fold excess dG and then allowed to react with peroxynitrite, about 50% of the 8-oxodG is destroyed. The preferential reaction of 8-oxodG is also evident when dG in calf-thymus DNA is partially oxidized in an Udenfriend system and then allowed to react with peroxynitrite. We suggest that 8-oxodG is not produced in peroxynitrite-mediated oxidations of dG and DNA or that it is produced but then is rapidly consumed in further reactions with peroxynitrite. Oxidized DNA bases frequently can be more oxidation sensitive than their corresponding progenitors and, therefore, may be present at] low steady-state concentrations and not represent stable markers of oxidative stress status. The importance of the 8-oxodG/peroxynitrite reaction is discussed in relation to the formation of more stable, secondary oxidation products that might be more useful markers of DNA damage.
Collapse
Affiliation(s)
- R M Uppu
- Biodynamics Institute, Louisiana State University, Baton Rouge 70803-1800, USA
| | | | | | | | | |
Collapse
|
146
|
Squadrito GL, Jin X, Uppu RM, Pryor WA. Distinguishing reactivities of peroxynitrite and hydroxyl radical. Methods Enzymol 1996; 269:366-74. [PMID: 8791665 DOI: 10.1016/s0076-6879(96)69037-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- G L Squadrito
- Biodynamics Institute, Louisiana State University, Baton Rouge 70803, USA
| | | | | | | |
Collapse
|