101
|
Letort S, Balieu S, Erb W, Gouhier G, Estour F. Interactions of cyclodextrins and their derivatives with toxic organophosphorus compounds. Beilstein J Org Chem 2016; 12:204-28. [PMID: 26977180 PMCID: PMC4778500 DOI: 10.3762/bjoc.12.23] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 01/22/2023] Open
Abstract
The aim of this review is to provide an update on the current use of cyclodextrins against organophosphorus compound intoxications. Organophosphorus pesticides and nerve agents play a determinant role in the inhibition of cholinesterases. The cyclic structure of cyclodextrins and their toroidal shape are perfectly suitable to design new chemical scavengers able to trap and hydrolyze the organophosphorus compounds before they reach their biological target.
Collapse
Affiliation(s)
- Sophie Letort
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen, CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Sébastien Balieu
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen, CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - William Erb
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen, CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Géraldine Gouhier
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen, CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - François Estour
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen, CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| |
Collapse
|
102
|
Kulakova A, Lushchekina S, Grigorenko B, Nemukhin A. Modeling reactivation of the phosphorylated human butyrylcholinesterase by QM(DFTB)/MM calculations. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2015. [DOI: 10.1142/s0219633615500510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human butyrylcholinesterase (BChE) is a bioscavenger that protects the enzyme which is critical for the central nerve system, acetylcholinesterase, from poisoning by organophosphorus agents. Elucidating the details of the hydrolysis reaction mechanism is important to understand how the phosphorylated BChE can be reactivated. Application of the QM(DFTB)/MM(AMBER) method to construct the minimum energy pathways for the hydrolysis reaction of the diethylphosphorylated BChE allowed us to suggest a mechanism of reactivation of the wild-type and the G117H mutated enzyme. Unlike previous approaches assuming that either His438 or His117 serves as a general base in the catalysis, in our proposal the Glu197 residue is responsible for activation of the nucleophilic water molecule (Wat) leading to the chemical transformations that restore the catalytic Ser198 residue in BChE. In agreement with the experimental data, it is shown that the G117H mutation facilitates the reactivation of the inhibited enzyme.
Collapse
Affiliation(s)
- Anna Kulakova
- Chemistry Department, M. V. Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Sofya Lushchekina
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia
| | - Bella Grigorenko
- Chemistry Department, M. V. Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia
| | - Alexander Nemukhin
- Chemistry Department, M. V. Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia
| |
Collapse
|
103
|
Jońca J, Żuk M, Wasąg B, Janaszak-Jasiecka A, Lewandowski K, Wielgomas B, Waleron K, Jasiecki J. New Insights into Butyrylcholinesterase Activity Assay: Serum Dilution Factor as a Crucial Parameter. PLoS One 2015; 10:e0139480. [PMID: 26444431 PMCID: PMC4596826 DOI: 10.1371/journal.pone.0139480] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/14/2015] [Indexed: 12/02/2022] Open
Abstract
Butyrylcholinesterase (BChE) activity assay and inhibitor phenotyping can help to identify patients at risk of prolonged paralysis following the administration of neuromuscular blocking agents. The assay plays an important role in clinical chemistry as a good diagnostic marker for intoxication with pesticides and nerve agents. Furthermore, the assay is also commonly used for in vitro characterization of cholinesterases, their toxins and drugs. There is still lack of standardized procedure for measurement of BChE activity and many laboratories use different substrates at various concentrations. The purpose of this study was to validate the BChE activity assay to determine the best dilution of human serum and the most optimal concentration of substrates and inhibitors. Serum BChE activity was measured using modified Ellman’s method applicable for a microplate reader. We present our experience and new insights into the protocol for high-throughput routine assays of human plasma cholinesterase activities adapted to a microplate reader. During our routine assays used for the determination of BChE activity, we have observed that serum dilution factor influences the results obtained. We show that a 400-fold dilution of serum and 5mM S-butyrylthiocholine iodide can be successfully used for the accurate measurement of BChE activity in human serum. We also discuss usage of various concentrations of dibucaine and fluoride in BChE phenotyping. This study indicates that some factors of such a multicomponent clinical material like serum can influence kinetic parameters of the BChE. The observed inhibitory effect is dependent on serum dilution factor used in the assay.
Collapse
Affiliation(s)
| | - Monika Żuk
- Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|
104
|
Letort S, Mathiron D, Grel T, Albaret C, Daulon S, Djedaïni-Pilard F, Gouhier G, Estour F. The first 2(IB),3(IA)-heterodifunctionalized β-cyclodextrin derivatives as artificial enzymes. Chem Commun (Camb) 2015; 51:2601-4. [PMID: 25572650 DOI: 10.1039/c4cc09189b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Novel 2,3-heterodisubstituted β-cyclodextrin derivatives were designed as artificial enzymes to degrade chemical warfare agents. One of them reduced the acetylcholinesterase inhibitory potential by soman faster than its monosubstituted analog.
Collapse
Affiliation(s)
- S Letort
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen, CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Narvaez C, Ramirez-Otarola N, Bozinovic F, Sanchez-Hernandez JC, Sabat P. Comparative intestinal esterases amongst passerine species: Assessing vulnerability to toxic chemicals in a phylogenetically explicit context. CHEMOSPHERE 2015; 135:75-82. [PMID: 25912423 DOI: 10.1016/j.chemosphere.2015.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/02/2015] [Accepted: 04/06/2015] [Indexed: 06/04/2023]
Abstract
Inhibition of blood esterase activities by organophosphate (OP) pesticides has been used as a sensitive biomarker in birds. Furthermore, compared to mammalian vertebrates, less is known about the role of these enzyme activities in the digestive tracts of non-mammalian vertebrates, as well as the environmental and biological stressors that contribute to their natural variation. To fill this gap, we examined butyrylcholinesterase (BChE) and carboxylesterases (CbE) in the digestive tracts of sixteen passerine species from central Chile. Whole intestine enzyme activities were positively and significantly correlated with body mass. After correcting for body mass and phylogenetic effect, we found only a marginal effect of dietary category on BChE activity, but a positive and significant association between the percentage of dietary nitrogen and the mass-corrected lipase activity. Our results suggest that observed differences may be due to the dietary composition in the case of lipases and BChE, and also we predict that all model species belonging to the same order will probably respond differently to pesticide exposure, in light of differences in the activity levels of esterase activities.
Collapse
Affiliation(s)
- Cristobal Narvaez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Chile
| | | | - Francisco Bozinovic
- Departmento de Ecología, Center of Applied Ecology & Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6513677 Santiago, Chile
| | - Juan C Sanchez-Hernandez
- Laboratorio de Ecotoxicología, Faculad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Chile; Departmento de Ecología, Center of Applied Ecology & Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6513677 Santiago, Chile.
| |
Collapse
|
106
|
Atsmon J, Brill-Almon E, Nadri-Shay C, Chertkoff R, Alon S, Shaikevich D, Volokhov I, Haim KY, Bartfeld D, Shulman A, Ruderfer I, Ben-Moshe T, Shilovitzky O, Soreq H, Shaaltiel Y. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R. Toxicol Appl Pharmacol 2015; 287:202-9. [PMID: 26051873 DOI: 10.1016/j.taap.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 12/18/2022]
Abstract
PRX-105 is a plant-derived recombinant version of the human 'read-through' acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50nmol/kg PRX-105, 2min before being exposed to 1.33×LD50 and 1.5×LD50 of toxin and 10min after exposure to 1.5×LD50 survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t½) in mice was 994 (±173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t½ in humans was substantially longer than in mice (average 26.7h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation.
Collapse
Affiliation(s)
- Jacob Atsmon
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | - Sari Alon
- Protalix Biotherapeutics, Science Park, Carmiel, Israel
| | - Dimitri Shaikevich
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Inna Volokhov
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Kirsten Y Haim
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | - Avidor Shulman
- Protalix Biotherapeutics, Science Park, Carmiel, Israel.
| | - Ilya Ruderfer
- Protalix Biotherapeutics, Science Park, Carmiel, Israel
| | | | | | - Hermona Soreq
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
107
|
Kochkina EG, Plesneva SA, Zhuravin IA, Turner AJ, Nalivaeva NN. Effect of hypoxia on cholinesterase activity in rat sensorimotor cortex. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015020039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
108
|
Kovarik Z, Hrvat NM, Katalinić M, Sit RK, Paradyse A, Žunec S, Musilek K, Fokin VV, Taylor P, Radić Z. Catalytic Soman Scavenging by the Y337A/F338A Acetylcholinesterase Mutant Assisted with Novel Site-Directed Aldoximes. Chem Res Toxicol 2015; 28:1036-44. [PMID: 25835984 PMCID: PMC4791098 DOI: 10.1021/acs.chemrestox.5b00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of the soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin, and paraoxon, inhibition. We here demonstrate that ex vivo, in whole human blood, 1 μM soman was detoxified within 30 min when supplemented with 0.5 μM Y337A/F338A AChE and 100 μM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of 42 pyridinium aldoximes, and 5 imidazole 2-aldoxime N-propylpyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2-3-fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack.
Collapse
Affiliation(s)
- Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Rakesh K. Sit
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexander Paradyse
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Valery V. Fokin
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Zoran Radić
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| |
Collapse
|
109
|
Terekhov SS, Smirnov IV, Shamborant OG, Bobik TV, Ilyushin DG, Murashev AN, Dyachenko IA, Palikov VA, Knorre VD, Belogurov AA, Ponomarenko NA, Kuzina ES, Genkin DD, Masson P, Gabibov AG. Chemical Polysialylation and In Vivo Tetramerization Improve Pharmacokinetic Characteristics of Recombinant Human Butyrylcholinesterase-Based Bioscavengers. Acta Naturae 2015; 7:136-41. [PMID: 26798501 PMCID: PMC4717259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Organophosphate toxins (OPs) are the most toxic low-molecular compounds. The extremely potent toxicity of OPs is determined by their specificity toward the nerve system. Human butyrylcholinesterase (hBChE) is a natural bioscavenger against a broad spectrum of OPs, which makes it a promising candidate for the development of DNA-encoded bioscavengers. The high values of the protective index observed for recombinant hBChE (rhBChE) make it appropriate for therapy against OP poisoning, especially in the case of highly toxic warfare nerve agents. Nevertheless, large-scale application of biopharmaceuticals based on hBChE is restricted due to its high cost and extremely rapid elimination from the bloodstream. In the present study, we examine two approaches for long-acting rhBChE production: I) chemical polysialylation and II) in-vivo tetramerization. We demonstrate that both approaches significantly improve the pharmacokinetic characteristics of rhBChE (more than 5 and 10 times, respectively), which makes it possible to use rhBChE conjugated with polysialic acids (rhBChE-CAO) and tetrameric rhBChE (4rhBChE) in the treatment of OP poisonings.
Collapse
Affiliation(s)
- S. S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - I. V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia ,Kazan’ Federal University, Kremlevskaya Str., 18, Kazan’, Republic of Tatarstan, 420000, Russia
| | - O. G. Shamborant
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - T. V. Bobik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - D. G. Ilyushin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - A. N. Murashev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, Moscow Region, 142290, Russia
| | - I. A. Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, Moscow Region, 142290, Russia
| | - V. A. Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, Moscow Region, 142290, Russia
| | - V. D. Knorre
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - A. A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia ,Kazan’ Federal University, Kremlevskaya Str., 18, Kazan’, Republic of Tatarstan, 420000, Russia ,Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334 , Russia
| | - N. A. Ponomarenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - E. S. Kuzina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - D. D. Genkin
- Pharmsynthez, Krasnogo Kursanta Str., 25zh, Saint Petersburg, 197110, Russia
| | - P. Masson
- Kazan’ Federal University, Kremlevskaya Str., 18, Kazan’, Republic of Tatarstan, 420000, Russia
| | - A. G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia ,Kazan’ Federal University, Kremlevskaya Str., 18, Kazan’, Republic of Tatarstan, 420000, Russia ,Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334 , Russia
| |
Collapse
|
110
|
Sánchez S, Vera B, Montagna C, Magnarelli G. Characterization of placental cholinesterases and activity induction associated to environmental organophosphate exposure. Toxicol Rep 2014; 2:437-442. [PMID: 28962379 PMCID: PMC5598449 DOI: 10.1016/j.toxrep.2014.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 02/04/2023] Open
Abstract
Although non-innervated, the placenta contains both cholinesterases (ChEs), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). These enzymes are well-known for their multiple molecular forms. In a first approach, we used recognized specific inhibitors, substrate preferences and non-denaturating gel electrophoresis in order to characterize the ChE profile of term placenta from uncomplicated pregnancy. Results strongly suggest that the predominant cholinesterasic form present was tetrameric BChE. It is well established that both ChEs are targets of cholinesterase-inhibiting organophosphates (OP), one of the most important classes of chemicals actively applied to the environment. However, we have previously reported increased ChEs activity in placenta of rural residents exposed to OP. In the present work, we have studied: 1) whether this finding was reproducible and, 2) whether AChE or BChE up regulation is behind the increase of placental ChE activity. The population studied included forty healthy women who live in an agricultural area. Samples were collected during both the OP pulverization period (PP) and the recess period (RP). The placental ChEs activity increased in PP, evidencing reproducibility of previous results. The analysis of non-denaturating gels revealed that increased activity of total ChE activity in placenta from women exposed to OP may be attributable to tetrameric BChE up-regulation.
Collapse
Key Words
- ACh, acetylcholine
- AChE, acetylcholinesterase
- ASCh, acetylthiocholine iodide
- Acetylcholinesterase
- BChE, butyrylcholinesterase
- BSCh, butyrylthiocholine iodide
- BW284C51, 1,5-bis (4-allyldimethyl ammoniumphenyl)-pentan-3-one dibromide
- Butyrylcholinesterase
- ChE, cholinesterase
- ChEs, cholinesterases
- OP, organophosphates
- Organophosphates
- PP, pulverization period
- Placenta
- RP, recess period
- iso-OMPA, tetraisopropylpyrophosphoramide
Collapse
Affiliation(s)
- S. Sánchez
- Facultad de CienciasMédicas, Universidad NacionaldelComahue, Cipolletti, Río Negro, Argentina
| | - B. Vera
- LIBIQUIMA, Facultad de Ingeniería, Universidad NacionaldelComahue, Neuquén, Argentina
- Facultad de CienciasMédicas, Universidad NacionaldelComahue, Cipolletti, Río Negro, Argentina
| | - C. Montagna
- LIBIQUIMA, Facultad de Ingeniería, Universidad NacionaldelComahue, Neuquén, Argentina
- Facultad de CienciasdelAmbiente y la Salud, Universidad Nacional del Comahue, Neuquén, Argentina
| | - G. Magnarelli
- LIBIQUIMA, Facultad de Ingeniería, Universidad NacionaldelComahue, Neuquén, Argentina
- Facultad de CienciasMédicas, Universidad NacionaldelComahue, Cipolletti, Río Negro, Argentina
| |
Collapse
|
111
|
Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase. J Neurosci 2014; 34:11870-83. [PMID: 25186736 DOI: 10.1523/jneurosci.0329-14.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Terminal Schwann cells (TSCs) are key components of the mammalian neuromuscular junction (NMJ). How the TSCs sense the synaptic activity in physiological conditions remains unclear. We have taken advantage of the distinct localization of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) at the NMJ to bring out the function of different ACh receptors (AChRs). AChE is clustered by the collagen Q in the synaptic cleft and prevents the repetitive activation of muscle nicotinic AChRs. We found that BChE is anchored at the TSC by a proline-rich membrane anchor, the small transmembrane protein anchor of brain AChE. When BChE was specifically inhibited, ACh release was significant depressed through the activation of α7 nAChRs localized on the TSC and activated by the spillover of ACh. When both AChE and BChE were inhibited, the spillover increased and induced a dramatic reduction of ACh release that compromised the muscle twitch triggered by the nerve stimulation. α7 nAChRs at the TSC may act as a sensor for spillover of ACh adjusted by BChE and may represent an extrasynaptic sensor for homeostasis at the NMJ. In myasthenic rats, selective inhibition of AChE is more effective in rescuing muscle function than the simultaneous inhibition of AChE and BChE because the concomitant inhibition of BChE counteracts the positive action of AChE inhibition. These results show that inhibition of BChE should be avoided during the treatment of myasthenia and the pharmacological reversal of residual curarization after anesthesia.
Collapse
|
112
|
Delacour H, Lushchekina S, Mabboux I, Ceppa F, Masson P, Schopfer LM, Lockridge O. Characterization of a novel butyrylcholinesterase point mutation (p.Ala34Val), "silent" with mivacurium. Biochem Pharmacol 2014; 92:476-83. [PMID: 25264279 DOI: 10.1016/j.bcp.2014.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 11/18/2022]
Abstract
Butyrylcholinesterase deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivarcurium) in patients who have mutations in the BCHE gene. Here, we report a case of prolonged neuromuscular block after administration of mivacurium leading to the discovery of a novel BCHE variant (c.185C>T, p.Ala34Val). Inhibition studies, kinetic analysis and molecular dynamics were undertaken to understand how this mutation remote from the active center determines the "silent" phenotype. Low activity of patient plasma butyrylcholinesterase with butyrylthiocholine (BTC) and benzoylcholine, and values of dibucaine and fluoride numbers fit with a heterozygous enzyme of type atypical/silent. Kinetic analysis with succinyldithiocholine (SCdTC) as the substrate showed that Ala34Val BChE was inactive against this substrate. However, with BTC, the mutant enzyme was active, displaying an unexpected activation by excess substrate. Competitive inhibition of BTC by mivacurium gave a Ki=1.35 mM consistent with the lack of activity with the related substrate SCdTC, and with the clinical data. Molecular dynamic simulations revealed the mechanism by which mutation Ala34Val determines the silent phenotype: a chain of intramolecular events leads to disruption of the catalytic triad, so that His438 no longer interacts with Ser198, but instead forms hydrogen bonds either with residues Glu197 and Trp82, or peripheral site residue Tyr332. However, at high BTC concentration, initial binding of substrate to the peripheral site triggers restoration of a functional catalytic triad, and activity with BTC.
Collapse
Affiliation(s)
- Herve Delacour
- Bégin Military Teaching Hospital, Department of Biology, Unit of Human Genetics, 69 Paris Av. 94 163 Saint Mandé, France.
| | - Sofya Lushchekina
- Modeling of Biomolecules Lab., N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina St., 119334 Moscow, Russia.
| | - Isabelle Mabboux
- Bégin Military Teaching Hospital, Department of Biology, Unit of Human Genetics, 69 Paris Av. 94 163 Saint Mandé, France.
| | - Franck Ceppa
- Bégin Military Teaching Hospital, Department of Biology, Unit of Human Genetics, 69 Paris Av. 94 163 Saint Mandé, France.
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia; Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| | - Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| |
Collapse
|
113
|
Characterization of a novel BCHE "silent" allele: point mutation (p.Val204Asp) causes loss of activity and prolonged apnea with suxamethonium. PLoS One 2014; 9:e101552. [PMID: 25054547 PMCID: PMC4108472 DOI: 10.1371/journal.pone.0101552] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/06/2014] [Indexed: 11/30/2022] Open
Abstract
Butyrylcholinesterase deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivacurium) in patients who have mutations in the BCHE gene. Here, we report a case of prolonged neuromuscular block after administration of suxamethonium leading to the discovery of a novel BCHE variant (c.695T>A, p.Val204Asp). Inhibition studies, kinetic analysis and molecular dynamics were undertaken to understand how this mutation disrupts the catalytic triad and determines a “silent” phenotype. Low activity of patient plasma butyrylcholinesterase with butyrylthiocholine (BTC) and benzoylcholine, and values of dibucaine and fluoride numbers fit with heterozygous atypical silent genotype. Electrophoretic analysis of plasma BChE of the proband and his mother showed that patient has a reduced amount of tetrameric enzyme in plasma and that minor fast-moving BChE components: monomer, dimer, and monomer-albumin conjugate are missing. Kinetic analysis showed that the p.Val204Asp/p.Asp70Gly-p.Ala539Thr BChE displays a pure Michaelian behavior with BTC as the substrate. Both catalytic parameters Km = 265 µM for BTC, two times higher than that of the atypical enzyme, and a low Vmax are consistent with the absence of activity against suxamethonium. Molecular dynamic (MD) simulations showed that the overall effect of the mutation p.Val204Asp is disruption of hydrogen bonding between Gln223 and Glu441, leading Ser198 and His438 to move away from each other with subsequent disruption of the catalytic triad functionality regardless of the type of substrate. MD also showed that the enzyme volume is increased, suggesting a pre-denaturation state. This fits with the reduced concentration of p.Ala204Asp/p.Asp70Gly-p.Ala539Thr tetrameric enzyme in the plasma and non-detectable fast moving-bands on electrophoresis gels.
Collapse
|
114
|
Legler PM, Boisvert SM, Compton JR, Millard CB. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase. Front Chem 2014; 2:46. [PMID: 25077141 PMCID: PMC4100338 DOI: 10.3389/fchem.2014.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/19/2014] [Indexed: 01/10/2023] Open
Abstract
We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine Oγ. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its k cat/K m for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1 (hCE1). We discuss the use of pNBE as a surrogate scaffold for the mammalian esterases, and the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.
Collapse
Affiliation(s)
- Patricia M. Legler
- Naval Research Laboratory, Center for Bio/Molecular Science and EngineeringWashington, DC, USA
| | | | | | - Charles B. Millard
- United States Army Medical Research and Materiel CommandFort Detrick, MD, USA
| |
Collapse
|
115
|
Kassa J, Korabecny J, Sepsova V, Tumova M. The Evaluation of Prophylactic Efficacy of Newly Developed Reversible Inhibitors of Acetylcholinesterase in Soman-Poisoned Mice - A Comparison with Commonly Used Pyridostigmine. Basic Clin Pharmacol Toxicol 2014; 115:571-6. [DOI: 10.1111/bcpt.12269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/06/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Jiri Kassa
- Department of Toxicology; Faculty of Military Health Sciences; Hradec Kralove Czech Republic
| | - Jan Korabecny
- Department of Toxicology; Faculty of Military Health Sciences; Hradec Kralove Czech Republic
| | - Vendula Sepsova
- Department of Toxicology; Faculty of Military Health Sciences; Hradec Kralove Czech Republic
| | - Martina Tumova
- Department of Toxicology; Faculty of Military Health Sciences; Hradec Kralove Czech Republic
| |
Collapse
|
116
|
Quintaneiro C, Monteiro M, Soares AMVM, Ranville J, Nogueira AJA. Cholinesterase activity on Echinogammarus meridionalis (Pinkster) and Atyaephyra desmarestii (Millet): characterisation and in vivo effects of copper and zinc. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:449-458. [PMID: 24526590 DOI: 10.1007/s10646-014-1204-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Metals are released into freshwater ecosystems from natural and anthropogenic sources, compromising their structural and functional equilibrium. As early warning tools, cholinesterases (ChEs) are usually used to assess the effects of organophosphate and carbamate pesticides, but are also known to be inhibited by metals. The objectives of this work were to characterise the activity of ChE present in the amphipod Echinogammarus meridionalis and the shrimp Atyaephyra desmarestii and to evaluate the in vivo effects of the metals copper and zinc in their ChE activity. To achieve this, firstly the activity of ChE forms were characterised using different in vitro assays with substrates and selective inhibitors. Then, the in vivo effects of 48 h exposures to increasing concentrations of copper and zinc on ChE activity were determined. The ChE form present in both species was acetylcholinesterase (AChE) since both revealed preference for the acetylthiocholine iodide substrate, total inhibition with eserine, the inhibitor of ChEs, and with 1,5-bis(4-allyldimethylammoniumphenyl)-pentan-3-one dibromide, the specific inhibitor of AChE, and presented insensitivity to iso-OMPA, a specific inhibitor of butyrylcholinesterase. The activity of ChEs was inhibited by zinc exposures in the amphipod species, but was not affected by copper. Exposure to copper and zinc did not affect ChEs activity in the shrimp at the concentrations tested. This work is a relevant contribution as foundation for the use of AChE in freshwater crustaceans in further studies including biomonitoring campaigns in different contamination scenarios.
Collapse
Affiliation(s)
- C Quintaneiro
- CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-191, Aveiro, Portugal,
| | | | | | | | | |
Collapse
|
117
|
Podestà A, Rossi S, Massarelli I, Carpi S, Adinolfi B, Fogli S, Bianucci AM, Nieri P. Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli. MAbs 2014; 6:1084-93. [PMID: 24675419 DOI: 10.4161/mabs.28635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1-14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1-14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1-14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1-14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis.
Collapse
|
118
|
Pohanka M. Voltammetric assay of butyrylcholinesterase in plasma samples and its comparison to the standard spectrophotometric test. Talanta 2014; 119:412-6. [DOI: 10.1016/j.talanta.2013.11.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/09/2013] [Accepted: 11/15/2013] [Indexed: 01/10/2023]
|
119
|
Ge X, Zhang W, Lin Y, Du D. Magnetic Fe3O4@TiO2 nanoparticles-based test strip immunosensing device for rapid detection of phosphorylated butyrylcholinesterase. Biosens Bioelectron 2013; 50:486-91. [DOI: 10.1016/j.bios.2013.07.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/28/2013] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
|
120
|
Wong ESW, Nicol S, Warren WC, Belov K. Echidna venom gland transcriptome provides insights into the evolution of monotreme venom. PLoS One 2013; 8:e79092. [PMID: 24265746 PMCID: PMC3827146 DOI: 10.1371/journal.pone.0079092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/18/2013] [Indexed: 11/18/2022] Open
Abstract
Monotremes (echidna and platypus) are egg-laying mammals. One of their most unique characteristic is that males have venom/crural glands that are seasonally active. Male platypuses produce venom during the breeding season, delivered via spurs, to aid in competition against other males. Echidnas are not able to erect their spurs, but a milky secretion is produced by the gland during the breeding season. The function and molecular composition of echidna venom is as yet unknown. Hence, we compared the deeply sequenced transcriptome of an in-season echidna crural gland to that of a platypus and searched for putative venom genes to provide clues into the function of echidna venom and the evolutionary history of monotreme venom. We found that the echidna venom gland transcriptome was markedly different from the platypus with no correlation between the top 50 most highly expressed genes. Four peptides found in the venom of the platypus were detected in the echidna transcriptome. However, these genes were not highly expressed in echidna, suggesting that they are the remnants of the evolutionary history of the ancestral venom gland. Gene ontology terms associated with the top 100 most highly expressed genes in echidna, showed functional terms associated with steroidal and fatty acid production, suggesting that echidna “venom” may play a role in scent communication during the breeding season. The loss of the ability to erect the spur and other unknown evolutionary forces acting in the echidna lineage resulted in the gradual decay of venom components and the evolution of a new role for the crural gland.
Collapse
Affiliation(s)
- Emily S. W. Wong
- Institute for Molecular Bioscience, University of Queensland, QLD, Australia
| | - Stewart Nicol
- School of Zoology, University of Tasmania, TAS, Australia
| | - Wesley C. Warren
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Katherine Belov
- Faculty of Veterinary Science, The University of Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
121
|
Bennion BJ, Lau EY, Fattebert JL, Huang P, Schwegler E, Corning W, Lightstone FC. MODELING THE BINDING OF CWAs TO AChE AND BuChE. ACTA ACUST UNITED AC 2013. [DOI: 10.31482/mmsl.2013.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
122
|
Effects of viscosity and osmotic stress on the reaction of human butyrylcholinesterase with cresyl saligenin phosphate, a toxicant related to aerotoxic syndrome: kinetic and molecular dynamics studies. Biochem J 2013; 454:387-99. [DOI: 10.1042/bj20130389] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CSP (cresyl saligenin phosphate) is an irreversible inhibitor of human BChE (butyrylcholinesterase) that has been involved in the aerotoxic syndrome. Inhibition under pseudo-first-order conditions is biphasic, reflecting a slow equilibrium between two enzyme states E and E′. The elementary constants for CSP inhibition of wild-type BChE and D70G mutant were determined by studying the dependence of inhibition kinetics on viscosity and osmotic pressure. Glycerol and sucrose were used as viscosogens. Phosphorylation by CSP is sensitive to viscosity and is thus strongly diffusion-controlled (kon≈108 M−1·min−1). Bimolecular rate constants (ki) are about equal to kon values, making CSP one of the fastest inhibitors of BChE. Sucrose caused osmotic stress because it is excluded from the active-site gorge. This depleted the active-site gorge of water. Osmotic activation volumes, determined from the dependence of ki on osmotic pressure, showed that water in the gorge of the D70G mutant is more easily depleted than that in wild-type BChE. This demonstrates the importance of the peripheral site residue Asp70 in controlling the active-site gorge hydration. MD simulations provided new evidence for differences in the motion of water within the gorge of wild-type and D70G enzymes. The effect of viscosogens/osmolytes provided information on the slow equilibrium E⇌E′, indicating that alteration in hydration of a key catalytic residue shifts the equilibrium towards E′. MD simulations showed that glycerol molecules that substitute for water molecules in the enzyme active-site gorge induce a conformational change in the catalytic triad residue His438, leading to the less reactive form E′.
Collapse
|
123
|
|
124
|
Perić L, Ribarić L, Nerlović V. Cholinesterase activity in the tissues of bivalves Noah's ark shell (Arca noae) and warty venus (Venus verrucosa): Characterisation and in vitro sensitivity to organophosphorous pesticide trichlorfon. Comp Biochem Physiol B Biochem Mol Biol 2013; 165:243-9. [DOI: 10.1016/j.cbpb.2013.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 01/19/2023]
|
125
|
Nachon F, Brazzolotto X, Trovaslet M, Masson P. Progress in the development of enzyme-based nerve agent bioscavengers. Chem Biol Interact 2013; 206:536-44. [PMID: 23811386 DOI: 10.1016/j.cbi.2013.06.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase is the physiological target for acute toxicity of nerve agents. Attempts to protect acetylcholinesterase from phosphylation by nerve agents, is currently achieved by reversible inhibitors that transiently mask the enzyme active site. This approach either protects only peripheral acetylcholinesterase or may cause side effects. Thus, an alternative strategy consists in scavenging nerve agents in the bloodstream before they can reach acetylcholinesterase. Pre- or post-exposure administration of bioscavengers, enzymes that neutralize and detoxify organophosphorus molecules, is one of the major developments of new medical counter-measures. These enzymes act either as stoichiometric or catalytic bioscavengers. Human butyrylcholinesterase is the leading stoichiometric bioscavenger. Current efforts are devoted to its mass production with care to pharmacokinetic properties of the final product for extended lifetime. Development of specific reactivators of phosphylated butyrylcholinesterase, or variants with spontaneous reactivation activity is also envisioned for rapid in situ regeneration of the scavenger. Human paraoxonase 1 is the leading catalytic bioscavenger under development. Research efforts focus on improving its catalytic efficiency toward the most toxic isomers of nerve agents, by means of directed evolution-based strategies. Human prolidase appears to be another promising human enzyme. Other non-human efficient enzymes like bacterial phosphotriesterases or squid diisopropylfluorophosphatase are also considered though their intrinsic immunogenic properties remain challenging for use in humans. Encapsulation, PEGylation and other modifications are possible solutions to address this problem as well as that of their limited lifetime. Finally, gene therapy for in situ generation and delivery of bioscavengers is for the far future, but its proof of concept has been established.
Collapse
Affiliation(s)
- Florian Nachon
- Institut de Recherche Biomédicale des Armées, BP87, 38702 La Tronche Cédex, France.
| | | | | | | |
Collapse
|
126
|
Masson P. Time-dependent kinetic complexities in cholinesterase-catalyzed reactions. BIOCHEMISTRY (MOSCOW) 2013; 77:1147-61. [PMID: 23157295 DOI: 10.1134/s0006297912100070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cholinesterases (ChEs) display a hysteretic behavior with certain substrates and inhibitors. Kinetic cooperativity in hysteresis of ChE-catalyzed reactions is characterized by a lag or burst phase in the approach to steady state. With some substrates damped oscillations are shown to superimpose on hysteretic lags. These time dependent peculiarities are observed for both butyrylcholinesterase and acetylcholinesterase from different sources. Hysteresis in ChE-catalyzed reactions can be interpreted in terms of slow transitions between two enzyme conformers E and E'. Substrate can bind to E and/or E', both Michaelian complexes ES and Ε'S can be catalytically competent, or only one of them can make products. The formal reaction pathway depends on both the chemical structure of the substrate and the type of enzyme. In particular, damped oscillations develop when substrate exists in different, slowly interconvertible, conformational, and/or micellar forms, of which only the minor form is capable of binding and reacting with the enzyme. Biphasic pseudo-first-order progressive inhibition of ChEs by certain carbamates and organophosphates also fits with a slow equilibrium between two reactive enzyme forms. Hysteresis can be modulated by medium parameters (pH, chaotropic and kosmotropic salts, organic solvents, temperature, osmotic pressure, and hydrostatic pressure). These studies showed that water structure plays a role in hysteretic behavior of ChEs. Attempts to provide a molecular mechanism for ChE hysteresis from mutagenesis studies or crystallographic studies failed so far. In fact, several lines of evidence suggest that hysteresis is controlled by the conformation of His438, a key residue in the catalytic triad of cholinesterases. Induction time may depend on the probability of His438 to adopt the operative conformation in the catalytic triad. The functional significance of ChE hysteresis is puzzling. However, the accepted view that proteins are in equilibrium between preexisting functional and non-functional conformers, and that binding of a ligand to the functional form shifts equilibrium towards the functional conformation, suggests that slow equilibrium between two conformational states of these enzymes may have a regulatory function in damping out the response to certain ligands and irreversible inhibitors. This is particularly true for immobilized (membrane bound) enzymes where the local substrate and/or inhibitor concentrations depend on influx in crowded organellar systems, e.g. cholinergic synaptic clefts. Therefore, physiological or toxicological relevance of the hysteretic behavior and damped oscillations in ChE-catalyzed reactions and inhibition cannot be ruled out.
Collapse
Affiliation(s)
- P Masson
- Institut de Recherches Biomédicales des Armées-CRSSA, La Tronche, Cedex 38702, France.
| |
Collapse
|
127
|
Catalytic detoxification of nerve agent and pesticide organophosphates by butyrylcholinesterase assisted with non-pyridinium oximes. Biochem J 2013; 450:231-42. [PMID: 23216060 DOI: 10.1042/bj20121612] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present paper we show a comprehensive in vitro, ex vivo and in vivo study on hydrolytic detoxification of nerve agent and pesticide OPs (organophosphates) catalysed by purified hBChE (human butyrylcholinesterase) in combination with novel non-pyridinium oxime reactivators. We identified TAB2OH (2-trimethylammonio-6-hydroxybenzaldehyde oxime) as an efficient reactivator of OP-hBChE conjugates formed by the nerve agents VX and cyclosarin, and the pesticide paraoxon. It was also functional in reactivation of sarin- and tabun-inhibited hBChE. A 3-5-fold enhancement of in vitro reactivation of VX-, cyclosarin- and paraoxon-inhibited hBChE was observed when compared with the commonly used N-methylpyridinium aldoxime reactivator, 2PAM (2-pyridinealdoxime methiodide). Kinetic analysis showed that the enhancement resulted from improved molecular recognition of corresponding OP-hBChE conjugates by TAB2OH. The unique features of TAB2OH stem from an exocyclic quaternary nitrogen and a hydroxy group, both ortho to an oxime group on a benzene ring. pH-dependences reveal participation of the hydroxy group (pKa=7.6) forming an additional ionizing nucleophile to potentiate the oxime (pKa=10) at physiological pH. The TAB2OH protective indices in therapy of sarin- and paraoxon-exposed mice were enhanced by 30-60% when they were treated with a combination of TAB2OH and sub-stoichiometric hBChE. The results of the present study establish that oxime-assisted catalysis is feasible for OP bioscavenging.
Collapse
|
128
|
Estour F, Letort S, Müller S, Kalakuntla R, Le Provost R, Wille T, Reiter G, Worek F, Lafont O, Gouhier G. Functionalized cyclodextrins bearing an alpha nucleophile – A promising way to degrade nerve agents. Chem Biol Interact 2013; 203:202-7. [DOI: 10.1016/j.cbi.2012.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
|
129
|
Ciepluch K, Weber M, Katir N, Caminade AM, El Kadib A, Klajnert B, Majoral JP, Bryszewska M. Effect of viologen–phosphorus dendrimers on acetylcholinesterase and butyrylcholinesterase activities. Int J Biol Macromol 2013; 54:119-24. [DOI: 10.1016/j.ijbiomac.2012.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/19/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022]
|
130
|
Makhaeva GF, Radchenko EV, Palyulin VA, Rudakova EV, Aksinenko AY, Sokolov VB, Zefirov NS, Richardson RJ. Organophosphorus compound esterase profiles as predictors of therapeutic and toxic effects. Chem Biol Interact 2013; 203:231-7. [DOI: 10.1016/j.cbi.2012.10.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/07/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022]
|
131
|
Liyasova MS, Schopfer LM, Kodani S, Lantz SR, Casida JE, Lockridge O. Newly Observed Spontaneous Activation of Ethephon as a Butyrylcholinesterase Inhibitor. Chem Res Toxicol 2013; 26:422-31. [DOI: 10.1021/tx300501n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mariya S. Liyasova
- Department of Environmental, Agricultural & Occupational Health and Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, United States
| | - Lawrence M. Schopfer
- Department of Environmental, Agricultural & Occupational Health and Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, United States
| | - Sean Kodani
- Environmental Chemistry and
Toxicology Laboratory, Department of Environmental Science, Policy
and Management, University of California, Berkeley, California 94720-3112, United States
| | - Stephen R. Lantz
- Environmental Chemistry and
Toxicology Laboratory, Department of Environmental Science, Policy
and Management, University of California, Berkeley, California 94720-3112, United States
| | - John E. Casida
- Environmental Chemistry and
Toxicology Laboratory, Department of Environmental Science, Policy
and Management, University of California, Berkeley, California 94720-3112, United States
| | - Oksana Lockridge
- Department of Environmental, Agricultural & Occupational Health and Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, United States
| |
Collapse
|
132
|
Zhang X, Wang H, Yang C, Du D, Lin Y. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides. Biosens Bioelectron 2013; 41:669-74. [DOI: 10.1016/j.bios.2012.09.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 10/27/2022]
|
133
|
Chen S, Zhang J, Lumley L, Cashman JR. Immunodetection of serum albumin adducts as biomarkers for organophosphorus exposure. J Pharmacol Exp Ther 2013; 344:531-41. [PMID: 23192655 PMCID: PMC3558817 DOI: 10.1124/jpet.112.201368] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/27/2012] [Indexed: 11/22/2022] Open
Abstract
A major challenge in organophosphate (OP) research has been the identification and utilization of reliable biomarkers for the rapid, sensitive, and efficient detection of OP exposure. Although Tyr 411 OP adducts to human serum albumin (HSA) have been suggested to be one of the most robust biomarkers in the detection of OP exposure, the analysis of HSA-OP adduct detection has been limited to techniques using mass spectrometry. Herein, we describe the procurement of two monoclonal antibodies (mAb-HSA-GD and mAb-HSA-VX) that recognized the HSA Tyr 411 adduct of soman (GD) or S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), respectively, but did not recognize nonphosphonylated HSA. We showed that mAb-HSA-GD was able to detect the HSA Tyr 411 OP adduct at a low level (i.e., human blood plasma treated with 180 nM GD) that could not be detected by mass spectrometry. mAb-HSA-GD and mAb-HSA-VX showed an extremely low-level detection of GD adducted to HSA (on the order of picograms). mAb-HSA-GD could also detect serum albumin OP adducts in blood plasma samples from different animals administered GD, including rats, guinea pigs, and monkeys. The ability of the two antibodies to selectively recognize nerve agents adducted to serum albumin suggests that these antibodies could be used to identify biomarkers of OP exposure and provide a new biologic approach to detect OP exposure in animals.
Collapse
Affiliation(s)
- Sigeng Chen
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
134
|
Sezgin Z, Biberoglu K, Chupakhin V, Makhaeva GF, Tacal O. Determination of binding points of methylene blue and cationic phenoxazine dyes on human butyrylcholinesterase. Arch Biochem Biophys 2013; 532:32-8. [PMID: 23353050 DOI: 10.1016/j.abb.2013.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
In this study, the binding points of MethB and two structurally-related cationic phenoxazine dyes [meldola blue (MB) and nile blue (NB)] to human butyrylcholinesterase (BChE) were investigated by molecular docking and site directed mutagenesis. The comparative inhibitory effects of MethB, MB and NB on recombinant wild type BChE and six human BChE mutants were spectrophotometrically studied. Kinetic analyses yielded the following information: MethB and MB were found to cause nonlinear inhibition of all recombinant BChEs except Y332A, compatible with a multi-site binding model. On the other hand, MethB and MB caused linear mixed inhibition of Y332A mutant, compatible with a single binding mode. Comparing the inhibitory effects in aspect of Ki values with recombinant wild type BChE (Ki=0.042 μM), MethB was found to be ∼30, 80 and 270-fold less effective as an inhibitor of Y332A, F329A and T120F, respectively. NB caused nonlinear inhibition of all recombinant BChEs. The inhibitory effect of NB on Y332A mutant was ∼370-fold lower, compared to recombinant wild type BChE (Ki=0.006 μM). Considering both kinetic and molecular docking results together, it was concluded that threonine 120, phenylalanine 329 and tyrosine 332 are critical amino acids in binding of cationic phenoxazine/phenothiazine structured ligands to human BChE.
Collapse
Affiliation(s)
- Zeynep Sezgin
- Department of Biochemistry, School of Pharmacy, University of Hacettepe, 06100 Ankara, Turkey
| | | | | | | | | |
Collapse
|
135
|
McGarry KG, Bartlett RA, Machesky NJ, Snider TH, Moyer RA, Yeung DT, Brittain MK. Evaluation of HemogloBind™ treatment for preparation of samples for cholinesterase analysis. ACTA ACUST UNITED AC 2013; 4:1020-1023. [PMID: 24749000 PMCID: PMC3989896 DOI: 10.4236/abb.2013.412136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acetylcholine is an essential neurotransmitter found throughout the nervous system. Its action on postsynaptic receptors is regulated through hydrolysis by various carboxylesterases, especially cholinesterases (ChEs). The acute toxicity of organophosphate (OP) compounds is directly linked to their action as inhibitors of ChE. One widely used assay for evaluating ChE activity is a spectrophotometric method developed by Ellman et al. When the enzyme source is from tissues or, in particular, blood, hemoglobin displays a spectrophotometric peak at the same wavelength used to analyze cholinergic activity. This creates a substantial background that interferes with the Ellman's assay and must be overcome in order to accurately monitor cholinesterase activity. Herein, we directly compare blood processing methods: classical method (1.67 ± 0.30 U/mL) and HemogloBind™ treatment (1.51 ± 0.17 U/mL), and clearly demonstrate that pretreatment of blood samples with Hemoglobind™ is both a sufficient and rapid sample preparation method for the assessment of ChE activity using the Ellman's method.
Collapse
Affiliation(s)
- Kevin G McGarry
- Battelle Biomedical Research Center, Battelle Memorial Institute, Columbus, USA
| | - Ryan A Bartlett
- Battelle Biomedical Research Center, Battelle Memorial Institute, Columbus, USA
| | - Nicholas J Machesky
- Battelle Biomedical Research Center, Battelle Memorial Institute, Columbus, USA
| | - Thomas H Snider
- Battelle Biomedical Research Center, Battelle Memorial Institute, Columbus, USA
| | - Robert A Moyer
- Battelle Biomedical Research Center, Battelle Memorial Institute, Columbus, USA
| | - David T Yeung
- National Institutes of Health/National Institute of Neurological Disorders and Stroke, Bethesda, USA
| | - Matthew K Brittain
- Battelle Biomedical Research Center, Battelle Memorial Institute, Columbus, USA
| |
Collapse
|
136
|
|
137
|
Tacal O, Li B, Lockridge O, Schopfer LM. Resistance of human butyrylcholinesterase to methylene blue-catalyzed photoinactivation; mass spectrometry analysis of oxidation products. Photochem Photobiol 2012; 89:336-48. [PMID: 23136924 DOI: 10.1111/php.12016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/30/2012] [Indexed: 12/01/2022]
Abstract
Methylene blue, 3, 7-bis(dimethylamino)-phenothiazin-5-ium chloride, is a reversible inhibitor of human butyrylcholinesterase (BChE) in the absence of light. In the presence of light and oxygen, methylene blue promotes irreversible inhibition of human BChE as a function of time, requiring 3 h irradiation to inhibit 95% activity. Inactivation was accompanied by a progressive loss of Coomassie-stained protein bands on native and denaturing polyacrylamide gels, suggesting backbone fragmentation. Aggregation was not detected. MALDI-TOF/TOF mass spectrometry identified oxidized tryptophan (W52, 56, 231, 376, 412, 490, 522), oxidized methionine (M81, 144, 302, 532, 554, 555), oxidized histidine (H214), oxidized proline (P230), oxidized cysteine (C519) and oxidized serine (S215). A 20 min irradiation in the presence of methylene blue resulted in 17% loss of BChE activity, suggesting that BChE is relatively resistant to methylene blue-catalyzed photoinactivation and that therefore this process could be used to sterilize BChE preparations.
Collapse
Affiliation(s)
- Ozden Tacal
- Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | | | | |
Collapse
|
138
|
Trapp M, Trovaslet M, Nachon F, Koza MM, van Eijck L, Hill F, Weik M, Masson P, Tehei M, Peters J. Energy Landscapes of Human Acetylcholinesterase and Its Huperzine A-Inhibited Counterpart. J Phys Chem B 2012. [DOI: 10.1021/jp304704h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcus Trapp
- Comissariat
à l’Energie
Atomique, Institut de Biologie Structurale, F-38054 Grenoble, France
- Centre National De La Recherche Scientifique, UMR5075, F-38027 Grenoble,
France
- Université Joseph Fourier, UFR PhITEM, F-38041 Grenoble Cédex
9, France
- Institut Laue Langevin, F-38042 Grenoble Cédex
9, France
| | - Marie Trovaslet
- Institut de Recherche Biomédicale des Armées, F-38700 La Tronche,
France
| | - Florian Nachon
- Institut de Recherche Biomédicale des Armées, F-38700 La Tronche,
France
| | - Marek M. Koza
- Institut Laue Langevin, F-38042 Grenoble Cédex
9, France
| | - Lambert van Eijck
- Delft University of Technology, Faculty of Applied Sciences, RST/NPM2
Mekelweg 15, 2629JB Delft Netherlands
| | - Flynn Hill
- School of Chemistry and
Centre for
Medical Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Martin Weik
- Comissariat
à l’Energie
Atomique, Institut de Biologie Structurale, F-38054 Grenoble, France
- Centre National De La Recherche Scientifique, UMR5075, F-38027 Grenoble,
France
- Université Joseph Fourier, UFR PhITEM, F-38041 Grenoble Cédex
9, France
| | - Patrick Masson
- Comissariat
à l’Energie
Atomique, Institut de Biologie Structurale, F-38054 Grenoble, France
- Centre National De La Recherche Scientifique, UMR5075, F-38027 Grenoble,
France
- Université Joseph Fourier, UFR PhITEM, F-38041 Grenoble Cédex
9, France
- Institut de Recherche Biomédicale des Armées, F-38700 La Tronche,
France
| | - Moeava Tehei
- School of Chemistry and
Centre for
Medical Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Institute of Nuclear Science and Engineering (AINSE), Menai, NSW,
Australia
| | - Judith Peters
- Comissariat
à l’Energie
Atomique, Institut de Biologie Structurale, F-38054 Grenoble, France
- Centre National De La Recherche Scientifique, UMR5075, F-38027 Grenoble,
France
- Université Joseph Fourier, UFR PhITEM, F-38041 Grenoble Cédex
9, France
- Institut Laue Langevin, F-38042 Grenoble Cédex
9, France
| |
Collapse
|
139
|
Zhang J, Chen S, Ralph EC, Dwyer M, Cashman JR. Identification of human butyrylcholinesterase organophosphate-resistant variants through a novel mammalian enzyme functional screen. J Pharmacol Exp Ther 2012; 343:673-82. [PMID: 22956723 PMCID: PMC3500536 DOI: 10.1124/jpet.112.198499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022] Open
Abstract
Human butyrylcholinesterase (hBChE) is currently being developed as a detoxication enzyme for the catalytic hydrolysis or stoichiometric binding of organophosphates (OPs). Previously, rationally designed hBChE mutants (G117H and E197Q) were reported in the literature and showed the feasibility of engineering OP hydrolytic functional activity into hBChE. However, the OP hydrolysis rate for G117H is too low for clinical utility. Additional OP-resistant hBChE variants with greater hydrolysis rates are needed as OP nerve-agent countermeasures for therapeutic utility. As described herein, a directed molecular evolution process was used to identify amino acid residues that contribute to OP-resistant functional activity of hBChE variants. In this article, we describe the development and validation of a novel method to identify hBChE variants with OP-resistant functional activity (decreased rate of OP inhibition). The method reported herein used an adenoviral protein expression system combined with a functional screening protocol of OP nerve-agent model compounds that have been shown to have functional properties similar to authentic OP nerve-agent compounds. The hBChE screening method was robust for transfection efficiency, library diversity, and reproducibility of positive signals. The screening approach not only identified the previously reported hBChE G117H variant, but also identified a series of additional hBChE variants, including hBChE G117N, G117R, E197C, and L125V, that exhibited OP-resistant functional activities not reported previously. The mammalian functional screening approach can serve as a cornerstone for further optimization and screening for OP-resistant hBChEs for potential therapeutic applications.
Collapse
Affiliation(s)
- Jun Zhang
- Human BioMolecular Research Institute, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
140
|
Knaack JS, Zhou Y, Abney CW, Prezioso SM, Magnuson M, Evans R, Jakubowski EM, Hardy K, Johnson RC. High-Throughput Immunomagnetic Scavenging Technique for Quantitative Analysis of Live VX Nerve Agent in Water, Hamburger, and Soil Matrixes. Anal Chem 2012; 84:10052-7. [DOI: 10.1021/ac3025224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jennifer S. Knaack
- National Center for Environmental
Health, Division of Laboratory Sciences, Emergency Response and Air
Toxicants Branch, Centers for Disease Control and Prevention, 4770 Buford Highway, MS F44, Chamblee, Georgia 30341, United States
| | - Yingtao Zhou
- National Center for Environmental
Health, Division of Laboratory Sciences, Emergency Response and Air
Toxicants Branch, Centers for Disease Control and Prevention, 4770 Buford Highway, MS F44, Chamblee, Georgia 30341, United States
| | - Carter W. Abney
- Oak Ridge Institute for Science
and Education Fellow, Centers for Disease Control and Prevention, 4770 Buford Highway, MS F44, Chamblee, Georgia
30341, United States
| | - Samantha M. Prezioso
- IHRC,
Incorporated, Centers for Disease Control and Prevention, 2 Ravinia
Drive, Suite 1260, Atlanta, Georgia, United States
| | - Matthew Magnuson
- Environmental Protection Agency, 26 West Martin Luther King Drive, Mailstop NG-16,
Cincinnati, Ohio 45268, United States
| | - Ronald Evans
- U.S. Army Edgewood Chemical Biological Center, E3150 RDCB-DRT-A, 5183 Blackhawk
Road, Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Edward M. Jakubowski
- U.S. Army Edgewood Chemical Biological Center, E3150 RDCB-DRT-A, 5183 Blackhawk
Road, Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Katelyn Hardy
- National Center for Environmental
Health, Division of Laboratory Sciences, Emergency Response and Air
Toxicants Branch, Centers for Disease Control and Prevention, 4770 Buford Highway, MS F44, Chamblee, Georgia 30341, United States
| | - Rudolph C. Johnson
- National Center for Environmental
Health, Division of Laboratory Sciences, Emergency Response and Air
Toxicants Branch, Centers for Disease Control and Prevention, 4770 Buford Highway, MS F44, Chamblee, Georgia 30341, United States
| |
Collapse
|
141
|
Marsillach J, Hsieh EJ, Richter RJ, MacCoss MJ, Furlong CE. Proteomic analysis of adducted butyrylcholinesterase for biomonitoring organophosphorus exposures. Chem Biol Interact 2012; 203:85-90. [PMID: 23123252 DOI: 10.1016/j.cbi.2012.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
Organophosphorus (OP) compounds include a broad group of toxic chemicals such as insecticides, chemical warfare agents and antiwear agents. The liver cytochromes P450 bioactivate many OPs to potent inhibitors of serine hydrolases. Cholinesterases were the first OP targets discovered and are the most studied. They are used to monitor human exposures to OP compounds. However, the assay that is currently used has limitations. The mechanism of action of OP compounds is the inhibition of serine hydrolases by covalently modifying their active-site serine. After structural rearrangement, the complex OP inhibitor-enzyme is irreversible and will remain in circulation until the modified enzyme is degraded. Mass spectrometry is a sensitive technology for analyzing protein modifications, such as OP-adducted enzymes. These analyses also provide some information about the nature of the OP adduct. Our aim is to develop high-throughput protocols for monitoring OP exposures using mass spectrometry.
Collapse
Affiliation(s)
- Judit Marsillach
- Dept of Medicine (Division of Medical Genetics), University of Washington, 98195 Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
142
|
Gonzalez V, Huen K, Venkat S, Pratt K, Xiang P, Harley KG, Kogut K, Trujillo CM, Bradman A, Eskenazi B, Holland NT. Cholinesterase and paraoxonase (PON1) enzyme activities in Mexican-American mothers and children from an agricultural community. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2012; 22:641-8. [PMID: 22760442 PMCID: PMC4123814 DOI: 10.1038/jes.2012.61] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 03/29/2012] [Indexed: 05/30/2023]
Abstract
Exposure to organophosphate and carbamate pesticides can lead to neurotoxic effects through inhibition of cholinesterase enzymes. The paraoxonase (PON1) enzyme can detoxify oxon derivatives of some organophosphates. Lower PON1, acetylcholinesterase, and butyrylcholinesterase activities have been reported in newborns relative to adults, suggesting increased susceptibility to organophosphate exposure in young children. We determined PON1, acetylcholinesterase, and butyrylcholinesterase activities in Mexican-American mothers and their 9-year-old children (n=202 pairs) living in an agricultural community. We used Wilcoxon signed-rank tests to compare enzymatic activities among mothers and their children, and analysis of variance to identify factors associated with enzyme activities. Substrate-specific PON1 activities were slightly lower in children than their mothers; however, these differences were only statistically significant for the paraoxon substrate. We observed significantly lower acetylcholinesterase but higher butyrylcholinesterase levels in children compared with their mothers. Mean butyrylcholinesterase levels were strongly associated with child obesity status (body mass index Z scores >95%). We observed highly significant correlations among mother-child pairs for each of the enzymatic activities analyzed; however, PON1 activities did not correlate with acetylcholinesterase or butyrylcholinesterase activities. Our findings suggest that by age 9 years, PON1 activities approach adult levels, and host factors including sex and obesity may affect key enzymes involved in pesticide metabolism.
Collapse
Affiliation(s)
- Veronica Gonzalez
- Center for Environmental Research and Children's Health, 50 University Hall, School of Public Health, University of California, Berkeley, California 94720-7360, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Knaack JS, Zhou Y, Abney CW, Jacob JT, Prezioso SM, Hardy K, Lemire SW, Thomas J, Johnson RC. A High-Throughput Diagnostic Method for Measuring Human Exposure to Organophosphorus Nerve Agents. Anal Chem 2012; 84:9470-7. [DOI: 10.1021/ac302301w] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jennifer S. Knaack
- Emergency Response
and Air Toxicants Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway,
MS F44, Chamblee, Georgia 30341, United States
| | - Yingtao Zhou
- Emergency Response
and Air Toxicants Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway,
MS F44, Chamblee, Georgia 30341, United States
| | - Carter W. Abney
- Oak Ridge Institute for Science and Education Fellow at the Centers for Disease Control and Prevention, 4770 Buford Highway, MS F44, Chamblee,
Georgia 30341, United States
| | - Justin T. Jacob
- Oak Ridge Institute for Science and Education Fellow at the Centers for Disease Control and Prevention, 4770 Buford Highway, MS F44, Chamblee,
Georgia 30341, United States
| | - Samantha M. Prezioso
- IHRC, Inc., Contractor at the Centers
for Disease Control and Prevention, 2
Ravinia Drive, Suite 1260, Atlanta, Georgia 30346, United States
| | - Katelyn Hardy
- Emergency Response
and Air Toxicants Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway,
MS F44, Chamblee, Georgia 30341, United States
| | - Sharon W. Lemire
- Emergency Response
and Air Toxicants Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway,
MS F44, Chamblee, Georgia 30341, United States
| | - Jerry Thomas
- Emergency Response
and Air Toxicants Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway,
MS F44, Chamblee, Georgia 30341, United States
| | - Rudolph C. Johnson
- Emergency Response
and Air Toxicants Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway,
MS F44, Chamblee, Georgia 30341, United States
| |
Collapse
|
144
|
Makhaeva GF, Radchenko EV, Baskin II, Palyulin VA, Richardson RJ, Zefirov NS. Combined QSAR studies of inhibitor properties of O-phosphorylated oximes toward serine esterases involved in neurotoxicity, drug metabolism and Alzheimer's disease. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2012; 23:627-647. [PMID: 22587543 DOI: 10.1080/1062936x.2012.679690] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Oxime reactivation of serine esterases (EOHs) inhibited by organophosphorus (OP) compounds can produce O-phosphorylated oximes (POXs). Such oxime derivatives are of interest, because some of them can have greater anti-EOH potencies than the OP inhibitors from which they were derived. Accordingly, inhibitor properties of 58 POXs against four EOHs, along with pair-wise selectivities between them, have been analysed using different QSAR approaches. EOHs (with their abbreviations and consequences of inhibition in parentheses) comprised acetylcholinesterase (AChE: acute neurotoxicity; cognition enhancement), butyrylcholinesterase (BChE: inhibition of drug metabolism or stoichiometric scavenging of EOH inhibitors; cognition enhancement), carboxylesterase (CaE: inhibition of drug metabolism or stoichiometric scavenging of EOH inhibitors), and neuropathy target esterase (NTE: delayed neurotoxicity). QSAR techniques encompassed linear regression and backpropagation neural networks in conjunction with fragmental descriptors containing labelled atoms, Molecular Field Topology Analysis (MFTA), Comparative Molecular Similarity Index Analysis (CoMSIA), and molecular modelling. All methods provided mostly consistent and complementary information, and they revealed structural features controlling the 'esterase profiles', i.e. patterns of anti-EOH activities and selectivities of the compounds of interest. In addition, MFTA models were used to design a library of compounds having a cognition-enhancement esterase profile suitable for potential application to the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- G F Makhaeva
- Institute of Physiologically Active Compounds, Chernogolovka, Moscow Region, Russia
| | | | | | | | | | | |
Collapse
|
145
|
Holas O, Musilek K, Pohanka M, Kuca K. The progress in the cholinesterase quantification methods. Expert Opin Drug Discov 2012; 7:1207-23. [DOI: 10.1517/17460441.2012.729037] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
146
|
Hematological indices and activity of NTPDase and cholinesterase enzymes in rats exposed to cadmium and treated with N-acetylcysteine. Biometals 2012; 25:1195-206. [PMID: 22991071 DOI: 10.1007/s10534-012-9582-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 09/03/2012] [Indexed: 12/20/2022]
Abstract
The present study aimed to investigate the influence of N-acetylcysteine (NAC) on cadmium (Cd) poisoning by evaluating Cd concentration in tissues, hematological indices as well as the activity of NTPDase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes of rats exposed to Cd and co-treated with NAC. For this purpose, the rats received Cd (2 mg/kg) and NAC (150 mg/kg) by gavage every other day for 30 days. Animals were divided into four groups (n = 6-8): control/saline, NAC, Cd, and Cd/NAC. Cd exposure increased Cd concentration in plasma, spleen and thymus, and NAC co-treatment modulated this augment in both lymphoid organs. Cd exposure reduced red blood cell count, hemoglobin content and hematocrit value. Cd intoxication caused a decrease in total white blood cell count. NAC treatment per se caused an increase in lymphocyte and a decrease in neutrophil counts. On contrary, Cd exposure caused a decrease in lymphocyte and an increase in neutrophil and monocyte counts. NAC reversed or ameliorated the hematological impairments caused by Cd poisoning. There were no significant alterations in the NTPDase activity in lymphocytes of rats treated with Cd and/or NAC. Cd caused a decrease in the activities of lymphocyte AChE, whole blood AChE and serum BChE. However, NAC co-treatment was inefficient in counteracting the negative effect of Cd in the cholinesterase activities. The present investigation provides ex vivo evidence supporting the hypothesis that Cd induces immunotoxicity by interacting with the lymphoid organs, altering hematological parameters and inhibiting peripheral cholinesterase activity. Also, it highlights the possibility to use NAC as adjuvant against toxicological conditions.
Collapse
|
147
|
Biberoglu K, Schopfer LM, Tacal O, Lockridge O. The proline-rich tetramerization peptides in equine serum butyrylcholinesterase. FEBS J 2012; 279:3844-58. [PMID: 22889087 DOI: 10.1111/j.1742-4658.2012.08744.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 07/27/2012] [Accepted: 08/09/2012] [Indexed: 11/30/2022]
Abstract
Soluble, tetrameric, plasma butyrylcholinesterase from horse has previously been shown to include a non-covalently attached polyproline peptide in its structure. The polyproline peptide matched the polyproline-rich region of human lamellipodin. Our goal was to examine the tetramer-organizing peptides of horse butyrylcholinesterase in more detail. Horse butyrylcholinesterase was denatured by boiling, thus releasing a set of polyproline peptides ranging in mass from 1173 to 2098 Da. The peptide sequences were determined by fragmentation in MALDI-TOF-TOF and linear ion trap quadrupole Orbitrap mass spectrometers. Twenty-seven polyproline peptides grouped into 13 families were identified. Peptides contained a minimum of 11 consecutive proline residues and as many as 21. Many of the peptides had a non-proline amino acid at the N-terminus. A search of the protein databanks matched peptides to nine proteins, although not all peptides matched a known protein. It is concluded that polyproline peptides of various lengths and sequences are included in the tetramer structure of horse butyrylcholinesterase. The function of these polyproline peptides is to serve as tetramer-organizing peptides.
Collapse
Affiliation(s)
- Kevser Biberoglu
- Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | | | | |
Collapse
|
148
|
Velki M, Hackenberger BK. Species-specific differences in biomarker responses in two ecologically different earthworms exposed to the insecticide dimethoate. Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:104-12. [PMID: 22609974 DOI: 10.1016/j.cbpc.2012.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 01/14/2023]
Abstract
Earthworms ingest large amounts of soil and therefore are continuously exposed to contaminants through their alimentary surfaces. Additionally, several studies have shown that earthworm skin is a significant route of contaminant uptake as well. In order to determine effects of dimethoate, a broad-spectrum organophosphorous insecticide, two ecologically different earthworm species were used - Eisenia andrei and Octolasion lacteum. Although several studies used soil organisms to investigate the effects of dimethoate, none of these studies included investigations of dimethoate effects on biochemical biomarkers in earthworms. Earthworms were exposed to 0.001, 0.005, 0.01, 0.5 and 1 μg/cm(2) of dimethoate for 24 h, and the activities of acetylcholinesterase, carboxylesterase, catalase and efflux pump were measured. In both earthworm species dimethoate caused significant inhibition of acetylcholinesterase and carboxylesterase activities, however in E. andrei an hormetic effect was evident. Efflux pump activity was inhibited only in E. andrei, and catalase activity was significantly inhibited in both earthworm species. Additionally, responses of earthworm acetylcholinesterase, carboxylesterase and catalase activity to dimethoate were examined through in vitro experiments. Comparison of responses between E. andrei and O. lacteum has shown significant differences, and E. andrei has proved to be less susceptible to dimethoate exposure.
Collapse
Affiliation(s)
- Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Croatia.
| | | |
Collapse
|
149
|
Johnson G, Moore SW. Why has butyrylcholinesterase been retained? Structural and functional diversification in a duplicated gene. Neurochem Int 2012; 61:783-97. [PMID: 22750491 DOI: 10.1016/j.neuint.2012.06.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/18/2012] [Accepted: 06/22/2012] [Indexed: 02/07/2023]
Abstract
While acetylcholinesterase (EC 3.1.1.7) has a clearly defined role in neurotransmission, the functions of its sister enzyme butyrylcholinesterase (EC 3.1.1.8) are more obscure. Numerous mutations, many inactivating, are observed in the human butyrylcholinesterase gene, and the butyrylcholinesterase knockout mouse has an essentially normal phenotype, suggesting that the enzyme may be redundant. Yet the gene has survived for many millions of years since the duplication of an ancestral acetylcholinesterase early in vertebrate evolution. In this paper, we ask the questions: why has butyrylcholinesterase been retained, and why are inactivating mutations apparently tolerated? Butyrylcholinesterase has diverged both structurally and in terms of tissue and cellular expression patterns from acetylcholinesterase. Butyrylcholinesterase-like activity and enzymes have arisen a number of times in the animal kingdom, suggesting the usefulness of such enzymes. Analysis of the published literature suggests that butyrylcholinesterase has specific roles in detoxification as well as in neurotransmission, both in the brain, where it appears to control certain areas and functions, and in the neuromuscular junction, where its function appears to complement that of acetylcholinesterase. An analysis of the mutations in human butyrylcholinesterase and their relation to the enzyme's structure is shown. In conclusion, it appears that the structure of butyrylcholinesterase's catalytic apparatus is a compromise between the apparently conflicting selective demands of a more generalised detoxifier and the necessity for maintaining high catalytic efficiency. It is also possible that the tolerance of mutation in human butyrylcholinesterase is a consequence of the detoxification function. Butyrylcholinesterase appears to be a good example of a gene that has survived by subfunctionalisation.
Collapse
Affiliation(s)
- Glynis Johnson
- Division of Paediatric Surgery, Faculty of Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa.
| | | |
Collapse
|
150
|
Durrant AR, Tamayev L, Anglister L. Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice. Front Mol Neurosci 2012; 5:73. [PMID: 22723768 PMCID: PMC3378013 DOI: 10.3389/fnmol.2012.00073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/24/2012] [Indexed: 01/28/2023] Open
Abstract
The cholinesterases, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) (pseudocholinesterase), are abundant in the nervous system and in other tissues. The role of AChE in terminating transmitter action in the peripheral and central nervous system is well understood. However, both knowledge of the function(s) of the cholinesterases in serum, and of their metabolic and endocrine regulation under normal and pathological conditions, is limited. This study investigates AChE and BChE in sera of dystrophin-deficient mdx mutant mice, an animal model for the human Duchenne muscular dystrophy (DMD) and in control healthy mice. The data show systematic and differential variations in the concentrations of both enzymes in the sera, and specific changes dictated by alteration of hormonal balance in both healthy and dystrophic mice. While AChE in mdx-sera is elevated, BChE is markedly diminished, resulting in an overall cholinesterase decrease compared to sera of healthy controls. The androgen testosterone (T) is a negative modulator of BChE, but not of AChE, in male mouse sera. T-removal elevated both BChE activity and the BChE/AChE ratio in mdx male sera to values resembling those in healthy control male mice. Mechanisms of regulation of the circulating cholinesterases and their impairment in the dystrophic mice are suggested, and clinical implications for diagnosis and treatment are considered.
Collapse
Affiliation(s)
- Andrea R Durrant
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, IMRIC, Faculty of Medicine, Hebrew University Medical School Jerusalem, Israel
| | | | | |
Collapse
|