101
|
Matsubara T, Diresta GR, Kakunaga S, Li D, Healey JH. Additive Influence of Extracellular pH, Oxygen Tension, and Pressure on Invasiveness and Survival of Human Osteosarcoma Cells. Front Oncol 2013; 3:199. [PMID: 23914349 PMCID: PMC3728769 DOI: 10.3389/fonc.2013.00199] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/16/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND/PURPOSE The effects of chemical and physical interactions in the microenvironment of solid tumors have not been fully elucidated. We hypothesized that acidosis, hypoxia, and elevated interstitial fluid pressure (eIFP) have additive effects on tumor cell biology and lead to more aggressive behavior during tumor progression. We investigated this phenomenon using three human osteosarcoma (OS) cell lines and a novel in vitro cell culture apparatus. MATERIALS AND METHODS U2OS, SaOS, and MG63 cell lines were cultured in media adjusted to various pH levels, oxygen tension (hypoxia 2% O2, normoxia 20% O2), and hydrostatic gage pressure (0 or 50 mmHg). Growth rate, apoptosis, cell cycle parameters, and expression of mRNA for proteins associated with invasiveness and tumor microenvironment (CA IX, VEGF-A, HIF-1A, MMP-9, and TIMP-2) were analyzed. Levels of CA IX, HIF-1α, and MMP-9 were measured using immunofluorescence. The effect of pH on invasiveness was evaluated in a Matrigel chamber assay. RESULTS Within the acidic-hypoxic-pressurized conditions that simulate the microenvironment at a tumor's center, invasive genes were upregulated, but the cell cycle was downregulated. The combined influence of acidosis, hypoxia, and IFP promoted invasiveness and angiogenesis to a greater extent than did pH, pO2, or eIFP individually. Significant cell death after brief exposure to acidic conditions occurred in each cell line during acclimation to acidic media, while prolonged exposure to acidic media resulted in reduced cell death. Furthermore, 48-h exposure to acidic conditions promoted tumor invasiveness in the Matrigel assay. CONCLUSION Our findings demonstrate that tumor microenvironmental parameters - particularly pH, pO2, and eIFP - additively influence tumor proliferation, invasion, metabolism, and viability to enhance cell survival and must be controlled in OS research.
Collapse
Affiliation(s)
- Takao Matsubara
- Department of Orthopaedic Surgery, Mie Graduate School of Medicine , Mie , Japan
| | | | | | | | | |
Collapse
|
102
|
Shin JM, Jeong YJ, Cho HJ, Park KK, Chung IK, Lee IK, Kwak JY, Chang HW, Kim CH, Moon SK, Kim WJ, Choi YH, Chang YC. Melittin suppresses HIF-1α/VEGF expression through inhibition of ERK and mTOR/p70S6K pathway in human cervical carcinoma cells. PLoS One 2013; 8:e69380. [PMID: 23936001 PMCID: PMC3720276 DOI: 10.1371/journal.pone.0069380] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/08/2013] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Melittin (MEL), a major component of bee venom, has been associated with various diseases including arthritis, rheumatism and various cancers. In this study, the anti-angiogenic effects of MEL in CaSki cells that were responsive to the epidermal growth factor (EGF) were examined. METHODOLOGY/PRINCIPAL FINDINGS MEL decreased the EGF-induced hypoxia-inducible factor-1α (HIF-1α) protein and significantly regulated angiogenesis and tumor progression. We found that inhibition of the HIF-1α protein level is due to the shortened half-life by MEL. Mechanistically, MEL specifically inhibited the EGF-induced HIF-1α expression by suppressing the phosphorylation of ERK, mTOR and p70S6K. It also blocked the EGF-induced DNA binding activity of HIF-1α and the secretion of the vascular endothelial growth factor (VEGF). Furthermore, the chromatin immunoprecipitation (ChIP) assay revealed that MEL reduced the binding of HIF-1α to the VEGF promoter HRE region. The anti-angiogenesis effects of MEL were confirmed through a matrigel plus assay. CONCLUSIONS MEL specifically suppressed EGF-induced VEGF secretion and new blood vessel formation by inhibiting HIF-1α. These results suggest that MEL may inhibit human cervical cancer progression and angiogenesis by inhibiting HIF-1α and VEGF expression.
Collapse
Affiliation(s)
- Jae-Moon Shin
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Hyun-Ji Cho
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Kwan-Kyu Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Il-Kyung Chung
- Department of Biotechnology, Catholic University of Daegu, Gyeongsan, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jong-Young Kwak
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Hyeun-Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food Science and Technology, Chung-Ang University, Ansung, Republic of Korea
| | - Wun-Jae Kim
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University, Cheongju, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
103
|
Maruyama T, Miyamoto Y, Yamamoto G, Yamada A, Yoshimura K, Suzawa T, Takami M, Akiyama T, Hoshino M, Iwasa F, Ikumi N, Tachikawa T, Mishima K, Baba K, Kamijo R. Downregulation of carbonic anhydrase IX promotes Col10a1 expression in chondrocytes. PLoS One 2013; 8:e56984. [PMID: 23441228 PMCID: PMC3575511 DOI: 10.1371/journal.pone.0056984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Carbonic anhydrase (CA) IX is a transmembrane isozyme of CAs that catalyzes reversible hydration of CO(2). While it is known that CA IX is distributed in human embryonic chondrocytes, its role in chondrocyte differentiation has not been reported. In the present study, we found that Car9 mRNA and CA IX were expressed in proliferating but not hypertrophic chondrocytes. Next, we examined the role of CA IX in the expression of marker genes of chondrocyte differentiation in vitro. Introduction of Car9 siRNA to mouse primary chondrocytes obtained from costal cartilage induced the mRNA expressions of Col10a1, the gene for type X collagen α-1 chain, and Epas1, the gene for hypoxia-responsible factor-2α (HIF-2α), both of which are known to be characteristically expressed in hypertrophic chondrocytes. On the other hand, forced expression of CA IX had no effect of the proliferation of chondrocytes or the transcription of Col10a1 and Epas1, while the transcription of Col2a1 and Acan were up-regulated. Although HIF-2α has been reported to be a potent activator of Col10a1 transcription, Epas1 siRNA did not suppress Car9 siRNA-induced increment in Col10a1 expression, indicating that down-regulation of CA IX induces the expression of Col10a1 in chondrocytes in a HIF-2α-independent manner. On the other hand, cellular cAMP content was lowered by Car9 siRNA. Furthermore, the expression of Col10a1 mRNA after Car9 silencing was augmented by an inhibitor of protein kinase A, and suppressed by an inhibitor for phosphodiesterase as well as a brominated analog of cAMP. While these results suggest a possible involvement of cAMP-dependent pathway, at least in part, in induction of Col10a1 expression by down-regulation of Car9, more detailed study is required to clarify the role of CA IX in regulation of Col10a1 expression in chondrocytes.
Collapse
Affiliation(s)
- Toshifumi Maruyama
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- * E-mail:
| | - Gou Yamamoto
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Tetsuo Suzawa
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Masamichi Takami
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Tomohito Akiyama
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Marie Hoshino
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Fuminori Iwasa
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Noriharu Ikumi
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Tetsuhiko Tachikawa
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Kazuyoshi Baba
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| |
Collapse
|
104
|
Papi A, Storci G, Guarnieri T, De Carolis S, Bertoni S, Avenia N, Sanguinetti A, Sidoni A, Santini D, Ceccarelli C, Taffurelli M, Orlandi M, Bonafé M. Peroxisome proliferator activated receptor-α/hypoxia inducible factor-1α interplay sustains carbonic anhydrase IX and apoliprotein E expression in breast cancer stem cells. PLoS One 2013; 8:e54968. [PMID: 23372804 PMCID: PMC3556000 DOI: 10.1371/journal.pone.0054968] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/17/2012] [Indexed: 12/13/2022] Open
Abstract
AIMS Cancer stem cell biology is tightly connected to the regulation of the pro-inflammatory cytokine network. The concept of cancer stem cells "inflammatory addiction" leads to envisage the potential role of anti-inflammatory molecules as new anti-cancer targets. Here we report on the relationship between nuclear receptors activity and the modulation of the pro-inflammatory phenotype in breast cancer stem cells. METHODS Breast cancer stem cells were expanded as mammospheres from normal and tumor human breast tissues and from tumorigenic (MCF7) and non tumorigenic (MCF10) human breast cell lines. Mammospheres were exposed to the supernatant of breast tumor and normal mammary gland tissue fibroblasts. RESULTS In mammospheres exposed to the breast tumor fibroblasts supernatant, autocrine tumor necrosis factor-α signalling engenders the functional interplay between peroxisome proliferator activated receptor-α and hypoxia inducible factor-1α (PPARα/HIF1α). The two proteins promote mammospheres formation and enhance each other expression via miRNA130b/miRNA17-5p-dependent mechanism which is antagonized by PPARγ. Further, the PPARα/HIF1α interplay regulates the expression of the pro-inflammatory cytokine interleukin-6, the hypoxia survival factor carbonic anhydrase IX and the plasma lipid carrier apolipoprotein E. CONCLUSION Our data demonstrate the importance of exploring the role of nuclear receptors (PPARα/PPARγ) in the regulation of pro-inflammatory pathways, with the aim to thwart breast cancer stem cells functioning.
Collapse
Affiliation(s)
- Alessio Papi
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Gianluca Storci
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Tiziana Guarnieri
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
- National Biostructures and Biosystems Institute (INBB), Rome, Italy
| | - Sabrina De Carolis
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Sara Bertoni
- Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Nicola Avenia
- Department of Surgical Sciences, Radiology and Dentistry, University of Perugia, Perugia, Italy
| | - Alessandro Sanguinetti
- Department of Surgical Sciences, Radiology and Dentistry, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Donatella Santini
- Department of Radiology and Histo-cytopathology, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Claudio Ceccarelli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Mario Taffurelli
- Department of Clinical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marina Orlandi
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Massimiliano Bonafé
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
105
|
Kim K, Park WY, Kim JY, Sol MY, Shin DH, Park DY, Lee CH, Lee JH, Choi KU. Prognostic Relevance of the Expression of CA IX, GLUT-1, and VEGF in Ovarian Epithelial Cancers. KOREAN JOURNAL OF PATHOLOGY 2012; 46:532-40. [PMID: 23323103 PMCID: PMC3540330 DOI: 10.4132/koreanjpathol.2012.46.6.532] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 12/27/2022]
Abstract
Background Tumor hypoxia is associated with malignant progression and treatment resistance. Hypoxia-related factors, such as carbonic anhydrase IX (CA IX), glucose transporter-1 (GLUT-1), and vascular endothelial growth factor (VEGF) permit tumor cell adaptation to hypoxia. We attempted to elucidate the correlation of these markers with variable clinicopathological factors and overall prognosis. Methods Immunohistochemistry for CA IX, GLUT-1, and VEGF was performed on formalin-fixed, paraffin-embedded tissues from 125 cases of ovarian epithelial cancer (OEC). Results CA IX expression was significantly associated with an endometrioid and mucinous histology, nuclear grade, tumor necrosis, and mitosis. GLUT-1 expression was associated with tumor necrosis and mitosis. VEGF expression was correlated only with disease recurrence. Expression of each marker was not significant in terms of overall survival in OECs; however, there was a significant correlation between poor overall survival rate and high coexpression of these markers. Conclusions The present study suggests that it is questionable whether CA IX, GLUT-1, or VEGF can be used alone as independent prognostic factors in OECs. Using at least two markers helps to predict patient outcomes in total OECs. Moreover, the inhibition of two target gene combinations might prove to be a novel anticancer therapy.
Collapse
Affiliation(s)
- Kyungbin Kim
- Department of Pathology, Pusan National University Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Immunohistochemical markers of the hypoxic response can identify malignancy in phaeochromocytomas and paragangliomas and optimize the detection of tumours with VHL germline mutations. Br J Cancer 2012; 108:429-37. [PMID: 23257898 PMCID: PMC3566818 DOI: 10.1038/bjc.2012.538] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: There are no reliable markers of malignancy in phaeochromocytomas (PCC) and paragangliomas (PGL). We investigated the relevance of the mammalian target of rapamycin (mTOR)/AKT and hypoxic pathways as novel immunohistochemical markers of malignancy. Methods: Tissue microarray blocks were constructed with a total of 100 tumours (10 metastatic) and 20 normal adrenomedullary samples. Sections were immunostained for hypoxia-inducible factor 1α (Hif-1α), vascular endothelial growth factor A (VEGF-A), mTOR, carbonic anhydrase IX (CaIX) and AKT. The predictive performance of these markers was studied using univariate, multivariate and receiver operating characteristic analyses. Results: In all, 100 consecutive patients, 64% PCC, 29% familial with a median tumour size of 4.7 cm (range 1–14) were included. Univariate analyses showed Hif-1α overexpression, tumour necrosis, size >5 cm, capsular and vascular invasion to be predictors of metastasis. In multivariate analysis, Hif-1α, necrosis and vascular invasion remained as independent predictors of metastasis. Hif-1α was the most discriminatory biomarker for the presence of metastatic diffusion. Strong membranous CaIX expression was seen in von Hippel–Lindau (VHL) PCC as opposed to other subtypes. Conclusion: Lack of vascular invasion, tumour necrosis and low Hif-1α expression identify tumours with lower risk of malignancy. We propose membranous CaIX expression as a potential marker for VHL disease in patients presenting with PCC.
Collapse
|
107
|
Li JZ, Gao W, Chan JYW, Ho WK, Wong TS. Hypoxia in head and neck squamous cell carcinoma. ISRN OTOLARYNGOLOGY 2012; 2012:708974. [PMID: 23762617 PMCID: PMC3671689 DOI: 10.5402/2012/708974] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/23/2012] [Indexed: 11/23/2022]
Abstract
Hypoxia is a common feature in most of the solid tumors including head and neck squamous cell carcinoma (HNSCC). Hypoxia reflects the imbalance between oxygen consumption by the rapidly proliferating cancer cells and the insufficient oxygen delivery due to poor vascularization and blood supply. The hypoxic microenvironment in the HNSCC contributes to the development of aggressive carcinoma phenotype with high metastatic rate, resistance to therapeutic agents, and higher tumor recurrence rates, leading to low therapeutic efficiency and poor outcome. To overcome the therapeutic resistance due to hypoxia and improving the prognosis of the HNSCC patients, many approaches have been examined in laboratory studies and clinical trials. In this short paper, we discuss the mechanisms involved in the resistance of radiotherapy and chemotherapy in hypoxic condition. We also exploit the molecular mechanisms employed by the HNSCC cells to adapt the hypoxic condition and their tumorigenic role in head and neck, as well as the strategies to overcome hypoxia-induced therapeutic resistance.
Collapse
Affiliation(s)
- John Zenghong Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pok Fu Lam, Hong Kong
| | | | | | | | | |
Collapse
|
108
|
Shi D, Guo W, Chen W, Fu L, Wang J, Tian Y, Xiao X, Kang T, Huang W, Deng W. Nicotine promotes proliferation of human nasopharyngeal carcinoma cells by regulating α7AChR, ERK, HIF-1α and VEGF/PEDF signaling. PLoS One 2012; 7:e43898. [PMID: 22952803 PMCID: PMC3432052 DOI: 10.1371/journal.pone.0043898] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 07/30/2012] [Indexed: 01/28/2023] Open
Abstract
Nicotine, the major component in cigarette smoke, can promote tumor growth and angiogenesis, but the precise mechanisms involved remain largely unknown. Here, we investigated the mechanism of action of nicotine in human nasopharyngeal carcinoma (NPC) cells. Nicotine significantly promoted cell proliferation in a dose and time-dependent manner in human NPC cells. The mechanism studies showed that the observed stimulation of proliferation was accompanied by the nicotine-mediated simultaneous modulation of α7AChR, HIF-1α, ERK and VEGF/PEDF signaling. Treatment of NPC cells with nicotine markedly upregulated the expression of α7AChR and HIF-1α proteins. Transfection with a α7AChR or HIF-1α-specific siRNA or a α7AChR-selective inhibitor significantly attenuated the nicotine-mediated promotion of NPC cell proliferation. Nicotine also promoted the phosphorylation of ERK1/2 but not JNK and p38 proteins, thereby induced the activation of ERK/MAPK signaling pathway. Pretreatment with an ERK-selective inhibitor effectively reduced the nicotine-induced proliferation of NPC cells. Moreover, nicotine upregulated the expression of VEGF but suppressed the expression of PEDF at mRNA and protein levels, leading to a significant increase of the ratio of VEGF/PEDF in NPC cells. Pretreatment with a α7AChR or ERK-selective inhibitor or transfection with a HIF-1α-specific siRNA in NPC cells significantly inhibited the nicotine-induced HIF-1α expression and VEGF/PEDF ratio. These results therefore indicate that nicotine promotes proliferation of human NPC cells in vitro through simultaneous modulation of α7AChR, HIF-1α, ERK and VEGF/PEDF signaling and suggest that the related molecules such as HIF-1α might be the potential therapeutic targets for tobacco-associated diseases such as nasopharyngeal carcinomas.
Collapse
Affiliation(s)
- Dingbo Shi
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Wangbin Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lingyi Fu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jingshu Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yung Tian
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiangsheng Xiao
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Targeted Therapy Drug of Guangdong, Guangzhou, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Targeted Therapy Drug of Guangdong, Guangzhou, China
| |
Collapse
|
109
|
McDonald PC, Winum JY, Supuran CT, Dedhar S. Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 2012; 3:84-97. [PMID: 22289741 PMCID: PMC3292895 DOI: 10.18632/oncotarget.422] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Carbonic anhydrase IX (CAIX) is a hypoxia-inducible enzyme that is overexpressed by cancer cells from many tumor types, and is a component of the pH regulatory system invoked by these cells to combat the deleterious effects of a high rate of glycolytic metabolism. CAIX functions to help produce and maintain an intracellular pH (pHi) favorable for tumor cell growth and survival, while at the same time participating in the generation of an increasingly acidic extracellular space, facilitating tumor cell invasiveness. Pharmacologic interference of CAIX catalytic activity using monoclonal antibodies or CAIX-specific small molecule inhibitors, consequently disrupting pH regulation by cancer cells, has been shown recently to impair primary tumor growth and metastasis. Many of these agents are in preclinical or clinical development and constitute a novel, targeted strategy for cancer therapy.
Collapse
Affiliation(s)
- Paul C McDonald
- Department of Integrative Oncology, British Columbia Cancer Research Centre and Cancer Agency, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
110
|
Sheffer M, Simon AJ, Jacob-Hirsch J, Rechavi G, Domany E, Givol D, D'Orazi G. Genome-wide analysis discloses reversal of the hypoxia-induced changes of gene expression in colon cancer cells by zinc supplementation. Oncotarget 2012; 2:1191-202. [PMID: 22202117 PMCID: PMC3282077 DOI: 10.18632/oncotarget.395] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1), the major transcription factor specifically activated during hypoxia, regulates genes involved in critical aspects of cancer biology, including angiogenesis, cell proliferation, glycolysis and invasion. The HIF-1a subunit is stabilized by low oxygen, genetic alteration and cobaltous ions, and its over-expression correlates with drug resistance and increased cancer mortality in various cancer types, therefore representing an important anticancer target. Zinc supplementation has been shown to counteract the hypoxic phenotype in cancer cells, in vitro and in vivo, hence, understanding the molecular pathways modulated by zinc under hypoxia may provide the basis for reprogramming signalling pathways for anticancer therapy. Here we performed genome-wide analyses of colon cancer cells treated with combinations of cobalt, zinc and anticancer drug and evaluated the effect of zinc on gene expression patterns. Using Principal Component Analysis we found that zinc markedly reverted the cobalt-induced changes of gene expression, with reactivation of the drug-induced transcription of pro-apoptotic genes. We conclude that the hypoxia pathway is a potential therapeutic target addressed by zinc that also influences tumor cell response to anticancer drug.
Collapse
Affiliation(s)
- Michal Sheffer
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
111
|
McIntyre A, Patiar S, Wigfield S, Li JL, Ledaki I, Turley H, Leek R, Snell C, Gatter K, Sly WS, Vaughan-Jones RD, Swietach P, Harris AL. Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin Cancer Res 2012; 18:3100-11. [PMID: 22498007 PMCID: PMC3367109 DOI: 10.1158/1078-0432.ccr-11-1877] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Bevacizumab, an anti-VEGFA antibody, inhibits the developing vasculature of tumors, but resistance is common. Antiangiogenic therapy induces hypoxia and we observed increased expression of hypoxia-regulated genes, including carbonic anhydrase IX (CAIX), in response to bevacizumab treatment in xenografts. CAIX expression correlates with poor prognosis in most tumor types and with worse outcome in bevacizumab-treated patients with metastatic colorectal cancer, malignant astrocytoma, and recurrent malignant glioma. EXPERIMENTAL DESIGN We knocked down CAIX expression by short hairpin RNA in a colon cancer (HT29) and a glioblastoma (U87) cell line which have high hypoxic induction of CAIX and overexpressed CAIX in HCT116 cells which has low CAIX. We investigated the effect on growth rate in three-dimensional (3D) culture and in vivo, and examined the effect of CAIX knockdown in combination with bevacizumab. RESULTS CAIX expression was associated with increased growth rate in spheroids and in vivo. Surprisingly, CAIX expression was associated with increased necrosis and apoptosis in vivo and in vitro. We found that acidity inhibits CAIX activity over the pH range found in tumors (pK = 6.84), and this may be the mechanism whereby excess acid self-limits the build-up of extracellular acid. Expression of another hypoxia inducible CA isoform, CAXII, was upregulated in 3D but not two-dimensional culture in response to CAIX knockdown. CAIX knockdown enhanced the effect of bevacizumab treatment, reducing tumor growth rate in vivo. CONCLUSION This work provides evidence that inhibition of the hypoxic adaptation to antiangiogenic therapy enhances bevacizumab treatment and highlights the value of developing small molecules or antibodies which inhibit CAIX for combination therapy.
Collapse
Affiliation(s)
- Alan McIntyre
- Molecular Oncology Laboratories, Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Lastraioli E, Bencini L, Bianchini E, Romoli MR, Crociani O, Giommoni E, Messerini L, Gasperoni S, Moretti R, Di Costanzo F, Boni L, Arcangeli A. hERG1 Channels and Glut-1 as Independent Prognostic Indicators of Worse Outcome in Stage I and II Colorectal Cancer: A Pilot Study. Transl Oncol 2012; 5:105-112. [PMID: 22496927 PMCID: PMC3323932 DOI: 10.1593/tlo.11250] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND There is a need to identify new markers to assess recurrence risk in early-stage colorectal cancer (CRC) patients. We explored the prognostic impact of ether-a-gò-gò-related gene 1 channels and some hypoxia markers, in patients with nonmetastatic (stage I, II, and III) CRC. METHODS The expression of hERG1, vascular endothelial growth factor A (VEGF-A), glucose transporter 1, carbonic anhydrase IX (CA-IX), epidermal growth factor receptor (EGF-R), and p53 was tested by immunohistochemistry in 135 patients. The median follow-up was 35 months. Clinicopathologic parameters and overall survival were evaluated. RESULTS hERG1 displayed a statistically significant association with Glut-1, VEGF-A, CA-IX, and EGF-R; p53 with VEGF-A and CA-IX; Glut-1 with the age of the patients; and EGF-R with TNM and mucin content. TNM and CA-IX were prognostic factors at the univariate analysis; TNM, hERG1, and Glut-1, at the multivariate analysis. Risk scores calculated from the final multivariate model allowed to stratify patients into four different risk groups: A) stage I-II, Glut-1 positivity, any hERG1; B) stage I-II, Glut-1 and hERG1 negativity; C) stage I-II, Glut-1 negativity, hERG1 positivity; D) stage III, any Glut-1 and any hERG1. CONCLUSIONS hERG1 positivity with Glut-1 negativity identifies a patient group with poor prognosis within stage I-II CRC. The possibility that these patients might benefit from adjuvant therapy, independently from the TNM stage, is discussed. IMPACT More robust prognostic and predictive markers, supplementing standard clinical and pathologic staging, are needed for node-negative patients.
Collapse
Affiliation(s)
- Elena Lastraioli
- Department of Experimental Pathology and Oncology, University of Florence, Istituto Toscano Tumori, Florence, Italy
| | - Lapo Bencini
- General Surgery and Surgical Oncology, Azienda Ospedaliero-Universitaria, Careggi, Florence, Italy
| | - Elisa Bianchini
- Clinical Trials Coordinating Center, Azienda Ospedaliero-Universitaria, Careggi, Florence, Italy
| | - Maria Raffaella Romoli
- Department of Experimental Pathology and Oncology, University of Florence, Istituto Toscano Tumori, Florence, Italy
| | - Olivia Crociani
- Department of Experimental Pathology and Oncology, University of Florence, Istituto Toscano Tumori, Florence, Italy
| | - Elisa Giommoni
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Luca Messerini
- Department of Human Pathology and Oncology, University of Florence, Florence, Italy
| | - Silvia Gasperoni
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Renato Moretti
- General Surgery and Surgical Oncology, Azienda Ospedaliero-Universitaria, Careggi, Florence, Italy
| | | | - Luca Boni
- Clinical Trials Coordinating Center, Azienda Ospedaliero-Universitaria, Careggi, Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental Pathology and Oncology, University of Florence, Istituto Toscano Tumori, Florence, Italy
| |
Collapse
|
113
|
Prognostic impacts of hypoxic markers in soft tissue sarcoma. Sarcoma 2012; 2012:541650. [PMID: 22454562 PMCID: PMC3289941 DOI: 10.1155/2012/541650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/01/2011] [Indexed: 01/04/2023] Open
Abstract
Background. We aimed to explore the prognostic impact of the hypoxia-induced factors (HIFαs) 1 and 2, the metabolic HIF-regulated glucose transporter GLUT-1, and carbonic anhydrase IX (CAIX) in non-gastrointestinal stromal tumor soft tissue sarcomas (non-GIST STS).
Methods. Duplicate cores with viable tumor tissue from 206 patients with non-GIST STS were obtained and tissue microarrays were constructed. Immunohistochemistry (IHC) was used to evaluate expression of hypoxic markers.
Results. In univariate analyses, GLUT-1 (P < 0.001) and HIF-2α (P = 0.032) expression correlated significantly with a poor disease-specific survival (DSS). In the multivariate analysis, however, only high expression of GLUT-1 (HR 1.7, CI 95% 1.1–2.7, P = 0.021) was a significant independent prognostic indicator of poor DSS.
Conclusion. GLUT-1 is a significant independent negative prognostic factor in non-GIST STS.
Collapse
|
114
|
Cottier F, Raymond M, Kurzai O, Bolstad M, Leewattanapasuk W, Jiménez-López C, Lorenz MC, Sanglard D, Váchová L, Pavelka N, Palková Z, Mühlschlegel FA. The bZIP transcription factor Rca1p is a central regulator of a novel CO₂ sensing pathway in yeast. PLoS Pathog 2012; 8:e1002485. [PMID: 22253597 PMCID: PMC3257301 DOI: 10.1371/journal.ppat.1002485] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO2 concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO2 and identify the bZIP transcription factor Rca1p as the first CO2 regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO2 build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO2 sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO2 availability in environments as diverse as the phagosome, yeast communities or liquid culture. Skin infection, oral and vaginal thrush, or bloodstream candidiasis are some of the diseases caused by the human pathogen Candida albicans. The high versatility of infection niches reflects the capacity of this yeast to respond to strong variations in its environment such as CO2 concentration. This molecule initiates the regulation of an essential protein: carbonic anhydrase, not through the known adenylyl cyclase CO2 sensor but as we discovered via a novel fungal CO2 sensing pathway involving the transcriptional regulator Rca1p. This protein is additionally implicated in growth, yeast-to-hyphae morphological switch and cell wall stability of C. albicans. The ortholog of Rca1p in Saccharomyces cerevisiae demonstrated a conserved function in the induction of the carbonic anhydrase in low CO2 concentration atmospheres pointing to the broad significance of Rca1p in fungal CO2 sensing.
Collapse
Affiliation(s)
- Fabien Cottier
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Singapore
| | - Martine Raymond
- Institute for Research in Immunology and Cancer and Department of Biochemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Oliver Kurzai
- Septomics Research Centre, Friedrich-Schiller-University and Leibniz-Institute for Natural Products Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Marianne Bolstad
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Claudia Jiménez-López
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Libuše Váchová
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Norman Pavelka
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Singapore
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fritz A. Mühlschlegel
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Clinical Microbiology Service, East Kent Hospitals University NHS Foundation Trust, Ashford, United Kingdom
- * E-mail:
| |
Collapse
|
115
|
Bohonowych JES, Peng S, Gopal U, Hance MW, Wing SB, Argraves KM, Lundgren K, Isaacs JS. Comparative analysis of novel and conventional Hsp90 inhibitors on HIF activity and angiogenic potential in clear cell renal cell carcinoma: implications for clinical evaluation. BMC Cancer 2011; 11:520. [PMID: 22172030 PMCID: PMC3259130 DOI: 10.1186/1471-2407-11-520] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/15/2011] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Perturbing Hsp90 chaperone function targets hypoxia inducible factor (HIF) function in a von Hippel-Lindau (VHL) independent manner, and represents an approach to combat the contribution of HIF to cell renal carcinoma (CCRCC) progression. However, clinical trials with the prototypic Hsp90 inhibitor 17-AAG have been unsuccessful in halting the progression of advanced CCRCC. METHODS Here we evaluated a novel next generation small molecule Hsp90 inhibitor, EC154, against HIF isoforms and HIF-driven molecular and functional endpoints. The effects of EC154 were compared to those of the prototypic Hsp90 inhibitor 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589. RESULTS The findings indicate that EC154 is a potent inhibitor of HIF, effective at doses 10-fold lower than 17-AAG. While EC154, 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589 impaired HIF transcriptional activity, CCRCC cell motility, and angiogenesis; these effects did not correlate with their ability to diminish HIF protein expression. Further, our results illustrate the complexity of HIF targeting, in that although these agents suppressed HIF transcripts with differential dynamics, these effects were not predictive of drug efficacy in other relevant assays. CONCLUSIONS We provide evidence for EC154 targeting of HIF in CCRCC and for LBH589 acting as a suppressor of both HIF-1 and HIF-2 activity. We also demonstrate that 17-AAG and EC154, but not LBH589, can restore endothelial barrier function, highlighting a potentially new clinical application for Hsp90 inhibitors. Finally, given the discordance between HIF activity and protein expression, we conclude that HIF expression is not a reliable surrogate for HIF activity. Taken together, our findings emphasize the need to incorporate an integrated approach in evaluating Hsp90 inhibitors within the context of HIF suppression.
Collapse
Affiliation(s)
- Jessica E S Bohonowych
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | |
Collapse
|
116
|
El Guerrab A, Zegrour R, Nemlin CC, Vigier F, Cayre A, Penault-Llorca F, Rossignol F, Bignon YJ. Differential impact of EGFR-targeted therapies on hypoxia responses: implications for treatment sensitivity in triple-negative metastatic breast cancer. PLoS One 2011; 6:e25080. [PMID: 21966417 PMCID: PMC3178587 DOI: 10.1371/journal.pone.0025080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/24/2011] [Indexed: 12/27/2022] Open
Abstract
Background In solid tumors, such as breast cancer, cells are exposed to hypoxia. Cancer cells adapt their metabolism by activating hypoxia-inducible factors (HIFs) that promote the transcription of genes involved in processes such as cell survival, drug resistance and metastasis. HIF-1 is also induced in an oxygen-independent manner through the activation of epidermal growth factor receptor tyrosine kinase (EGFR-TK). Triple-negative breast cancer (TNBC) is a subtype of invasive breast cancer characterized by negative expression of hormonal and HER2 receptors, and this subtype generally overexpresses EGFR. Sensitivity to three EGFR inhibitors (cetuximab, gefitinib and lapatinib, an HER2/EGFR-TK inhibitor) was evaluated in a metastatic TNBC cell model (MDA-MB-231), and the impact of these drugs on the activity and stability of HIF was assessed. Methodology/Principal Findings MDA-MB-231 cells were genetically modified to stably express an enhanced green fluorescent protein (EGFP) induced by hypoxia; the Ca9-GFP cell model reports HIF activity, whereas GFP-P564 reports HIF stability. The reporter signal was monitored by flow cytometry. HIF-1 DNA-binding activity, cell migration and viability were also evaluated in response to EGFR inhibitors. Cell fluorescence signals strongly increased under hypoxic conditions (> 30-fold). Cetuximab and lapatinib did not affect the signal induced by hypoxia, whereas gefitinib sharply reduced its intensity in both cell models and also diminished HIF-1 alpha levels and HIF-1 DNA-binding activity in MDA-MB-231 cells. This gefitinib feature was associated with its ability to inhibit MDA-MB-231 cell migration and to induce cell mortality in a dose-dependent manner. Cetuximab and lapatinib had no effect on cell migration or cell viability. Conclusion Resistance to cetuximab and lapatinib and sensitivity to gefitinib were associated with their ability to modulate HIF activity and stability. In conclusion, downregulation of HIF-1 through EGFR signaling seems to be required for the induction of a positive response to EGFR-targeted therapies in TNBC.
Collapse
Affiliation(s)
- Abderrahim El Guerrab
- Department of Oncogenetic, Centre Jean Perrin, Clermont-Ferrand, France
- ADELBIO, Faculty of Medicine, Centre Biomédical de Recherche et Valorisation, Clermont-Ferrand, France
| | - Rabah Zegrour
- ADELBIO, Faculty of Medicine, Centre Biomédical de Recherche et Valorisation, Clermont-Ferrand, France
| | - Carine-Christiane Nemlin
- ADELBIO, Faculty of Medicine, Centre Biomédical de Recherche et Valorisation, Clermont-Ferrand, France
| | - Flavie Vigier
- ADELBIO, Faculty of Medicine, Centre Biomédical de Recherche et Valorisation, Clermont-Ferrand, France
| | - Anne Cayre
- Department of Pathology, Centre Jean Perrin, Clermont-Ferrand, France
| | | | - Fabrice Rossignol
- ADELBIO, Faculty of Medicine, Centre Biomédical de Recherche et Valorisation, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetic, Centre Jean Perrin, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
117
|
Chamboredon S, Ciais D, Desroches-Castan A, Savi P, Bono F, Feige JJ, Cherradi N. Hypoxia-inducible factor-1α mRNA: a new target for destabilization by tristetraprolin in endothelial cells. Mol Biol Cell 2011; 22:3366-78. [PMID: 21775632 PMCID: PMC3172262 DOI: 10.1091/mbc.e10-07-0617] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endothelial cells (ECs) are the primary sensors of variations in blood oxygen concentrations. They use the hypoxia-sensitive stabilization of the hypoxia-inducible factor-1α (HIF-1α) transcription factor to engage specific transcriptional programs in response to oxygen changes. The regulation of HIF-1α expression is well documented at the protein level, but much less is known about the control of its mRNA stability. Using small interfering RNA knockdown experiments, reporter gene analyses, ribonucleoprotein immunoprecipitations, and mRNA half-life determinations, we report a new regulatory mechanism of HIF-1α expression in ECs. We demonstrate that 1) sustained hypoxia progressively decreases HIF-1α mRNA while HIF-1α protein levels rapidly peak after 3 h and then slowly decay; 2) silencing the mRNA-destabilizing protein tristetraprolin (TTP) in ECs reverses hypoxia-induced down-regulation of HIF-1α mRNA; 3) the decrease in the half-life of Luciferase-HIF-1α-3'UTR reporter transcript that is observed after prolonged hypoxia is mediated by TTP; 4) TTP binds specifically to HIF-1α 3'UTR; and 5) the most distal AU-rich elements present in HIF-1α 3'UTR (composed of two hexamers) are sufficient for TTP-mediated repression. Finally, we bring evidence that silencing TTP expression enhances hypoxia-induced increase in HIF-1α protein levels with a concomitant increase in the levels of the carbonic anhydrase enzyme CA IX, thus suggesting that TTP physiologically controls the expression of a panel of HIF-1α target genes. Altogether, these data reveal a new role for TTP in the control of gene expression during the response of endothelial cell to hypoxia.
Collapse
Affiliation(s)
- Sandrine Chamboredon
- Institut National de la Santé et de la Recherche Médicale, Unité 1036 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
118
|
Fishel ML, Jiang Y, Rajeshkumar NV, Scandura G, Sinn AL, He Y, Shen C, Jones DR, Pollok KE, Ivan M, Maitra A, Kelley MR. Impact of APE1/Ref-1 redox inhibition on pancreatic tumor growth. Mol Cancer Ther 2011; 10:1698-708. [PMID: 21700832 DOI: 10.1158/1535-7163.mct-11-0107] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is especially a deadly form of cancer with a survival rate less than 2%. Pancreatic cancers respond poorly to existing chemotherapeutic agents and radiation, and progress for the treatment of pancreatic cancer remains elusive. To address this unmet medical need, a better understanding of critical pathways and molecular mechanisms involved in pancreatic tumor development, progression, and resistance to traditional therapy is therefore critical. Reduction-oxidation (redox) signaling systems are emerging as important targets in pancreatic cancer. AP endonuclease1/Redox effector factor 1 (APE1/Ref-1) is upregulated in human pancreatic cancer cells and modulation of its redox activity blocks the proliferation and migration of pancreatic cancer cells and pancreatic cancer-associated endothelial cells in vitro. Modulation of APE1/Ref-1 using a specific inhibitor of APE1/Ref-1's redox function, E3330, leads to a decrease in transcription factor activity for NFκB, AP-1, and HIF1α in vitro. This study aims to further establish the redox signaling protein APE1/Ref-1 as a molecular target in pancreatic cancer. Here, we show that inhibition of APE1/Ref-1 via E3330 results in tumor growth inhibition in cell lines and pancreatic cancer xenograft models in mice. Pharmacokinetic studies also show that E3330 attains more than10 μmol/L blood concentrations and is detectable in tumor xenografts. Through inhibition of APE1/Ref-1, the activity of NFκB, AP-1, and HIF1α that are key transcriptional regulators involved in survival, invasion, and metastasis is blocked. These data indicate that E3330, inhibitor of APE1/Ref-1, has potential in pancreatic cancer and clinical investigation of APE1/Ref-1 molecular target is warranted.
Collapse
Affiliation(s)
- Melissa L Fishel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University of School of Medicine, 980 W. Walnut, R3-548, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Overexpression of carbonic anhydrase IX (CAIX) is an independent unfavorable prognostic marker in endometrioid ovarian cancer. Virchows Arch 2011; 459:193-200. [PMID: 21691815 DOI: 10.1007/s00428-011-1105-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/03/2011] [Accepted: 06/05/2011] [Indexed: 01/25/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a strictly membranous expressed metalloenzyme involved in cell adhesion, pH homeostasis, and cancer progression. This study was designed to assess the role of CAIX in primary ovarian cancer. Two hundred five well-characterized primary ovarian carcinomas were analyzed on a tissue microarray. CAIX expression was determined by immunohistochemistry using a four-step scoring system. Moderate and strong membranous CAIX expression was found in 37 out of 205 (18%) of all assessable ovarian cancer specimens. High levels of CAIX expression were related to mucinous and endometrioid phenotype of ovarian carcinomas (p < 0.05). There was no association between CAIX overexpression and tumor stage, grading, and mitotic count of ovarian carcinomas (p > 0.05). In univariate Cox regression analysis, advanced tumor stage (p < 0.01), high tumor grade (p = 0.017), high mitotic count (p = 0.025), and high CAIX expression levels (p = 0.031) were correlated to shorter overall patient survival. High pT stage (p = 0.036) and CAIX overexpression were connected to poor clinical outcome in endometrioid ovarian carcinomas. Multivariate Cox regression hazard analysis comprising tumor stage, tumor grade, mitotic count, and CAIX expression revealed pT2/3 stage and CAIX overexpression (scores 2 and 3) as independent prognostic markers in ovarian cancer (p < 0.01, each) as well as in the subgroup of endometrioid carcinomas (p < 0.05, each). In conclusion, CAIX is overexpressed in a substantial proportion of mucinous and endometrioid ovarian carcinomas and connected to poor patient outcome. Our data support the potential therapeutic benefit of newly developed targeting antibodies in advanced ovarian cancer.
Collapse
|
120
|
Abstract
Hypoxia is a feature of most tumours, albeit with variable incidence and severity within a given patient population. It is a negative prognostic and predictive factor owing to its multiple contributions to chemoresistance, radioresistance, angiogenesis, vasculogenesis, invasiveness, metastasis, resistance to cell death, altered metabolism and genomic instability. Given its central role in tumour progression and resistance to therapy, tumour hypoxia might well be considered the best validated target that has yet to be exploited in oncology. However, despite an explosion of information on hypoxia, there are still major questions to be addressed if the long-standing goal of exploiting tumour hypoxia is to be realized. Here, we review the two main approaches, namely bioreductive prodrugs and inhibitors of molecular targets upon which hypoxic cell survival depends. We address the particular challenges and opportunities these overlapping strategies present, and discuss the central importance of emerging diagnostic tools for patient stratification in targeting hypoxia.
Collapse
Affiliation(s)
- William R Wilson
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
121
|
Rademakers SE, Lok J, van der Kogel AJ, Bussink J, Kaanders JHAM. Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer 2011; 11:167. [PMID: 21569415 PMCID: PMC3115911 DOI: 10.1186/1471-2407-11-167] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 05/12/2011] [Indexed: 11/21/2022] Open
Abstract
Background The cellular response of malignant tumors to hypoxia is diverse. Several important endogenous metabolic markers are upregulated under hypoxic conditions. We examined the staining patterns and co-expression of HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4 with the exogenous hypoxic cell marker pimonidazole and the association of marker expression with clinicopathological characteristics. Methods 20 biopsies of advanced head and neck carcinomas were immunohistochemically stained and analyzed. All patients were given the hypoxia marker pimonidazole intravenously 2 h prior to biopsy taking. The tumor area positive for each marker, the colocalization of the different markers and the distribution of the markers in relation to the blood vessels were assessed by semiautomatic quantitative analysis. Results MCT1 staining was present in hypoxic (pimonidazole stained) as well as non-hypoxic areas in almost equal amounts. MCT1 expression showed a significant overall correlation (r = 0.75, p < 0.001) and strong spatial relationship with CAIX. LDH-5 showed the strongest correlation with pimonidazole (r = 0.66, p = 0.002). MCT4 and GLUT-1 demonstrated a typical diffusion-limited hypoxic pattern and showed a high degree of colocalization. Both MCT4 and CAIX showed a higher expression in the primary tumor in node positive patients (p = 0.09 both). Conclusions Colocalization and staining patterns of metabolic and hypoxia-related proteins provides valuable additional information over single protein analyses and can improve the understanding of their functions and environmental influences.
Collapse
Affiliation(s)
- Saskia E Rademakers
- Department of Radiation Oncology, Radboud University, Nijmegen Medical Centre, The Netherlands.
| | | | | | | | | |
Collapse
|
122
|
Accumulation and distribution of doxorubicin in tumour spheroids: the influence of acidity and expression of P-glycoprotein. Cancer Chemother Pharmacol 2011; 68:1179-90. [DOI: 10.1007/s00280-011-1598-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/28/2011] [Indexed: 01/06/2023]
|
123
|
Woelber L, Kress K, Kersten JF, Choschzick M, Kilic E, Herwig U, Lindner C, Schwarz J, Jaenicke F, Mahner S, Milde-Langosch K, Mueller V, Ihnen M. Carbonic anhydrase IX in tumor tissue and sera of patients with primary cervical cancer. BMC Cancer 2011; 11:12. [PMID: 21223596 PMCID: PMC3027191 DOI: 10.1186/1471-2407-11-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 01/11/2011] [Indexed: 12/25/2022] Open
Abstract
Background Carbonic anhydrase IX (CAIX) is a membranous expressed metalloenzyme involved in pH homeostasis and cell adhesion. The protein is overexpressed in a variety of tumors and potentially associated with negative outcome. This study was designed to investigate the prognostic role of CAIX in serum and tumor tissue of patients with primary cervical cancer. Methods Tumor samples of 221 consecutive patients with primary cervical cancer who underwent surgery between 1993 and 2008 were analyzed for CAIX expression by immunohistochemistry. Additionally, preoperative serum CAIX concentrations were determined by ELISA in a subset of patients. Correlation with intratumoral CAIX expression as well as clinicopathological factors and outcome was analyzed. Results CAIX expression was observed in 81.9% of the tumor specimens; 62.0% showed a moderate or strong staining intensity. Moderate/strong expression was associated with squamous histology (p = 0.024), advanced tumor stage (p = 0.001), greater invasion depth (p = 0.025), undifferentiated tumor grade (p < 0.001) and high preoperative SCC-Ag values (p = 0.042). Furthermore patients with moderate/strong intratumoral CAIX expression had a higher number of metastatic lymph nodes compared to those with none/weak intratumoral expression levels (p = 0.047) and there was a non-significant association between high intratumoral CAIX expression and shorter survival (p = 0.118). Preoperative serum concentrations of CAIX ranged between 23 and 499 pg/mL and did not correlate with intratumoral expression or other clinicopathological variables. Conclusion CAIX is associated with advanced tumor stages and lymph node metastases in cervical cancer, potentially representing a new target in this disease. In contrast to other epithelial cancers we could not observe a correlation between serum CAIX and its intratumoral expression.
Collapse
Affiliation(s)
- Linn Woelber
- Department of Gynecology and Gynecologic Oncology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Andersen S, Eilertsen M, Donnem T, Al-Shibli K, Al-Saad S, Busund LT, Bremnes RM. Diverging prognostic impacts of hypoxic markers according to NSCLC histology. Lung Cancer 2010; 72:294-302. [PMID: 21075472 DOI: 10.1016/j.lungcan.2010.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/24/2010] [Accepted: 10/05/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND We aimed to explore the prognostic impact of the hypoxia induced factors (HIFαs) 1-2 and the metabolic HIF-regulated glucose transporter GLUT1, lactate dehydrogenase 5 (LDH5) and carbonic anhydrase IX (CAIX) in non-small cell lung cancer (NSCLC). METHODS Tumor and stroma tissue samples from 335 unselected patients with stage I-IIIA NSCLC were obtained and tissue microarrays constructed. Immunohistochemistry was used to evaluate expression. RESULTS For squamous cell carcinoma patients, high tumor cell expression of HIF1α and low stromal cell expression of HIF1α and HIF2α correlated significantly with a poor disease-specific survival (DSS) in both univariate (tumor HIF1α, P=0.001; stromal HIF1α, P=0.009; stromal HIF2α, P=0.005) and multivariate analyses (tumor HIF1α, HR=3.3, P=0.001; stromal HIF1α, HR=2.1, P=0.008; stromal HIF2α, HR 2.3, P=0.005). Among adenocarcinoma patients high tumor expression of GLUT1 and low stromal expression of LDH5 correlated significantly with a poor DSS in both univariate (GLUT1, P=0.01; LDH5, P=0.03) and multivariate analyses (GLUT1, HR=1.9, P=0.046; LDH5, HR=2.3, P=0.03). CONCLUSION These markers show highly diverging prognostic impacts between histological subgroups and between tumor and stromal compartments in NSCLC.
Collapse
Affiliation(s)
- Sigve Andersen
- Institute of Clinical Medicine, University of Tromso, Norway.
| | | | | | | | | | | | | |
Collapse
|
125
|
Dafni H, Larson PEZ, Hu S, Yoshihara HAI, Ward CS, Venkatesh HS, Wang C, Zhang X, Vigneron DB, Ronen SM. Hyperpolarized 13C spectroscopic imaging informs on hypoxia-inducible factor-1 and myc activity downstream of platelet-derived growth factor receptor. Cancer Res 2010; 70:7400-10. [PMID: 20858719 DOI: 10.1158/0008-5472.can-10-0883] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recent development of hyperpolarized (13)C magnetic resonance spectroscopic imaging provides a novel method for in vivo metabolic imaging with potential applications for detection of cancer and response to treatment. Chemotherapy-induced apoptosis was shown to decrease the flux of hyperpolarized (13)C label from pyruvate to lactate due to depletion of NADH, the coenzyme of lactate dehydrogenase. In contrast, we show here that in PC-3MM2 tumors, inhibition of platelet-derived growth factor receptor with imatinib reduces the conversion of hyperpolarized pyruvate to lactate by lowering the expression of lactate dehydrogenase itself. This was accompanied by reduced expression of vascular endothelial growth factor and glutaminase, and is likely mediated by reduced expression of their transcriptional factors hypoxia-inducible factor-1 and c-Myc. Our results indicate that hyperpolarized (13)C MRSI could potentially detect the molecular effect of various cell signaling inhibitors, thus providing a radiation-free method to predict tumor response.
Collapse
Affiliation(s)
- Hagit Dafni
- Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Poulsen SA. Carbonic anhydrase inhibition as a cancer therapy: a review of patent literature, 2007 - 2009. Expert Opin Ther Pat 2010; 20:795-806. [PMID: 20476848 DOI: 10.1517/13543776.2010.484803] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The functional contribution of membrane-bound extracellular carbonic anhydrases (CAs) to hypoxic tumor growth and progression has long been hypothesized; however, recent convergent evidence from a number of groups strongly implicates these CAs as key prosurvival enzymes during tumor hypoxia. From this perspective targeting the inhibition of cancer-associated CA enzymes, most notably CA IX and XII, has recently been identified as a mechanistically novel scientific opportunity with great potential as a new cancer drug target. AREAS COVERED IN THIS REVIEW This review covers world patent applications filed during the 2007 - 2009 period for small molecule approaches; non-small molecule approaches are not within the scope of this review. WHAT THE READER WILL GAIN The reader will be provided with a background of the biology of CAs as well as the recent research findings that have validated the crucial prosurvival role of CAs in hypoxic tumors. The review will highlight small molecule molecular methods that modulate CAs as an anti-cancer therapeutic strategy. TAKE HOME MESSAGE Much of what has been reported in the patent literature during the period 2007 - 2009 is based on alleged therapeutic benefits of CA inhibitors in cancer. Recently appropriate CA-relevant cell and animal models of tumor hypoxia for the evaluation of compounds have become available and the verification of the ability of small molecules to modulate CA activity as a cancer therapy or as a diagnostic and/or prognostic tool is now possible and probable. The CA field will thus provide for a scientifically exciting and possibly rewarding next few years, accelerated by the growing interest in the potential clinical applications of this enzyme class in oncology.
Collapse
Affiliation(s)
- Sally-Ann Poulsen
- Griffith University, Eskitis Institute for Cell and Molecular Therapies, 170 Kessels Road, Nathan, Queensland 4111, Australia.
| |
Collapse
|
127
|
Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H, Nagano H, Barnard GF, Doki Y, Mori M. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 2010; 120:3326-39. [PMID: 20697159 DOI: 10.1172/jci42550] [Citation(s) in RCA: 487] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 06/30/2010] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are generally dormant or slowly cycling tumor cells that have the ability to reconstitute tumors. They are thought to be involved in tumor resistance to chemo/radiation therapy and tumor relapse and progression. However, neither their existence nor their identity within many cancers has been well defined. Here, we have demonstrated that CD13 is a marker for semiquiescent CSCs in human liver cancer cell lines and clinical samples and that targeting these cells might provide a way to treat this disease. CD13+ cells predominated in the G0 phase of the cell cycle and typically formed cellular clusters in cancer foci. Following treatment, these cells survived and were enriched along the fibrous capsule where liver cancers usually relapse. Mechanistically, CD13 reduced ROS-induced DNA damage after genotoxic chemo/radiation stress and protected cells from apoptosis. In mouse xenograft models, combination of a CD13 inhibitor and the genotoxic chemotherapeutic fluorouracil (5-FU) drastically reduced tumor volume compared with either agent alone. 5-FU inhibited CD90+ proliferating CSCs, some of which produce CD13+ semiquiescent CSCs, while CD13 inhibition suppressed the self-renewing and tumor-initiating ability of dormant CSCs. Therefore, combining a CD13 inhibitor with a ROS-inducing chemo/radiation therapy may improve the treatment of liver cancer.
Collapse
Affiliation(s)
- Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Architectural heterogeneity in tumors caused by differentiation alters intratumoral drug distribution and affects therapeutic synergy of antiangiogenic organoselenium compound. JOURNAL OF ONCOLOGY 2010; 2010:396286. [PMID: 20445750 PMCID: PMC2860580 DOI: 10.1155/2010/396286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 01/22/2010] [Indexed: 11/17/2022]
Abstract
Tumor differentiation enhances morphologic and microvascular heterogeneity fostering hypoxia that retards intratumoral drug delivery, distribution, and compromise therapeutic efficacy. In this study, the influence of tumor biologic heterogeneity on the interaction between cytotoxic chemotherapy and selenium was examined using a panel of human tumor xenografts representing cancers of the head and neck and lung along with tissue microarray analysis of human surgical samples. Tumor differentiation status, microvessel density, interstitial fluid pressure, vascular phenotype, and drug delivery were correlated with the degree of enhancement of chemotherapeutic efficacy by selenium. Marked potentiation of antitumor activity was observed in H69 tumors that exhibited a well-vascularized, poorly differentiated phenotype. In comparison, modulation of chemotherapeutic efficacy by antiangiogenic selenium was generally lower or absent in well-differentiated tumors with multiple avascular hypoxic, differentiated regions. Tumor histomorphologic heterogeneity was found prevalent in the clinical samples studied and represents a primary and critical physiological barrier to chemotherapy.
Collapse
|
129
|
Transcriptional response to hypoxia in the aquatic fungus Blastocladiella emersonii. EUKARYOTIC CELL 2010; 9:915-25. [PMID: 20418381 DOI: 10.1128/ec.00047-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly downregulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe(2+) ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1alpha, caused a significant decrease in the levels of certain upregulated hypoxic genes.
Collapse
|
130
|
Choschzick M, Woelber L, Hess S, zu Eulenburg C, Schwarz J, Simon R, Mahner S, Jaenicke F, Müller V. Overexpression of carbonic anhydrase IX (CAIX) in vulvar cancer is associated with tumor progression and development of locoregional lymph node metastases. Virchows Arch 2010; 456:483-90. [PMID: 20358226 DOI: 10.1007/s00428-010-0905-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/31/2010] [Accepted: 03/12/2010] [Indexed: 01/16/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a strictly membranous expressed metalloenzyme involved in cell adhesion, pH homeostasis, and cancer progression. The protein is specifically overexpressed in a wide variety of malignant tumors. This study was designed to assess the role of CAIX in primary vulvar cancer. One hundred forty-two well-characterized primary vulvar carcinomas were analyzed on a tissue microarray (TMA). Three tissue cores were sampled from each tumor. CAIX expression was determined by immunohistochemistry, using a four-step scoring system. To determine CAIX expression in benign vulvar tissue, we constructed a TMA with 120 samples of normal mucosa and non-neoplastic diseases. CAIX expression was found in 77/135 (57%) of all assessable vulvar cancer specimens and 48 (35.5%) exhibited a moderate or strong expression. CAIX expression in vulvar carcinomas was significantly stronger compared to non-neoplastic vulvar tissue (p < 0.001). High levels of CAIX expression were related to pT stage (p < 0.01), tumor size (p < 0.01), depth of invasion (p < 0.05), as well as inguinal lymph node metastases (p < 0.05). There was also a trend towards shorter recurrence-free patient survival in CAIX-positive compared to CAIX-negative vulvar cancers. CAIX staining results in different tissue cores from the same tumor were homogeneous, raising the possibility of a hypoxia-independent expression. In conclusion, CAIX is overexpressed in the majority of vulvar carcinomas with relationships to advanced tumor stages and development of lymph node metastases. Our data support the potential therapeutic benefit of newly developed targeting antibodies in advanced vulvar cancer.
Collapse
Affiliation(s)
- Matthias Choschzick
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Shao Y, Li Y, Zhang J, Liu D, Liu F, Zhao Y, Shen T, Li F. Involvement of histone deacetylation in MORC2-mediated down-regulation of carbonic anhydrase IX. Nucleic Acids Res 2010; 38:2813-24. [PMID: 20110259 PMCID: PMC2875037 DOI: 10.1093/nar/gkq006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Carbonic anhydrase IX (CAIX) plays an important role in the growth and survival of tumor cells. MORC2 is a member of the MORC protein family. The MORC proteins contain a CW-type zinc finger domain and are predicted to have the function of regulating transcription, but no MORC2 target genes have been identified. Here we performed a DNA microarray hybridization and found CAIX mRNA to be down-regulated 8-fold when MORC2 was overexpressed. This result was further confirmed by northern and western blot analysis. Our results also showed that the protected region 4 (PR4) was important for the repression function of MORC2. Moreover, MORC2 decreased the acetylation level of histone H3 at the CAIX promoter. Meanwhile, trichostatin A (TSA) had an increasing effect on CAIX promoter activity. Among the six HDACs tested, histone deacetylase 4 (HDAC4) had a much more prominent effect on CAIX repression. ChIP and ChIP Re-IP assays showed that MORC2 and HDAC4 were assembled on the same region of the CAIX promoter. Importantly, we further confirmed that both proteins are simultaneously present in the PR4-binding complex. These results may contribute to understanding the molecular mechanisms of CAIX regulation.
Collapse
Affiliation(s)
- Yangguang Shao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Linehan WM, Bratslavsky G, Pinto PA, Schmidt LS, Neckers L, Bottaro DP, Srinivasan R. Molecular diagnosis and therapy of kidney cancer. Annu Rev Med 2010; 61:329-43. [PMID: 20059341 PMCID: PMC2921612 DOI: 10.1146/annurev.med.042808.171650] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Kidney cancer is not a single disease; it is made up of a number of cancers that occur in the kidney, each having a different histology, following a different clinical course, responding differently to therapy, and caused by a different gene. Study of the genes underlying kidney cancer has revealed that it is fundamentally a metabolic disorder. Understanding the genetic basis of cancer of the kidney has significant implications for diagnosis and management of this disease. VHL is the gene for clear cell kidney cancer. The VHL protein forms a complex that targets the hypoxia-inducible factors for ubiquitin-mediated degradation. Knowledge of this pathway provided the foundation for the development of novel therapeutic approaches now approved for treatment of this disease. MET is the gene for the hereditary form of type 1 papillary renal carcinoma and is mutated in a subset of sporadic type 1 papillary kidney cancers. Clinical trials are currently ongoing with agents targeting the tyrosine kinase domain of MET in sporadic and hereditary forms of papillary kidney cancer. BHD is the gene for the hereditary type of chromophobe kidney cancer. It is thought to be involved in energy and/or nutrient sensing through the AMPK and mTOR signaling pathways. Hereditary leiomyomatosis renal cell carcinoma, a hereditary form of type 2 papillary renal carcinoma, is caused by inactivation of a Krebs cycle enzyme due to mutation. Knowledge of these kidney cancer gene pathways has enabled new approaches in the management of this disease and has provided the foundation for the development of targeted therapeutics.
Collapse
Affiliation(s)
- W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
133
|
Chiche J, Brahimi-Horn MC, Pouysségur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 2009; 14:771-94. [PMID: 20015196 PMCID: PMC3823111 DOI: 10.1111/j.1582-4934.2009.00994.x] [Citation(s) in RCA: 475] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Maintenance of cellular pH homeostasis is fundamental to life. A number of key intracellular pH (pHi) regulating systems including the Na+/H+ exchangers, the proton pump, the monocarboxylate transporters, the HCO3− transporters and exchangers and the membrane-associated and cytosolic carbonic anhydrases cooperate in maintaining a pHi that is permissive for cell survival. A common feature of tumours is acidosis caused by hypoxia (low oxygen tension). In addition to oncogene activation and transformation, hypoxia is responsible for inducing acidosis through a shift in cellular metabolism that generates a high acid load in the tumour microenvironment. However, hypoxia and oncogene activation also allow cells to adapt to the potentially toxic effects of an excess in acidosis. Hypoxia does so by inducing the activity of a transcription factor the hypoxia-inducible factor (HIF), and particularly HIF-1, that in turn enhances the expression of a number of pHi-regulating systems that cope with acidosis. In this review, we will focus on the characterization and function of some of the hypoxia-inducible pH-regulating systems and their induction by hypoxic stress. It is essential to understand the fundamentals of pH regulation to meet the challenge consisting in targeting tumour metabolism and acidosis as an anti-tumour approach. We will summarize strategies that take advantage of intracellular and extracellular pH regulation to target the primary tumour and metastatic growth, and to turn around resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Johanna Chiche
- Institute of Developmental Biology and Cancer Research, University of Nice, CNRS UMR, Centre A. Lacassagne, Nice, France
| | | | | |
Collapse
|
134
|
Messner S, Schuermann D, Altmeyer M, Kassner I, Schmidt D, Schär P, Müller S, Hottiger MO. Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function. FASEB J 2009; 23:3978-89. [PMID: 19622798 DOI: 10.1096/fj.09-137695] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a chromatin-associated nuclear protein and functions as a molecular stress sensor. At the cellular level, PARP1 has been implicated in a wide range of processes, such as maintenance of genome stability, cell death, and transcription. PARP1 functions as a transcriptional coactivator of nuclear factor kappaB (NF-kappaB) and hypoxia inducible factor 1 (HIF1). In proteomic studies, PARP1 was found to be modified by small ubiquitin-like modifiers (SUMOs). Here, we characterize PARP1 as a substrate for modification by SUMO1 and SUMO3, both in vitro and in vivo. PARP1 is sumoylated at the single lysine residue K486 within its automodification domain. Interestingly, modification of PARP1 with SUMO does not affect its ADP-ribosylation activity but completely abrogates p300-mediated acetylation of PARP1, revealing an intriguing crosstalk of sumoylation and acetylation on PARP1. Genetic complementation of PARP1-depleted cells with wild-type and sumoylation-deficient PARP1 revealed that SUMO modification of PARP1 restrains its transcriptional coactivator function and subsequently reduces gene expression of distinct PARP1-regulated target genes.
Collapse
Affiliation(s)
- Simon Messner
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|