101
|
CXC Chemokine Signaling in Progression of Epithelial Ovarian Cancer: Theranostic Perspectives. Int J Mol Sci 2022; 23:ijms23052642. [PMID: 35269786 PMCID: PMC8910147 DOI: 10.3390/ijms23052642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with epithelial ovarian cancer (EOC) are often diagnosed at an advanced stage due to nonspecific symptoms and ineffective screening approaches. Although chemotherapy has been available and widely used for the treatment of advanced EOC, the overall prognosis remains dismal. As part of the intrinsic defense mechanisms against cancer development and progression, immune cells are recruited into the tumor microenvironment (TME), and this process is directed by the interactions between different chemokines and their receptors. In this review, the functional significance of CXC chemokine ligands/chemokine receptors (CXCL/CXCR) and their roles in modulating EOC progression are summarized. The status and prospects of CXCR/CXCL-based theranostic strategies in EOC management are also discussed.
Collapse
|
102
|
Jiang J, Mei J, Ma Y, Jiang S, Zhang J, Yi S, Feng C, Liu Y, Liu Y. Tumor hijacks macrophages and microbiota through extracellular vesicles. EXPLORATION (BEIJING, CHINA) 2022; 2:20210144. [PMID: 37324578 PMCID: PMC10190998 DOI: 10.1002/exp.20210144] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 06/17/2023]
Abstract
The tumor microenvironment (TME) is a biological system with sophisticated constituents. In addition to tumor cells, tumor-associated macrophages (TAMs) and microbiota are also dominant components. The phenotypic and functional changes of TAMs are widely considered to be related to most tumor progressions. The chronic colonization of pathogenic microbes and opportunistic pathogens accounts for the generation and development of tumors. As messengers of cell-to-cell communication, tumor-derived extracellular vesicles (TDEVs) can transfer various malignant factors, regulating physiological and pathological changes in the recipients and affecting TAMs and microbes in the TME. Despite the new insights into tumorigenesis and progress brought by the above factors, the crosstalk among tumor cells, macrophages, and microbiota remain elusive, and few studies have focused on how TDEVs act as an intermediary. We reviewed how tumor cells recruit and domesticate macrophages and microbes through extracellular vehicles and how hijacked macrophages and microbiota interact with tumor-promoting feedback, achieving a reciprocal coexistence under the TME and working together to facilitate tumor progression. It is significant to seek evidence to clarify those specific interactions and reveal therapeutic targets to curb tumor progression and improve prognosis.
Collapse
Affiliation(s)
- Jipeng Jiang
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing P. R. China
- University of Chinese Academy of Science Beijing P. R. China
| | - Yongfu Ma
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Shasha Jiang
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Jian Zhang
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Shaoqiong Yi
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Changjiang Feng
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Yang Liu
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing P. R. China
- GBA National Institute for Nanotechnology Innovation Guangdong P. R. China
| |
Collapse
|
103
|
Jahan S, Mukherjee S, Ali S, Bhardwaj U, Choudhary RK, Balakrishnan S, Naseem A, Mir SA, Banawas S, Alaidarous M, Alyenbaawi H, Iqbal D, Siddiqui AJ. Pioneer Role of Extracellular Vesicles as Modulators of Cancer Initiation in Progression, Drug Therapy, and Vaccine Prospects. Cells 2022; 11:490. [PMID: 35159299 PMCID: PMC8833976 DOI: 10.3390/cells11030490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading diseases, causing deaths worldwide. Nearly 10 million deaths were reported in 2020 due to cancer alone. Several factors are involved in cancer progressions, such as lifestyle and genetic characteristics. According to a recent report, extracellular vesicles (EVs) are involved in cancer initiation, progression, and therapy failure. EVs can play a major role in intracellular communication, the maintenance of tissue homeostasis, and pathogenesis in several types of diseases. In a healthy person, EVs carry different cargoes, such as miRNA, lncRNA etc., to help other body functions. On the other hand, the same EV in a tumor microenvironment carries cargoes such as miRNA, lncRNA, etc., to initiate or help cancer progression at various stages. These stages may include the proliferation of cells and escape from apoptosis, angiogenesis, cell invasion, and metastasis, reprogramming energy metabolism, evasion of the immune response, and transfer of mutations. Tumor-derived EVs manipulate by altering normal functions of the body and affect the epigenetics of normal cells by limiting the genetic makeup through transferring mutations, histone modifications, etc. Tumor-derived EVs also pose therapy resistance through transferring drug efflux pumps and posing multiple drug resistances. Such EVs can also help as biomarkers for different cancer types and stages, which ultimately help with cancer diagnosis at early stages. In this review, we will shed light on EVs' role in performing normal functions of the body and their position in different hallmarks of cancer, in altering the genetics of a normal cell in a tumor microenvironment, and their role in therapy resistance, as well as the importance of EVs as diagnostic tools.
Collapse
Affiliation(s)
- Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shouvik Mukherjee
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Shaheen Ali
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Urvashi Bhardwaj
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Ranjay Kumar Choudhary
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Santhanaraj Balakrishnan
- Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Asma Naseem
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail 81451, Saudi Arabia
| |
Collapse
|
104
|
Hao Q, Wu Y, Wu Y, Wang P, Vadgama JV. Tumor-Derived Exosomes in Tumor-Induced Immune Suppression. Int J Mol Sci 2022; 23:1461. [PMID: 35163380 PMCID: PMC8836190 DOI: 10.3390/ijms23031461] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a class of small membrane-bound extracellular vesicles released by almost all cell types and present in all body fluids. Based on the studies of exosome content and their interactions with recipient cells, exosomes are now thought to mediate "targeted" information transfer. Tumor-derived exosomes (TEX) carry a cargo of molecules different from that of normal cell-derived exosomes. TEX functions to mediate distinct biological effects such as receptor discharge and intercellular cross-talk. The immune system defenses, which may initially restrict tumor progression, are progressively blunted by the broad array of TEX molecules that activate suppressive pathways in different immune cells. Herein, we provide a review of the latest research progress on TEX in the context of tumor-mediated immune suppression and discuss the potential as well as challenges of TEX as a target of immunotherapy.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
| | - Yong Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Piwen Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
105
|
Gallbladder Cancer Cell-Derived Exosome-Mediated Transfer of Leptin Promotes Cell Invasion and Migration by Modulating STAT3-Mediated M2 Macrophage Polarization. Anal Cell Pathol 2022; 2022:9994906. [PMID: 35111566 PMCID: PMC8803447 DOI: 10.1155/2022/9994906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/02/2022] Open
Abstract
Tumor-associated macrophage (TAM) is a major component of tumor microenvironment (TME) and plays critical role in the progression of cancer metastasis. However, TAM-mediated regulation in gallbladder cancer (GBC) has not been fully characterized. Here, we found that exosomes derived from GBC cell polarized macrophage to M2 phenotype, which then facilitated the invasion and migration of GBC cells. We discovered that leptin was enriched in GBC cell-derived exosomes. Exosomal leptin levels promoted invasion and migration of GBC-SD cells. The inhibition of leptin not only attenuated M2 macrophage of polarization but also inhibited the invasive and migratory ability of GBC cell. In addition, GBC-SD cell-derived exosomal leptin induced M2 polarization of macrophage via activation of STAT3 signal pathway. Taken together, our results suggested that GBC cells secrete exosome-enclosed leptin facilitated cell invasion and migration via polarizing TAM.
Collapse
|
106
|
Bao Q, Huang Q, Chen Y, Wang Q, Sang R, Wang L, Xie Y, Chen W. Tumor-Derived Extracellular Vesicles Regulate Cancer Progression in the Tumor Microenvironment. Front Mol Biosci 2022; 8:796385. [PMID: 35059436 PMCID: PMC8764126 DOI: 10.3389/fmolb.2021.796385] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles released by numerous kinds of cells, which are now increasingly considered as essential vehicles of cell-to-cell communication and biomarkers in disease diagnosis and treatment. They contain a variety of biomolecular components, including lipids, proteins and nucleic acids. These functional molecules can be transmitted between tumor cells and other stromal cells such as endothelial cells, fibroblasts and immune cells utilizing EVs. As a result, tumor-derived EVs can deliver molecules to remodel the tumor microenvironment, thereby influencing cancer progression. On the one hand, tumor-derived EVs reprogram functions of endothelial cells, promote cancer-associated fibroblasts transformation, induce resistance to therapy and inhibit the immune response to form a pro-tumorigenic environment. On the other hand, tumor-derived EVs stimulate the immune response to create an anti-tumoral environment. This article focuses on presenting a comprehensive and critical overview of the potential role of tumor-derived EVs-mediated communication in the tumor microenvironment.
Collapse
Affiliation(s)
- Qianqian Bao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Qianqian Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yunna Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Qiang Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ran Sang
- Bengbu Medical College, Bengbu, China.,The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
107
|
Extracellular vesicles in ovarian cancer chemoresistance, metastasis, and immune evasion. Cell Death Dis 2022; 13:64. [PMID: 35042862 PMCID: PMC8766448 DOI: 10.1038/s41419-022-04510-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
Chemoresistance and metastasis are the major challenges for the current ovarian cancer treatment. Understanding the mechanisms of ovarian cancer progression and metastasis is critically important for developing novel therapies. The advances in extracellular vesicles (EVs) research in recent years have attracted extensive attention. EVs contain a variety of proteins, RNAs, DNAs, and metabolites. Accumulating evidence indicates that ovarian cancer cells secrete a large amount of EVs, playing an important role in tumor progression and recurrence. In the microenvironment of ovarian tumor, EVs participate in the information transmission between stromal cells and immune cells, promoting the immune escape of ovarian cancer cells and facilitating cancer metastasis. Here, we review the recent advances of EVs in chemoresistance, mechanisms of metastasis, and immune evasion of ovarian cancer. Furthermore, we also discuss the challenges of EV research and future application of EVs as promising biomarker sources in response to therapy and in therapy-delivery approaches for ovarian cancer patients.
Collapse
|
108
|
Li C, Zhou T, Chen J, Li R, Chen H, Luo S, Chen D, Cai C, Li W. The role of Exosomal miRNAs in cancer. J Transl Med 2022; 20:6. [PMID: 34980158 PMCID: PMC8722109 DOI: 10.1186/s12967-021-03215-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Exosomal miRNAs have attracted much attention due to their critical role in regulating genes and the altered expression of miRNAs in virtually all cancers affecting humans (Sun et al. in Mol Cancer 17(1):14, 2018). Exosomal miRNAs modulate processes that interfere with cancer immunity and microenvironment, and are significantly involved in tumor growth, invasion, metastasis, angiogenesis and drug resistance. Fully investigating the detailed mechanism of miRNAs in the occurrence and development of various cancers could help not only in the treatment of cancers but also in the prevention of malignant diseases. The current review highlighted recently published advances regarding cancer-derived exosomes, e.g., sorting and delivery mechanisms for RNAs. Exosomal miRNAs that modulate cancer cell-to-cell communication, impacting tumor growth, angiogenesis, metastasis and multiple biological features, were discussed. Finally, the potential role of exosomal miRNAs as diagnostic and prognostic molecular markers was summarized, as well as their usefulness in detecting cancer resistance to therapeutic agents.
Collapse
Affiliation(s)
- Chuanyun Li
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China
| | - Tong Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jing Chen
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Rong Li
- Chengde Medical University, Chengde, China
| | - Huan Chen
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China
| | - Shumin Luo
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Dexi Chen
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Cao Cai
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.
| | - Weihua Li
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China. .,Beijing Institute of Hepatology, Beijing, China.
| |
Collapse
|
109
|
Ritch SJ, Telleria CM. The Transcoelomic Ecosystem and Epithelial Ovarian Cancer Dissemination. Front Endocrinol (Lausanne) 2022; 13:886533. [PMID: 35574025 PMCID: PMC9096207 DOI: 10.3389/fendo.2022.886533] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is considered the deadliest gynecological disease and is normally diagnosed at late stages, at which point metastasis has already occurred. Throughout disease progression, EOC will encounter various ecosystems and the communication between cancer cells and these microenvironments will promote the survival and dissemination of EOC. The primary tumor is thought to develop within the ovaries or the fallopian tubes, both of which provide a microenvironment with high risk of causing DNA damage and enhanced proliferation. EOC disseminates by direct extension from the primary tumors, as single cells or multicellular aggregates. Under the influence of cellular and non-cellular factors, EOC spheroids use the natural flow of peritoneal fluid to reach distant organs within the peritoneal cavity. These cells can then implant and seed distant organs or tissues, which develop rapidly into secondary tumor nodules. The peritoneal tissue and the omentum are two common sites of EOC metastasis, providing a microenvironment that supports EOC invasion and survival. Current treatment for EOC involves debulking surgery followed by platinum-taxane combination chemotherapy; however, most patients will relapse with a chemoresistant disease with tumors developed within the peritoneum. Therefore, understanding the role of the unique microenvironments that promote EOC transcoelomic dissemination is important in improving patient outcomes from this disease. In this review article, we address the process of ovarian cancer cellular fate at the site of its origin in the secretory cells of the fallopian tube or in the ovarian surface epithelial cells, their detachment process, how the cells survive in the peritoneal fluid avoiding cell death triggers, and how cancer- associated cells help them in the process. Finally, we report the mechanisms used by the ovarian cancer cells to adhere and migrate through the mesothelial monolayer lining the peritoneum. We also discuss the involvement of the transcoelomic ecosystem on the development of chemoresistance of EOC.
Collapse
Affiliation(s)
- Sabrina J. Ritch
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Carlos M. Telleria, ; orcid.org/0000-0003-1070-3538
| |
Collapse
|
110
|
Zhang Y, Wei YJ, Zhang YF, Liu HW, Zhang YF. Emerging Functions and Clinical Applications of Exosomal ncRNAs in Ovarian Cancer. Front Oncol 2021; 11:765458. [PMID: 34804970 PMCID: PMC8604153 DOI: 10.3389/fonc.2021.765458] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological malignancies worldwide and has a high mortality rate. Its dismal prognosis is closely related to late diagnosis and drug resistance. Exosomes are a novel means of intercellular communication that are involved in the genesis and development of tumors by delivering a variety of biologically active molecules, including proteins, lipids, and nucleic acids. As an important component, noncoding RNAs (ncRNAs) are selectively enriched in exosomes and participate in the regulation of specific aspects of OC development, such as proliferation, invasion, metastasis, angiogenesis, immune escape, and treatment resistance. Therefore, strategies that specifically target exosomal ncRNAs may be attractive therapeutic options. Exosomes are readily available in almost all types of human biological fluids and are biocompatible, making them promising biomarkers of OC as well as targets for therapeutic applications. In this review, we briefly summarize the biology of exosomes, the function of exosomal ncRNAs in OC development, and their potential clinical applications as biomarkers and therapeutic tools. Ideally, exosomal ncRNAs will become increasingly valuable in the diagnosis and treatment of OC in the near future.
Collapse
Affiliation(s)
- Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Jing Wei
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hao-Wen Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
111
|
Lin Y, Wei L, Hu B, Zhang J, Wei J, Qian Z, Zou D. RBM8A Promotes Glioblastoma Growth and Invasion Through the Notch/STAT3 Pathway. Front Oncol 2021; 11:736941. [PMID: 34804926 PMCID: PMC8600138 DOI: 10.3389/fonc.2021.736941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Background Glioblastoma (GBM) is a prevalent brain malignancy with an extremely poor prognosis, which is attributable to its invasive biological behavior. The RNA-binding motif protein 8A (RBM8A) has different effects on various human cancers. However, the role of RBM8A in GBM progression remains unclear. Methods We investigated the expression levels of RBM8A in 94 GBM patients and explored the correlation between RBM8A expression and patient prognosis. Using in vitro and in vivo assays, combined with GBM sequencing data from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), we examined whether and how RBM8A contributes to GBM progression. Results RBM8A was up-regulated in GBM tissues, and its higher expression correlated with worse prognosis. Knockdown of RBM8A inhibited GBM progression and invasion ability both in vitro and in vivo. On the contrary, overexpression of RBM8A promoted GBM progression and invasion ability. Enrichment analysis of differentially expressed genes in GBM data identified the Notch1/STAT3 network as a potential downstream target of RBM8A, and this was supported by molecular docking studies. Furthermore, we demonstrated that RBM8A regulates the transcriptional activity of CBF1. The γ-secretase inhibitor DAPT significantly reversed RBM8A-enhanced GBM cell proliferation and invasion, and was associated with down-regulation of p-STAT3 and Notch1 protein. Finally, the gene set variance analysis score of genes involved in regulation of the Notch1/STAT3 network by RBM8A showed good diagnostic and prognostic value for GBM. Conclusions RBM8A may promote GBM cell proliferation and migration by activating the Notch/STAT3 pathway in GBM cells, suggesting that RBM8A may serve as a potential therapeutic target for the treatment of GBM.
Collapse
Affiliation(s)
- Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lei Wei
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Beiquan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Zhongrun Qian
- Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, Hefei, China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
112
|
Li Q, Liu W, Wang Z, Wang C, Ai Z. Exosomal ANXA1 derived from thyroid cancer cells is associated with malignant transformation of human thyroid follicular epithelial cells by promoting cell proliferation. Int J Oncol 2021; 59:104. [PMID: 34779491 PMCID: PMC8651231 DOI: 10.3892/ijo.2021.5284] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022] Open
Abstract
Exosomes are nano-sized extracellular vesicles that can be released from cancer cells. It has been shown that cancer cell-derived exosomes may be associated with carcinogenesis by transferring signaling proteins from malignant to neighboring non-malignant cells. In addition, annexin A1 (ANXA1) is a well-known oncogene, that can be released from extracellular vesicles by cancer cells. However, the role of exosomal ANXA1 in the cell-to-cell communication of thyroid cancer and thyroid follicular epithelial cells remains unclear. In the present study, the protein expression levels of ANXA1 in thyroid cancer cells and thyroid cancer cell-derived exosomes were analyzed using western blot analysis. In addition, Cell Counting Kit-8 and Transwell assays were used to determine cell viability and invasion, respectively. The protein expression levels of ANXA1 were increased in thyroid cancer tissues and thyroid cancer cell lines. In addition, overexpression of ANXA1 significantly increased the proliferation and invasion of the SW579 cells, while knockdown of ANXA1 expression exerted the opposite results. Furthermore, ANXA1 was transferred from the SW579 cells to the Nthy-ori3-1 cells via exosomes. Exosomal ANXA1 markedly promoted the proliferation, invasion and epithelial-to-mesenchymal transition of the Nthy-ori3-1 cells. In addition, SW579 cell-derived exosomal ANXA1 promoted tumor growth in a xenograft mouse model. Collectively, these findings indicated that SW579 cell-derived exosomal ANXA1 promoted thyroid cancer development and Nthy-ori3-1 cell malignant transformation. Therefore, these findings may aid in the development of effective treatment methods for thyroid cancer.
Collapse
Affiliation(s)
- Qingchun Li
- Department of General Surgery, The First People's Hospital of Dafeng, Yancheng, Jiangsu 224100, P.R. China
| | - Wei Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhenglin Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Cong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhilong Ai
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
113
|
Molecular Profile Study of Extracellular Vesicles for the Identification of Useful Small “Hit” in Cancer Diagnosis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor-secreted extracellular vesicles (EVs) are the main mediators of cell-cell communication, permitting cells to exchange proteins, lipids, and metabolites in varying physiological and pathological conditions. They contain signature tumor-derived molecules that reflect the intracellular status of their cell of origin. Recent studies have shown that tumor cell-derived EVs can aid in cancer metastasis through the modulation of the tumor microenvironment, suppression of the immune system, pre-metastatic niche formation, and subsequent metastasis. EVs can easily be isolated from a variety of biological fluids, and their content makes them useful biomarkers for the diagnosis, prognosis, monitorization of cancer progression, and response to treatment. This review aims to explore the biomarkers of cancer cell-derived EVs obtained from liquid biopsies, in order to understand cancer progression and metastatic evolution for early diagnosis and precision therapy.
Collapse
|
114
|
Chen Q, Li Y, Gao W, Chen L, Xu W, Zhu X. Exosome-Mediated Crosstalk Between Tumor and Tumor-Associated Macrophages. Front Mol Biosci 2021; 8:764222. [PMID: 34722637 PMCID: PMC8549832 DOI: 10.3389/fmolb.2021.764222] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are nanosized vesicles, derived from the endolysosomal compartment of cells and can shuttle diverse biomolecules such as nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their origin cells. Delivery of these cargoes to recipient cells enables exosomes to influence diverse cellular functions. As one of the most abundant immune cells in the tumor microenvironment, tumor-associated macrophages (TAMs) are educated by the tumor milieu, which is rich in cancer cells and stroma components, to exert functions such as the promotion of tumor growth, immunosuppression, angiogenesis, and cancer cell dissemination. Herein, we focus on exosomes-mediated intercellular communication between tumor cells and TAM in the tumor microenvironment, which may provide new targets for anti-tumor treatment. In this review, we highlight the most recent studies on the effect of tumor/macrophage-derived exosomes on macrophage/tumor function in different cancer types.
Collapse
Affiliation(s)
- Qi Chen
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| | - Yuefeng Li
- Affiliated People Hospital of Jiangsu University, Zhenjiang, China
| | - Wujiang Gao
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Chen
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenlin Xu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China.,Reproduction Medicine Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
115
|
Askenase PW. Exosomes provide unappreciated carrier effects that assist transfers of their miRNAs to targeted cells; I. They are 'The Elephant in the Room'. RNA Biol 2021; 18:2038-2053. [PMID: 33944671 PMCID: PMC8582996 DOI: 10.1080/15476286.2021.1885189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/23/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EV), such as exosomes, are emerging biologic entities that mediate important newly recognized functional effects. Exosomes are intracellular endosome-originating, cell-secreted, small nano-size EV. They can transfer cargo molecules like miRNAs to act intracellularly in targeted acceptor cells, to then mediate epigenetic functional alterations. Exosomes among EV, are universal nanoparticles of life that are present across all species. Some critics mistakenly hold exosomes to concepts and standards of cells, whereas they are subcellular nanospheres that are a million times smaller, have neither nuclei nor mitochondria, are far less complex and currently cannot be studied deeply and elegantly by many and diverse technologies developed for cells over many years. There are important concerns about the seeming impossibility of biologically significant exosome transfers of very small amounts of miRNAs resulting in altered targeted cell functions. These hesitations are based on current canonical concepts developed for non-physiological application of miRNAs alone, or artificial non-quantitative genetic expression. Not considered is that the natural physiologic intercellular transit via exosomes can contribute numerous augmenting carrier effects to functional miRNA transfers. Some of these are particularly stimulated complex extracellular and intracellular physiologic processes activated in the exosome acceptor cells that can crucially influence the intracellular effects of the transferred miRNAs. These can lead to molecular chemical changes altering DNA expression for mediating functional changes of the targeted cells. Such exosome mediated molecular transfers of epigenetic functional alterations, are the most exciting and life-altering property that these nano EV bring to virtually all of biology and medicine. .Abbreviations: Ab, Antibody Ag Antigen; APC, Antigen presenting cells; CS, contact sensitivity; DC, Dendritic cells; DTH, Delayed-type hypersensitivity; EV, extracellular vesicles; EV, Extracellular vesicle; FLC, Free light chains of antibodies; GI, gastrointestinal; IP, Intraperitoneal administration; IV, intravenous administration; OMV, Outer membrane vesicles released by bacteria; PE, Phos-phatidylethanolamine; PO, oral administration.
Collapse
Affiliation(s)
- Philip W. Askenase
- Section of Rheumatology, Allergy and Clinical Immunology Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
116
|
Pascual-Antón L, Cardeñes B, Sainz de la Cuesta R, González-Cortijo L, López-Cabrera M, Cabañas C, Sandoval P. Mesothelial-to-Mesenchymal Transition and Exosomes in Peritoneal Metastasis of Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222111496. [PMID: 34768926 PMCID: PMC8584135 DOI: 10.3390/ijms222111496] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Most patients with ovarian cancer (OvCA) present peritoneal disseminated disease at the time of diagnosis. During peritoneal metastasis, cancer cells detach from the primary tumor and disseminate through the intraperitoneal fluid. The peritoneal mesothelial cell (PMC) monolayer that lines the abdominal cavity is the first barrier encountered by OvCA cells. Subsequent progression of tumors through the peritoneum leads to the accumulation into the peritoneal stroma of a sizeable population of carcinoma-associated fibroblasts (CAFs), which is mainly originated from a mesothelial-to-mesenchymal transition (MMT) process. A common characteristic of OvCA patients is the intraperitoneal accumulation of ascitic fluid, which is composed of cytokines, chemokines, growth factors, miRNAs, and proteins contained in exosomes, as well as tumor and mesothelial suspended cells, among other components that vary in proportion between patients. Exosomes are small extracellular vesicles that have been shown to mediate peritoneal metastasis by educating a pre-metastatic niche, promoting the accumulation of CAFs via MMT, and inducing tumor growth and chemoresistance. This review summarizes and discusses the pivotal role of exosomes and MMT as mediators of OvCA peritoneal colonization and as emerging diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Lucía Pascual-Antón
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | - Beatriz Cardeñes
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | | | | | - Manuel López-Cabrera
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | - Carlos Cabañas
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Lymphocyte Immunobiology Group, Inflammatory and Immune Disorders Area, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
- Correspondence: (C.C.); (P.S.); Tel.: +34-91-196-4513 (C.C.); +34-91-196-4707 (P.S.)
| | - Pilar Sandoval
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
- Correspondence: (C.C.); (P.S.); Tel.: +34-91-196-4513 (C.C.); +34-91-196-4707 (P.S.)
| |
Collapse
|
117
|
Wang Y, Zhao R, Jiao X, Wu L, Wei Y, Shi F, Zhong J, Xiong L. Small Extracellular Vesicles: Functions and Potential Clinical Applications as Cancer Biomarkers. Life (Basel) 2021; 11:life11101044. [PMID: 34685415 PMCID: PMC8541078 DOI: 10.3390/life11101044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer, as the second leading cause of death worldwide, is a major public health concern that imposes a heavy social and economic burden. Effective approaches for either diagnosis or therapy of most cancers are still lacking. Dynamic monitoring and personalized therapy are the main directions for cancer research. Cancer-derived extracellular vesicles (EVs) are potential disease biomarkers. Cancer EVs, including small EVs (sEVs), contain unique biomolecules (protein, nucleic acid, and lipids) at various stages of carcinogenesis. In this review, we discuss the biogenesis of sEVs, and their functions in cancer, revealing the potential applications of sEVs as cancer biomarkers.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Ruichen Zhao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Xueqiao Jiao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Longyuan Wu
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Fuxiu Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Junpei Zhong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
118
|
Santos NL, Bustos SO, Bhatt D, Chammas R, Andrade LNDS. Tumor-Derived Extracellular Vesicles: Modulation of Cellular Functional Dynamics in Tumor Microenvironment and Its Clinical Implications. Front Cell Dev Biol 2021; 9:737449. [PMID: 34532325 PMCID: PMC8438177 DOI: 10.3389/fcell.2021.737449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer can be described as a dynamic disease formed by malignant and stromal cells. The cellular interaction between these components in the tumor microenvironment (TME) dictates the development of the disease and can be mediated by extracellular vesicles secreted by tumor cells (TEVs). In this review, we summarize emerging findings about how TEVs modify important aspects of the disease like continuous tumor growth, induction of angiogenesis and metastasis establishment. We also discuss how these nanostructures can educate the immune infiltrating cells to generate an immunosuppressive environment that favors tumor progression. Furthermore, we offer our perspective on the path TEVs interfere in cancer treatment response and promote tumor recurrence, highlighting the need to understand the underlying mechanisms controlling TEVs secretion and cargo sorting. In addition, we discuss the clinical potential of TEVs as markers of cell state transitions including the acquisition of a treatment-resistant phenotype, and their potential as therapeutic targets for interventions such as the use of extracellular vesicle (EV) inhibitors to block their pro-tumoral activities. Some of the technical challenges for TEVs research and clinical use are also presented.
Collapse
Affiliation(s)
- Nathalia Leal Santos
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Silvina Odete Bustos
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Darshak Bhatt
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Roger Chammas
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
119
|
Wang Y, Liu Y, Xiang L, Han L, Yao X, Hu Y, Wu F. Cyclin D1b induces changes in the macrophage phenotype resulting in promotion of tumor metastasis. Exp Biol Med (Maywood) 2021; 246:2559-2569. [PMID: 34514884 DOI: 10.1177/15353702211038511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In breast cancer, tumor-associated macrophages with activated phenotypes promote tumor invasion and metastasis. The more aggressive mesenchymal-like breast cancer cells have a selective advantage, skewing macrophages toward the more immunosuppressive subtype. However, the mechanism underlying this shift is poorly understood. Cyclin D1b is a highly oncogenic variant of cyclin D1. Our previous study showed that non-metastatic epithelial-like breast cancer cells were highly metastatic in vivo when cyclin D1b was overexpressed. The present study determined whether cyclin D1b contributed to the interaction between breast cancer cells and macrophages. The results showed that cyclin D1b promoted the invasion of breast cancer cells in vitro. Specifically, through overexpression of cyclin D1b, breast cancer cells regulated the differentiation of macrophages into a more immunosuppressive M2 phenotype. Notably, tumor cells overexpressing cyclin D1b activated macrophages and induced migration of breast cancer cells. Further investigations indicated that SDF-1 mediated macrophage activation through breast cancer cells overexpressing cyclin D1b. These results revealed a previously unknown link between aggressive breast cancer cells and Tumor-associated macrophages, and highlighted the importance of cyclin D1b activity in the breast cancer microenvironment.
Collapse
Affiliation(s)
- Yuxue Wang
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Yi Liu
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Lei Xiang
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Lintao Han
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Xiaowei Yao
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Yibing Hu
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Fenghua Wu
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| |
Collapse
|
120
|
Bonner SE, Willms E. Intercellular communication through extracellular vesicles in cancer and evolutionary biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:80-87. [PMID: 34391800 DOI: 10.1016/j.pbiomolbio.2021.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized membrane enclosed vesicles that are released by cells. While initially thought to be cellular detritus or particles involved in eliminating waste from cells, EVs have been recognised as important mediators of intercellular communication by transferring their bioactive cargoes. Notably, over the last two decades, a substantial research effort has been undertaken to understand the role of EVs in cancer. It is now understood that tumour derived EVs can transfer their contents to influence metastatic behaviour, as well as establish favourable microenvironments and pre-metastatic niches that support cancer development and progression. EV-mediated intercellular communication in cancer will be of importance to understanding the emerging paradigm which views cancer as the establishment of a new species within the host organism. Here, we provide a concise overview of EVs and the current understanding of their role and application in cancer. In addition, we explore the potential wider role of EVs in the transfer of inherited characteristics and evolutionary biology.
Collapse
Affiliation(s)
- Scott E Bonner
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Eduard Willms
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia.
| |
Collapse
|
121
|
Wang Y, Yu G, Liu Y, Xie L, Ge J, Zhao G, Lin J. Hypoxia-induced PTTG3P contributes to colorectal cancer glycolysis and M2 phenotype of macrophage. Biosci Rep 2021; 41:BSR20210764. [PMID: 34132347 PMCID: PMC8264182 DOI: 10.1042/bsr20210764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play critical factors in tumor progression and are ectopically expressed in malignant tumors. Until now, lncRNA pituitary tumor-transforming 3, pseudogene (PTTG3P) biological function in colorectal cancer (CRC) further needs to be clarified. qRT-PCR was used to measure the PTTG3P level and CCK-8, glucose uptake, lactate assay, adenosine triphosphate (ATP) assay, extracellular acidification rate (ECAR) assay, and xenograft mice model were adopted to evaluate the glycolysis and proliferation, and macrophage polarization were determined in CRC cells. Xenograft experiments were utilized to analyze tumor growth. Ectopic expression of PTTG3P was involved in CRC and related to dismal prognosis. Through gain- and loss-of-function approaches, PTTG3P enhanced cell proliferation and glycolysis through YAP1. Further, LDHA knockdown or glycolysis inhibitor (2-deoxyglucose (2-DG), 3-BG) recovered from PTTG3P-induced proliferation. And PTTG3P overexpression could facilitate M2 polarization of macrophages. Silenced PTTG3P decreased the level of inflammatory cytokines TNF-α, IL-1β and IL-6, and low PTTG3P expression related with CD8+ T, NK, and TFH cell infiltration. Besides, hypoxia-inducible factor-1α (HIF1A) could increase PTTG3P expression by binding to the PTTG3P promoter region. Hypoxia-induced PTTG3P contributes to glycolysis and M2 phenotype of macrophage, which proposes a novel approach for clinical treatment.
Collapse
Affiliation(s)
- Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, P.R. China
| | - Guilin Yu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, P.R. China
| | - Yiyang Liu
- Department of Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, Guangxi Zhuang Autonomous Region, P.R. China
| | - Longfei Xie
- Department of Physics and Integrative Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Jinnian Ge
- Department of General Surgery, The Central Hospital of Shenyang Medical College, Liaoning 110031, P.R. China
| | - Guohua Zhao
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, P.R. China
| | - Jie Lin
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, P.R. China
| |
Collapse
|
122
|
Douglas SR, Yeung KT, Yang J, Blair SL, Cohen O, Eliceiri BP. Identification of CD105+ Extracellular Vesicles as a Candidate Biomarker for Metastatic Breast Cancer. J Surg Res 2021; 268:168-173. [PMID: 34314883 DOI: 10.1016/j.jss.2021.06.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/17/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Extracellular vehicles (EVs) released by malignant tumor cells can mediate the immune response and promote metastasis through intercellular communication. EV analysis is an emerging cancer surveillance tool with advantages over traditional liquid biopsy methods. The aim of this pilot study is to identify actionable EV signatures in metastatic breast cancer. MATERIALS AND METHODS Under an IRB-approved protocol for the analysis of patient plasma, samples were collected from women with newly diagnosed or progressive metastatic breast cancer and from women without cancer. Enriched EVs were analyzed via a bead-based multiplex assay designed to detect 37 distinct tumor-relevant epitopes. The mean fluorescent intensity of EV epitopes meeting a minimum threshold of detectability was compared between groups via independent samples t-test. Subgroup analysis was conducted for metastatic breast cancer patients who were positive for estrogen and/or progesterone receptors and negative for HER2. Other variables potentially affecting CD105 levels were also analyzed. RESULTS CD105 was found to have a significantly higher mean fluorescent intensity in participants with metastatic breast cancer compared to control participants (P = 0.04). ER/PR+ subgroup analysis revealed a similar pattern compared to control participants (P = 0.01). Other analyzed variables were not found to have a significant correlation with CD105 levels. CONCLUSIONS CD105 EV levels were significantly higher in samples from participants with breast cancer compared to controls. Given that CD105 is known to mediate angiogenesis and promote metastasis, EV-associated CD105 in plasma represents a potential biomarker for diagnosis, surveillance and therapeutic targeting in patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Sasha R Douglas
- Department of Surgery, University of California San Diego, La Jolla, California
| | - Kay T Yeung
- Department of Medicine, Division of Hematology and Oncology, University of California San Diego, La Jolla, California
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, California
| | - Sarah L Blair
- Division of Breast Surgery and The Comprehensive Breast Health Center, University of California San Diego, La Jolla, California
| | - Olga Cohen
- Department of Surgery, University of California San Diego, La Jolla, California
| | - Brian P Eliceiri
- Department of Surgery, University of California San Diego, La Jolla, California.
| |
Collapse
|
123
|
Manzo G. Specific and Aspecific Molecular Checkpoints as Potential Targets for Dismantling Tumor Hierarchy and Preventing Relapse and Metastasis Through Shielded Cytolytic Treatments. Front Cell Dev Biol 2021; 9:665321. [PMID: 34295890 PMCID: PMC8291084 DOI: 10.3389/fcell.2021.665321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022] Open
Abstract
I have recently theorized that several similarities exist between the tumor process and embryo development. Starting from an initial cancer stem cell (CSC0), similar to an embryonic stem cell (ESC), after implantation in a niche, primary self-renewing CSCs (CSC1s) would arise, which then generate secondary proliferating CSCs (CSC2s). From these epithelial CSCs, tertiary mesenchymal CSCs (CSC3s) would arise, which, under favorable stereotrophic conditions, by asymmetric proliferation, would generate cancer progenitor cells (CPCs) and then cancer differentiated cells (CDCs), thus giving a defined cell heterogeneity and hierarchy. CSC1s-CSC2s-CSC3s-CPCs-CDCs would constitute a defined "tumor growth module," able to generate new tumor modules, forming a spherical avascular mass, similar to a tumor sphere. Further growth in situ of this initial tumor would require implantation in the host and vascularization through the overexpression of some aspecific checkpoint molecules, such as CD44, ID, LIF, HSP70, and HLA-G. To expand and spread in the host tissues, this vascularized tumor would then carry on a real growth strategy based on other specific checkpoint factors, such as those contained in the extracellular vesicles (EVs), namely, microRNAs, messenger RNAs, long non-coding RNAs, and integrins. These EV components would be crucial in tumor progression because they can mediate intercellular communications in the surrounding microenvironment and systemically, dictating to recipient cells a new tumor-enslaved phenotype, thus determining pre-metastatic conditions. Moreover, by their induction properties, the EV contents could also frustrate in time the effects of cytolytic tumor therapies, where EVs released by killed CSCs might enter other cancer and non-cancer cells, thus giving chemoresistance, non-CSC/CSC transition (recurrence), and metastasis. Thus, antitumor cytotoxic treatments, "shielded" from the EV-specific checkpoints by suitable adjuvant agents, simultaneously targeting the aforesaid aspecific checkpoints should be necessary for dismantling the hierarchic tumor structure, avoiding recurrence and preventing metastasis.
Collapse
|
124
|
Luo X, Xu J, Yu J, Yi P. Shaping Immune Responses in the Tumor Microenvironment of Ovarian Cancer. Front Immunol 2021; 12:692360. [PMID: 34248988 PMCID: PMC8261131 DOI: 10.3389/fimmu.2021.692360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Reciprocal signaling between immune cells and ovarian cancer cells in the tumor microenvironment can alter immune responses and regulate disease progression. These signaling events are regulated by multiple factors, including genetic and epigenetic alterations in both the ovarian cancer cells and immune cells, as well as cytokine pathways. Multiple immune cell types are recruited to the ovarian cancer tumor microenvironment, and new insights about the complexity of their interactions have emerged in recent years. The growing understanding of immune cell function in the ovarian cancer tumor microenvironment has important implications for biomarker discovery and therapeutic development. This review aims to describe the factors that shape the phenotypes of immune cells in the tumor microenvironment of ovarian cancer and how these changes impact disease progression and therapy.
Collapse
Affiliation(s)
- Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States.,Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
125
|
Cai M, Fan W, Li X, Sun H, Dai L, Lei D, Dai Y, Liao Y. The Regulation of Staphylococcus aureus-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells. Front Vet Sci 2021; 8:683886. [PMID: 34136558 PMCID: PMC8200483 DOI: 10.3389/fvets.2021.683886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Mastitis, an inflammatory disease, causes severe economic loss in the dairy industry, which is mainly infected by bacteria. Staphylococcus aureus (S. aureus), the major pathogenic microorganism, derived from lipoteichoic acid (LTA) has been identified to activate inflammatory responses, but the cellular or intercellular regulatory mechanism is unclear. This study mainly focused on the effects of LTA in bovine mammary epithelial cells (Mac-T) and elaborated the regulation of microRNAs (miRNAs). The results showed that LTA enhanced the messenger RNA (mRNA) expression and production of tumor necrosis factor α (TNF-α) and interleukin (IL)-6. Furthermore, LTA could activate Toll-like receptor (TLR)2/MyD88-mediated phosphoinositide 3-kinase (PI3K)/AKT pathway, and TLR2 plays a pivotal role in LTA-induced inflammatory responses. The results of qRT-PCR showed that miRNA levels increased and reached the highest at 3 h and then gradually decreased over time in Mac-T cells. In exosomes, the levels of 11 and three miRNAs were upregulated and downregulated at 24 h, respectively. In addition, miR-23a showed the highest increase in Mac-T cells treated with LTA and targeted PI3K to regulate inflammatory responses. Furthermore, Mac-T cell-derived exosomes were identified to play a cell–cell communication by promoting M1 polarization of bovine macrophages. In summary, our study demonstrated that LTA could activate inflammatory responses via TLR2/MyD88/PI3K/AKT signaling pathway, and miR-23a inhibited it by targeting PI3K. Furthermore, we found that Mac-T cell-derived exosomes might be associated with inflammatory responses by promoting M1 polarization of bovine macrophages.
Collapse
Affiliation(s)
- Mingcheng Cai
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Wenqiao Fan
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Xiaoying Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Hanchang Sun
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Liuliu Dai
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Defang Lei
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Ying Dai
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Yuhua Liao
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| |
Collapse
|
126
|
Wang X, Zhou Y, Ding K. Roles of exosomes in cancer chemotherapy resistance, progression, metastasis and immunity, and their clinical applications (Review). Int J Oncol 2021; 59:44. [PMID: 34013358 PMCID: PMC8143748 DOI: 10.3892/ijo.2021.5224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are a type of vesicle that are secreted by cells, with a diameter of 40-100 nm, and that appear as a cystic shape under an electron microscope. Exosome cargo includes a variety of biologically active substances such as non-coding RNA, lipids and small molecule proteins. Exosomes can be taken up by neighboring cells upon secretion or by distant cells within the circulatory system, affecting gene expression of the recipient cells. The present review discusses the formation and secretion of exosomes, and how they can remodel the tumor microenvironment, enhancing cancer cell chemotherapy resistance and tumor progression. Exosome-mediated induction of tumor metastasis is also highlighted. More importantly, the review discusses the manner in which exosomes can change the metabolism of cancer cells and the immune system, which may help to devise novel therapeutic approaches for cancer treatment. With the development of nanotechnology, exosomes can also be used as biomarkers and for the delivery of chemical drugs, serving as a tool to diagnose and treat cancer.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Yuan Zhou
- Gruduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Kaiyang Ding
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
127
|
Shimizu A, Sawada K, Kobayashi M, Yamamoto M, Yagi T, Kinose Y, Kodama M, Hashimoto K, Kimura T. Exosomal CD47 Plays an Essential Role in Immune Evasion in Ovarian Cancer. Mol Cancer Res 2021; 19:1583-1595. [PMID: 34016744 DOI: 10.1158/1541-7786.mcr-20-0956] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is largely diagnosed at advanced stages upon detection of multiple peritoneal dissemination, resulting in poor outcomes. CD47 is overexpressed in tumors, facilitates tumor immune evasion, and is located on exosomes. We aimed to investigate the role of exosomal CD47 in ovarian cancer progression. Prognostic significance of CD47 expression in ovarian cancer was examined using a public database including 1,435 patients and validated with 26 patients at our institution. CD47 expression was associated with poor progression-free survival and inversely correlated with macrophage infiltration in ovarian cancer tissues. Exosomes were collected from ovarian cancer cell lines, and CD47 expression on exosomes was confirmed via flow cytometry. Inhibition of exosome secretion with GW4869 and exosome uptake with 5-(N-ethyl-N-isopropyl)-amiloride inhibited the surface CD47 expression on ovarian cancer cells and promoted phagocytosis by macrophages. RAB27A (a key regulator of exosome release) knockdown inhibited exosome secretion and led to CD47 downregulation in ovarian cancer cells. In a xenograft mouse model, suppression of the release of tumor-derived exosomes by GW4869 or RAB27A knockdown suppressed tumor progression and enhanced M1 macrophage phagocytosis in cancer tissues. Collectively, CD47 expression was correlated with poor prognoses in patients with ovarian cancer, suggesting the importance of immune evasion. CD47 was expressed on exosomes and the inhibition of exosome secretion and/or uptake enhanced cancer cell phagocytosis by macrophages, and thus, suppressed peritoneal dissemination. This suggests the potential of a novel immune checkpoint therapeutic agent that focuses on exosomes. IMPLICATIONS: Mechanistic insight from the current study suggests that exosomal CD47 may be an advantageous therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Aasa Shimizu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Masaki Kobayashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Misa Yamamoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taro Yagi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuto Kinose
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Michiko Kodama
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
128
|
Jiang H, Deng W, Zhu K, Zeng Z, Hu B, Zhou Z, Xie A, Zhang C, Fu B, Zhou X, Wang G. LINC00467 Promotes Prostate Cancer Progression via M2 Macrophage Polarization and the miR-494-3p/STAT3 Axis. Front Oncol 2021; 11:661431. [PMID: 34094954 PMCID: PMC8170392 DOI: 10.3389/fonc.2021.661431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/23/2021] [Indexed: 12/01/2022] Open
Abstract
Background The long non-coding RNA LINC00467 plays a vital role in many malignancies. Nevertheless, the role of LINC00467 in prostate carcinoma (PC) is unknown. Herein, we aimed to explore the mechanism by which LINC00467 regulates PC progression. Methods We used bioinformatics analyses and RT-qPCR to investigate the expression of LINC00467 in PC tissues and cells. The function of LINC00467 in the progression of PC was confirmed by loss-of-function experiments. PC cell proliferation was assessed by CCK-8 and EdU assays. The cell cycle progression of PC cells was examined by flow cytometry. Moreover, Transwell assays were used to investigate the migration and invasion of PC cells. Western blot assays were used to detect the expression of factors associated with epithelial–mesenchymal transition. The interactions of LINC00467 with prostate cancer progression and M2 macrophage polarization were confirmed by RT-qPCR. The subcellular localization of LINC00467 was investigated via the fractionation of nuclear and cytoplasmic RNA. Bioinformatics data analysis was used to predict the correlation of LINC00467 expression with miR-494-3p expression. LINC00467/miR-494-3p/STAT3 interactions were identified by using a dual-luciferase reporter system. Finally, the influence of LINC00467 expression on PC progression was investigated with an in vivo nude mouse model of tumorigenesis. Results We established that LINC00467 expression was upregulated in PC tissues and cells. Downregulated LINC00467 expression inhibited PC cell growth, cell cycle progression, migration, and invasion. Downregulated LINC00467 expression similarly inhibited PC cell migration via M2 macrophage polarization. Western blot analysis showed that LINC00467 could regulate the STAT3 pathway. We established that LINC00467 is mainly localized to the cytoplasm. Bioinformatics analysis and rescue experiments indicated that LINC00467 promotes PC progression via the miR-494-3p/STAT3 axis. Downregulated LINC00467 expression was also able to suppress PC tumor growth in vivo. Conclusions Our study reveals that LINC00467 promotes prostate cancer progression via M2 macrophage polarization and the miR-494-3p/STAT3 axis.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Ke Zhu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Zhenhao Zeng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Bing Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | | | - An Xie
- Jiangxi Institute of Urology, Nanchang, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
129
|
Ge L, Zhou F, Nie J, Wang X, Zhao Q. Hypoxic colorectal cancer-secreted exosomes deliver miR-210-3p to normoxic tumor cells to elicit a protumoral effect. Exp Biol Med (Maywood) 2021; 246:1895-1906. [PMID: 33969722 DOI: 10.1177/15353702211011576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hypoxia, the most common feature in the tumor microenvironment, is closely related to tumor malignant progression and poor patient's prognosis. Exosomes, initially recognized as cellular "garbage dumpsters", are now known to be important mediums for mediating cellular communication in tumor microenvironment. However, the mechanisms of hypoxic tumor cell-derived exosomes facilitate colorectal cancer progression still need further exploration. In the present study, we found that exosomes from hypoxic colorectal cancer cells (H-Exos) promoted G1-S cycle transition and proliferation while preventing the apoptosis of colorectal cancer cells by transmitting miR-210-3p to normoxic tumor cells. Mechanistic investigation indicated that miR-210-3p from H-Exos elicited its protumoral effect via suppressing CELF2 expression. A preclinical study further confirmed that H-Exos could promote tumorigenesis in vivo. Clinically, the expression of miR-210-3p in circulating plasma exosomes was markedly upregulated in colorectal cancer patients, which were closely associated with multiple unfavorable clinicopathological features. Taken together, these results suggest that hypoxia may stimulate colorectal cancer cells to secrete miR-210-3p-enriched exosomes in tumor microenvironment, which elicit protumoral effects by inhibiting CELF2 expression. These findings provide new insights on the mechanism of colorectal cancer progression and potential therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Liuqing Ge
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University & Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University & Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Jiayan Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University & Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Xiaobing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University & Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University & Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| |
Collapse
|
130
|
Li X, Liu Y, Zheng S, Zhang T, Wu J, Sun Y, Zhang J, Liu G. Role of exosomes in the immune microenvironment of ovarian cancer. Oncol Lett 2021; 21:377. [PMID: 33777201 PMCID: PMC7988709 DOI: 10.3892/ol.2021.12638] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are excretory vesicles that can deliver a variety of bioactive cargo molecules to the extracellular environment. Accumulating evidence demonstrates exosome participation in intercellular communication, immune response, inflammatory response and they even play an essential role in affecting the tumor immune microenvironment. The role of exosomes in the immune microenvironment of ovarian cancer is mainly divided into suppression and stimulation. On one hand exosomes can stimulate the innate and adaptive immune systems by activating dendritic cells (DCs), natural killer cells and T cells, allowing these immune cells exert an antitumorigenic effect. On the other hand, ovarian cancer-derived exosomes initiate cross-talk with immunosuppressive effector cells, which subsequently cause immune evasion; one of the hallmarks of cancer. Exosomes induce the polarization of macrophages in M2 phenotype and induce apoptosis of lymphocytes and DCs. Exosomes further activate additional immunosuppressive effector cells (myeloid-derived suppressor cells and regulatory T cells) that induce fibroblasts to differentiate into cancer-associated fibroblasts. Exosomes also induce the tumorigenicity of mesenchymal stem cells to exert additional immune suppression. Furthermore, besides mediating the intercellular communication, exosomes carry microRNAs (miRNAs), proteins and lipids to the tumor microenvironment, which collectively promotes ovarian cancer cells to proliferate, invade and tumors to metastasize. Studying proteins, lipids and miRNAs carried by exosomes could potentially be used as an early diagnostic marker of ovarian cancer for designing treatment strategies.
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuangshuang Zheng
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tianyu Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jing Wu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yue Sun
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jingzi Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guoyan Liu
- Department of Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
131
|
Qian M, Chen Z, Guo X, Wang S, Zhang Z, Qiu W, Qi Y, Zhang S, Xu J, Zhao R, Xue H, Li G. Exosomes derived from hypoxic glioma deliver miR-1246 and miR-10b-5p to normoxic glioma cells to promote migration and invasion. J Transl Med 2021; 101:612-624. [PMID: 33446893 DOI: 10.1038/s41374-020-00522-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Hypoxia is an important feature of the tumor microenvironment and is associated with glioma progression and patient outcome. Exosomes have been implicated in the intercellular communication in the tumor microenvironment. However, the effects of hypoxic glioma exosomes on glioma migration and invasion and the underlying mechanisms remain poorly understood. In this study, we found that exosomes derived from hypoxic glioma cells (H-GDEs) promoted normoxic glioma migration and invasion in vitro and in vivo. Given that exosomes can regulate recipient cell functions by delivering microRNAs, we further revealed miR-1246 and miR-10b-5p were upregulated significantly in H-GDEs and delivered to normoxic glioma cells by H-GDEs. Moreover, we determined the clinical relevance of miR-1246 and miR-10b-5p in glioma patients. Subsequent investigations indicated that miR-1246 and miR-10b-5p markedly induced glioma migration and invasion in vitro and in vivo. Finally, we demonstrated that miR-1246 and miR-10b-5p induced glioma migration and invasion by directly targeting FRK and TFAP2A respectively. In conclusion, our findings suggest that the hypoxic microenvironment stimulates glioma to generate miR-1246- and miR-10b-5p-rich exosomes that are delivered to normoxic glioma cells to promote their migration and invasion; treatment targeting miR-1246 and miR-10b-5p may impair the motility of gliomas, providing a novel direction for the development of antitumor therapy.
Collapse
Affiliation(s)
- Mingyu Qian
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Zihang Chen
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Xiaofan Guo
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Shaobo Wang
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Zongpu Zhang
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Wei Qiu
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Yanhua Qi
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Shouji Zhang
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Jianye Xu
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China.
| | - Gang Li
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China.
| |
Collapse
|
132
|
The effect of extracellular vesicles on the regulation of mitochondria under hypoxia. Cell Death Dis 2021; 12:358. [PMID: 33824273 PMCID: PMC8024302 DOI: 10.1038/s41419-021-03640-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are indispensable organelles for maintaining cell energy metabolism, and also are necessary to retain cell biological function by transmitting information as signal organelles. Hypoxia, one of the important cellular stresses, can directly regulates mitochondrial metabolites and mitochondrial reactive oxygen species (mROS), which affects the nuclear gene expression through mitochondrial retrograde signal pathways, and also promotes the delivery of signal components into cytoplasm, causing cellular injury. In addition, mitochondria can also trigger adaptive mechanisms to maintain mitochondrial function in response to hypoxia. Extracellular vesicles (EVs), as a medium of information transmission between cells, can change the biological effects of receptor cells by the release of cargo, including nucleic acids, proteins, lipids, mitochondria, and their compositions. The secretion of EVs increases in cells under hypoxia, which indirectly changes the mitochondrial function through the uptake of contents by the receptor cells. In this review, we focus on the mitochondrial regulation indirectly through EVs under hypoxia, and the possible mechanisms that EVs cause the changes in mitochondrial function. Finally, we discuss the significance of this EV-mitochondria axis in hypoxic diseases.
Collapse
|
133
|
Zou X, Zhao Y, Liang X, Wang H, Zhu Y, Shao Q. Double Insurance for OC: miRNA-Mediated Platinum Resistance and Immune Escape. Front Immunol 2021; 12:641937. [PMID: 33868274 PMCID: PMC8047328 DOI: 10.3389/fimmu.2021.641937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer (OC) is still the leading cause of death among all gynecological malignancies, despite the recent progress in cancer therapy. Immune escape and drug resistance, especially platinum-based chemotherapy, are significant factors causing disease progression, recurrence and poor prognosis in OC patients. MicroRNAs(miRNAs) are small noncoding RNAs, regulating gene expression at the transcriptional level. Accumulating evidence have indicated their crucial roles in platinum resistance. Importantly, they also act as mediators of tumor immune escape/evasion. In this review, we summarize the recent study of miRNAs involved in platinum resistance of OC and systematically analyses miRNAs involved in the regulation of OC immune escape. Further understanding of miRNAs roles and their possible mechanisms in platinum resistance and tumor escape may open new avenues for improving OC therapy.
Collapse
Affiliation(s)
- Xueqin Zou
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yangjing Zhao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiuting Liang
- Department of Obstetrics and Gynecology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanling Zhu
- Department of Obstetrics and Gynecology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China.,Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, China
| |
Collapse
|
134
|
Su T, Zhang P, Zhao F, Zhang S. Exosomal MicroRNAs Mediating Crosstalk Between Cancer Cells With Cancer-Associated Fibroblasts and Tumor-Associated Macrophages in the Tumor Microenvironment. Front Oncol 2021; 11:631703. [PMID: 33869017 PMCID: PMC8049566 DOI: 10.3389/fonc.2021.631703] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small extracellular vesicles containing diverse bioactive molecules. They play essential roles in mediating bidirectional interplay between cancer and stromal cells. Specific elements are selected into different types of exosomes via various mechanisms, including microRNAs (miRNAs), a subset of non-coding RNA that could epigenetically reprogram cells and modulate their activities. Cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) are two major types of stromal cells inhibiting immune response and facilitating tumor progression. Notably, accumulated studies provided critical evidence regarding the significance of exosomal miRNA–mediated intercellular crosstalk between cancer cells with TAMs and CAFs for tumor progression. This review aimed to summarize the current knowledge of cell–cell interactions between stromal and cancer cells conveyed by exosome-derived miRNAs. The findings might help find effective therapeutic targets of cancer.
Collapse
Affiliation(s)
- Tong Su
- Shanghai Key Laboratory of Gynecology Oncology, Department of Gynecology and Obstetrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Panpan Zhang
- Shanghai Key Laboratory of Gynecology Oncology, Department of Gynecology and Obstetrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fujun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Zhang
- Shanghai Key Laboratory of Gynecology Oncology, Department of Gynecology and Obstetrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
135
|
Sedighzadeh SS, Khoshbin AP, Razi S, Keshavarz-Fathi M, Rezaei N. A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications. Transl Lung Cancer Res 2021; 10:1889-1916. [PMID: 34012800 PMCID: PMC8107755 DOI: 10.21037/tlcr-20-1241] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is the deadliest malignancy worldwide. An inflammatory microenvironment is a key factor contributing to lung tumor progression. Tumor-Associated Macrophages (TAMs) are prominent components of the cancer immune microenvironment with diverse supportive and inhibitory effects on growth, progression, and metastasis of lung tumors. Two main macrophage phenotypes with different functions have been identified. They include inflammatory or classically activated (M1) and anti-inflammatory or alternatively activated (M2) macrophages. The contrasting functions of TAMs in relation to lung neoplasm progression stem from the presence of TAMs with varying tumor-promoting or anti-tumor activities. This wide spectrum of functions is governed by a network of cytokines and chemokines, cell-cell interactions, and signaling pathways. TAMs are promising therapeutic targets for non-small cell lung cancer (NSCLC) treatment. There are several strategies for TAM targeting and utilizing them for therapeutic purposes including limiting monocyte recruitment and localization through various pathways such as CCL2-CCR2, CSF1-CSF1R, and CXCL12-CXCR4, targeting the activation of TAMs, genetic and epigenetic reprogramming of TAMs to antitumor phenotype, and utilizing TAMs as the carrier for anti-cancer drugs. In this review, we will outline the role of macrophages in the lung cancer initiation and progression, pathways regulating their function in lung cancer microenvironment as well as the role of these immune cells in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Sahar Sadat Sedighzadeh
- Department of Biological Sciences, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amin Pastaki Khoshbin
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
136
|
Extracellular Vesicles and Their Role in the Spatial and Temporal Expansion of Tumor-Immune Interactions. Int J Mol Sci 2021; 22:ijms22073374. [PMID: 33806053 PMCID: PMC8036938 DOI: 10.3390/ijms22073374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) serve as trafficking vehicles and intercellular communication tools. Their cargo molecules directly reflect characteristics of their parental cell. This includes information on cell identity and specific cellular conditions, ranging from normal to pathological states. In cancer, the content of EVs derived from tumor cells is altered and can induce oncogenic reprogramming of target cells. As a result, tumor-derived EVs compromise antitumor immunity and promote cancer progression and spreading. However, this pro-oncogenic phenotype is constantly being challenged by EVs derived from the local tumor microenvironment and from remote sources. Here, we summarize the role of EVs in the tumor–immune cross-talk that includes, but is not limited to, immune cells in the tumor microenvironment. We discuss the potential of remotely released EVs from the microbiome and during physical activity to shape the tumor–immune cross-talk, directly or indirectly, and confer antitumor activity. We further discuss the role of proinflammatory EVs in the temporal development of the tumor–immune interactions and their potential use for cancer diagnostics.
Collapse
|
137
|
Wang YX, Wang YX, Li YK, Tu SY, Wang YQ. The Emerging Roles of Extracellular Vesicles in Ovarian Cancer. Curr Drug Metab 2021; 22:139-149. [PMID: 33172376 DOI: 10.2174/1389200221666201110155721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022]
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological malignancy. Epithelial ovarian cancer (EOC) is its most common form. OC has both, a poor prognosis and a high mortality rate due to the difficulties of early diagnosis, limitation of current treatment and resistance to chemotherapy. Extracellular vesicles (EVs) is a heterogeneous group of cell-derived submicron vesicles, which can be detected in body fluids, and it can be classified into three main types including exosomes, micro-vesicles, and apoptotic bodies. Cancer cells can produce more EVs than healthy cells. Moreover, the contents of these EVs have been found distinctive from each other. It has been considered that EVs shedding from tumor cells may be implicated in clinical applications, such as a tool for tumor diagnosis, prognosis and potential treatment of certain cancers. In this review, we provide a brief description of EVs. in diagnosis, prognosis, treatment, and drug-resistantance of OC. Cancer-related EVs show powerful influences on tumors by various biological mechanisms. However, the contents mentioned above remain in the laboratory stage and there is a lack of large-scale clinical trials, and the maturity of the purification and detection methods is a constraint. In addition, amplification of oncogenes on ecDNA is remarkably prevalent in cancer. It may be possible that ecDNA can be encapsulated in EVs and thus detected by us. In summary, much more research on EVs needs to be performed to reveal breakthroughs in OC and to accelerate the process of its application in clinic.
Collapse
Affiliation(s)
- Yin-Xue Wang
- First Clinical Medical College of Lanzhou University, Gansu Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China
| | - Yi-Xiang Wang
- First Clinical Medical College of Lanzhou University, Gansu Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China
| | - Yi-Ke Li
- Wenzhou Medical University, Wenzhou, China
| | - Shi-Yan Tu
- First Clinical Medical College of Lanzhou University, Gansu Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China
| | - Yi-Qing Wang
- First Clinical Medical College of Lanzhou University, Gansu Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China
| |
Collapse
|
138
|
Zhang Z, Huang L, Brayboy L. Macrophages: an indispensable piece of ovarian health. Biol Reprod 2021; 104:527-538. [PMID: 33274732 PMCID: PMC7962765 DOI: 10.1093/biolre/ioaa219] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Macrophages are the most abundant immune cells in the ovary. In addition to their roles in the innate immune system, these heterogeneous tissue-resident cells are responsive to tissue-derived signals, adapt to their local tissue environment, and specialize in unique functions to maintain tissue homeostasis. Research in the past decades has established a strong link between macrophages and various aspects of ovarian physiology, indicating a pivotal role of macrophages in ovarian health. However, unlike other intensively studied organs, the knowledge of ovarian macrophages dates back to the time when the heterogeneity of ontogeny, phenotype, and function of macrophages was not fully understood. In this review, we discuss the evolving understanding of the biology of ovarian tissue-resident macrophages, highlight their regulatory roles in normal ovarian functions, review the association between certain ovarian pathologies and disturbed macrophage homeostasis, and finally, discuss the technologies that are essential for addressing key questions in the field.
Collapse
Affiliation(s)
- Zijing Zhang
- Division of Research, Department of Obstetrics and Gynecology, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA
- Department of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lynae Brayboy
- Division of Research, Department of Obstetrics and Gynecology, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA
- Department of Molecular Biology, Cell Biology & Biochemistry, Alpert Medical School of Brown University, Providence, RI 02912, USA
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin 10117, Germany
| |
Collapse
|
139
|
Wang X, Li X, Wang X. Identification of immune microenvironment subtypes that predicted the prognosis of patients with ovarian cancer. J Cell Mol Med 2021; 25:4053-4061. [PMID: 33675171 PMCID: PMC8051724 DOI: 10.1111/jcmm.16374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer (OC) is associated with high mortality rate. However, the correlation between immune microenvironment and prognosis of OC remains unclear. This study aimed to explore prognostic significance of OC tumour microenvironment. The OC data set was selected from the cancer genome atlas (TCGA), and 307 samples were collected. Hierarchical clustering was performed according to the expression of 756 genes. The immune and matrix scores of all immune subtypes were determined, and Kruskal-Wallis test was used to analyse the differences in the immune and matrix scores between OC samples with different immune subtypes. The model for predicting prognosis was constructed based on the expression of immune-related genes. TIDE platform was applied to predict the effect of immunotherapy on patients with OC of different immune subtypes. The 307 OC samples were classified into three immune subtypes A-C. Patients in subtype B had poorer prognosis and lower survival rate. The infiltration of helper T cells and macrophages in microenvironment indicated significant differences between immune subtypes. Enrichment analyses of immune cell molecular pathways showed that JAK-STAT3 pathway changed significantly in subtype B. Furthermore, predictive response to immunotherapy in subtype B was significantly higher than that in subtype A and C. Immune subtyping can be used as an independent predictor of the prognosis of OC patients, which may be related to the infiltration patterns of immune cells in tumour microenvironment. In addition, patients in immune subtype B have superior response to immunotherapy, suggesting that patients in subtype B are suitable for immunotherapy.
Collapse
Affiliation(s)
- Xinjing Wang
- Department of Gynecology and Obstetrics, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaoduan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xipeng Wang
- Department of Gynecology and Obstetrics, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
140
|
Boomgarden AC, Clancy JW, D'Souza-Schorey C. Breaking Bad: Extracellular Vesicles Provoke Tumorigenic Responses Under Oxygen Deprivation. Dev Cell 2021; 55:111-113. [PMID: 33108750 DOI: 10.1016/j.devcel.2020.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intercellular communication is vital to tumor progression. In this issue of Developmental Cell, Bertolini et al. (2020) describe how small extracellular vesicles released from hypoxic mammary tumor cells facilitate intercellular communication, leading to alterations in mitochondrial dynamics and acquisition of invasive phenotypes in normal epithelial cells.
Collapse
Affiliation(s)
- Alex C Boomgarden
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - James W Clancy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
141
|
Pi YN, Xia BR, Jin MZ, Jin WL, Lou G. Exosomes: Powerful weapon for cancer nano-immunoengineering. Biochem Pharmacol 2021; 186:114487. [PMID: 33647264 DOI: 10.1016/j.bcp.2021.114487] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapy (CIT) that targets the tumor immune microenvironment is regarded as a revolutionary advancement in the fight against cancer. The success and failure of CIT are due to the complexity of the immunosuppressive microenvironment. Cancer nanomedicine is a potential adjuvant therapeutic strategy for immune-based combination therapy. Exosomes are natural nanomaterials that play a pivotal role in mediating intercellular communications and package delivery in the tumor microenvironment. They affect the immune response or the effectiveness of immunotherapy. In particular, exosomal PD-L1 promotes cancer progression and resistance to immunotherapy. Exosomes possess high bioavailability, biological stability, targeting specificity, low toxicity, and immune characteristics, which indicate their potential for cancer therapy. They can be engineered to act as effective cancer therapeutic tools that activate anti-tumor immune response and start immune surveillance. In the current review, we introduce the role of exosomes in a tumor immune microenvironment, highlight the application of engineered exosomes to CIT, and discuss the challenges and prospects for clinical application.
Collapse
Affiliation(s)
- Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Bai-Rong Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, PR China
| | - Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China.
| |
Collapse
|
142
|
Cai J, Gong L, Li G, Guo J, Yi X, Wang Z. Exosomes in ovarian cancer ascites promote epithelial-mesenchymal transition of ovarian cancer cells by delivery of miR-6780b-5p. Cell Death Dis 2021; 12:210. [PMID: 33627627 PMCID: PMC7904844 DOI: 10.1038/s41419-021-03490-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The poor prognosis of ovarian cancer is mainly due to metastasis, and the specific mechanism underlying ovarian cancer metastasis is not clear. Ascites-derived exosomes (ADEs) play an important role in the progression of ovarian cancer, but the mechanism is unknown. Here, we found that ADEs promoted ovarian cancer metastasis not only in vitro but also in vivo. This promotive function was based on epithelial-mesenchymal transition (EMT) of ovarian cancer cells. Bioinformatics analysis of RNA sequencing microarray data indicated that miR-6780b-5p may be the key microRNA (miRNA) in ADEs that facilitates cancer metastasis. Moreover, the expression of exosomal miR-6780b-5p correlated with tumor metastasis in ovarian cancer patients. miR-6780b-5p overexpression promoted and miR-6780b-5p downregulation suppressed EMT of ovarian cancer cells. These results suggest that ADEs transfer miR-6780b-5p to ovarian cancer cells, promoting EMT and finally facilitating ovarian cancer metastasis.
Collapse
Affiliation(s)
- Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lanqing Gong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guodong Li
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Yi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
143
|
Han C, Zhang C, Wang H, Zhao L. Exosome-mediated communication between tumor cells and tumor-associated macrophages: implications for tumor microenvironment. Oncoimmunology 2021; 10:1887552. [PMID: 33680573 PMCID: PMC7901554 DOI: 10.1080/2162402x.2021.1887552] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles released from numerous types of cells that are involved in multiple tumors development. Exosomes contribute to the modulation of tumor microenvironment (TME) through intercellular communication. As essential immune stromal cells in the TME, tumor-associated macrophages (TAMs) participate in tumor development by mediating angiogenesis, metastasis, chemoresistance, and immune escape. Due to communication with multiple cells in the TME, they exhibit plasticity and heterogeneity during the progress of polarization from monocytes to macrophages. Previous studies suggest that targeting TAMs is a promising therapeutic strategy; however, the detailed mechanism by which TAMs regulate tumor development still remains unclear. In this review, we provide an overview of the roles of exosomes as messengers in the communication between tumor cells and polarization of TAMs; we also describe the effects of their interaction on tumor development. Finally, we comprehensively discussed the potential application of exosomes as the promising tumor immunotherapy strategy.
Collapse
Affiliation(s)
- Chen Han
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Cong Zhang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hengxiao Wang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
144
|
Cummings M, Freer C, Orsi NM. Targeting the tumour microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:3-28. [PMID: 33607246 DOI: 10.1016/j.semcancer.2021.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Ovarian cancer typically presents at an advanced stage, and although the majority of cases initially respond well to platinum-based therapies, chemoresistance almost always occurs leading to a poor long-term prognosis. While various cellular autonomous mechanisms contribute to intrinsic or acquired platinum resistance, the tumour microenvironment (TME) plays a central role in resistance to therapy and disease progression by providing cancer stem cell niches, promoting tumour cell metabolic reprogramming, reducing chemotherapy drug perfusion and promoting an immunosuppressive environment. As such, the TME is an attractive therapeutic target which has been the focus of intense research in recent years. This review provides an overview of the unique ovarian cancer TME and its role in disease progression and therapy resistance, highlighting some of the latest preclinical and clinical data on TME-targeted therapies. In particular, it focuses on strategies targeting cancer-associated fibroblasts, tumour-associated macrophages, cancer stem cells and cancer cell metabolic vulnerabilities.
Collapse
Affiliation(s)
- M Cummings
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - C Freer
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - N M Orsi
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom; St James's Institute of Oncology, Bexley Wing, Beckett Street, Leeds, LS9 7TF, United Kingdom.
| |
Collapse
|
145
|
Yang C, Dou R, Wei C, Liu K, Shi D, Zhang C, Liu Q, Wang S, Xiong B. Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis. Mol Ther 2021; 29:2088-2107. [PMID: 33571679 DOI: 10.1016/j.ymthe.2021.02.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is reported to involve in the crosstalk between tumor cells and tumor-associated macrophages (TAMs). Exosomes are considered as important mediators of orchestrating intercellular communication. However, the underlying mechanisms by which EMT-colorectal cancer (CRC) cells promote the M2 polarization of TAMs remain less understood. In this study, we found that EMT-CRC cells promoted the M2-like polarization of macrophages by directly transferring exosomes to macrophages, leading to a significant increase of the microRNA-106b-5p (miR-106b) level in macrophages. Mechanically, an increased level of miR-106b activated the phosphatidylinositol 3-kinase (PI3K)γ/AKT/mammalian target of rapamycin (mTOR) signaling cascade by directly suppressing programmed cell death 4 (PDCD4) in a post-transcription level, contributing to the M2 polarization of macrophages. Activated M2 macrophages, in a positive-feedback manner, promote EMT-mediated migration, invasion, and metastasis of CRC cells. Clinically, miR-106b was significantly elevated in CRC tissues and negatively correlated with the levels of PDCD4 in CRC specimens, and high expression of exosomal miR-106b in plasma was significantly associated with the malignant progression of CRC. Taken together, our results indicate that exosomal miR-106b derived from EMT-CRC cells has an important role in intercellular communication for inducing M2 macrophage polarization, illuminating a novel mechanism underlying CRC progression and offering potential targets for prevention of CRC metastasis.
Collapse
Affiliation(s)
- Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China
| | - Rongzhang Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Chen Wei
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Keshu Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Dongdong Shi
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China
| | - Chunxiao Zhang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China
| | - Qing Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China.
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China.
| |
Collapse
|
146
|
Zhang DX, Vu LT, Ismail NN, Le MTN, Grimson A. Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Semin Cancer Biol 2021; 74:24-44. [PMID: 33545339 DOI: 10.1016/j.semcancer.2021.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are increasingly recognised as a pivotal player in cell-cell communication, an attribute of EVs that derives from their ability to transport bioactive cargoes between cells, resulting in complex intercellular signalling mediated by EVs, which occurs under both physiological and pathological conditions. In the context of cancer, recent studies have demonstrated the versatile and crucial roles of EVs in the tumour microenvironment (TME). Here, we revisit EV biology, and focus on EV-mediated interactions between cancer cells and stromal cells, including fibroblasts, immune cells, endothelial cells and neurons. In addition, we focus on recent reports indicating interactions between EVs and non-cell constituents within the TME, including the extracellular matrix. We also review and summarise the intricate cancer-associated network modulated by EVs, which promotes metabolic reprogramming, horizontal transfer of neoplastic traits, and therapeutic resistance in the TME. We aim to provide a comprehensive and updated landscape of EVs in the TME, focusing on oncogenesis, cancer progression and therapeutic resistance, together with our future perspectives on the field.
Collapse
Affiliation(s)
- Daniel Xin Zhang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Luyen Tien Vu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Nur Nadiah Ismail
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
147
|
Askenase PW. Ancient Evolutionary Origin and Properties of Universally Produced Natural Exosomes Contribute to Their Therapeutic Superiority Compared to Artificial Nanoparticles. Int J Mol Sci 2021; 22:1429. [PMID: 33572657 PMCID: PMC7866973 DOI: 10.3390/ijms22031429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), such as exosomes, are newly recognized fundamental, universally produced natural nanoparticles of life that are seemingly involved in all biologic processes and clinical diseases. Due to their universal involvements, understanding the nature and also the potential therapeutic uses of these nanovesicles requires innovative experimental approaches in virtually every field. Of the EV group, exosome nanovesicles and larger companion micro vesicles can mediate completely new biologic and clinical processes dependent on the intercellular transfer of proteins and most importantly selected RNAs, particularly miRNAs between donor and targeted cells to elicit epigenetic alterations inducing functional cellular changes. These recipient acceptor cells are nearby (paracrine transfers) or far away after distribution via the circulation (endocrine transfers). The major properties of such vesicles seem to have been conserved over eons, suggesting that they may have ancient evolutionary origins arising perhaps even before cells in the primordial soup from which life evolved. Their potential ancient evolutionary attributes may be responsible for the ability of some modern-day exosomes to withstand unusually harsh conditions, perhaps due to unique membrane lipid compositions. This is exemplified by ability of the maternal milk exosomes to survive passing the neonatal acid/enzyme rich stomach. It is postulated that this resistance also applies to their durable presence in phagolysosomes, thus suggesting a unique intracellular release of their contained miRNAs. A major discussed issue is the generally poorly realized superiority of these naturally evolved nanovesicles for therapies when compared to human-engineered artificial nanoparticles, e.g., for the treatment of diseases like cancers.
Collapse
Affiliation(s)
- Phillip W Askenase
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
148
|
Shehzad A, Islam SU, Shahzad R, Khan S, Lee YS. Extracellular vesicles in cancer diagnostics and therapeutics. Pharmacol Ther 2021; 223:107806. [PMID: 33465400 DOI: 10.1016/j.pharmthera.2021.107806] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Cancer promotion, development, and malignant transformation is greatly influenced by cell-to-cell interactions in a complex tissue microenvironment. Cancer and stromal cells secrete soluble factors, as well as deport membrane-encapsulated structures, which actively contribute and mediate cell-to-cell interaction within a tumor microenvironment (TME). These membrane structures are recognized as extracellular vesicles (EVs), which include exosomes and microvesicles. They can carry and transport regulatory molecules such as oncogenic proteins, coding and non-coding RNAs, DNA, and lipids between neighboring cells and to distant sites. EVs mediate crucial pathophysiological effects such as the formation of premetastatic niches and the progression of malignancies. There is compelling evidence that cancer cells exhibit a significant amount of EVs, which can be released into the surrounding body fluids, compared with nonmalignant cells. EVs therefore have the potential to be used as disease indicator for the diagnosis and prognosis of cancers, as well as for facilitating research into the underlying mechanism and biomolecular basis of these diseases. Because of their ability to transport substances, followed by their distinct immunogenicity and biocompatibility, EVs have been used to carry therapeutically-active molecules such as RNAs, proteins, short and long peptides, and various forms of drugs. In this paper, we summarize new advancement in the biogenesis and physiological roles of EVs, and underpin their functional impacts in the process of cancer growth and metastasis. We further highlight the therapeutic roles of EVs in the treatment, prevention, and diagnosis of human malignancies.
Collapse
Affiliation(s)
- Adeeb Shehzad
- Department of Biomedical Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Salman Ul Islam
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Raheem Shahzad
- Department of Horticulture, The University of Haripur, Haripur, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Young Sup Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
149
|
Pirlog R, Cismaru A, Nutu A, Berindan-Neagoe I. Field Cancerization in NSCLC: A New Perspective on MicroRNAs in Macrophage Polarization. Int J Mol Sci 2021; 22:ijms22020746. [PMID: 33451052 PMCID: PMC7828565 DOI: 10.3390/ijms22020746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is currently the first cause of cancer-related death. The major lung cancer subtype is non-small cell lung cancers (NSCLC), which accounts for approximatively 85% of cases. The major carcinogenic associated with lung cancer is tobacco smoke, which produces long-lasting and progressive damage to the respiratory tract. The progressive and diffuse alterations that occur in the respiratory tract of patients with cancer and premalignant lesions have been described as field cancerization. At the level of tumor cells, adjacent tumor microenvironment (TME) and cancerized field are taking place dynamic interactions through direct cell-to-cell communication or through extracellular vesicles. These molecular messages exchanged between tumor and nontumor cells are represented by proteins, noncoding RNAs (ncRNAs) and microRNAs (miRNAs). In this paper, we analyze the miRNA roles in the macrophage polarization at the level of TME and cancerized field in NSCLC. Identifying molecular players that can influence the phenotypic states at the level of malignant cells, tumor microenvironment and cancerized field can provide us new insights into tumor regulatory mechanisms that can be further modulated to restore the immunogenic capacity of the TME. This approach could revert alterations in the cancerized field and could enhance currently available therapy approaches.
Collapse
Affiliation(s)
- Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Functional Sciences, Immunology and Allergology, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- The Functional Genomics Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-743-111-800
| |
Collapse
|
150
|
Zhao L, Shi J, Chang L, Wang Y, Liu S, Li Y, Zhang T, Zuo T, Fu B, Wang G, Ruan Y, Zhang Y, Xu P. Serum-Derived Exosomal Proteins as Potential Candidate Biomarkers for Hepatocellular Carcinoma. ACS OMEGA 2021; 6:827-835. [PMID: 33458533 PMCID: PMC7808137 DOI: 10.1021/acsomega.0c05408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/22/2020] [Indexed: 05/26/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of hepatic malignancies. The diagnosis of HCC remains challenging due to the low sensitivity and specificity of the diagnostic method. Exosomes, which are abundant in various proteins from parent cells, play pivotal roles in intercellular communication and have been confirmed as promising sources of disease biomarkers. Herein, we performed a simple but robust proteomic profiling on exosomes derived from 1 μL of serum using a data-independent acquisition (DIA) method for the first time, to screen potential biomarkers for the diagnosis of HCC. Ten pivotal differentially expressed proteins (DEPs) (von Willebrand factor (VWF), LGALS3BP, TGFB1, SERPINC1, HPX, HP, HBA1, FGA, FGG, and FGB) were screened as a potential candidate biomarker panel, which could completely discriminate patients with HCC from normal control (NC). Interestingly, Gene Expression Profiling Interactive Analysis (GEPIA) revealed that the expression levels of four genes increased and those of six genes decreased in HCC tissues compared with normal tissues, which were in concordance with protein expression levels. In conclusion, we screened 10 exosomal proteins holding promise for acting as a potential candidate biomarker panel for detection of HCC through a simple but robust proteomic profiling.
Collapse
Affiliation(s)
- Liping Zhao
- Medical
School of Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang 550025, China
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Research Unit of Proteomics
& Research and Development of New Drug of Chinese Academy of Medical
Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing 102206, China
| | - Jiahui Shi
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Research Unit of Proteomics
& Research and Development of New Drug of Chinese Academy of Medical
Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing 102206, China
| | - Lei Chang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Research Unit of Proteomics
& Research and Development of New Drug of Chinese Academy of Medical
Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing 102206, China
| | - Yihao Wang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Research Unit of Proteomics
& Research and Development of New Drug of Chinese Academy of Medical
Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing 102206, China
| | - Shu Liu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Research Unit of Proteomics
& Research and Development of New Drug of Chinese Academy of Medical
Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing 102206, China
| | - Yuan Li
- Medical
School of Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang 550025, China
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Research Unit of Proteomics
& Research and Development of New Drug of Chinese Academy of Medical
Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing 102206, China
| | - Tao Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Research Unit of Proteomics
& Research and Development of New Drug of Chinese Academy of Medical
Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing 102206, China
| | - Tao Zuo
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Research Unit of Proteomics
& Research and Development of New Drug of Chinese Academy of Medical
Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing 102206, China
| | - Bin Fu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Research Unit of Proteomics
& Research and Development of New Drug of Chinese Academy of Medical
Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing 102206, China
| | - Guibin Wang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Research Unit of Proteomics
& Research and Development of New Drug of Chinese Academy of Medical
Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing 102206, China
| | - Yuanyuan Ruan
- Key
Laboratory of Glycoconjugate Research Ministry of Public Health, School
of Basic Medical Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200032, China
| | - Yali Zhang
- Medical
School of Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang 550025, China
| | - Ping Xu
- Medical
School of Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang 550025, China
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Research Unit of Proteomics
& Research and Development of New Drug of Chinese Academy of Medical
Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing 102206, China
| |
Collapse
|