101
|
Zhao Y, Yan B, Wang Z, Li M, Zhao W. Natural Polysaccharides with Immunomodulatory Activities. Mini Rev Med Chem 2020; 20:96-106. [DOI: 10.2174/1389557519666190913151632] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/18/2018] [Accepted: 05/25/2019] [Indexed: 11/22/2022]
Abstract
Natural polysaccharide is a kind of natural macromolecular which can be extracted from
plants, fungi, algae, animals, and bacteria. The monosaccharide compositions and glucosidic bonds of
polysaccharides from different origins vary substantially. Natural polysaccharides have been shown to
possess complex, important and multifaceted biological activities including antitumor, anticoagulant,
antioxidative, antiviral, immunomodulatory, antihyperlipidemic and antihepatotoxic activities. Their
properties are mainly due to their structural characteristics. It is necessary to develop polysaccharide
immunomodulators with potential for preventive or therapeutic action. The present paper summarizes
the structural features, immunostimulatory activity and the immunomodulatory mechanisms of natural
polysaccharides. In particular, it also provides an overview of representative natural polysaccharide
immunomodulators.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Bocheng Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Zhaoyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Mingjing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| |
Collapse
|
102
|
Li C, Peng D, Huang W, Ou X, Song L, Guo Z, Wang H, Liu W, Zhu J, Yu R. Structural characterization of novel comb-like branched α-d-glucan from Arca inflata and its immunoregulatory activities in vitro and in vivo. Food Funct 2020; 10:6589-6603. [PMID: 31552984 DOI: 10.1039/c9fo01395d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the current study, we identified and characterized a novel water-soluble polysaccharide (JNY2PW) with significant immunoregulatory effects and no apparent overall toxicity. JNY2PW, which was isolated from Arca inflata, belongs to a novel class of α-glucans with a molecular weight of 5.25 × 107 Da. Its backbone is composed of (1 → 4)-linked α-d-glucopyranosyl residues and a single (1 → 6)-α-d-glucopyranosyl branched unit for every five α-d-glucopyranosyl residues, showing a comb-like α-d-glucan with intensive short branches. Using in vitro models, we demonstrated that JNY2PW exerts significant immunoregulatory effects by promoting the production of nitric oxide, interleukin-6, and tumor necrosis factor α. The pathway involves the activation of the TLR4-MAPK/NF-κB signaling cassette in murine RAW264.7 macrophages. In an in vivo immunosuppressive mice model induced by cyclophosphamide treatment, we found that the JNY2PW treatment produced good antitumor activity, comparable to that of chemotherapy by doxycycline in murine breast carcinoma 4T1-bearing mice, but devoid of any observable side effects (e.g. weight loss) related with doxycycline treatment. The anti-tumor mechanism of JNY2PW may involve an overall enhancement in the immune responses of the mice to tumors. These results indicate that JNY2PW possesses potential as an adjuvant to existing chemotherapy and current immune-oncology treatment.
Collapse
Affiliation(s)
- Chunlei Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Production, characterization and biological activities of exopolysaccharides from a new cold-adapted yeast: Rhodotorula mucilaginosa sp. GUMS16. Int J Biol Macromol 2020; 151:268-277. [PMID: 32087227 DOI: 10.1016/j.ijbiomac.2020.02.206] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
Lately, it has been proved that yeast exopolysaccharides (EPS) are potentially applicable biopolymers, a fact that has led to incremental needs for their assessment. The current study is based on the biochemical and molecular level identification of the novel cold-adapted yeast Rhodotorula mucilaginosa sp. GUMS16. Possible antioxidant and antiproliferative activities, as well as extraction and characterization of the GUMS16-produced EPS, were assessed during the course of this study. The results indicated that the strain of GUMS16 is a cold-adapted yeast with growth capability at 4 °C and an approximate EPS production yield of 28.5 g/L which are characterized as highly branched beta-D-glucan having glucose and mannose residues (85:15 mol%, respectively) with an average molecular weight of 84 kDa. In comparison to hyaluronic acid, DPPH, and OH, the scavenging activity attributed to the GUMS16-produced EPS was higher alongside being dose-dependent. The biocompatibility profile of the EPS was well-recognized based on its zero-cytotoxicity rate on a normal cell model. Collectively, the favorable properties of the EPS accentuate their potential as biocompatible compound suitable for subsequent pharmaceutical and industrial applications.
Collapse
|
104
|
Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int J Biol Macromol 2020; 150:765-774. [PMID: 32035956 DOI: 10.1016/j.ijbiomac.2020.02.035] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 02/08/2023]
Abstract
Ganoderma lucidum, commonly known as "Lingzhi" in Chinese, are well-known medicinal mushrooms. Lingzhi has been used in traditional Chinese herbal medicines for more than two thousand years. G. lucidum polysaccharides (GLPs) are present at high levels in G. lucidum cells and GLPs have molecular weights ranging from thousands to millions. GLPs have been widely studied for their various biological activities, such as antioxidant, antitumor, anti-inflammatory, antiviral, anti-diabetes, and immunomodulatory activities. The methods for GLPs extraction and characterization are mature, but the comprehensive research on the relationship between GLPs structure (i.e., molecular weight, tertiary structure, branching, substituents, and monosaccharide composition) and function is still quite limited. The aim of this review is to update and summarize the mechanisms of the various bioactive polysaccharides extracted from G. lucidum. The information presented on these bio-mechanisms should be valuable in the research and development of GLPs-derived therapeutics.
Collapse
|
105
|
Jones M, Kujundzic M, John S, Bismarck A. Crab vs. Mushroom: A Review of Crustacean and Fungal Chitin in Wound Treatment. Mar Drugs 2020; 18:E64. [PMID: 31963764 PMCID: PMC7024172 DOI: 10.3390/md18010064] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Chitin and its derivative chitosan are popular constituents in wound-treatment technologies due to their nanoscale fibrous morphology and attractive biomedical properties that accelerate healing and reduce scarring. These abundant natural polymers found in arthropod exoskeletons and fungal cell walls affect almost every phase of the healing process, acting as hemostatic and antibacterial agents that also support cell proliferation and attachment. However, key differences exist in the structure, properties, processing, and associated polymers of fungal and arthropod chitin, affecting their respective application to wound treatment. High purity crustacean-derived chitin and chitosan have been widely investigated for wound-treatment applications, with research incorporating chemically modified chitosan derivatives and advanced nanocomposite dressings utilizing biocompatible additives, such as natural polysaccharides, mineral clays, and metal nanoparticles used to achieve excellent mechanical and biomedical properties. Conversely, fungi-derived chitin is covalently decorated with -glucan and has received less research interest despite its mass production potential, simple extraction process, variations in chitin and associated polymer content, and the established healing properties of fungal exopolysaccharides. This review investigates the proven biomedical properties of both fungal- and crustacean-derived chitin and chitosan, their healing mechanisms, and their potential to advance modern wound-treatment methods through further research and practical application.
Collapse
Affiliation(s)
- Mitchell Jones
- School of Engineering, RMIT University, Bundoora East Campus, P.O. Box 71, Bundoora VIC 3083, Australia
| | - Marina Kujundzic
- Institute of Material Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Sabu John
- School of Engineering, RMIT University, Bundoora East Campus, P.O. Box 71, Bundoora VIC 3083, Australia
| | - Alexander Bismarck
- Institute of Material Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| |
Collapse
|
106
|
Cui D, Zhao D, Huang S. Structural characterization of a safflower polysaccharide and its promotion effect on steroid-induced osteonecrosis in vivo. Carbohydr Polym 2020; 233:115856. [PMID: 32059907 DOI: 10.1016/j.carbpol.2020.115856] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/23/2019] [Accepted: 01/09/2020] [Indexed: 01/24/2023]
Abstract
A water-soluble polysaccharide (SPAW) was purified from Safflower and it was identified to be (1→3)-linked β-d-Glucan. The therapeutic effect and underlying mechanism of SPAW on steroid-induced avascular necrosis of the femoral head (SANFH) in a rabbit model was performed here. The abnormal histopathologic changes and apoptosis of femoral head in model group were significantly reverted after SPAW (25, 100 and 200 mg/kg) administration for 60 days, as evidenced by the a decline of empty lacunae rate, the average bone marrow fat cell size and the proportion of apoptotic cells. Furthermore, administration of SPAW significantly decreased the Bax and caspase-3 protein expression, but increased the protein expression of Bcl-2 when compared these in model rabbits. Meanwhile, increased hydroxyproline (HOP) and decreased serum hexosamine (HOM) concentration in rabbit serum were turned to the opposite way. The present study suggested that SPAW may provide an alternative treatment for the treatment of SANFH.
Collapse
Affiliation(s)
- Daping Cui
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No 6 Jiefang Street, Zhongshan District, Dalian 116001, China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No 6 Jiefang Street, Zhongshan District, Dalian 116001, China.
| | - Shibo Huang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No 6 Jiefang Street, Zhongshan District, Dalian 116001, China
| |
Collapse
|
107
|
Nawawi WMFBW, Jones M, Murphy RJ, Lee KY, Kontturi E, Bismarck A. Nanomaterials Derived from Fungal Sources-Is It the New Hype? Biomacromolecules 2020; 21:30-55. [PMID: 31592650 PMCID: PMC7076696 DOI: 10.1021/acs.biomac.9b01141] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/07/2019] [Indexed: 12/21/2022]
Abstract
Greener alternatives to synthetic polymers are constantly being investigated and sought after. Chitin is a natural polysaccharide that gives structural support to crustacean shells, insect exoskeletons, and fungal cell walls. Like cellulose, chitin resides in nanosized structural elements that can be isolated as nanofibers and nanocrystals by various top-down approaches, targeted at disintegrating the native construct. Chitin has, however, been largely overshadowed by cellulose when discussing the materials aspects of the nanosized components. This Perspective presents a thorough overview of chitin-related materials research with an analytical focus on nanocomposites and nanopapers. The red line running through the text emphasizes the use of fungal chitin that represents several advantages over the more popular crustacean sources, particularly in terms of nanofiber isolation from the native matrix. In addition, many β-glucans are preserved in chitin upon its isolation from the fungal matrix, enabling new horizons for various engineering solutions.
Collapse
Affiliation(s)
- Wan M. F. B. W. Nawawi
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
- Department
of Biotechnology Engineering, International
Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
| | - Mitchell Jones
- School
of Engineering, RMIT University, Bundoora
East Campus, P.O. Box 71, Bundoora 3083, Victoria, Australia
- Polymer and
Composite Engineering (PaCE) Group, Institute of Materials Chemistry
and Research, Faculty of Chemistry, University
of Vienna, Währinger
Strasse 42, 1090 Vienna, Austria
| | - Richard J. Murphy
- Centre
for Environment & Sustainability, University
of Surrey, Arthur C Clarke
building, Floor 2, Guildford GU2 7XH, U.K.
| | - Koon-Yang Lee
- Department
of Aeronautics, Imperial College London,
South Kensington Campus, London SW7 2AZ, U.K.
| | - Eero Kontturi
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Alexander Bismarck
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
- Polymer and
Composite Engineering (PaCE) Group, Institute of Materials Chemistry
and Research, Faculty of Chemistry, University
of Vienna, Währinger
Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
108
|
Del Cornò M, Gessani S, Conti L. Shaping the Innate Immune Response by Dietary Glucans: Any Role in the Control of Cancer? Cancers (Basel) 2020; 12:cancers12010155. [PMID: 31936360 PMCID: PMC7016572 DOI: 10.3390/cancers12010155] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
β-glucans represent a heterogeneous group of naturally occurring and biologically active polysaccharides found in many kinds of edible mushrooms, baker’s yeast, cereals and seaweeds, whose health-promoting effects have been known since ancient times. These compounds can be taken orally as food supplements or as part of daily diets, and are safe to use, nonimmunogenic and well tolerated. A main feature of β-glucans is their capacity to function as biological response modifiers, exerting regulatory effects on inflammation and shaping the effector functions of different innate and adaptive immunity cell populations. The potential to interfere with processes involved in the development or control of cancer makes β-glucans interesting candidates as adjuvants in antitumor therapies as well as in cancer prevention strategies. Here, the regulatory effects of dietary β-glucans on human innate immunity cells are reviewed and their potential role in cancer control is discussed.
Collapse
|
109
|
Beltrame G, Trygg J, Rahkila J, Leino R, Yang B. Structural investigation of cell wall polysaccharides extracted from wild Finnish mushroom Craterellus tubaeformis (Funnel Chanterelle). Food Chem 2019; 301:125255. [DOI: 10.1016/j.foodchem.2019.125255] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022]
|
110
|
Rodrigues Barbosa J, Dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr Polym 2019; 229:115550. [PMID: 31826512 DOI: 10.1016/j.carbpol.2019.115550] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
The biodiversity of mushrooms Pleurotus spp. is impressive due to its complexity and diversity related to the composition of chemical structures such as polysaccharides, glycoproteins and secondary metabolites such as alkaloids, flavonoids and betalains. Recent studies of polysaccharides and their structural elucidation have helped to direct research and development of technologies related to pharmacological action, production of bioactive foods and application of new, more sophisticated extraction tools. The diversity of bioactivities related to these biopolymers, their mechanisms and routes of action are constant focus of researches. The elucidation of bioactivities has helped to formulate new vaccines and targeted drugs. In this context, in terms of polysaccharides and the diversity of mushrooms Pleurotus spp., this review seeks to revisit the genus, making an updated approach on the recent discoveries of polysaccharides, new extraction techniques and bioactivities, emphasising on their mechanisms and routes in order to update the reader on the recent technologies related to these polymers.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Maurício Madson Dos Santos Freitas
- LAPOA/FEA (Laboratory of Products of Animal Origin/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena da Silva Martins
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
111
|
Złotko K, Wiater A, Waśko A, Pleszczyńska M, Paduch R, Jaroszuk-Ściseł J, Bieganowski A. A Report on Fungal (1→3)-α-d-glucans: Properties, Functions and Application. Molecules 2019; 24:E3972. [PMID: 31684030 PMCID: PMC6864487 DOI: 10.3390/molecules24213972] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
The cell walls of fungi are composed of glycoproteins, chitin, and α- and β-glucans. Although there are many reports on β-glucans, α-glucan polysaccharides are not yet fully understood. This review characterizes the physicochemical properties and functions of (1→3)-α-d-glucans. Particular attention has been paid to practical application and the effect of glucans in various respects, taking into account unfavourable effects and potential use. The role of α-glucans in plant infection has been proven, and collected facts have confirmed the characteristics of Aspergillus fumigatus infection associated with the presence of glucan in fungal cell wall. Like β-glucans, there are now evidence that α-glucans can also stimulate the immune system. Moreover, α-d-glucans have the ability to induce mutanases and can thus decompose plaque.
Collapse
Affiliation(s)
- Katarzyna Złotko
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Adam Waśko
- Department of Biotechnology, Human Nutrition and Food Commodity Science, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Małgorzata Pleszczyńska
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Roman Paduch
- Department of Virology and Immunology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland.
- Department of General Ophthalmology, Medical University, Chmielna 1, 20-079 Lublin, Poland.
| | - Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
112
|
Morales D, Rutckeviski R, Villalva M, Abreu H, Soler-Rivas C, Santoyo S, Iacomini M, Smiderle FR. Isolation and comparison of α- and β-D-glucans from shiitake mushrooms (Lentinula edodes) with different biological activities. Carbohydr Polym 2019; 229:115521. [PMID: 31826486 DOI: 10.1016/j.carbpol.2019.115521] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
A polysaccharide-enriched extract obtained from Lentinula edodes was submitted to several purification steps to separate three different D-glucans with β-(1→6), β-(1→3),(1→6) and α-(1→3) linkages, being characterized through GC-MS, FT-IR, NMR, SEC and colorimetric/fluorimetric determinations. Moreover, in vitro hypocholesterolemic, antitumoral, anti-inflammatory and antioxidant activities were also tested. Isolated glucans exerted HMGCR inhibitory activity, but only β-(1→6) and β-(1→3),(1→6) fractions showed DPPH scavenging capacity. Glucans were also able to lower IL-1β and IL-6 secretion by LPS-activated THP-1/M cells and showed cytotoxic effect on a breast cancer cell line that was not observed on normal breast cells. These in vitro results pointed important directions for further in vivo studies, showing different effects of each chemical structure of the isolated glucans from shiitake mushrooms.
Collapse
Affiliation(s)
- Diego Morales
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Renata Rutckeviski
- Instituto de Pesquisa Pelé Pequeno Príncipe, CEP 80240-020, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, CEP 80230-020, Curitiba, PR, Brazil.
| | - Marisol Villalva
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Hellen Abreu
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil.
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Susana Santoyo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil.
| | - Fhernanda Ribeiro Smiderle
- Instituto de Pesquisa Pelé Pequeno Príncipe, CEP 80240-020, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, CEP 80230-020, Curitiba, PR, Brazil.
| |
Collapse
|
113
|
Lu L, Ji L, Shi R, Li S, Zhang X, Guo Q, Wang C, Qiao L. Dextran as an elicitor of phenylpropanoid and flavonoid biosynthesis in tomato fruit against gray mold infection. Carbohydr Polym 2019; 225:115236. [PMID: 31521274 DOI: 10.1016/j.carbpol.2019.115236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/11/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022]
Abstract
Alpha-1,3-glucan is often synthesized on the surface of pathogenic filamentous fungi cell walls to block pathogen-associated molecular patterns (PAMPs) generation by host plant enzymes and the subsequent immune system response of the plant. Here, Botrytis cinerea susceptibility was assessed in tomato fruit to determine whether the fruit could recognize this camouflage and mount an immune response to it. The results showed that local mechanical wounds treated with dextran and laminarin, except amylopectin, could locally and then systemically activate disease resistance against B. cinerea infection in tomato fruit. Dextran treatment effectively elicited fruit callose deposition and phenylpropanoid and flavonoid biosynthesis to a greater extent than α-glucanase activity relative to the mock group surface wounds. Enzymatic hydrolysis of this polysaccharide provided some help in improving host disease resistance. Taken together, these results demonstrate that tomato fruit can perceive α-1,3-glucan as a kind of PAMPs but have limited ability to degrade it.
Collapse
Affiliation(s)
- Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lifeng Ji
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ruixi Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuhua Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xi Zhang
- Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan Province 650500, PR China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Liping Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
114
|
Gil-Ramírez A, Smiderle FR, Morales D, Iacomini M, Soler-Rivas C. Strengths and weaknesses of the aniline-blue method used to test mushroom (1→3)-β-d-glucans obtained by microwave-assisted extractions. Carbohydr Polym 2019; 217:135-143. [DOI: 10.1016/j.carbpol.2019.04.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
|
115
|
Geller A, Shrestha R, Yan J. Yeast-Derived β-Glucan in Cancer: Novel Uses of a Traditional Therapeutic. Int J Mol Sci 2019; 20:E3618. [PMID: 31344853 PMCID: PMC6695648 DOI: 10.3390/ijms20153618] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
An increased understanding of the complex mechanisms at play within the tumor microenvironment (TME) has emphasized the need for the development of strategies that target immune cells within the TME. Therapeutics that render the TME immune-reactive have a vast potential for establishing effective cancer interventions. One such intervention is β-glucan, a natural compound with immune-stimulatory and immunomodulatory potential that has long been considered an important anti-cancer therapeutic. β-glucan has the ability to modulate the TME both by bridging the innate and adaptive arms of the immune system and by modulating the phenotype of immune-suppressive cells to be immune-stimulatory. New roles for β-glucan in cancer therapy are also emerging through an evolving understanding that β-glucan is involved in a concept called trained immunity, where innate cells take on memory phenotypes. Additionally, the hollow structure of particulate β-glucan has recently been harnessed to utilize particulate β-glucan as a delivery vesicle. These new concepts, along with the emerging success of combinatorial approaches to cancer treatment involving β-glucan, suggest that β-glucan may play an essential role in future strategies to prevent and inhibit tumor growth. This review emphasizes the various characteristics of β-glucan, with an emphasis on fungal β-glucan, and highlights novel approaches of β-glucan in cancer therapy.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rejeena Shrestha
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jun Yan
- Immuno-Oncology Program, Division of Immunotherapy, Department of Surgery, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
116
|
Korolenko TA, Bgatova NP, Vetvicka V. Glucan and Mannan-Two Peas in a Pod. Int J Mol Sci 2019; 20:ijms20133189. [PMID: 31261851 PMCID: PMC6651133 DOI: 10.3390/ijms20133189] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
In recent decades, various polysaccharides isolated from algae, mushrooms, yeast, and higher plants have attracted serious attention in the area of nutrition and medicine. The reasons include their low toxicity, rare negative side effects, relatively low price, and broad spectrum of therapeutic actions. The two most and best-studied polysaccharides are mannan and glucan. This review focused on their biological properties.
Collapse
Affiliation(s)
- Tatiana A Korolenko
- Department of Experimental Models of Neurodegeneration, Scientific Research Institute of Physiology and Basic Medicine, Timakov St. 4, 630117 Novosibirsk, Russia
| | - Nataliya P Bgatova
- Laboratory of Electron Miscroscopy, Research Institute of Clinical and Experimental Lymphology-Affiliated Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, 511 S. Floyd, Louisville, KY 40292, USA.
| |
Collapse
|
117
|
Bai J, Ren Y, Li Y, Fan M, Qian H, Wang L, Wu G, Zhang H, Qi X, Xu M, Rao Z. Physiological functionalities and mechanisms of β-glucans. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
118
|
Huang W, Deng H, Jin S, Yang W, Wang H, Meng C, Wang H, Yang S. A polysaccharide from dried aerial parts of Agrimonia pilosa: Structural characterization and its potential therapeutic activity for steroid‑induced necrosis of the femoral head (SANFH). Carbohydr Polym 2019; 214:71-79. [DOI: 10.1016/j.carbpol.2019.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/22/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022]
|
119
|
Li Z, Ye X, Liu M, Xia C, Zhang L, Luo X, Wang T, Chen Y, Zhao Y, Qiao Y, Huang Y, Cao H, Gu X, Fan J, Cui Z, Zhang Z. A novel outer membrane β-1,6-glucanase is deployed in the predation of fungi by myxobacteria. ISME JOURNAL 2019; 13:2223-2235. [PMID: 31065029 DOI: 10.1038/s41396-019-0424-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Myxobacterial predation on bacteria has been investigated for several decades. However, their predation on fungi has received less attention. Here, we show that a novel outer membrane β-1,6-glucanase GluM from Corallococcus sp. strain EGB is essential for initial sensing and efficient decomposition of fungi during predation. GluM belongs to an unstudied family of outer membrane β-barrel proteins with potent specific activity up to 24,000 U/mg, whose homologs extensively exist in myxobacteria. GluM was able to digest fungal cell walls efficiently and restrict Magnaporthe oryzae infection of rice plants. Genetic complementation with gluM restored the fungal predation ability of Myxococcus xanthus CL1001, which was abolished by the disruption of gluM homolog oar. The inability to prey on fungi with cell walls that lack β-1,6-glucans indicates that β-1,6-glucans are targeted by GluM. Our results demonstrate that GluM confers myxobacteria with the ability to feed on fungi, and provide new insights for understanding predator-prey interactions. Considering the attack mode of GluM, we suggest that β-1,6-glucan is a promising target for the development of novel broad-spectrum antifungal agents.
Collapse
Affiliation(s)
- Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, China
| | - Muxing Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects of Chinese Ministry of Agriculture, College of Plant Protection, Nanjing Agriculture University, 210095, Nanjing, China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, China
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, China
| | - Xue Luo
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, China
| | - Ting Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, China
| | - Yue Chen
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, 410125, Changsha, China
| | - Yuqiang Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, China
| | - Yan Qiao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiangyang Gu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiaqin Fan
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects of Chinese Ministry of Agriculture, College of Plant Protection, Nanjing Agriculture University, 210095, Nanjing, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, China.
| | - Zhengguang Zhang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects of Chinese Ministry of Agriculture, College of Plant Protection, Nanjing Agriculture University, 210095, Nanjing, China.
| |
Collapse
|
120
|
Yang D, Zhou Z, Zhang L. An overview of fungal glycan-based therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:135-163. [PMID: 31030746 DOI: 10.1016/bs.pmbts.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Edible medicinal mushrooms have been traditionally used for health promotion and longevity in China and other East Asian countries for centuries. Structural and pharmacological studies revealed that fungal glycans show multiple physiological and healthy promoting effects including immunomodulation, anti-tumor, anti-aging, anti-oxidation, hypoglycemic, hypolipidemic, anti-radiation, and other effects. Fungal glycans isolated from different kinds of medicinal mushrooms are partially purified and clinically tested. Without serious safety concerns of mostly glycans from edible mushrooms and/or the cultured mycelium, eight of them are approved by Chinese Food and Drug Administration (SFDA) and used clinically in China since 1980s. In this chapter, 185 independent studies involving in biochemical, pharmacological and clinical studies of fungal glycans during the past four decades (1977-2019) from PubMed, CNKI (China National Knowledge Infrastructure) and Wanfang databases are summarized. In future, understanding the fungal glycan-based drugs at molecular biological level would be needed to comprehend the clinical efficacy of glycan-based drugs.
Collapse
Affiliation(s)
- Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zijing Zhou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
121
|
Ruiz-Herrera J, Ortiz-Castellanos L. Cell wall glucans of fungi. A review. ACTA ACUST UNITED AC 2019; 5:100022. [PMID: 32743138 PMCID: PMC7389562 DOI: 10.1016/j.tcsw.2019.100022] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 11/23/2022]
Abstract
Glucans are the most abundant compounds in the fungal cell walls. The most common type of glucose bonding is 1 → 3, both alpha and beta. Microfibrillar glucans with chitin provide rigidity to the fungal wall. Fungal beta glucans act as PAMPS during infection of animals and plants.
Glucans are the most abundant polysaccharides in the cell walls of fungi, and their structures are highly variable. Accordingly, their glucose moieties may be joined through either or both alpha (α) or beta (β) linkages, they are either lineal or branched, and amorphous or microfibrillar. Alpha 1,3 glucans sensu strictu (pseudonigerans) are the most abundant alpha glucans present in the cell walls of fungi, being restricted to dikarya. They exist in the form of structural microfibrils that provide resistance to the cell wall. The structure of beta glucans is more complex. They are linear or branched, and contain mostly β 1,3 and β 1,6 linkages, existing in the form of microfibrils. Together with chitin they constitute the most important structural components of fungal cell walls. They are the most abundant components of the cell walls in members of all fungal phyla, with the exception of Microsporidia, where they are absent. Taking into consideration the importance of glucans in the structure and physiology of the fungi, in the present review we describe the following aspects of these polysaccharides: i) types and distribution of fungal glucans, ii) their structure, iii) their roles, iv) the mechanism of synthesis of the most important ones, and v) the phylogentic relationships of the enzymes involved in their synthesis.
Collapse
Affiliation(s)
- José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto. Mexico
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto. Mexico
| |
Collapse
|
122
|
Abreu H, Simas FF, Smiderle FR, Sovrani V, Dallazen JL, Maria-Ferreira D, Werner MF, Cordeiro LM, Iacomini M. Gelling functional property, anti-inflammatory and antinociceptive bioactivities of β-D-glucan from the edible mushroom Pholiota nameko. Int J Biol Macromol 2019; 122:1128-1135. [DOI: 10.1016/j.ijbiomac.2018.09.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/07/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022]
|
123
|
The edible mushroom Albatrellus ovinus contains a α-l-fuco-α-d-galactan, α-d-glucan, a branched (1 → 6)-β-d-glucan and a branched (1 → 3)-β-d-glucan. Carbohydr Res 2019; 471:28-38. [DOI: 10.1016/j.carres.2018.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
|
124
|
Zhang J, Liu Y, Tang Q, Zhou S, Feng J, Chen H. Polysaccharide of Ganoderma and Its Bioactivities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1181:107-134. [PMID: 31677141 DOI: 10.1007/978-981-13-9867-4_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ganoderma, named lingzhi in China, has been used for centuries as drug and nutraceutical to treat diseases. Based on our research and other literatures, the chapter summarizes the progress of preparation, structural features and properties, bioactivities of Ganoderma polysaccharides. The aim is to provide a comprehensive source of information for researchers and consumers of Ganoderma, so they can better understand Ganoderma polysaccharides and their biological activities. In addition, more clinical studies should be carried out to meet the criteria for new drug development, and more convincing scientific data should be provided. In addition, on the basis of a large number of studies on Ganoderma polysaccharides, we suggest that more clinical studies should be carried out so that Ganoderma can be better recognized and applied all over the world.
Collapse
Affiliation(s)
- Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingjiu Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hongyu Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
125
|
Liao X, Větvička V, Crich D. Synthesis and Evaluation of 1,5-Dithia-d-laminaribiose, Triose, and Tetraose as Truncated β-(1→3)-Glucan Mimetics. J Org Chem 2018; 83:14894-14904. [PMID: 30456952 DOI: 10.1021/acs.joc.8b01645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The preparation and characterization of a series of di-, tri-, and tetrasaccharide analogues of β-(1→3)-glucans is described in which each pyranoside ring is replaced by a 5-thiopyranosyl ring and each glycosidic oxygen by a thioether. These oligomeric 1,5-dithio-d-glucopyranose derivatives were shown to inhibit the staining of human neutrophils and of mouse macrophages by fluorescent anti-CR3 and anti-Dectin-1 antibodies, respectively. The compounds were also demonstrated to stimulate phagocytosis and pinocytosis indicative of binding to the carbohydrate binding domains of complement receptor 3 (CR3) and Dectin-1. Activity in all three assays was optimum at the level of the trisaccharide mimic, suggesting that, while the replacement of ethereal oxygens by thioethers results in a greater affinity for the aromatic lined hydrophobic binding pockets, the presence of multiple longer C-S bonds eventually results in a mismatch and a loss of affinity.
Collapse
Affiliation(s)
- Xiaoxiao Liao
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Václav Větvička
- Department of Pathology , University of Louisville , 323 East Chestnut Street , Louisville , Kentucky 40202 , United States
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
126
|
Sun Y, Shi X, Zheng X, Nie S, Xu X. Inhibition of dextran sodium sulfate-induced colitis in mice by baker's yeast polysaccharides. Carbohydr Polym 2018; 207:371-381. [PMID: 30600019 DOI: 10.1016/j.carbpol.2018.11.087] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/07/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
Most of the reported yeast polysaccharides are a mixture of chitin, β-glucan and mannoprotein, leading to different biological activities. Herein, we report the structures and the anti-inflammation of the purified baker's yeast polysaccharides (BBG1-BBG4). Experimental data indicated that BBG1 was a highly branched β-(1,6)-glucan linked to mannoprotein; BBG2 was a linear β-(1,3)-glucan; BBG3 and BBG4 were mixtures of a β-(1,6)-branched β-(1,3)-glucan and a linear β-(1,3)-glucan. Of these, BBG1 exhibited stronger inhibition of pro-inflammatory mediators of NO/iNOS, IL-6, IL-1β, etc. at protein and/or mRNA levels in LPS-stimulated RAW264.7 cells through inhibiting MAPK signalling pathways. Orally administered BBG1 and BBG2 significantly decreased the pro-inflammatory mediators of IL-6, iNOS and IL-1β at protein and/or mRNA levels, as well as colonic mucosal damage and macrophages infiltration in DSS-induced colitis mice. All these findings suggest that yeast polysaccharides have potentials as anti-inflammatory drugs or adjuvants in the intestinal inflammation therapy.
Collapse
Affiliation(s)
- Ying Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaodan Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xing Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
127
|
Silambarasan S, Logeswari P, Cornejo P, Kannan VR. Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions. Int J Biol Macromol 2018; 121:55-62. [PMID: 30290257 DOI: 10.1016/j.ijbiomac.2018.10.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/03/2018] [Accepted: 10/02/2018] [Indexed: 01/05/2023]
Abstract
The capability of plant growth promoting microbes to survive under abiotic stresses has important significance for improving plant growth and productivity. Among the various plant growth promoting biomolecules produced by microbes, exopolysaccharide (EPS) help microbes to survive in inhospitable environments and endure environmental stressful conditions. In the present study, a yeast strain CAH2 was isolated from Beta vulgaris rhizosphere soil and identified as Rhodotorula sp., based on the partial 18S rRNA gene sequence analysis. Rhodotorula sp. strain CAH2 was found to tolerate higher concentrations of Al (6 mM), NaCl (150 mM) and PEG-6000 (15%, w/v). The strain CAH2 was shown to produce 7.5 g L-1 of EPS in the production medium with sucrose and yeast extract as a carbon and nitrogen sources, respectively. The EPS yield was increased constantly with increasing concentrations of Al, NaCl and PEG-6000. The structural feature of EPS studied through FT-IR and NMR spectral analysis confirmed the presence of glucose, mannose and galactose. The yeast strain CAH2 was produced multiple plant growth promoting traits in the presence and absence of abiotic stresses. Finally, these results indicate that the production of EPS could be safeguard the plant growth promoting Rhodotorula sp. strain CAH2 from unfavourable environmental conditions.
Collapse
Affiliation(s)
- Sivagnanam Silambarasan
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Peter Logeswari
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| | - Velu Rajesh Kannan
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
128
|
Suarato G, Bertorelli R, Athanassiou A. Borrowing From Nature: Biopolymers and Biocomposites as Smart Wound Care Materials. Front Bioeng Biotechnol 2018; 6:137. [PMID: 30333972 PMCID: PMC6176001 DOI: 10.3389/fbioe.2018.00137] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022] Open
Abstract
Wound repair is a complex and tightly regulated physiological process, involving the activation of various cell types throughout each subsequent step (homeostasis, inflammation, proliferation, and tissue remodeling). Any impairment within the correct sequence of the healing events could lead to chronic wounds, with potential effects on the patience quality of life, and consequent fallouts on the wound care management. Nature itself can be of inspiration for the development of fully biodegradable materials, presenting enhanced bioactive potentialities, and sustainability. Naturally-derived biopolymers are nowadays considered smart materials. They provide a versatile and tunable platform to design the appropriate extracellular matrix able to support tissue regeneration, while contrasting the onset of adverse events. In the past decades, fabrication of bioactive materials based on natural polymers, either of protein derivation or polysaccharide-based, has been extensively exploited to tackle wound-healing related problematics. However, in today's World the exclusive use of such materials is becoming an urgent challenge, to meet the demand of environmentally sustainable technologies to support our future needs, including applications in the fields of healthcare and wound management. In the following, we will briefly introduce the main physico-chemical and biological properties of some protein-based biopolymers and some naturally-derived polysaccharides. Moreover, we will present some of the recent technological processing and green fabrication approaches of novel composite materials based on these biopolymers, with particular attention on their applications in the skin tissue repair field. Lastly, we will highlight promising future perspectives for the development of a new generation of environmentally-friendly, naturally-derived, smart wound dressings.
Collapse
Affiliation(s)
- Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Genoa, Italy
- In vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rosalia Bertorelli
- In vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | | |
Collapse
|
129
|
Lasiosan, a new exopolysaccharide from Lasiodiplodia sp. strain B2 (MTCC 6000): Structural characterization and biological evaluation. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
130
|
Maddela NR, Zhou Z, Yu Z, Zhao S, Meng F. Functional Determinants of Extracellular Polymeric Substances in Membrane Biofouling: Experimental Evidence from Pure-Cultured Sludge Bacteria. Appl Environ Microbiol 2018; 84:e00756-18. [PMID: 29858205 PMCID: PMC6052268 DOI: 10.1128/aem.00756-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/20/2018] [Indexed: 01/26/2023] Open
Abstract
The aim of this work was to better understand the roles of extracellular polymeric substances (EPS) in membrane biofouling at the single-strain level. In the present study, a total of 23 bacterial strains were isolated from a sludge sample. The EPS extracted from pure-cultured bacteria were assessed for their fouling potentials and were simultaneously analyzed using Fourier transform infrared spectroscopy (FTIR). Further, the impact of calcium on the chemical composition of EPS and membrane fouling behavior was investigated in a strain-dependent manner. The EPS of the 23 bacterial strains exhibited different IR features for protein and polysaccharide regions. In addition, an α-1,4-glycosidic linkage (920 cm-1) and amide II (1,550 cm-1) correlated very well with the fouling potentials of all pure-cultured bacteria. In contrast to low-fouling strains, medium- and high-fouling strains exhibited two distinct peaks at 1,020 cm-1 (uronic acids) and 1,250 cm-1 (O-acetyl), which accelerate membrane fouling given their gelling capacities. In the presence of calcium, the fouling potential of a high-fouling strain (Bacillus sp. strain JSB10) was profoundly reduced (P < 0.0005) due to the binding activity of an α-1,4-glycosidic linkage and amide II with calcium. However, the impact of calcium on a low-fouling strain (Vagococcus sp. strain JSB21) was insignificant. Two-dimensional FTIR correlation spectroscopic (2D-FTIR-COS) analysis further revealed that the susceptibilities of functional groups to calcium largely relied on the composition and abundance of the above-described functional groups in EPS. These findings suggest that bacterial strains with different fouling potentials exhibit varied responses to calcium.IMPORTANCE Membrane biofouling is one of the main challenges for the operation of membrane-based processes used for water and wastewater treatment. This study revealed the functional determinants of EPS in membrane biofouling of 23 bacterial strains isolated from a full-scale membrane bioreactor (MBR) plant. We found that an α-1,4-glycosidic bond, amide II, and uronic acids of EPS significantly correlated with the fouling potentials of bacteria. The roles of these EPS groups in membrane fouling were impacted by calcium resulting from EPS-calcium interactions. In addition, our results also demonstrated that any perturbations in the sludge bacterial community in MBRs can lead to varied filtration potentials of the bulk liquor.
Collapse
Affiliation(s)
- Naga Raju Maddela
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, People's Republic of China
| | - Zhongbo Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, People's Republic of China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, People's Republic of China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, People's Republic of China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, People's Republic of China
| |
Collapse
|
131
|
Liu Y, Tang Q, Zhang J, Xia Y, Yang Y, Wu D, Fan H, Cui SW. Triple helix conformation of β-d-glucan from Ganoderma lucidum and effect of molecular weight on its immunostimulatory activity. Int J Biol Macromol 2018; 114:1064-1070. [DOI: 10.1016/j.ijbiomac.2018.03.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 01/15/2023]
|
132
|
Wei Z, Chen G, Zhang P, Zhu L, Zhang L, Chen K. Rhizopus nigricans polysaccharide activated macrophages and suppressed tumor growth in CT26 tumor-bearing mice. Carbohydr Polym 2018; 198:302-312. [PMID: 30093003 DOI: 10.1016/j.carbpol.2018.06.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 01/03/2023]
Abstract
In this study, a homogeneous polysaccharide (RPS-1) was extracted from liquid-cultured mycelia of Rhizopus nigricans. The weight-average molecular weight of RPS-1 was 1.617 × 107 g/mol and structural characterization indicated that RPS-1 was a non-starch glucan which consisted of a backbone structure of (1→4)-linked α-d-glucopyranosyl residues substituted at the O-6 position with α-d-glucopyranosyl branches. RPS-1 stimulated the production of nitric oxide and tumor necrosis factor-α by triggering phosphorylation of mitogen-activated protein kinases and nuclear translocation of nuclear factor kappa B p65 in RAW 264.7 macrophage cells. Moreover, intragastric administration of RPS-1 improved the immune function of CT26 tumor-bearing mice and significantly inhibited the growth of transplanted tumor. In combination with 5-FU, RPS-1 enhanced antitumor activity of 5-FU and alleviated its toxicity on immune system. These findings suggested that RPS-1 has the potential for the development of functional foods and dietary supplements.
Collapse
Affiliation(s)
- Zhihong Wei
- Gynecology Department, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Guochuang Chen
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Pengying Zhang
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Lei Zhu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Linan Zhang
- Second Affiliated Hospital of China Medical University, Shenyang, China
| | - Kaoshan Chen
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu, China.
| |
Collapse
|
133
|
Fucogalactan from the giant mushroom Macrocybe titans inhibits melanoma cells migration. Carbohydr Polym 2018; 190:50-56. [DOI: 10.1016/j.carbpol.2018.02.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/21/2018] [Indexed: 01/03/2023]
|
134
|
Wisbeck E, Facchini JM, Alves EP, Silveira MLL, Gern RMM, Ninow JL, Furlan SA. A polysaccharide fraction extracted from Pleurotus ostreatus mycelial biomass inhibit Sarcoma 180 tumor. AN ACAD BRAS CIENC 2018; 89:2013-2020. [PMID: 29166531 DOI: 10.1590/0001-3765201720150635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/18/2016] [Indexed: 11/21/2022] Open
Abstract
Fungi of Pleurotus genus have attracted a great interest due to their medicinal properties such as anti-inflammatory, antimicrobial and antitumor. These properties are attributed mainly to polysaccharides synthesized by Pleurotus. This work aimed to study the mycelial growth of P. ostreatus in submerged culture, evaluating the influence of the initial concentration of substrate (20 and 40 g/L of glucose) and the pH (4 and 6) on kinetic parameters of production of biomass. The effectiveness of different doses (10, 30 and 50 mg/kg) of a mycelium polysaccharide fraction extracted from P. ostreatus in reducing Sarcoma 180 development in mice was also verified. In the range of this study, maximum concentration of mycelial biomass (about 12.8 g/L) was obtained using 40.0 g/L of glucose, at pH 4.0. The total biomass productivity (Px) was not significantly affected by substrate concentration and pH, reaching values of 0.034 g/L.h. Sarcoma 180 tumor weight was reduced in 74.1, 75.5 and 53.7% when 10, 30 and 50 mg/kg were administered, respectively. These results show the high antitumor potential of intracellular polysaccharide fraction of mycelial biomass of P. ostreatus, particularly at lower doses of 10 and 30 mg/kg.
Collapse
Affiliation(s)
- Elisabeth Wisbeck
- Universidade da Região de Joinville/UNIVILLE, Campus Universitário, Zona Industrial, Rua Paulo Malschitzki, 10, 89219-710 Joinville, SC, Brazil
| | - Jean M Facchini
- Universidade da Região de Joinville/UNIVILLE, Campus Universitário, Zona Industrial, Rua Paulo Malschitzki, 10, 89219-710 Joinville, SC, Brazil
| | - Endi P Alves
- Universidade da Região de Joinville/UNIVILLE, Campus Universitário, Zona Industrial, Rua Paulo Malschitzki, 10, 89219-710 Joinville, SC, Brazil
| | - Marcia L L Silveira
- Universidade da Região de Joinville/UNIVILLE, Campus Universitário, Zona Industrial, Rua Paulo Malschitzki, 10, 89219-710 Joinville, SC, Brazil
| | - Regina M M Gern
- Universidade da Região de Joinville/UNIVILLE, Campus Universitário, Zona Industrial, Rua Paulo Malschitzki, 10, 89219-710 Joinville, SC, Brazil
| | - Jorge L Ninow
- Universidade Federal de Santa Catarina/UFSC, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Sandra A Furlan
- Universidade da Região de Joinville/UNIVILLE, Campus Universitário, Zona Industrial, Rua Paulo Malschitzki, 10, 89219-710 Joinville, SC, Brazil
| |
Collapse
|
135
|
Camilli G, Tabouret G, Quintin J. The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System. Front Immunol 2018; 9:673. [PMID: 29755450 PMCID: PMC5932370 DOI: 10.3389/fimmu.2018.00673] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 01/12/2023] Open
Abstract
β-glucan, the most abundant fungal cell wall polysaccharide, has gained much attention from the scientific community in the last few decades for its fascinating but not yet fully understood immunobiology. Study of this molecule has been motivated by its importance as a pathogen-associated molecular pattern upon fungal infection as well as by its promising clinical utility as biological response modifier for the treatment of cancer and infectious diseases. Its immune effect is attributed to the ability to bind to different receptors expressed on the cell surface of phagocytic and cytotoxic innate immune cells, including monocytes, macrophages, neutrophils, and natural killer cells. The characteristics of the immune responses generated depend on the cell types and receptors involved. Size and biochemical composition of β-glucans isolated from different sources affect their immunomodulatory properties. The variety of studies using crude extracts of fungal cell wall rather than purified β-glucans renders data difficult to interpret. A better understanding of the mechanisms of purified fungal β-glucan recognition, downstream signaling pathways, and subsequent immune regulation activated, is, therefore, essential not only to develop new antifungal therapy but also to evaluate β-glucan as a putative anti-infective and antitumor mediator. Here, we briefly review the complexity of interactions between fungal β-glucans and mononuclear phagocytes during fungal infections. Furthermore, we discuss and present available studies suggesting how different fungal β-glucans exhibit antitumor and antimicrobial activities by modulating the biologic responses of mononuclear phagocytes, which make them potential candidates as therapeutic agents.
Collapse
Affiliation(s)
- Giorgio Camilli
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| | | | - Jessica Quintin
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| |
Collapse
|
136
|
Ma W, Chen X, Wang B, Lou W, Chen X, Hua J, Sun YJ, Zhao Y, Peng T. Characterization, antioxidativity, and anti-carcinoma activity of exopolysaccharide extract from Rhodotorula mucilaginosa CICC 33013. Carbohydr Polym 2018; 181:768-777. [DOI: 10.1016/j.carbpol.2017.11.080] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 10/27/2017] [Accepted: 11/22/2017] [Indexed: 11/15/2022]
|
137
|
In vivo antimutagenic and antiatherogenic effects of the (1 → 3)(1 → 6)-β-d- glucan botryosphaeran. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 826:6-14. [DOI: 10.1016/j.mrgentox.2017.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 12/03/2017] [Accepted: 12/15/2017] [Indexed: 11/20/2022]
|
138
|
Mogilnaya OA, Ronzhin NO, Bondar VS. Extracellular Peroxidase Activity and Light Emission of the Mycelium of the Basidiomycete Neonothopanus nambi in the Presence of β-Glucosidase. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
139
|
The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast. J Fungi (Basel) 2017; 4:jof4010001. [PMID: 29371494 PMCID: PMC5872304 DOI: 10.3390/jof4010001] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI) pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies.
Collapse
|
140
|
de Jesus LI, Smiderle FR, Ruthes AC, Vilaplana F, Dal'Lin FT, Maria-Ferreira D, Werner MF, Van Griensven LJLD, Iacomini M. Chemical characterization and wound healing property of a β-D-glucan from edible mushroom Piptoporus betulinus. Int J Biol Macromol 2017; 117:1361-1366. [PMID: 29274425 DOI: 10.1016/j.ijbiomac.2017.12.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
A water-soluble β-D-glucan was obtained from fruiting bodies of Piptoporus betulinus, by hot aqueous extraction followed by freeze-thawing procedure and dialysis. Its molar mass distribution and conformational behavior in solution was assessed by size-exclusion chromatography coupled with multiangle laser light scattering, showing a polysaccharide with an average molecular weight of 2.5 × 105 Da with a random coil conformation for molecular weights below 1 × 106 Da. Typical signals of β-(1 → 3)-linkages were observed in NMR spectrum (δ 102.7/4.76; 102.8/4.74; 102.9/4.52; and δ 85.1/3.78; 85.0/3.77) and also signals of O-6 substitution at δ 69.2/4.22 and 69.2/3.87. The analysis of partially O-methylated alditol acetates corroborates the NMR results, indicating the presence of a β-D-glucan with a main chain (1 → 3)-linked, substituted at O-6 by single-units of glucose. The β-D-glucan showed no toxicity on human colon carcinoma cell line (Caco-2) up to 1000 μg mL-1 and promoted cell migration on in vitro scratch assay, demonstrating a potential wound healing capacity.
Collapse
Affiliation(s)
- Liana Inara de Jesus
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil
| | - Fhernanda R Smiderle
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil
| | - Andrea C Ruthes
- Division of Glycoscience, AlbaNova University Centre, Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, AlbaNova University Centre, Royal Institute of Technology, 106 91 Stockholm, Sweden
| | | | - Daniele Maria-Ferreira
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil
| | - Maria Fernanda Werner
- Department of Pharmacology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil
| | - Leo J L D Van Griensven
- Plant Research International, Wageningen University and Research, Bornsesteeg 1, 6708 PD Wageningen, The Netherlands
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil.
| |
Collapse
|
141
|
Malfatti CRM, dos Santos FS, Wouk J, da Silva LA, Michel RG, Snak AL, Czervinski T, da Cunha MAA, Barbosa AM, Dekker RFH. Intracerebroventricular administration of the (1→6)-β-d-glucan (lasiodiplodan) in male rats prevents d-penicillamine-induced behavioral alterations and lipoperoxidation in the cortex. PHARMACEUTICAL BIOLOGY 2017; 55:1289-1294. [PMID: 28274189 PMCID: PMC6130678 DOI: 10.1080/13880209.2017.1299767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/02/2016] [Accepted: 02/21/2017] [Indexed: 05/31/2023]
Abstract
CONTEXT Lasiodiplodan, an exocellular (1→6)-β-d-glucan of molecular weight >1.4 × 106 Da produced by MMPI strain of Lasiodiplodia theobromae (Pat.) Griffon & Maubl. (Brotyosphaeriaceae) is known to exhibit anti-proliferative activity on breast cancer cells (MCF-7), anticoagulant activity when sulfonylated, and reduction in transaminase activity when administered in rats. OBJECTIVE The effect of intracerebroventricular (I.C.V) injection of lasiodiplodan on neurotoxicity and behavioural changes induced by d-penicillamine was investigated. MATERIALS AND METHODS Twenty-four male Wistar rats were initially separated in groups of six and treated with 0.15 μmol/μL of NaCl (Groups Ct and d-Pen) and 0.01 μg/μL of lasiodiplodan (Groups Las and Las + d-Pen). After 15 min, they received 6 μmol/μL of NaCl (Groups Ct and Las) and 2 μmol/μL of d-penicillamine (Groups d-Pen and Las + d-Pen). The animal behavior was observed in an open-field test for 60 min. Twenty-four h later, the animals were sacrificed and histopathological analysis and Thiobarbituric acid reactive substances (TBARS) production measurements were performed. RESULTS Lasiodiplodan prevented neurotoxicity induced by d-penicillamine significantly reducing the production of TBARS (308%; p < 0.05), and behavioural signs; convulsive and pre-convulsive. No histopathological alterations in the cerebral cortex were observed. DISCUSSION AND CONCLUSION The reduction of TBARS production and convulsive episodes suggests that the protector effect provided by lasiodiplodan passes thought an antioxidant path, possibly interfering in a cascade of neurochemical events, triggering cell death and convulsive episodes. These results demonstrated that lasiodiplodan can be effective in treating neurotoxicity, and reducing damage triggered by convulsions in neuropathies related to GABAergic system.
Collapse
Affiliation(s)
| | - Fabio Seidel dos Santos
- Teaching of Science and Technology Postgraduate Program, Federal Technological University of Paraná, Campus Ponta Grossa, Ponta Grossa, Brazil
| | - Jéssica Wouk
- Pharmaceutical Science Postgraduate Program, Midwest State University, Campus CEDETEG, Guarapuava, Brazil
| | - Luiz Augusto da Silva
- Pharmaceutical Science Postgraduate Program, Midwest State University, Campus CEDETEG, Guarapuava, Brazil
| | - Renan Garcia Michel
- Pharmaceutical Science Postgraduate Program, Midwest State University, Campus CEDETEG, Guarapuava, Brazil
| | - André Luiz Snak
- Pharmaceutical Science Postgraduate Program, Midwest State University, Campus CEDETEG, Guarapuava, Brazil
| | - Tiago Czervinski
- Pharmaceutical Science Postgraduate Program, Midwest State University, Campus CEDETEG, Guarapuava, Brazil
| | - Mário A. Alves da Cunha
- Department of Chemistry, Federal Technological University of Paraná, Campus Pato branco, Pato Branco, Brazil
| | - Aneli M. Barbosa
- Department of Chemistry, Londrina State University, Londrina, Brazil
| | - Robert F. H. Dekker
- Environmental Engineering Postgraduate Program, Federal Technological University of Paraná, Campus Londrina, Londrina, Brazil
| |
Collapse
|
142
|
Pronk M, Neu TR, van Loosdrecht MCM, Lin YM. The acid soluble extracellular polymeric substance of aerobic granular sludge dominated by Defluviicoccus sp. WATER RESEARCH 2017; 122:148-158. [PMID: 28599160 DOI: 10.1016/j.watres.2017.05.068] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
A new acid soluble extracellular polymeric substance (acid soluble EPS) was extracted from an acetate fed aerobic granular sludge reactor operated at 35 °C. Acid soluble EPS dominated granules exhibited a remarkable and distinctive tangled tubular morphology. These granules are dominated by Defluviicoccus Cluster II organisms. Acetic acid instead of the usually required alkaline extraction medium was needed to dissolve the granules and solubilise the polymeric matrix. The extracted acid soluble EPS was analysed and identified using various instrumental analysis including 1H and 13C Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy and Raman spectroscopy. In addition, the glycoconjugates were characterized by fluorescence lectin-binding analysis. The acid soluble EPS is α-(1 → 4) linked polysaccharide, containing both glucose and galactose as monomers. There are OCH3 groups connected to the glucose monomer. Transmission and scanning electron microscopy (TEM, SEM) as well as confocal laser scanning microscopy (CLSM) showed that the acid soluble EPS was present as a tightly bound capsular EPS around bacterial cells ordered into a sarcinae-like growth pattern. The special granule morphology is decided by the acid soluble EPS produced by Defluviicoccus Cluster II organisms. This work shows that no single one method can be used to extract all possible extracellular polymeric substances. Results obtained here can support the elucidation of biofilm formation and structure in future research.
Collapse
Affiliation(s)
- M Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - T R Neu
- Microbiology of Interfaces, Department River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3A, 39114, Magdeburg, Germany.
| | - M C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Y M Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
143
|
Wang Y, Liu Y, Yu H, Zhou S, Zhang Z, Wu D, Yan M, Tang Q, Zhang J. Structural characterization and immuno-enhancing activity of a highly branched water-soluble β-glucan from the spores of Ganoderma lucidum. Carbohydr Polym 2017; 167:337-344. [DOI: 10.1016/j.carbpol.2017.03.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/07/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
|
144
|
Potential of glucans as vaccine adjuvants: A review of the α-glucans case. Carbohydr Polym 2017; 165:103-114. [DOI: 10.1016/j.carbpol.2017.02.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/06/2023]
|
145
|
Du B, Yang Y, Bian Z, Xu B. Characterization and Anti-Inflammatory Potential of an Exopolysaccharide from Submerged Mycelial Culture of Schizophyllum commune. Front Pharmacol 2017; 8:252. [PMID: 28555107 PMCID: PMC5430044 DOI: 10.3389/fphar.2017.00252] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
Background and Purpose: Mushroom polysaccharides have attracted attention in food and pharmacology fields because of their many biological activities. The structure characterization and anti-inflammatory activity of exopolysaccharide from Schizophyllum commune were evaluated in present study. Methods: An exopolysaccharide from a submerged mycelial fermentation of S. commune was obtained using DEAE-52 cellulose and Sephadex G-150 chromatography. The molecular weight (MW), monosaccharide compositions, chemical compositions, methylation analysis, circular dichroism studies, Fourier transform infrared spectroscopy, nuclear magnetic resonance (NMR) spectra, scanning electron microscopy (SEM), and atomic force microscopy were investigated. Results: It was a homogeneous protein-bound heteropolysaccharide with MW of 2,900 kDa. The exopolysaccharide contained a β-(1→3) glycosidic backbone, (1→4)- and (1→6)- glycosidic side chain, and high amount of glucose. The anti-inflammatory activity of exopolysaccharide was assessed by inhibiting the production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and 5- lipoxygenase (5-LOX) from macrophages. This exopolysaccharide significantly (p < 0.05) inhibited lipopolysaccharides-induced iNOS expression levels in the cells in a dose-dependent manner. Conclusion: It indicated significant anti-inflammatory effects, which showed that exopolysaccharide might be exploited as an effective anti-inflammatory agent for application in NO-related disorders such as inflammation and cancer.
Collapse
Affiliation(s)
- Bin Du
- Analysis and Testing Center, Hebei Normal University of Science and TechnologyQinhuangdao, China
- School of Chinese Medicine, Hong Kong Baptist UniversityHong Kong, China
- Food Science and Technology Program, Beijing Normal University–Hong Kong Baptist University United International CollegeZhuhai, China
| | - Yuedong Yang
- Analysis and Testing Center, Hebei Normal University of Science and TechnologyQinhuangdao, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist UniversityHong Kong, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University–Hong Kong Baptist University United International CollegeZhuhai, China
| |
Collapse
|
146
|
Rodrigues CF, Henriques M. Oral mucositis caused by Candida glabrata biofilms: failure of the concomitant use of fluconazole and ascorbic acid. Ther Adv Infect Dis 2017; 4:10-17. [PMID: 28357061 DOI: 10.1177/2049936116684477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Candida glabrata is becoming one of the most prevalent pathogenic yeasts in cases of oral diseases. Mucositis is an recurrent oral infection in immunocompromised patients, and the actual guidelines recommend the use of fluconazole (Flu) for many cases. However, the azole resistance by C. glabrata is renowned, causing a reduced therapeutic response, especially when it occurs in biofilms. In this study, we performed an in vitro evaluation of an alternative pharmacotherapy for C. glabrata biofilm infections, combining ascorbic acid (AA) with Flu. AA is recognized for degrading β-glucans, an important compound of the biofilm matrices, which prevent drug diffusion. MATERIALS AND METHODS Routine clinical 30 or 40 mg/l doses of Flu were applied to C. glabrata biofilms simultaneously with 200 or 300 mg/l of AA. RESULTS The results showed that this combination effectively promoted the degradation of the biofilm network, but unfortunately, also stimulated the growth of the yeasts population due to release of several glucose monomers during β-glucans hydrolysis. DISCUSSION AA lead to the hydrolysis of the β-glucans of the matrix, liberating glucose molecules which are used as carbon souce by the yeasts, thus suppressing the desired antifungal effect of the drug combination with Flu. CONCLUSIONS Unlike to what happens in treatment of bacterial infection, AA should not be used together with Flu in the treating oral mucositis caused by Candida.
Collapse
Affiliation(s)
- Célia F Rodrigues
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Mariana Henriques
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
147
|
Valasques Junior GL, Boffo EF, Santos JDG, Brandão HN, Mascarenhas AJS, Cruz FT, Assis SA. The extraction and characterisation of a polysaccharide from Moniliophthora perniciosa CCMB 0257. Nat Prod Res 2017; 31:1647-1654. [DOI: 10.1080/14786419.2017.1285302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gildomar L. Valasques Junior
- Departamento de Saúde, Laboratório de Enzimologia e Tecnologia de Fermentação, Universidade Estadual de Feira de Santana (UEFS), Brazil
| | - Elisangela F. Boffo
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Brasil
| | - Jener David G. Santos
- Departamento de Saúde, Universidade Estadual de Feira de Santana (UEFS), Bahia, Brasil
| | - Hugo Neves Brandão
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal (LABIV), Universidade Estadual de Feira de Santana (UEFS), Brazil
| | - Artur J. S. Mascarenhas
- Departamento de Química Geral e Inorgânica, Universidade Federal da Bahia – UFBA, Salvador, Brasil
| | - Fernanda T. Cruz
- Departamento de Química Geral e Inorgânica, Universidade Federal da Bahia – UFBA, Salvador, Brasil
| | - Sandra A. Assis
- Departamento de Saúde, Laboratório de Enzimologia e Tecnologia de Fermentação, Universidade Estadual de Feira de Santana (UEFS), Brazil
| |
Collapse
|
148
|
Maity P, Nandi AK, Manna DK, Pattanayak M, Sen IK, Bhanja SK, Samanta S, Panda BC, Paloi S, Acharya K, Islam SS. Structural characterization and antioxidant activity of a glucan from Meripilus giganteus. Carbohydr Polym 2017; 157:1237-1245. [DOI: 10.1016/j.carbpol.2016.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022]
|
149
|
4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H. Sci Rep 2017; 7:39761. [PMID: 28059108 PMCID: PMC5216370 DOI: 10.1038/srep39761] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
Lactic acid bacteria possess a diversity of glucansucrase (GS) enzymes that belong to glycoside hydrolase family 70 (GH70) and convert sucrose into α-glucan polysaccharides with (α1 → 2)-, (α1 → 3)-, (α1 → 4)- and/or (α1 → 6)-glycosidic bonds. In recent years 3 novel subfamilies of GH70 enzymes, inactive on sucrose but using maltodextrins/starch as substrates, have been established (e.g. GtfB of Lactobacillus reuteri 121). Compared to the broad linkage specificity found in GSs, all GH70 starch-acting enzymes characterized so far possess 4,6-α-glucanotransferase activity, cleaving (α1 → 4)-linkages and synthesizing new (α1 → 6)-linkages. In this work a gene encoding a putative GH70 family enzyme was identified in the genome of Lactobacillus fermentum NCC 2970, displaying high sequence identity with L. reuteri 121 GtfB 4,6-α-glucanotransferase, but also with unique variations in some substrate-binding residues of GSs. Characterization of this L. fermentum GtfB and its products revealed that it acts as a 4,3-α-glucanotransferase, converting amylose into a new type of α-glucan with alternating (α1 → 3)/(α 1 → 4)-linkages and with (α1 → 3,4) branching points. The discovery of this novel reaction specificity in GH70 family and clan GH-H expands the range of α-glucans that can be synthesized and allows the identification of key positions governing the linkage specificity within the active site of the GtfB-like GH70 subfamily of enzymes.
Collapse
|
150
|
da Cunha MA, Albornoz S, Queiroz Santos V, Sánchez W, Barbosa-Dekker A, Dekker R. Structure and Biological Functions of d -Glucans and Their Applications. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|