101
|
Dinsmore C, Reiter JF. Endothelial primary cilia inhibit atherosclerosis. EMBO Rep 2016; 17:156-66. [PMID: 26769565 DOI: 10.15252/embr.201541019] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/27/2015] [Indexed: 01/23/2023] Open
Abstract
Primary cilia are microtubule-based structures present on most mammalian cells that are important for intercellular signaling. Cilia are present on a subset of endothelial cells where they project into the vessel lumen and are implicated as mechanical sensors of blood flow. To test the in vivo role of endothelial cilia, we conditionally deleted Ift88, a gene required for ciliogenesis, in endothelial cells of mice. We found that endothelial primary cilia were dispensable for mammalian vascular development. Cilia were not uniformly distributed in the mouse aorta, but were enriched at vascular branch points and sites of high curvature. These same sites are predisposed to the development of atherosclerotic plaques, prompting us to investigate whether cilia participate in atherosclerosis. Removing endothelial cilia increased atherosclerosis in Apoe(-/-) mice fed a high-fat, high-cholesterol diet, indicating that cilia protect against atherosclerosis. Removing endothelial cilia increased inflammatory gene expression and decreased eNOS activity, indicating that endothelial cilia inhibit pro-atherosclerotic signaling in the aorta.
Collapse
Affiliation(s)
- Colin Dinsmore
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute University of California, San Francisco San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
102
|
Sun Y, Lau CW, Jia Y, Li Y, Wang W, Ran J, Li F, Huang Y, Zhou H, Yang B. Functional inhibition of urea transporter UT-B enhances endothelial-dependent vasodilatation and lowers blood pressure via L-arginine-endothelial nitric oxide synthase-nitric oxide pathway. Sci Rep 2016; 6:18697. [PMID: 26739766 PMCID: PMC4703984 DOI: 10.1038/srep18697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/23/2015] [Indexed: 12/25/2022] Open
Abstract
Mammalian urea transporters (UTs), UT-A and UT-B, are best known for their role in urine concentration. UT-B is especially distributed in multiple extrarenal tissues with abundant expression in vascular endothelium, but little is known about its role in vascular function. The present study investigated the physiological significance of UT-B in regulating vasorelaxations and blood pressure. UT-B deletion in mice or treatment with UT-B inhibitor PU-14 in Wistar-Kyoto rats (WKYs) and spontaneous hypertensive rats (SHRs) reduced blood pressure. Acetylcholine-induced vasorelaxation was significantly augmented in aortas from UT-B null mice. PU-14 concentration-dependently produced endothelium-dependent relaxations in thoracic aortas and mesenteric arteries from both mice and rats and the relaxations were abolished by N(ω)-nitro-L-arginine methyl ester. Both expression and phosphorylation of endothelial nitric oxide synthase (eNOS) were up-regulated and expression of arginase I was down-regulated when UT-B was inhibited both in vivo and in vitro. PU-14 induced endothelium-dependent relaxations to a similar degree in aortas from 12 weeks old SHRs or WKYs. In summary, here we report for the first time that inhibition of UT-B plays an important role in regulating vasorelaxations and blood pressure via up-regulation of L-arginine-eNOS-NO pathway, and it may become another potential therapeutic target for the treatment of hypertension.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chi-Wai Lau
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yingli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianhua Ran
- Department of Anatomy and Neuroscience Center, Chongqing Medical University, Chongqing, China
| | - Fei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
103
|
Lincha VR, Zhao BT, Woo MH, Yang IJ, Shin HM. Effects of Constituent Compounds of Smilax china on Nicotine-Induced Endothelial Dysfunction in Human Umbilical Vein Endothelial Cells. Biol Pharm Bull 2016; 39:984-92. [DOI: 10.1248/bpb.b15-00997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Mi-Hee Woo
- College of Pharmacy, Catholic University of Daegu
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University
- Korea National Developing Institute of Korean Medicine
| |
Collapse
|
104
|
Xia N, Horke S, Habermeier A, Closs EI, Reifenberg G, Gericke A, Mikhed Y, Münzel T, Daiber A, Förstermann U, Li H. Uncoupling of Endothelial Nitric Oxide Synthase in Perivascular Adipose Tissue of Diet-Induced Obese Mice. Arterioscler Thromb Vasc Biol 2016; 36:78-85. [DOI: 10.1161/atvbaha.115.306263] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/06/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Ning Xia
- From the Department of Pharmacology (N.X., S.H., A.H., E.I.C., G.R., U.F., H.L.), Center for Thrombosis and Hemostasis (S.H.), Department of Ophthalmology (A.G.), and Second Medical Department, Cardiology and Angiology (Y.M., T.M., A.D.), Johannes Gutenberg University Medical Center, Mainz, Germany; and German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany (T.M., A.D., H.L.)
| | - Sven Horke
- From the Department of Pharmacology (N.X., S.H., A.H., E.I.C., G.R., U.F., H.L.), Center for Thrombosis and Hemostasis (S.H.), Department of Ophthalmology (A.G.), and Second Medical Department, Cardiology and Angiology (Y.M., T.M., A.D.), Johannes Gutenberg University Medical Center, Mainz, Germany; and German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany (T.M., A.D., H.L.)
| | - Alice Habermeier
- From the Department of Pharmacology (N.X., S.H., A.H., E.I.C., G.R., U.F., H.L.), Center for Thrombosis and Hemostasis (S.H.), Department of Ophthalmology (A.G.), and Second Medical Department, Cardiology and Angiology (Y.M., T.M., A.D.), Johannes Gutenberg University Medical Center, Mainz, Germany; and German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany (T.M., A.D., H.L.)
| | - Ellen I. Closs
- From the Department of Pharmacology (N.X., S.H., A.H., E.I.C., G.R., U.F., H.L.), Center for Thrombosis and Hemostasis (S.H.), Department of Ophthalmology (A.G.), and Second Medical Department, Cardiology and Angiology (Y.M., T.M., A.D.), Johannes Gutenberg University Medical Center, Mainz, Germany; and German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany (T.M., A.D., H.L.)
| | - Gisela Reifenberg
- From the Department of Pharmacology (N.X., S.H., A.H., E.I.C., G.R., U.F., H.L.), Center for Thrombosis and Hemostasis (S.H.), Department of Ophthalmology (A.G.), and Second Medical Department, Cardiology and Angiology (Y.M., T.M., A.D.), Johannes Gutenberg University Medical Center, Mainz, Germany; and German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany (T.M., A.D., H.L.)
| | - Adrian Gericke
- From the Department of Pharmacology (N.X., S.H., A.H., E.I.C., G.R., U.F., H.L.), Center for Thrombosis and Hemostasis (S.H.), Department of Ophthalmology (A.G.), and Second Medical Department, Cardiology and Angiology (Y.M., T.M., A.D.), Johannes Gutenberg University Medical Center, Mainz, Germany; and German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany (T.M., A.D., H.L.)
| | - Yuliya Mikhed
- From the Department of Pharmacology (N.X., S.H., A.H., E.I.C., G.R., U.F., H.L.), Center for Thrombosis and Hemostasis (S.H.), Department of Ophthalmology (A.G.), and Second Medical Department, Cardiology and Angiology (Y.M., T.M., A.D.), Johannes Gutenberg University Medical Center, Mainz, Germany; and German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany (T.M., A.D., H.L.)
| | - Thomas Münzel
- From the Department of Pharmacology (N.X., S.H., A.H., E.I.C., G.R., U.F., H.L.), Center for Thrombosis and Hemostasis (S.H.), Department of Ophthalmology (A.G.), and Second Medical Department, Cardiology and Angiology (Y.M., T.M., A.D.), Johannes Gutenberg University Medical Center, Mainz, Germany; and German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany (T.M., A.D., H.L.)
| | - Andreas Daiber
- From the Department of Pharmacology (N.X., S.H., A.H., E.I.C., G.R., U.F., H.L.), Center for Thrombosis and Hemostasis (S.H.), Department of Ophthalmology (A.G.), and Second Medical Department, Cardiology and Angiology (Y.M., T.M., A.D.), Johannes Gutenberg University Medical Center, Mainz, Germany; and German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany (T.M., A.D., H.L.)
| | - Ulrich Förstermann
- From the Department of Pharmacology (N.X., S.H., A.H., E.I.C., G.R., U.F., H.L.), Center for Thrombosis and Hemostasis (S.H.), Department of Ophthalmology (A.G.), and Second Medical Department, Cardiology and Angiology (Y.M., T.M., A.D.), Johannes Gutenberg University Medical Center, Mainz, Germany; and German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany (T.M., A.D., H.L.)
| | - Huige Li
- From the Department of Pharmacology (N.X., S.H., A.H., E.I.C., G.R., U.F., H.L.), Center for Thrombosis and Hemostasis (S.H.), Department of Ophthalmology (A.G.), and Second Medical Department, Cardiology and Angiology (Y.M., T.M., A.D.), Johannes Gutenberg University Medical Center, Mainz, Germany; and German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany (T.M., A.D., H.L.)
| |
Collapse
|
105
|
Molina MN, Ferder L, Manucha W. Emerging Role of Nitric Oxide and Heat Shock Proteins in Insulin Resistance. Curr Hypertens Rep 2015; 18:1. [DOI: 10.1007/s11906-015-0615-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
106
|
Jiang YB, Yang YR. Trifolium pratense isoflavones improve pulmonary vascular remodelling in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2015; 100:1159-1168. [PMID: 26671194 DOI: 10.1111/jpn.12424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 09/16/2015] [Indexed: 11/30/2022]
Abstract
Pulmonary arterial remodelling is a pathological characteristic of pulmonary arterial hypertension (PAH), which contributes to the development of sustained pulmonary hypertension. The aim of this study was to investigate the effects of dietary Trifolium pratense isoflavones on pulmonary vascular remodelling in experimental broiler pulmonary hypertension syndrome. Exposure to sub-thermoneutral environmental temperatures increased broiler's pulmonary hypertension syndrome incidence and raised expression levels of nitric oxide, endothelin and endothelial nitric oxide synthase. Dietary supplementation (20 mg/kg basal diet) with Trifolium pratense isoflavones reduced pulmonary hypertension syndrome incidence and improved pulmonary vascular remodelling without affecting growth performance. The beneficial effect likely came from isoflavone improved pulmonary vascular remodelling. Isoflavone induced inducible nitric oxide synthase expression, which led to increased nitric oxide level. The nitric oxide could mediate vasorelaxation in the lungs. At the same time, the expression of endothelin was downregulated by isoflavone. Dietary supplementation of Trifolium pratense isoflavone might be a potential therapeutic strategy for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Y B Jiang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| | - Y R Yang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
107
|
Blum-Johnston C, Thorpe RB, Wee C, Romero M, Brunelle A, Blood Q, Wilson R, Blood AB, Francis M, Taylor MS, Longo LD, Pearce WJ, Wilson SM. Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth. Am J Physiol Lung Cell Mol Physiol 2015; 310:L271-86. [PMID: 26637638 DOI: 10.1152/ajplung.00340.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Abstract
Bradykinin-induced activation of the pulmonary endothelium triggers nitric oxide production and other signals that cause vasorelaxation, including stimulation of large-conductance Ca(2+)-activated K(+) (BKCa) channels in myocytes that hyperpolarize the plasma membrane and decrease intracellular Ca(2+). Intrauterine chronic hypoxia (CH) may reduce vasorelaxation in the fetal-to-newborn transition and contribute to pulmonary hypertension of the newborn. Thus we examined the effects of maturation and CH on the role of BKCa channels during bradykinin-induced vasorelaxation by examining endothelial Ca(2+) signals, wire myography, and Western immunoblots on pulmonary arteries isolated from near-term fetal (∼ 140 days gestation) and newborn, 10- to 20-day-old, sheep that lived in normoxia at 700 m or in CH at high altitude (3,801 m) for >100 days. CH enhanced bradykinin-induced relaxation of fetal vessels but decreased relaxation in newborns. Endothelial Ca(2+) responses decreased with maturation but increased with CH. Bradykinin-dependent relaxation was sensitive to 100 μM nitro-L-arginine methyl ester or 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, supporting roles for endothelial nitric oxide synthase and soluble guanylate cyclase activation. Indomethacin blocked relaxation in CH vessels, suggesting upregulation of PLA2 pathways. BKCa channel inhibition with 1 mM tetraethylammonium reduced bradykinin-induced vasorelaxation in the normoxic newborn and fetal CH vessels. Maturation reduced whole cell BKCa channel α1-subunit expression but increased β1-subunit expression. These results suggest that CH amplifies the contribution of BKCa channels to bradykinin-induced vasorelaxation in fetal sheep but stunts further development of this vasodilatory pathway in newborns. This involves complex changes in multiple components of the bradykinin-signaling axes.
Collapse
Affiliation(s)
- Carla Blum-Johnston
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
| | - Richard B Thorpe
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Chelsea Wee
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Monica Romero
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, California
| | - Alexander Brunelle
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Quintin Blood
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Rachael Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California;
| | - Arlin B Blood
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California; and
| | - Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Birmingham, Alabama
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Birmingham, Alabama
| | - Lawrence D Longo
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean M Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
108
|
Shu X, Keller TCS, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci 2015; 72:4561-75. [PMID: 26390975 PMCID: PMC4628887 DOI: 10.1007/s00018-015-2021-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/21/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.
Collapse
Affiliation(s)
- Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Daniela Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Lauren Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA.
| |
Collapse
|
109
|
Dexamethasone, tetrahydrobiopterin and uncoupling of endothelial nitric oxide synthase. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2015; 12:528-39. [PMID: 26512245 PMCID: PMC4605949 DOI: 10.11909/j.issn.1671-5411.2015.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To find out whether dexamethasone induces an uncoupling of the endothelial nitric oxide synthase (eNOS). METHODS & RESULTS A major cause of eNOS uncoupling is a deficiency of its cofactor tetrahydrobiopterin (BH4). Treatment of human EA.hy 926 endothelial cells with dexamethasone decreased mRNA and protein expression of both BH4-synthesizing enzymes: GTP cyclohydrolase I and dihydrofolate reductase. Consistently, a concentration- and time-dependent reduction of BH4, dihydrobiopterin (BH2) as well as BH4: BH2 ratio was observed in dexamethasone-treated cells. Surprisingly, no evidence for eNOS uncoupling was found. We then analyzed the expression and phosphorylation of the eNOS enzyme. Dexamethasone treatment led to a down-regulation of eNOS protein and a reduction of eNOS phosphorylation at serine 1177. A reduction of eNOS expression may lead to a relatively normal BH4: eNOS molar ratio in dexamethasone-treated cells. Because the BH4-eNOS stoichiometry rather than the absolute BH4 amount is the key determinant of eNOS functionality (i.e., coupled or uncoupled), the down-regulation of eNOS may represent an explanation for the absence of eNOS uncoupling. Phosphorylation of eNOS at serine 1177 is needed for both the NO-producing activity of the coupled eNOS and the superoxide-producing activity of the uncoupled eNOS. Thus, a reduction of serine 1177 phosphorylation may render a potentially uncoupled eNOS hardly detectable. CONCLUSIONS Although dexamethasone reduces BH4 levels in endothelial cells, eNOS uncoupling is not evident. The reduction of NO production in dexamethasone-treated endothelial cells is mainly attributable to reduced eNOS expression and decreased eNOS phosphorylation at serine 1177.
Collapse
|
110
|
Rostam MA, Piva TJ, Rezaei HB, Kamato D, Little PJ, Zheng W, Osman N. Peptidyl-prolyl isomerases: functionality and potential therapeutic targets in cardiovascular disease. Clin Exp Pharmacol Physiol 2015; 42:117-24. [PMID: 25377120 DOI: 10.1111/1440-1681.12335] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/26/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023]
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) are a conserved group of enzymes that catalyse the conversion between cis and trans conformations of proline imidic peptide bonds. These enzymes play critical roles in regulatory mechanisms of cellular function and pathophysiology of disease. There are three different classes of PPIases and increasing interest in the development of specific PPIase inhibitors. Cyclosporine A, FK506, rapamycin and juglone are known PPIase inhibitors. Herein, we review recent advances in elucidating the role and regulation of the PPIase family in vascular disease. We focus on peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1), an important member of the PPIase family that plays a role in cell cycle progression, gene expression, cell signalling and cell proliferation. In addition, Pin1 may be involved in atherosclerosis. The unique role of Pin1 as a molecular switch that impacts on multiple downstream pathways necessitates the evaluation of a highly specific Pin1 inhibitor to aid in potential therapeutic drug discovery.
Collapse
Affiliation(s)
- Muhamad A Rostam
- Discipline of Pharmacy, RMIT University, Melbourne, Vic., Australia; Diabetes Complications Group, Metabolism, Exercise and Disease Program, Health Innovations Research Institute, RMIT University, Melbourne, Vic., Australia; International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
111
|
Effect of Selenium Supplementation on Redox Status of the Aortic Wall in Young Spontaneously Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:609053. [PMID: 26473024 PMCID: PMC4592724 DOI: 10.1155/2015/609053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/23/2015] [Accepted: 03/10/2015] [Indexed: 01/18/2023]
Abstract
Selenium (Se) is an exogenous antioxidant that performs its function via the expression of selenoproteins. The aim of this study was to explore the effect of varying Se intake on the redox status of the aortic wall in young spontaneously hypertensive rats (SHR). Sixteen male Wistar Kyoto (WKY) rats and nineteen male SHR, 16-week-old, were tested after being given diets with different Se content for eight weeks. They were divided into 4 groups: control groups of WKY NSe and SHR NSe on an adequate Se diet and groups of WKY HSe and SHR HSe that received Se supplementation. The Se nutritional status was assessed by measuring whole blood glutathione peroxidase-1 (GPx-1) activity. Serum concentration of lipid hydroperoxides and serum level of antibodies against advanced glycation end products (anti-AGEs abs) were determined. Expression of GPx-1 and endothelial nitric oxide synthase (eNOS) were examined in aortic wall. Se supplementation significantly increased GPx-1 activity of whole blood and in the aortas of WKY and SHR. Decreased lipid peroxidation level, eNOS-3 expression in the aortic wall, and serum level of anti-AGEs abs were found in SHR HSe compared with SHR NSe.
In conclusion, Se supplementation improved the redox status of the aortic wall in young SHR.
Collapse
|
112
|
Lopes-Pires ME, Naime ACA, Almeida Cardelli NJ, Anjos DJ, Antunes E, Marcondes S. PKC and AKT Modulate cGMP/PKG Signaling Pathway on Platelet Aggregation in Experimental Sepsis. PLoS One 2015; 10:e0137901. [PMID: 26375024 PMCID: PMC4573322 DOI: 10.1371/journal.pone.0137901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/23/2015] [Indexed: 12/25/2022] Open
Abstract
Sepsis severity has been positively correlated with platelet dysfunction, which may be due to elevations in nitric oxide (NO) and cGMP levels. Protein kinase C, Src kinases, PI3K and AKT modulate platelet activity in physiological conditions, but no studies evaluated the role of these enzymes in platelet aggregation in sepsis. In the present study we tested the hypothesis that in sepsis these enzymes positively modulate upstream the NO-cGMP pathway resulting in platelet inhibition. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg, i.p.) and blood was collected after 6 h. Platelet aggregation was induced by ADP (10 μM). Western blotting assays were carried out to analyze c-Src and AKT activation in platelets. Intraplatelet cGMP levels were determined by enzyme immunoassay kit. Phosphorylation of c-SRC at Tyr416 was the same magnitude in platelets of control and LPS group. Incubation of the non-selective Src inhibitor PP2 (10 μM) had no effect on platelet aggregation of LPS-treated rats. LPS increased intraplatelet cGMP levels by 5-fold compared with control group, which was accompanied by 76% of reduction in ADP-induced platelet aggregation. The guanylyl cyclase inhibitor ODQ (25 μM) and the PKG inhibitor Rp-8-Br-PET-cGMPS (25 μM) fully reversed the inhibitory effect of LPS on platelet aggregation. Likewise, the PKC inhibitor GF109203X (10 μM) reversed the inhibition by LPS of platelet aggregation and decreased cGMP levels in platelets. AKT phosphorylation at Thr308 was significantly higher in platelets of LPS compared with control group, which was not reduced by PI3K inhibition. The AKT inhibitor API-1 (20 μM) significantly increased aggregation and reduced cGMP levels in platelets of LPS group. However, the PI3K inhibitor wortmannin and LY29004 had no effect on platelet aggregation of LPS-treated rats. Therefore, inhibition of ADP-induced platelet aggregation after LPS injection is mediated by cGMP/PKG-dependent mechanisms, and PKC and AKT act upstream upregulating this pathway.
Collapse
Affiliation(s)
- M. Elisa Lopes-Pires
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas (SP), Brazil
| | - Ana C. Antunes Naime
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas (SP), Brazil
| | - Nádia J. Almeida Cardelli
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas (SP), Brazil
| | - Débora J. Anjos
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas (SP), Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas (SP), Brazil
| | - Sisi Marcondes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas (SP), Brazil
- * E-mail:
| |
Collapse
|
113
|
Hamilton K, MacKenzie A. Gender specific generation of nitroxyl (HNO) from rat endothelium. Vascul Pharmacol 2015; 71:208-14. [DOI: 10.1016/j.vph.2015.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
|
114
|
Liu J, Peng L, Yang J, Wang M, Xu S, Liu J, Han P, He J, Tian D, Zhou Q. Sodium Ferulate Reduces Portal Pressure Through Inhibition of RhoA/Rho-Kinase and Activation of Endothelial Nitric Oxide Synthase in Cirrhotic Rats. Dig Dis Sci 2015; 60:2019-29. [PMID: 25724163 DOI: 10.1007/s10620-015-3544-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/16/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Recent studies have demonstrated that increased RhoA/Rho-kinase activity and reduced nitric oxide activity have the necessary machinery to induce cirrhosis. However, it is unclear whether this regulates the functions of hepatic stellate cells (HSCs). In this study, we used sodium ferulate (SF) in a cirrhotic rat model and examined its roles in regulating RhoA activation in HSCs and the subsequent effects on contraction of HSCs. METHODS Bile duct ligation method was used to induce cirrhosis in rats. Intrahepatic resistance was investigated in in situ perfused livers. Hepatic RhoA, Rho-kinase and eNOS expressions were studied by RT-PCR and Western blot. RhoA pull-down assay and collagen gel contraction assay of HSCs were performed by incubation with SF in the absence or presence of GGPP. RESULTS We showed that in cirrhotic liver, SF can efficiently affect RhoA activation via lowering the synthesis of GGPP in HSCs. These actions effectively reduced basal intrahepatic resistance in cirrhotic rats. Our study further suggested that SF effectively decreased Rho-kinase activity and increased activity of eNOS at both the mRNA and protein levels. SF treatment of HSCs reduced RhoA GTP without affecting the total RhoA protein level, and GGPP had the ability to block SF-induced protein expression. Furthermore, SF inhibited the contraction of activated HSCs and this inhibition was efficiently reversed by addition of GGPP. CONCLUSIONS SF inhibits hepatic RhoA/Rho-kinase signaling and activates the NO/PKG pathway in cirrhotic rats. This may serve as a mechanism for reducing the contraction of activated HSCs upon SF treatment.
Collapse
Affiliation(s)
- Jiqiao Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Szpakowicz A, Kiliszek M, Pepinski W, Waszkiewicz E, Franaszczyk M, Skawronska M, Ploski R, Niemcunowicz-Janica A, Burzynska B, Tulacz D, Maciejak A, Kaminski MJ, Opolski G, Musial WJ, Kaminski KA. The rs12526453 Polymorphism in an Intron of the PHACTR1 Gene and Its Association with 5-Year Mortality of Patients with Myocardial Infarction. PLoS One 2015; 10:e0129820. [PMID: 26086777 PMCID: PMC4472810 DOI: 10.1371/journal.pone.0129820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023] Open
Abstract
Objective The rs12526453 (C/G) is a single nucleotide polymorphism in an intron of the PHACTR1 gene (phosphatase and actin regulator 1). The C allele is associated with increased risk of coronary artery disease in an unknown mechanism. We investigated its association with long-term overall mortality in patients with ST-elevation myocardial infarction (STEMI) treated invasively. Methods Two independent groups of patients with STEMI were analyzed: a derivation group (n= 638) and a validation one (n=348). Genotyping was performed with the TaqMan method. The analyzed end-point was total long term mortality. Additionally, transcriptomic analysis was performed in mononuclear blood leukocytes from rs12526453 CC monozygotes or G allele carriers. Results In the study group (mean age 62.3 ± 11.9 years; 24.9% of females, n=159), percentages of CC, CG, and GG genotypes were 45.3% (n=289), 44.7% (n=285), and 10% (n=64), respectively. In the 5-year follow-up 105 patients died (16.46%). CC homozygotes had significantly lower mortality compared to other genotypes: 13.1% (n=38) vs. 18.3% in G-allele carriers (n=67), (p=0.017, Cox`s F test). In the validation group 47 patients died within 3 years (13.5%). We confirmed lower mortality of CC homozygotes: 10.1 % (n=18) vs. 16.95% in G-allele carriers (n=29), (p=0.031, Cox`s F test). Transcriptomic analysis revealed a markedly higher expression of NLRP-2 in CC homozygotes. Conclusions The rs12526453 CC homozygotes (previously associated with increased risk of myocardial infarction) showed, in 2 independent samples, better long-term survival. The finding of such high effect size, after appropriate validation, could potentially be translated into clinical practice.
Collapse
Affiliation(s)
- Anna Szpakowicz
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
| | - Marek Kiliszek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
- Department of Cardiology and Internal Diseases, Military Institute of Medicine, Warsaw, Poland
| | - Witold Pepinski
- Department of Forensic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Waszkiewicz
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
| | - Maria Franaszczyk
- Laboratory of Molecular Biology, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | | | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Beata Burzynska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Tulacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Maciejak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Grzegorz Opolski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | | | - Karol Adam Kaminski
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
- * E-mail:
| |
Collapse
|
116
|
Mutchler SM, Straub AC. Compartmentalized nitric oxide signaling in the resistance vasculature. Nitric Oxide 2015; 49:8-15. [PMID: 26028569 DOI: 10.1016/j.niox.2015.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 01/23/2023]
Abstract
Nitric oxide (NO) was first described as a bioactive molecule through its ability to stimulate soluble guanylate cyclase, but the revelation that NO was the endothelium derived relaxation factor drove the field to its modern state. The wealth of research conducted over the past 30 years has provided us with a picture of how diverse NO signaling can be within the vascular wall, going beyond simple vasodilation to include such roles as signaling through protein S-nitrosation. This expanded view of NO's actions requires highly regulated and compartmentalized production. Importantly, resistance arteries house multiple proteins involved in the production and transduction of NO allowing for efficient movement of the molecule to regulate vascular tone and reactivity. In this review, we focus on the many mechanisms regulating NO production and signaling action in the vascular wall, with a focus on the control of endothelial nitric oxide synthase (eNOS), the enzyme responsible for synthesizing most of the NO within these confines. We also explore how cross talk between the endothelium and smooth muscle in the microcirculation can modulate NO signaling, illustrating that this one small molecule has the capability to produce a plethora of responses.
Collapse
Affiliation(s)
- Stephanie M Mutchler
- Heart, Lung, Blood and Vascular Medicine Institute, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
117
|
Impaired nitric oxide production and increased blood pressure in systemic heterozygous ATP2B1 null mice. J Hypertens 2015; 32:1415-23; discussion 1423. [PMID: 24805951 DOI: 10.1097/hjh.0000000000000206] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND In the 'Millennium Genome Project', we identified ATP2B1 as a gene responsible for hypertension through single-nucleotide polymorphism analysis. The ATP2B1 gene encodes the plasma membrane calcium ATPase isoform 1, which contributes to the maintenance of intracellular calcium homeostasis by removing calcium ions. METHOD Since ATP2B1 knockout mice are reported to be embryo-lethal, we generated systemic heterozygous ATP2B1 null (ATP2B1(+/-)) mice, and evaluated the implication of ATP2B1 in blood pressure. RESULTS ATP2B1(+/-) mice revealed significantly higher SBP as measured by a radiotelemetric method. Phenylephrine-induced vasoconstriction was significantly increased in vascular rings from ATP2B1(+/-) mice, and the difference in this contraction disappeared in the presence of a nitric oxide synthase (NOS) inhibitor. Vasorelaxation to acetylcholine was significantly attenuated in vascular rings from ATP2B1(+/-) mice. In addition, cultured endothelial cells of ATP2B1(+/-) mice showed that the phosphorylation (Ser-1177) level of endothelial NOS protein was significantly lower, and nitric oxide production in endothelial cells and aorta was lower compared with those in control mice. In contrast, neural NOS expression in vascular smooth muscle cells from ATP2B1(+/-) mice and control mice were not significantly different. CONCLUSION These results suggest that decreased ATP2B1 gene expression is associated with impaired endothelial NOS activity and nitric oxide production, and the ATP2B1 gene plays a crucial role in the regulation of blood pressure.
Collapse
|
118
|
Heiss EH, Dirsch VM. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des 2015; 20:3503-13. [PMID: 24180389 DOI: 10.2174/13816128113196660745] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
Abstract
The regulation of endothelial NO synthase (eNOS) employs multiple different cellular control mechanisms impinging on level and activity of the enzyme. This review aims at summarizing the current knowledge on the posttranslational modifications of eNOS, including acylation, nitrosylation, phosphorylation, acetylation, glycosylation and glutathionylation. Sites, mediators and impact on enzyme localization and activity of the single modifications will be discussed. Moreover, interdependence, cooperativity and competition between the different posttranslational modifications will be elaborated with special emphasis on the susceptibility of eNOS to metabolic cues.
Collapse
Affiliation(s)
| | - Verena M Dirsch
- University of Vienna, Department of Pharmacognosy, Althanstrasse14, 1090 Vienna, Austria.
| |
Collapse
|
119
|
|
120
|
Efficacy of female rat models in translational cardiovascular aging research. J Aging Res 2014; 2014:153127. [PMID: 25610649 PMCID: PMC4294461 DOI: 10.1155/2014/153127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in women in the United States. Aging is a primary risk factor for the development of cardiovascular disease as well as cardiovascular-related morbidity and mortality. Aging is a universal process that all humans undergo; however, research in aging is limited by cost and time constraints. Therefore, most research in aging has been done in primates and rodents; however it is unknown how well the effects of aging in rat models translate into humans. To compound the complication of aging gender has also been indicated as a risk factor for various cardiovascular diseases. This review addresses the systemic pathophysiology of the cardiovascular system associated with aging and gender for aging research with regard to the applicability of rat derived data for translational application to human aging.
Collapse
|
121
|
Ding H, Hong C, Wang Y, Liu J, Zhang N, Shen C, Wei W, Zheng F. Calreticulin promotes angiogenesis via activating nitric oxide signalling pathway in rheumatoid arthritis. Clin Exp Immunol 2014; 178:236-44. [PMID: 24988887 DOI: 10.1111/cei.12411] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2014] [Indexed: 12/29/2022] Open
Abstract
Calreticulin (CRT) is a multi-functional endoplasmic reticulum protein implicated in the pathogenesis of rheumatoid arthritis (RA). The present study was undertaken to determine whether CRT was involved in angiogenesis via the activating nitric oxide (NO) signalling pathway. We explored the profile of CRT expression in RA (including serum, synovial fluid and synovial tissue). In order to investigate the role of CRT on angiogenesis, human umbilical vein endothelial cells (HUVECs) were isolated and cultured in this study for in-vitro experiments. Our results showed a significantly higher concentration of CRT in serum (5·4 ± 2·2 ng/ml) of RA patients compared to that of osteoarthritis (OA, 3·6 ± 0·9 ng/ml, P < 0·05) and healthy controls (HC, 3·7 ± 0·6 ng/ml, P < 0·05); and significantly higher CRT in synovial fluid (5·8 ± 1·2 ng/ml) of RA versus OA (3·7 ± 0·3 ng/ml, P < 0·05). High levels of CRT are expressed in synovial membrane localized predominantly to inflammatory cells and synovial perivascular areas in both the lining and sublining layers of RA synovial tissue (RAST). Increased nitric oxide (NO) production and phosphorylation level of endothelial nitric oxide synthase (eNOS) were measured in HUVECs following CRT stimulation, while the total eNOS expression was not significantly changed. Furthermore, CRT promoted the proliferation, migration and tube formation of HUVECs, which were significantly inhibited by a specific eNOS inhibitor. These findings suggested that CRT may be involved in angiogenesis events in RA through NO signalling pathways, which may provide a potential therapeutic target in the treatment of RA.
Collapse
Affiliation(s)
- H Ding
- Department of Immunology, School of Laboratory Medicine, Tianjin Medical University, Tianjin, China; The Second Hospital of Tangshan, Tangshan, China
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Ying Z, Xie X, Chen M, Yi K, Rajagopalan S. Alpha-lipoic acid activates eNOS through activation of PI3-kinase/Akt signaling pathway. Vascul Pharmacol 2014; 64:28-35. [PMID: 25460366 DOI: 10.1016/j.vph.2014.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/21/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Lipoic acid (LA) exerts therapeutic effects on cardiovascular diseases. However, the mechanisms underlying these therapeutic effects remain elusive. Endothelial nitric oxide synthase (eNOS) plays a critical role in cardiovascular homeostasis. LA was shown to potently activate PI3-kinase/Akt pathway, and the latter is critical in the regulation of eNOS activity. In the present study, we test the hypothesis that LA improves endothelial function through PI3-kinase/Akt-mediated eNOS activation. METHODS AND RESULTS Western blot analysis showed that LA time- and dose-dependently induced phosphorylation of Akt and eNOS in human umbilical vein endothelial cells (HUVECs). Both PI3-kinase and Akt inhibitors abolished LA-induced eNOS phosphorylation, indicating that LA induces eNOS phosphorylation through the PI3-kinase/Akt pathway. This increase in eNOS phosphorylation was paralleled by an increase in NO release by HUVECs, supporting its relevance in eNOS activity regulation. Myograph analysis revealed that LA relaxed phenylephrine-induced contraction. Endothelium removal and NOS inhibition by L-NAME abolished this vasodilator action of LA, and Akt but not AMPK inhibition significantly reduced the vasodilator action of LA, indicating that it is mediated by PI3-kinase/Akt pathway-dependent activation of eNOS. Consistent with in vitro results, intraperitoneal injection with LA significantly increased plasma nitrite and nitrate levels in C57Bl/6j mice. CONCLUSIONS LA activates eNOS through a PI3-kinase/Akt signaling pathway-dependent mechanism, offering a potential molecular basis for the therapeutic effects of LA on cardiovascular diseases.
Collapse
Affiliation(s)
- Zhekang Ying
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China; Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Xiaoyun Xie
- Division of Geriatric Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Minjie Chen
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China; Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kevin Yi
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sanjay Rajagopalan
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
123
|
Agostini S, Chiavacci E, Matteucci M, Torelli M, Pitto L, Lionetti V. Barley beta-glucan promotes MnSOD expression and enhances angiogenesis under oxidative microenvironment. J Cell Mol Med 2014; 19:227-38. [PMID: 25388628 PMCID: PMC4288365 DOI: 10.1111/jcmm.12442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/22/2014] [Indexed: 12/20/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD), a foremost antioxidant enzyme, plays a key role in angiogenesis. Barley-derived (1.3) β-d-glucan (β-d-glucan) is a natural water-soluble polysaccharide with antioxidant properties. To explore the effects of β-d-glucan on MnSOD-related angiogenesis under oxidative stress, we tested epigenetic mechanisms underlying modulation of MnSOD level in human umbilical vein endothelial cells (HUVECs) and angiogenesis in vitro and in vivo. Long-term treatment of HUVECs with 3% w/v β-d-glucan significantly increased the level of MnSOD by 200% ± 2% compared to control and by 50% ± 4% compared to untreated H2O2-stressed cells. β-d-glucan-treated HUVECs displayed greater angiogenic ability. In vivo, 24 hrs-treatment with 3% w/v β-d-glucan rescued vasculogenesis in Tg (kdrl: EGFP) s843Tg zebrafish embryos exposed to oxidative microenvironment. HUVECs overexpressing MnSOD demonstrated an increased activity of endothelial nitric oxide synthase (eNOS), reduced load of superoxide anion (O2−) and an increased survival under oxidative stress. In addition, β-d-glucan prevented the rise of hypoxia inducible factor (HIF)1-α under oxidative stress. The level of histone H4 acetylation was significantly increased by β-d-glucan. Increasing histone acetylation by sodium butyrate, an inhibitor of class I histone deacetylases (HDACs I), did not activate MnSOD-related angiogenesis and did not impair β-d-glucan effects. In conclusion, 3% w/v β-d-glucan activates endothelial expression of MnSOD independent of histone acetylation level, thereby leading to adequate removal of O2−, cell survival and angiogenic response to oxidative stress. The identification of dietary β-d-glucan as activator of MnSOD-related angiogenesis might lead to the development of nutritional approaches for the prevention of ischemic remodelling and heart failure.
Collapse
Affiliation(s)
- Silvia Agostini
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
124
|
WEI LAI, YANG JUAN, WANG MIN, XU SHENGNAN, LIANG HUAMIN, ZHOU QI. Sodium ferulate lowers portal pressure in rats with secondary biliary cirrhosis through the RhoA/Rho-kinase signaling pathway: a preliminary study. Int J Mol Med 2014; 34:1257-67. [PMID: 25174394 PMCID: PMC4199412 DOI: 10.3892/ijmm.2014.1905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/25/2014] [Indexed: 12/12/2022] Open
Abstract
Cirrhotic rats show higher expression levels of hepatic RhoA and Rho-kinase than normal healthy rats, and the activation of this signaling pathway leads to portal hypertension. Sodium ferulate (SF) has been shown to decrease the production of geranylgeranyl pyrophosphate (GGPP), a substance essential for RhoA activation. In the present study, to investigate the effects of SF on fibrosis, portal hypertension and the RhoA/Rho-kinase pathway, hepatic cirrhosis was induced in rats by bile duct ligation. Liver function and fibrogenesis-related biochemical parameters, the hepatic hydroxyproline content, the pathological characteristics of the liver sections and the levels of hepatic α-smooth muscle actin (α-SMA; by immunohistochemistry) were analyzed to assess effects of SF on hepatic fibrosis. In addition, hepatic RhoA, Rho-kinase and endothelial nitric oxide synthase (eNOS) expression was examined by immunohistochemistry. Apoptosis in the SF-treated and SF + GGPP-treated rat primary hepatic stellate cells (HSCs) and a human stellate cell line (LX-2) was examined by flow cytometry. Intrahepatic resistance and responsiveness to the α1-adrenoceptor agonist, methoxamine, were investigated by in situ liver perfusion. Treatment with SF did not affect fibrosis-related biochemical parameters or the hydroxyproline content; however, SF reduced the histological evidence of fibrosis and hepatocyte damage. The SF-treated rats had a significantly lower expression of α-SMA and Rho-kinase, as well as an increased hepatic eNOS content; however, SF did not affect RhoA expression. The SF-treated HSCs had a significantly increased apoptotic rate compared to the untreated rats. Following the addition of GGPP, the rate apoptotic rate decreased. SF reduced basal intrahepatic resistance and the responsiveness of hepatic vascular smooth muscle to methoxamine. Therefore, our data demonstrate that SF reduces fibrogenesis, decreases portal pressure in cirrhotic rats and inhibits the activation of the RhoA/Rho-kinase signaling pathway.
Collapse
Affiliation(s)
- LAI WEI
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - JUAN YANG
- Department of Digestive Diseases, Chengdu First People’s Hospital, Chengdu, Sichuan, P.R. China
| | - MIN WANG
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - SHENG-NAN XU
- Department of Digestive Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - HUA-MIN LIANG
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - QI ZHOU
- Department of Digestive Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
125
|
Chen Z, Martin M, Li Z, Shyy JYJ. Endothelial dysfunction: the role of sterol regulatory element-binding protein-induced NOD-like receptor family pyrin domain-containing protein 3 inflammasome in atherosclerosis. Curr Opin Lipidol 2014; 25:339-49. [PMID: 25188917 PMCID: PMC4339278 DOI: 10.1097/mol.0000000000000107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Great effort has been devoted to elucidate the molecular mechanisms by which inflammasome in macrophages contributes to atherosclerosis. Inflammasome in vascular endothelial cells and its causal relationship with endothelial dysfunction in atherosclerosis are less understood. Here, we review the recent studies of inflammasome and its activation in endothelial cells, and highlight such endothelial inflammatory response in atherosclerosis. RECENT FINDINGS Inflammasomes are critical effectors in innate immunity, and their activation in macrophages and the arterial wall contributes to atherogenesis. Sterol regulatory element-binding protein 2, a master regulator in cholesterol biosynthesis, can be activated in a noncanonical manner, which leads to the activation of the NOD-like receptor family pyrin domain-containing protein inflammasome in macrophages and endothelial cells. Results from in-vitro and in-vivo models suggest that sterol regulatory element-binding protein 2 is a key molecule in aggravating proinflammatory responses in endothelial cells and promoting atherosclerosis. SUMMARY The SREBP-induced NOD-like receptor family pyrin domain-containing protein inflammasome and its instigation of innate immunity is an important contributor to atherosclerosis. Elucidating the underlying mechanisms will expand our understanding of endothelial dysfunction and its dynamic interaction with vascular inflammation. Furthermore, targeting SREBP-inflammasome pathways can be a therapeutic strategy for attenuating atherosclerosis.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Marcy Martin
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, Riverside, CA 92521
| | - Zhao Li
- Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, PRC
| | - John Y-J. Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
- Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, PRC
| |
Collapse
|
126
|
Endothelial nitric oxide synthase is regulated by ERK phosphorylation at Ser602. Biosci Rep 2014; 34:BSR20140015. [PMID: 25000310 PMCID: PMC4166121 DOI: 10.1042/bsr20140015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
eNOS (endothelial nitric oxide synthase) contains a MAPK (mitogen-activated protein kinase)-binding site associated with a major eNOS control element. Purified ERK (extracellular-signal-regulated kinase) phosphorylates eNOS with a stoichiometry of 2–3 phosphates per eNOS monomer. Phosphorylation decreases NO synthesis and cytochrome c reductase activity. Three sites of phosphorylation were detected by MS. All sites matched the SP and TP MAPK (mitogen-activated protein kinase) phosphorylation motif. Ser602 lies at the N-terminal edge of the 42-residue eNOS AI (autoinhibitory) element. The pentabasic MAPK-binding site lies at the opposite end of the AI, and other critical regulatory features are between them. Thr46 and Ser58 are located in a flexible region associated with the N terminus of the oxygenase domain. In contrast with PKC (protein kinase C), phosphorylation by ERK did not significantly interfere with CaM (calmodulin) binding as analysed by optical biosensing. Instead, ERK phosphorylation favours a state in which FMN and FAD are in close association and prevents conformational changes that expose reduced FMN to acceptors. The close associations between control sites in a few regions of the molecule suggest that control of signal generation is modulated by multiple inputs interacting directly on the surface of eNOS via overlapping binding domains and tightly grouped targets.
Collapse
|
127
|
Altaany Z, Ju Y, Yang G, Wang R. The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci Signal 2014; 7:ra87. [PMID: 25205851 DOI: 10.1126/scisignal.2005478] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The gasotransmitter hydrogen sulfide (H(2)S), which is generated by cystathionine γ-lyase (CSE), signals by modifying proteins through S-sulfhydration and potentially other mechanisms. A target protein for H(2)S is endothelial nitric oxide synthase (eNOS), an enzyme that generates nitric oxide (NO), which causes vasodilation. We investigated whether H(2)S-induced S-sulfhydration affected the S-nitrosylation and phosphorylation of eNOS and the functional effects of changes in these posttranslational modifications on eNOS activity. In vitro, different NO donors induced the S-nitrosylation of eNOS without affecting its S-sulfhydration, whereas the H(2)S donor sodium hydrosulfide (NaHS) decreased the S-nitrosylation of eNOS. Cys(443) was the primary S-sulfhydration site in eNOS and was one site that could be S-nitrosylated. Phosphorylation increases eNOS activity. Although exposure of eNOS-expressing HEK-293 cells to NaHS or vascular endothelial growth factor (VEGF) triggered the phosphorylation of wild-type and C443G-eNOS, VEGF did not affect the S-sulfhydration of eNOS and a mutant of eNOS that could not be phosphorylated was still S-sulfhydrated. eNOS can be present in cells in monomeric or dimeric form, but only eNOS dimers produce NO. In wild-type mice, eNOS proteins were predominantly dimerized, whereas eNOS from CSE-knockout (KO) mice, S-nitrosylated eNOS, and heterologously expressed C443G-eNOS was mostly monomeric. Accordingly, basal production of NO was lower in CSE-KO endothelial cells than in wild-type endothelial cells. Our data suggest that H(2)S increases eNOS activity by inducing the S-sulfhydration of eNOS, promoting its phosphorylation, inhibiting its S-nitrosylation, and increasing eNOS dimerization, whereas NO decreases eNOS activity by promoting the formation of eNOS monomers.
Collapse
Affiliation(s)
- Zaid Altaany
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada. Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - YoungJun Ju
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada. The School of Kinesiology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Guangdong Yang
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada. The School of Kinesiology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada. Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
128
|
Chun JN, Cho M, So I, Jeon JH. The protective effects of Schisandra chinensis fruit extract and its lignans against cardiovascular disease: A review of the molecular mechanisms. Fitoterapia 2014; 97:224-33. [DOI: 10.1016/j.fitote.2014.06.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023]
|
129
|
Han X, Zhang L, Zhang Z, Zhang Z, Wang J, Yang J, Niu J. Association between phosphatase related gene variants and coronary artery disease: case-control study and meta-analysis. Int J Mol Sci 2014; 15:14058-76. [PMID: 25123136 PMCID: PMC4159839 DOI: 10.3390/ijms150814058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/21/2014] [Accepted: 07/30/2014] [Indexed: 12/26/2022] Open
Abstract
Recent studies showed that the serum alkaline phosphatase is an independent predictor of the coronary artery disease (CAD). In this work, we aimed to summarize the association between three phosphatase related single nucleotide polymorphisms (rs12526453, rs11066301 and rs3828329) and the risk of CAD in Han Chinese. Our results showed that the rs3828329 of the ACP1 gene was closely related to the risk of CAD in Han Chinese (OR = 1.45, p = 0.0006). This significant association of rs3828329 with CAD was only found in the females (Additive model: OR = 1.80, p = 0.001; dominant model: OR = 1.69, p = 0.03; recessive model: OR = 1.96, p = 0.0008). Moreover, rs3828329 was likely to exert its effect in females aged 65 years and older (OR = 2.27, p = 0.001). Further meta-analyses showed that the rs12526453 of PHACTR11 gene (OR = 1.14, p < 0.0001, random-effect method) and the rs11066301 of PTPN11 gene (OR = 1.15, p < 0.0001, fixed-effects method) were associated with CAD risk in multiple populations. Our results showed that the polymorphisms rs12526453 and rs11066301 are significantly associated with the CAD risk in multiple populations. The rs3828329 of ACP1 gene is also a risk factor of CAD in Han Chinese females aged 65 years and older.
Collapse
Affiliation(s)
- Xia Han
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| | - Lijun Zhang
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| | - Zhiqiang Zhang
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| | - Zengtang Zhang
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| | - Jianchun Wang
- Department of Cardiology, Shandong Provincial Hospital, Jinan 250000, China.
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai 264000, China.
| | - Jiamin Niu
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| |
Collapse
|
130
|
Carnevale R, Loffredo L, Nocella C, Bartimoccia S, Bucci T, De Falco E, Peruzzi M, Chimenti I, Biondi-Zoccai G, Pignatelli P, Violi F, Frati G. Epicatechin and catechin modulate endothelial activation induced by platelets of patients with peripheral artery disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:691015. [PMID: 25180068 PMCID: PMC4142301 DOI: 10.1155/2014/691015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/20/2014] [Indexed: 02/05/2023]
Abstract
Platelet activation contributes to the alteration of endothelial function, a critical initial step in atherogenesis through the production and release of prooxidant mediators. There is uncertainty about the precise role of polyphenols in interaction between platelets and endothelial cells (ECs). We aimed to investigate whether polyphenols are able to reduce endothelial activation induced by activated platelets. First, we compared platelet activation and flow-mediated dilation (FMD) in 10 healthy subjects (HS) and 10 patients with peripheral artery disease (PAD). Then, we evaluated the effect of epicatechin plus catechin on platelet-HUVEC interaction by measuring soluble cell adhesion molecules (CAMs), NOx production, and eNOS phosphorylation (p-eNOS) in HUVEC. Compared to HS, PAD patients had enhanced platelet activation. Conversely, PAD patients had lower FMD than HS. Supernatant of activated platelets from PAD patients induced an increase of sCAMs release and a decrease of p-eNOS and nitric oxide (NO) bioavailability compared to unstimulated HUVEC. Coincubation of HUVEC, with supernatant of PAD platelets patients, pretreated with a scalar dose of the polyphenols, resulted in a decrease of sCAMs release and in an increase of p-eNOS and NO bioavailability. This study demonstrates that epicatechin plus catechin reduces endothelial activation induced by activated platelets.
Collapse
Affiliation(s)
- R. Carnevale
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - L. Loffredo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - C. Nocella
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - S. Bartimoccia
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - T. Bucci
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - E. De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - M. Peruzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - I. Chimenti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - G. Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - P. Pignatelli
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - F. Violi
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - G. Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of AngioCardioNeurology, IRCCS NeuroMed, 86077 Pozzilli, Italy
| |
Collapse
|
131
|
The N-terminal portion of autoinhibitory element modulates human endothelial nitric-oxide synthase activity through coordinated controls of phosphorylation at Thr495 and Ser1177. Biosci Rep 2014; 34:BSR20140079. [PMID: 24993645 PMCID: PMC4122979 DOI: 10.1042/bsr20140079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NO production catalysed by eNOS (endothelial nitric-oxide synthase) plays an important role in the cardiovascular system. A variety of agonists activate eNOS through the Ser1177 phosphorylation concomitant with Thr495 dephosphorylation, resulting in increased ·NO production with a basal level of calcium. To date, the underlying mechanism remains unclear. We have previously demonstrated that perturbation of the AIE (autoinhibitory element) in the FMN-binding subdomain can also lead to eNOS activation with a basal level of calcium, implying that the AIE might regulate eNOS activation through modulating phosphorylation at Thr495 and Ser1177. Here we generated stable clones in HEK-293 (human embryonic kidney 293) cells with a series of deletion mutants in both the AIE (Δ594-604, Δ605-612 and Δ626-634) and the C-terminal tail (Δ14; deletion of 1164-1177). The expression of Δ594-604 and Δ605-612 mutants in non-stimulated HEK-293 cells substantially increased nitrate/nitrite release into the culture medium; the other two mutants, Δ626-634 and Δ1164-1177, displayed no significant difference when compared with WTeNOS (wild-type eNOS). Intriguingly, mutant Δ594-604 showed close correlation between Ser1177 phosphorylation and Thr495 dephosphorylation, and NO production. Our results have indicated that N-terminal portion of AIE (residues 594-604) regulates eNOS activity through coordinated phosphorylation on Ser1177 and Thr495.
Collapse
|
132
|
Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med 2014; 73:383-99. [PMID: 24878261 PMCID: PMC4112002 DOI: 10.1016/j.freeradbiomed.2014.05.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 02/07/2023]
Abstract
Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a worldwide pandemic with few tangible and safe treatment options. Although it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many "distal" causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity-those that directly regulate energy metabolism or caloric intake-seem to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin-resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease.
Collapse
Affiliation(s)
- Brian E Sansbury
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
133
|
Li X, Xing W, Wang Y, Mi C, Zhang Z, Ma H, Zhang H, Gao F. Upregulation of caveolin-1 contributes to aggravated high-salt diet-induced endothelial dysfunction and hypertension in type 1 diabetic rats. Life Sci 2014; 113:31-9. [PMID: 25086377 DOI: 10.1016/j.lfs.2014.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 01/03/2023]
Abstract
AIMS Endothelial dysfunction and hypertension is more common in individuals with diabetes than in the general population. This study was aimed to investigate the underlying mechanisms responsible for endothelial dysfunction of type 1 diabetic rats fed with high-salt diet. MAIN METHODS Type 1 diabetes (DM) was induced by intraperitoneal injection of streptozotocin (70 mg·kg(-1)). Normal or diabetic rats were randomly fed high-salt food (HS, 8% NaCl) or standard food (CON) for 6 weeks. KEY FINDINGS Both HS (143±10 mmHg) and DM+HS (169±11 mmHg) groups displayed significantly higher systolic blood pressure than those in the CON group (112±12 mmHg, P<0.01). DM+HS rats exhibited more pronounced impairment of vasorelaxation to acetylcholine and insulin compared with either DM or HS. Akt/endothelial nitric oxide synthase (eNOS) phosphorylation levels and nitric oxide (NO) concentration in DM+HS were significantly lower than in DM. The levels of caveolin-1 (cav-1) in DM+HS were significantly higher than that in DM and HS. Co-immunoprecipitation results showed increased interaction between cav-1 and eNOS in the DM+HS group. In the presence of cav-1 small interfering RNA (siRNA), eNOS phosphorylations in human umbilical vein endothelial cells (HUVEC) were significantly increased compared with control siRNA. Cav-1 was slightly but not significantly lower in HUVEC cultured with high glucose and high-salt buffer solution and pretreated with wortmannin or l-nitro-arginine methyl ester. SIGNIFICANCE Impaired endothelial Akt activation and increased cav-1 expression and resultant decreased eNOS activation contributes to aggravated high-salt diet-induced endothelial dysfunction and hypertension in DM rats.
Collapse
Affiliation(s)
- Xu Li
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China; Department of Physiology, Renji College, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenjuan Xing
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Wang
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Chunjuan Mi
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Zhengrui Zhang
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Heng Ma
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Haifeng Zhang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an 710032, China.
| | - Feng Gao
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
134
|
Guhanarayan G, Jablonski J, Witkowski S. Circulating angiogenic cell population responses to 10 days of reduced physical activity. J Appl Physiol (1985) 2014; 117:500-6. [PMID: 25012029 DOI: 10.1152/japplphysiol.00087.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Circulating angiogenic cells (CACs) are a diverse group that have been identified as predictors of cardiovascular health and are inversely proportional to cardiovascular disease (CVD) outcomes. Inactivity is a growing concern in industrialized nations and is an independent risk factor for CVD. There is limited evidence regarding the impact of reduced physical activity (rPA) on different CAC populations. The purpose of this study was to evaluate the effect of objectively monitored rPA with maintained energy balance on two CAC populations (CFU and CD34(+) cells), intracellular nitric oxide (NOi), and genes related to NO production in active, healthy men. Participants (age 25 ± 2.9 yr) refrained from structured physical activity for 10 days, which was reflected by a significant reduction in time in vigorous + very vigorous intensity activity (P = 0.03). Sedentary time tended to increase (P = 0.06) with rPA. CFU CACs have been characterized as mainly monocytic and lymphocytic cells. We found significant reductions in both the number of CFU CACs (-35.69%, P = 0.01) and CFU CAC NOi (-33.84%, P = 0.03). Neither NOi nor the number of CD34(+) cells, which are hematopoietic and endothelial progenitors, changed with rPA. We found no significant differences in NO-related gene expression or oxidative stress-related gene expression with rPA in either CAC type. Therefore, we conclude that although various CAC populations have been related to vascular health, regular physical activity is necessary to maintain CAC NOi and the vulnerability of CACs to short-term reductions in physical activity is population specific.
Collapse
Affiliation(s)
- Gayatri Guhanarayan
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Julianne Jablonski
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Sarah Witkowski
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
135
|
Ramadoss J, Pastore MB, Magness RR. Endothelial caveolar subcellular domain regulation of endothelial nitric oxide synthase. Clin Exp Pharmacol Physiol 2014; 40:753-64. [PMID: 23745825 DOI: 10.1111/1440-1681.12136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/12/2022]
Abstract
Complex regulatory processes alter the activity of endothelial nitric oxide synthase (eNOS) leading to nitric oxide (NO) production by endothelial cells under various physiological states. These complex processes require specific subcellular eNOS partitioning between plasma membrane caveolar domains and non-caveolar compartments. Translocation of eNOS from the plasma membrane to intracellular compartments is important for eNOS activation and subsequent NO biosynthesis. We present data reviewing and interpreting information regarding: (i) the coupling of endothelial plasma membrane receptor systems in the caveolar structure relative to eNOS trafficking; (ii) how eNOS trafficking relates to specific protein-protein interactions for inactivation and activation of eNOS; and (iii) how these complex mechanisms confer specific subcellular location relative to eNOS multisite phosphorylation and signalling. Dysfunction in the regulation of eNOS activation may contribute to several disease states, in particular gestational endothelial abnormalities (pre-eclampsia, gestational diabetes etc.), that have life-long deleterious health consequences that predispose the offspring to develop hypertensive disease, Type 2 diabetes and adiposity.
Collapse
Affiliation(s)
- Jayanth Ramadoss
- Department of Obstetrics and Gynaecology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
136
|
|
137
|
Enkhjargal B, Godo S, Sawada A, Suvd N, Saito H, Noda K, Satoh K, Shimokawa H. Endothelial AMP-activated protein kinase regulates blood pressure and coronary flow responses through hyperpolarization mechanism in mice. Arterioscler Thromb Vasc Biol 2014; 34:1505-13. [PMID: 24855056 DOI: 10.1161/atvbaha.114.303735] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular endothelium plays an important role to maintain cardiovascular homeostasis through several mechanisms, including endothelium-dependent hyperpolarization (EDH). We have recently demonstrated that EDH is involved in endothelial metabolic regulation in mice. However, it remains to be examined whether AMP-activated protein kinase (AMPK), an important metabolic regulator, is involved in EDH and if so, whether endothelial AMPK (eAMPK) plays a role for circulatory regulation. APPROACH AND RESULTS We examined the role of eAMPK in EDH, using mice with endothelium-specific deficiency of α-catalytic subunit of AMPK, either α1 (eAMPKα1 (-/-)α2 (+/+)) or α2 (eAMPKα1 (+/+)α2 (-/-)) alone or both of them (eAMPKα1 (-/-)α2 (-/-)). We performed telemetry, organ chamber, electrophysiological, and Langendorff experiments to examine blood pressure, vascular responses, hyperpolarization of membrane potential, and coronary flow responses, respectively. Hypertension was noted throughout the day in eAMPKα1 (-/-)α2 (-/-) and eAMPKα1 (-/-)α2 (+/+) but not in eAMPKα1 (+/+)α2 (-/-) mice when compared with respective control. Importantly, endothelium-dependent relaxations, EDH, and coronary flow increase were all significantly reduced in eAMPKα1 (-/-)α2 (-/-) and eAMPKα1 (-/-)α2 (+/+) but not in eAMPKα1 (+/+)α2 (-/-) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (a NO donor), NS-1619 (a Ca(2+)-activated K(+) channel opener), and exogenous H2O2 were almost comparable among the groups. In eAMPKα1 (-/-)α2 (-/-) mice, antihypertensive treatment with hydralazine or long-term treatment with metformin (a stimulator of AMPK) failed to restore EDH-mediated responses. CONCLUSIONS These results provide the first direct evidence that α1 subunit of eAMPK substantially mediates EDH responses of microvessels and regulates blood pressure and coronary flow responses in mice in vivo, demonstrating the novel role of eAMPK in cardiovascular homeostasis.
Collapse
Affiliation(s)
- Budbazar Enkhjargal
- From the Department of Cardiovascular Medicine, Tohoku University, Sendai, Japan
| | - Shigeo Godo
- From the Department of Cardiovascular Medicine, Tohoku University, Sendai, Japan
| | - Ayuko Sawada
- From the Department of Cardiovascular Medicine, Tohoku University, Sendai, Japan
| | - Nergui Suvd
- From the Department of Cardiovascular Medicine, Tohoku University, Sendai, Japan
| | - Hiroki Saito
- From the Department of Cardiovascular Medicine, Tohoku University, Sendai, Japan
| | - Kazuki Noda
- From the Department of Cardiovascular Medicine, Tohoku University, Sendai, Japan
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University, Sendai, Japan.
| |
Collapse
|
138
|
Bautista-Ortega J, Cortes-Cuevas A, Ellis EA, Ruiz-Feria CA. Supplemental L-arginine and vitamins E and C preserve xanthine oxidase activity in the lung of broiler chickens grown under hypobaric hypoxia. Poult Sci 2014; 93:979-88. [PMID: 24706976 DOI: 10.3382/ps.2013-03698] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The effects of l-Arg, vitamin C (VC), and vitamin E (VE) on xanthine- (XO) and NAD(P)H-oxidase (NOX) activities, and nitric oxide (NO) availability of hypoxic broilers were evaluated. Chickens were kept in wire cages with free access to feed and water. One-day-old chicks were assigned to 1 of 3 diets: control (CTL; ME 3,200 kcal/kg, CP 23%), high Arg (HA; CTL + Arg 0.8%), or high Arg plus VE and VC (AEC; HA + 200 IU of VE/kg of feed + 500 mg of VC/L of water), and grown under hypobaric hypoxia (HYP) from d 7 to 30. A fourth group of birds was fed the CTL diet and grown under normoxia (CTL-NOR). At d 30, chickens were euthanized, their lungs fixed in vivo, excised, and processed for cyto- and histochemistry. The enzymes XO and NOX were localized and activities assessed histochemically and in lung homogenates. The NO depletion was assessed through nitrotyrosine immunocytochemistry colloidal gold particles (NTY). The XO and NOX localized in cell membranes and within vesicles of pulmonary vessel endothelial cells. The XO activity was higher in CTL-NOR birds (586 ± 43 reflectance units) than in both AEC-HYP (456 ± 39) and HA-HYP birds (394 ± 31), whereas CTL-HYP birds had the lowest XO activity (313 ± 27). The NO depletion was not affected by dietary or hypoxia conditions in clinically healthy birds; nevertheless, hypoxic birds that developed pulmonary hypertension had higher NTY levels (less NO, 145 ± 19) than hypoxic but clinically healthy birds (56 ± 11). Thus, the concurrent supplementation of Arg, VE, and VC restored XO activity without affecting NOX activity or NO availability. The dual role of XO, which produces superoxide and uric acid, may have buffered the effects of superoxide in broiler chickens grown under hypobaric hypoxia.
Collapse
Affiliation(s)
- J Bautista-Ortega
- Department of Poultry Science, Texas A&M University, College Station 77843-2472
| | | | | | | |
Collapse
|
139
|
Sánchez-Ruiloba L, Aicart-Ramos C, García-Guerra L, Pose-Utrilla J, Rodríguez-Crespo I, Iglesias T. Protein kinase D interacts with neuronal nitric oxide synthase and phosphorylates the activatory residue serine 1412. PLoS One 2014; 9:e95191. [PMID: 24740233 PMCID: PMC3989272 DOI: 10.1371/journal.pone.0095191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/24/2014] [Indexed: 12/20/2022] Open
Abstract
Neuronal Nitric Oxide Synthase (nNOS) is the biosynthetic enzyme responsible for nitric oxide (·NO) production in muscles and in the nervous system. This constitutive enzyme, unlike its endothelial and inducible counterparts, presents an N-terminal PDZ domain known to display a preference for PDZ-binding motifs bearing acidic residues at -2 position. In a previous work, we discovered that the C-terminal end of two members of protein kinase D family (PKD1 and PKD2) constitutes a PDZ-ligand. PKD1 has been shown to regulate multiple cellular processes and, when activated, becomes autophosphorylated at Ser916, a residue located at -2 position of its PDZ-binding motif. Since nNOS and PKD are spatially enriched in postsynaptic densities and dendrites, the main objective of our study was to determine whether PKD1 activation could result in a direct interaction with nNOS through their respective PDZ-ligand and PDZ domain, and to analyze the functional consequences of this interaction. Herein we demonstrate that PKD1 associates with nNOS in neurons and in transfected cells, and that kinase activation enhances PKD1-nNOS co-immunoprecipitation and subcellular colocalization. However, transfection of mammalian cells with PKD1 mutants and yeast two hybrid assays showed that the association of these two enzymes does not depend on PKD1 PDZ-ligand but its pleckstrin homology domain. Furthermore, this domain was able to pull-down nNOS from brain extracts and bind to purified nNOS, indicating that it mediates a direct PKD1-nNOS interaction. In addition, using mass spectrometry we demonstrate that PKD1 specifically phosphorylates nNOS in the activatory residue Ser1412, and that this phosphorylation increases nNOS activity and ·NO production in living cells. In conclusion, these novel findings reveal a crucial role of PKD1 in the regulation of nNOS activation and synthesis of ·NO, a mediator involved in physiological neuronal signaling or neurotoxicity under pathological conditions such as ischemic stroke or neurodegeneration.
Collapse
Affiliation(s)
- Lucía Sánchez-Ruiloba
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Clara Aicart-Ramos
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Lucía García-Guerra
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Julia Pose-Utrilla
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Rodríguez-Crespo
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid (UCM), Madrid, Spain
- * E-mail: (IRC); (TI)
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (IRC); (TI)
| |
Collapse
|
140
|
Bölck B, Ibrahim M, Steinritz D, Morguet C, Dühr S, Suhr F, Lu-Hesselmann J, Bloch W. Detection of key enzymes, free radical reaction products and activated signaling molecules as biomarkers of cell damage induced by benzo[a]pyrene in human keratinocytes. Toxicol In Vitro 2014; 28:875-84. [PMID: 24685774 DOI: 10.1016/j.tiv.2014.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 03/03/2014] [Accepted: 03/17/2014] [Indexed: 01/05/2023]
Abstract
Benzo[a]pyrene (BaP) is a known carcinogenic and cell damaging agent. The underlying cell damaging pathomechanisms have not been totally revealed. Especially BaP-related induction of oxidative and nitrosative stress has not been previously investigated in detail. The presented study investigated these effects in order to elucidate the pathomechanism and as well to identify potential biological markers that may indicate a BaP exposure. Human immortalized keratinocytes (HaCaT cells) were exposed to BaP (1 μM) for either 5 min or 6 h, respectively. BaP-induced cellular damage was evaluated by immunocytochemistry analysis of multiple signaling cascades (e.g. apoptosis, Akt, MAPK, NOS, nitrotyrosine and 8-isoprostane formation), detection of nitrosative stress using diaminofluorescein (DAF-FM) and oxidative stress using 3' -(p-aminophenyl)fluorescein (APF). Our results show that BaP exposure significantly enhanced NO and ROS productions in HaCaT cells. BaP led to eNOS-phosphorylation at Ser(1177), Thr(495) and Ser(116) residues. Using specific inhibitors, we found that the Erk1/2 pathways seemed to have strong impact on eNOS phosphorylation. In addition, BaP-induced apoptosis was observed by caspase-3 activation and PARP cleavage. Our results suggest that BaP mediates its toxic effect in keratinocytes through oxidative and nitrosative stress which is accompanied by complex changes of eNOS phosphorylation and changes of Akt and MAPK pathways.
Collapse
Affiliation(s)
- Birgit Bölck
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany.
| | - Marwa Ibrahim
- Department of Histology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Morguet
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
| | - Sandra Dühr
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
| | - Frank Suhr
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
| | - Juxian Lu-Hesselmann
- Bundeswehr Institute of Medical Occupational and Environmental Safety, Berlin, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
| |
Collapse
|
141
|
Shin E, Yeo E, Lim J, Chang YH, Park H, Shim E, Chung H, Hwang HJ, Chun J, Hwang J. Nitrooleate mediates nitric oxide synthase activation in endothelial cells. Lipids 2014; 49:457-66. [PMID: 24664541 DOI: 10.1007/s11745-014-3893-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Nitrated lipids such as nitrooleate (OLA-NO2) can act as endogenous peroxisome proliferator-activated receptor gamma (PPARγ) ligands to exert vascular protective effects. However, the molecular mechanisms regarding nitric oxide (NO) production and its regulation are not fully defined in the vasculature. Here, we show that OLA-NO2 increased endothelial NO release by modulating activation of endothelial nitric oxide synthase (eNOS) in endothelial cells. Treatment with OLA-NO2 (3 μM) increased NO release in a time-dependent manner. OLA-NO2 decreased protein expression of eNOS and caveolin-1 (Cav-1) but increased heat shock protein 90 (Hsp90) expression. Immunoprecipitation analysis confirmed that OLA-NO2 replaced eNOS/Cav-1 with eNOS/Hsp90 interaction, resulting in increasing eNOS activity. OLA-NO2 also induced eNOS phosphorylation at Ser633 and Ser1177 and eNOS dephosphorylation at Ser113 and Thr495. In addition, OLA-NO2 induced phosphorylation of Akt and extracellular signal-regulated protein kinase (ERK1/2), which might contribute to eNOS activation. Collectively, these results substantiate a new functional role for nitrated fatty acid, demonstrating that OLA-NO2 exerts vascular protective effects by increasing NO bioavailability through eNOS phosphorylation/dephosphorylation and interaction with associated proteins such as Hsp90 and Cav-1.
Collapse
Affiliation(s)
- Eunju Shin
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, YongIn, 449-728, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Alpha-Asarone Protects Endothelial Cells from Injury by Angiotensin II. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:682041. [PMID: 24757494 PMCID: PMC3976910 DOI: 10.1155/2014/682041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/25/2014] [Accepted: 02/04/2014] [Indexed: 11/18/2022]
Abstract
α -Asarone is the major therapeutical constituent of Acorus tatarinowii Schott. In this study, the potential protective effects of α -asarone against endothelial cell injury induced by angiotensin II were investigated in vitro. The EA.hy926 cell line derived from human umbilical vein endothelial cells was pretreated with α -asarone (10, 50, 100 µmol/L) for 1 h, followed by coincubation with Ang II (0.1 µmol/L) for 24 h. Intracellular nitric oxide (NO) and reactive oxygen species (ROS) were detected by fluorescent dyes, and phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser(1177) was determined by Western blotting. α -Asarone dose-dependently mitigated the Ang II-induced intracellular NO reduction (P < 0.01 versus model) and ROS production (P < 0.01 versus model). Furthermore, eNOS phosphorylation (Ser(1177)) by acetylcholine was significantly inhibited by Ang II, while pretreatment for 1 h with α -asarone partially prevented this effect (P < 0.05 versus model). Additionally, cell viability determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (105~114.5% versus control, P > 0.05) was not affected after 24 h of incubation with α -asarone at 1-100 µmol/L. Therefore, α -asarone protects against Ang II-mediated damage of endothelial cells and may be developed to prevent injury to cardiovascular tissues.
Collapse
|
143
|
Adams JA, Uryash A, Bassuk J, Sackner MA, Kurlansky P. Biological basis of neuroprotection and neurotherapeutic effects of Whole Body Periodic Acceleration (pGz). Med Hypotheses 2014; 82:681-7. [PMID: 24661939 DOI: 10.1016/j.mehy.2014.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/20/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023]
Abstract
Exercise is a well known neuroprotective and neurotherapeutic strategy in animal models and humans with brain injury and cognitive dysfunction. In part, exercise induced beneficial effects relate to endothelial derived nitric oxide (eNO) production and induction of the neurotrophins; Brain Derived Neurotrophic Factor (BDNF) and Glial Derived Neurotrophic Factor (GDNF). Whole Body Periodic Acceleration (WBPA (pGz), is the motion of the supine body headward to footward in a sinusoidal fashion, at frequencies of 100-160 cycles/min, inducing pulsatile shear stress to the vascular endothelium. WBPA (pGz) increases eNO in the cardiovascular system in animal models and humans. We hypothesized that WBPA (pGz) has neuroprotective and neurotherapeutic effects due to enhancement of biological pathways that include eNOS, BDNF and GDNF. We discuss protein expression analysis of these in brain of rodents. Animal and observational human data affirm a neuroprotective and neurotherapeutic role for WBPA (pGz). These findings suggest that WBPA (pGz) in addition to its well known beneficial cardiovascular effects can be a simple non-invasive neuroprotective and neurotherapeutic strategy with far reaching health benefits.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States.
| | - Arkady Uryash
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Jorge Bassuk
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Marvin A Sackner
- Clinical Professor of Medicine, University of Miami School of Medicine, Miami, FL, United States
| | - Paul Kurlansky
- Columbia University College of Physicians and Surgeons, NY, United States
| |
Collapse
|
144
|
Yang C, Pan S, Yan S, Li Z, Yang J, Wang Y, Xiong Y. Inhibitory effect of 14,15-EET on endothelial senescence through activation of mTOR complex 2/Akt signaling pathways. Int J Biochem Cell Biol 2014; 50:93-100. [PMID: 24607498 DOI: 10.1016/j.biocel.2014.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/13/2014] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
Abstract
Therapies to reverse the vascular endothelial aging process may play as a novel strategy for the treatment of cardiovascular diseases. 14,15-epoxyeicosatrienoic acid (14,15-EET) is a predominant cytochrome P450 epoxygenases-derived arachidonic acid metabolite and possesses multiple biological effects on the vascular system. The present study sought to investigate the roles of mammalian target of rapamycin complex 2 (mTORC2)/Akt signaling pathways in mediating the effect of 14,15-EET on endothelial senescence. By measuring the isometric tension in rat mesenteric arteries, we demonstrated that 14,15-EET improved the impaired endothelium-dependent vasodilatation in aged rats through activating mTORC2/Akt signaling pathway. Meanwhile, by promoting the formation of mTORC2 and the phosphorylation of Akt (Ser473), 14,15-EET inhibited the senescence of rat mesenteric arterial endothelial cells, which was not influenced by rapamycin but was significantly attenuated by Akt1/2 kinase inhibitor. The knockdown of Rictor gene by RNA interference abolished the inhibitory effect of 14,15-EET on endothelial senescence. Furthermore, 14,15-EET down-regulated the expression of p53 protein in aged endothelial cells. Meanwhile, the nuclear translocation of telomerase reverse transcriptase and the nuclear telomerase activity were also enhanced by treatment with 14,15-EET. Therefore, our present study suggests the crucial role of mTORC2/Akt signaling pathways in the inhibitory effects of 14,15-EET on the endothelial senescence. Our findings reveal important mechanistic clues to understanding of the effects of 14,15-EET on the endothelial functions.
Collapse
Affiliation(s)
- Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities, Kunming 650500, PR China.
| | - Shitian Pan
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities, Kunming 650500, PR China
| | - Saimei Yan
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities, Kunming 650500, PR China
| | - Zhuoming Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Jinyan Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities, Kunming 650500, PR China
| | - Ying Wang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities, Kunming 650500, PR China
| | - Yong Xiong
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities, Kunming 650500, PR China
| |
Collapse
|
145
|
García C, Nuñez-Anita RE, Thebault S, Arredondo Zamarripa D, Jeziorsky MC, Martínez de la Escalera G, Clapp C. Requirement of phosphorylatable endothelial nitric oxide synthase at Ser-1177 for vasoinhibin-mediated inhibition of endothelial cell migration and proliferation in vitro. Endocrine 2014; 45:263-70. [PMID: 23640371 DOI: 10.1007/s12020-013-9964-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
Endothelial nitric oxide synthase (eNOS)-derived nitric oxide is a major vasorelaxing factor and a mediator of vasopermeability and angiogenesis. Vasoinhibins, a family of antiangiogenic prolactin fragments that include 16 K prolactin, block most eNOS-mediated vascular effects. Vasoinhibins activate protein phosphatase 2A, causing eNOS inactivation through dephosphorylation of eNOS at serine residue 1179 in bovine endothelial cells and thereby blocking vascular permeability. In this study, we examined whether human eNOS phosphorylation at S1177 (analogous to bovine S1179) influences other actions of vasoinhibins. Bovine umbilical vein endothelial cells were stably transfected with human wild-type eNOS (WT) or with phospho-mimetic (S1177D) or non-phosphorylatable (S1177A) eNOS mutants. Vasoinhibins inhibited the increases in eNOS activity, migration, and proliferation following the overexpression of WT eNOS but did not affect these responses in cells expressing S1177D and S1177A eNOS mutants. We conclude that eNOS inhibition by dephosphorylation of S1177 is fundamental for the inhibition of endothelial cell migration and proliferation by vasoinhibins.
Collapse
Affiliation(s)
- Celina García
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, QRO, Mexico
| | | | | | | | | | | | | |
Collapse
|
146
|
Leo CH, Jelinic M, Parkington HC, Tare M, Parry LJ. Acute intravenous injection of serelaxin (recombinant human relaxin-2) causes rapid and sustained bradykinin-mediated vasorelaxation. J Am Heart Assoc 2014; 3:e000493. [PMID: 24584737 PMCID: PMC3959707 DOI: 10.1161/jaha.113.000493] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background A recent clinical trial (RELAXin in Acute Heart Failure [RELAX‐AHF]) demonstrated that 48 hours of continuous intravenous infusion of the vasorelaxant peptide serelaxin (recombinant human relaxin‐2) to patients with acute heart failure reduced cardiovascular mortality at 180 days. The persistence of a vasorelaxant response as a potential mechanism for this long‐term benefit and the vascular effects of a bolus intravenous injection of serelaxin have not been examined. This study investigates changes in resistance artery reactivity and passive mechanical wall properties following an intravenous serelaxin injection and whether these vascular effects persist in the absence of detectable circulating serelaxin. Methods and Results Male rats were injected with 13.3 μg/kg serelaxin into the tail vein; mesenteric arteries were assessed 3 and 24 hours after treatment by using wire‐myography. Serelaxin increased basal nitric oxide synthase activity and reduced maximal contraction to endothelin‐1 at 3 hours after administration. Serelaxin treatment also selectively enhanced bradykinin‐mediated endothelium‐dependent relaxation. This effect was sustained for 24 hours in the absence of circulating serelaxin. Serelaxin‐mediated augmentation of bradykinin‐evoked relaxation involved endothelium‐derived hyperpolarization after 3 hours and prostacyclin‐mediated relaxation after 24 hours. Furthermore, upregulation of inducible nitric oxide synthase, phosphorylation of protein kinase B at Ser473 and endothelial nitric oxide synthase at Ser1177 was observed at 24 hours after serelaxin injection. There were no effects of serelaxin on passive arterial wall stiffness. Conclusion Our data show that a bolus intravenous injection of serelaxin modulates endothelial vasodilator function 3 hours after administration, an effect that was sustained for 24 hours. The prolonged bradykinin‐mediated vasorelaxation is principally mediated through prostacyclin.
Collapse
Affiliation(s)
- Chen Huei Leo
- Department of Zoology, The University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | |
Collapse
|
147
|
Lee SV, Choi KH, Choi YW, Hong JW, Baek JU, Choi BT, Shin HK. Hexane extracts of Polygonum multiflorum improve tissue and functional outcome following focal cerebral ischemia in mice. Mol Med Rep 2014; 9:1415-21. [PMID: 24534954 DOI: 10.3892/mmr.2014.1943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/05/2014] [Indexed: 11/05/2022] Open
Abstract
Polygonum multiflorum is a traditional Korean medicine that has been utilized widely in East Asian countries as a longevity agent. Clinical studies have demonstrated that Polygonum multiflorum improves hypercholesterolemia, coronary heart disease, neurosis and other diseases commonly associated with aging. However, scientific evidence defining the protective effects and mechanisms of Polygonum multiflorum against ischemic stroke is incomplete. In the present study, we investigated the cerebrovascular protective effects of Polygonum multiflorum against ischemic brain injury using an in vivo photothrombotic mouse model. To examine the underlying mechanism of action, we utilized an in vitro human brain microvascular endothelial cell (HBMEC) culture system. Hexane extracts (HEPM), ethyl acetate extracts (EAEPM) and methanol extracts (MEPM) of Polygonum multiflorum (100 mg/kg) were administered intraperitoneally 30 min prior to ischemic insult. Focal cerebral ischemia was induced in C57BL/6J mice and endothelial nitric oxide synthase knockout (eNOS KO) mice by photothrombotic cortical occlusion. We evaluated the infarct volume, as well as neurological and motor function, 24 h after ischemic brain injury. Following ischemic insult, HEPM induced a significant reduction in infarct volume and subsequent neurological deficits, compared with EAEPM and MEPM. HEPM significantly decreased infarct size and improved neurological and motor function, which was not observed in eNOS KO mice, suggesting that this cerebroprotective effect is primarily an eNOS-dependent mechanism. In vitro, HEPM effectively promoted NO production, however these effects were inhibited by the NOS inhibitor, L-NAME and the PI3K/Akt inhibitor, LY-294002. Furthermore, HEPM treatment resulted in increased phosphorylation-dependent activation of Akt and eNOS in HBMEC, suggesting that HEPM increased NO production via phosphorylation-dependent activation of Akt and eNOS. In conclusion, HEPM prevents cerebral ischemic damage through an eNOS-dependent mechanism, and thus may have clinical applications as a protective agent against neurological injury in stroke.
Collapse
Affiliation(s)
- Soo Vin Lee
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Kyung Ha Choi
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Young Whan Choi
- College of Natural Resources and Life Sciences, Pusan National University, Gyeongnam 627-706, Republic of Korea
| | - Jin Woo Hong
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Jin Ung Baek
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Byung Tae Choi
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Hwa Kyoung Shin
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| |
Collapse
|
148
|
Shiroto T, Romero N, Sugiyama T, Sartoretto JL, Kalwa H, Yan Z, Shimokawa H, Michel T. Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium. PLoS One 2014; 9:e87871. [PMID: 24498385 PMCID: PMC3912129 DOI: 10.1371/journal.pone.0087871] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/30/2013] [Indexed: 01/29/2023] Open
Abstract
Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules. Caveolin-1null mice have marked metabolic abnormalities, yet the underlying molecular mechanisms are incompletely understood. We found the redox stress plasma biomarker plasma 8-isoprostane was elevated in caveolin-1null mice, and discovered that siRNA-mediated caveolin-1 knockdown in endothelial cells promoted significant increases in intracellular H2O2. Mitochondrial ROS production was increased in endothelial cells after caveolin-1 knockdown; 2-deoxy-D-glucose attenuated this increase, implicating caveolin-1 in control of glycolytic pathways. We performed unbiased metabolomic characterizations of endothelial cell lysates following caveolin-1 knockdown, and discovered strikingly increased levels (up to 30-fold) of cellular dipeptides, consistent with autophagy activation. Metabolomic analyses revealed that caveolin-1 knockdown led to a decrease in glycolytic intermediates, accompanied by an increase in fatty acids, suggesting a metabolic switch. Taken together, these results establish that caveolin-1 plays a central role in regulation of oxidative stress, metabolic switching, and autophagy in the endothelium, and may represent a critical target in cardiovascular diseases.
Collapse
Affiliation(s)
- Takashi Shiroto
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Natalia Romero
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Toru Sugiyama
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Juliano L. Sartoretto
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hermann Kalwa
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhonghua Yan
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
149
|
Reciprocal modulation of surface expression of annexin A2 in a human umbilical vein endothelial cell-derived cell line by eicosapentaenoic acid and docosahexaenoic acid. PLoS One 2014; 9:e85045. [PMID: 24465474 PMCID: PMC3897403 DOI: 10.1371/journal.pone.0085045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/25/2013] [Indexed: 11/20/2022] Open
Abstract
Background Annexin A2 (ANXA2), a member of the annexin family of cytosolic Ca2+-binding proteins, plays a pivotal role in vascular biology. Small amounts of this protein and S100A10 protein are exposed on the surface of endothelial cells (ECs). They control fibrinolysis by recruiting tissue-type and urokinase-type plasminogen activators from the plasma. Nutritional studies indicate that two major long-chain polyunsaturated fatty acids (PUFAs), i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), provide benefits for EC functions. The effects of EPA and DHA on the plasminogen/plasmin system have not been characterized. Methodology/Principal Findings Proteomic analysis of a cultured human umbilical vein EC-derived cell line, HUV-EC-C, showed that cell-associated ANXA2 decreased with EPA treatment and increased with DHA. A small fraction of ANXA2 was bound to the cell surface, which was also affected by these PUFAs following the same trends. Cell surface expression was negatively regulated by protein kinase C (PKC) α-mediated Ser-phosphorylation, which was up- and down-regulated by EPA and DHA, respectively. These PUFAs differentially affected a small fraction of caveolae/rafts-associated ANXA2. In addition to chymotrypsin-like activity in the serum, newly activated plasmin cleaved the ANXA2 on the cell surface at distinct sites in the N-terminal sequence. ANXA2 also bound to membranes released in the medium, which was similarly processed by these proteases. Both the PUFAs did not directly affect the release. Conclusion/Significance These results suggest that EPA and DHA reciprocally control cell surface location of ANXA2. Moreover, cleavage of this protein by plasmin likely resulted in autodigestion of the platform for formation of this protease. In conjunction with termination of the proteolysis by rapid inactivation of plasmin by α-2-antiplasmin and other polypeptide inhibitors, this feedback mechanism may emphasize the benefits of these PUFA in regulation of the initiation of fibrinolysis on the surface of ECs.
Collapse
|
150
|
Pregnancy Programming and Preeclampsia: Identifying a Human Endothelial Model to Study Pregnancy-Adapted Endothelial Function and Endothelial Adaptive Failure in Preeclamptic Subjects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:27-47. [DOI: 10.1007/978-1-4939-1031-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|