101
|
Xu P, Deng H, Hong Z, Zhong S, Chen F, Wang L, Wang Z, Mei Y, Luo Z, He Z, Li H, Gan C, Zhang H, Ma Y, Han Z, Zhang YH. Superresolution Fluorescence Microscopy of Platelet Subcellular Structures as a Potential Tumor Liquid Biopsy. SMALL METHODS 2023; 7:e2300445. [PMID: 37349902 DOI: 10.1002/smtd.202300445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 06/24/2023]
Abstract
Blood-based tumor liquid biopsies are promising as an alternative or complement to tissue biopsies due to their noninvasiveness, convenience, and safety, and there is still a great demand for the discovery of new biomarkers for these biopsies. Here, nanoscale distribution patterns of subcellular structures in platelets, as imaged by structured illumination superresolution fluorescence microscopy, as a new type of potential biomarker for tumor liquid biopsies are presented. A standardized protocol for platelet sample preparation and developed an automated high-throughput image analysis workflow is established. The diagnostic capability based on the statistical analysis of 280 000 superresolution images of individual platelets from a variety of tumor patients, benign mass patients, and healthy volunteers (n = 206) is explored. These results suggest that the nanoscale distribution patterns of α-granules in platelets have the potential to be biomarkers for several cancers, including glioma and cervical, endometrial, and ovarian cancers, facilitating not only diagnosis but also therapeutic monitoring. This study provides a promising novel type of platelet parameter for tumor liquid biopsies at the subcellular level rather than the existing cellular or molecular level and opens up a new avenue for clinical applications of superresolution imaging techniques.
Collapse
Affiliation(s)
- Peng Xu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Huan Deng
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Joint Wuhan Blood Center-Huazhong University of Science and Technology Hematology Optical Imaging Center, Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, 430030, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Simei Zhong
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Feifan Chen
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Liangliang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenhao Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yu Mei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ziying Luo
- Guangzhou Computational Super-resolution Biotech, Guangzhou, Guangdong, 510300, China
| | - Ziliang He
- Guangzhou Computational Super-resolution Biotech, Guangzhou, Guangdong, 510300, China
| | - Haiwen Li
- Guangzhou Computational Super-resolution Biotech, Guangzhou, Guangdong, 510300, China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yan Ma
- Joint Wuhan Blood Center-Huazhong University of Science and Technology Hematology Optical Imaging Center, Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, 430030, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yu-Hui Zhang
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
102
|
Zhang W, Zhou H, Li H, Mou H, Yinwang E, Xue Y, Wang S, Zhang Y, Wang Z, Chen T, Sun H, Wang F, Zhang J, Chai X, Chen S, Li B, Zhang C, Gao J, Ye Z. Cancer cells reprogram to metastatic state through the acquisition of platelet mitochondria. Cell Rep 2023; 42:113147. [PMID: 37756158 DOI: 10.1016/j.celrep.2023.113147] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Metastasis is the major cause of cancer deaths, and cancer cells evolve to adapt to various tumor microenvironments, which hinders the treatment of tumor metastasis. Platelets play critical roles in tumor development, especially during metastasis. Here, we elucidate the role of platelet mitochondria in tumor metastasis. Cancer cells are reprogrammed to a metastatic state through the acquisition of platelet mitochondria via the PINK1/Parkin-Mfn2 pathway. Furthermore, platelet mitochondria regulate the GSH/GSSG ratio and reactive oxygen species (ROS) in cancer cells to promote lung metastasis of osteosarcoma. Impairing platelet mitochondrial function has proven to be an efficient approach to impair metastasis, providing a direction for osteosarcoma therapy. Our findings demonstrate mitochondrial transfer between platelets and cancer cells and suggest a role for platelet mitochondria in tumor metastasis.
Collapse
Affiliation(s)
- Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yongxing Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hangxiang Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiahao Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China; Institute of Orthopedic Research, Zhejiang University, Hangzhou 310009, People's Republic of China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
103
|
Rosell R, Santarpia M, Pedraz-Valdunciel C, Ciappina G, Aguilar A, Giménez-Capitán A, Ito M, González-Cao M, Molina-Vila MA. Liquid biopsy in detecting early non-small cell lung cancer. THE JOURNAL OF LIQUID BIOPSY 2023; 1:100001. [PMID: 40027282 PMCID: PMC11863710 DOI: 10.1016/j.jlb.2023.100001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 03/05/2025]
Abstract
Lung cancer screening programs, particularly in the UK, have shown a decrease in lung cancer-related deaths among individuals who underwent low-dose computed tomography (CT) screening. Researchers are now focusing on evaluating cell-free DNA through various methods to determine if pre-diagnostic mutations can be detected years before clinical diagnosis. This could help identify individuals at high risk of developing lung cancer. However, while this approach has successfully identified precursors of follicular lymphoma, the presence of occult lung preneoplasia in non-small-cell lung cancer still requires further investigation. The TRACERx consortium is conducting extensive research to comprehensively assess the detection and progression of non-small cell lung cancers (NSCLC). Liquid biopsy is being used in advanced stages of the disease to monitor disease progression, predict treatment response, and identify targetable driver oncogenic mutations and fusion genes. Intense research is also underway to identify numerous diagnostic gene signatures with high accuracy for early-stage lung cancer. However, a more focused clinical approach is needed, with a mechanistic focus on the key pathways of cancer development. Loss of liver kinase B1 (LKB1) function and deactivation due to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a metabolite of tobacco-specific carcinogens, could potentially be traced and contribute to the development of new biomarkers. This testing could complement machine-learning approaches. The discovery of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in healthy lung tissues by TRACERx investigators may also lead to the development of novel diagnostic tools. Tumor protein 53 (TP53) loss should also be considered as a marker that could contribute to malignant transformation. Intercepting aggressive non-small-cell lung cancer is a pressing priority. In this review, we discuss our experience and explore other research on exosomes and plasma circular RNA as potential biomarkers. Circular RNAs, formed through non-sequential back-splicing of pre-mRNA transcripts, play a role in epithelial-mesenchymal transition, with many of them regulated by the RNA-binding protein Quaking. Platelet RNA has shown promise in detecting early and late-stage cancer. The extensive exploration of liquid biopsy aims to provide affordable methods for tracing circulating precursors of non-small-cell lung cancer, highlighting the importance of its mission.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Health Sciences Institute and Hospital (IGTP), Badalona, Spain
- Catalan Institute of Oncology, Badalona, Spain
- Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Mariacarmela Santarpia
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, Messina, Italy
| | | | - Giuliana Ciappina
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, Messina, Italy
| | - Andrés Aguilar
- Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | | | - Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Maria González-Cao
- Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | | |
Collapse
|
104
|
Wahab R, Hasan MM, Azam Z, Grippo PJ, Al-Hilal TA. The role of coagulome in the tumor immune microenvironment. Adv Drug Deliv Rev 2023; 200:115027. [PMID: 37517779 PMCID: PMC11099942 DOI: 10.1016/j.addr.2023.115027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The rising incidence and persistent thrombosis in multiple cancers including those that are immunosuppressive highlight the need for understanding the tumor coagulome system and its role beyond hemostatic complications. Immunotherapy has shown significant benefits in solid organ tumors but has been disappointing in the treatment of hypercoagulable cancers, such as glioblastoma and pancreatic ductal adenocarcinomas. Thus, targeting thrombosis to prevent immunosuppression seems a clinically viable approach in cancer treatment. Hypercoagulable tumors often develop fibrin clots within the tumor microenvironment (TME) that dictates the biophysical characteristics of the tumor tissue. The application of systems biology and single-cell approaches highlight the potential role of coagulome or thrombocytosis in shaping the tumor immune microenvironment (TIME). In-depth knowledge of the tumor coagulome would provide unprecedented opportunities to better predict the hemostatic complications, explore how thrombotic stroma modulates tumor immunity, reexamine the significance of clinical biomarkers, and enable steering the stromal versus systemic immune response for boosting the effectiveness of immune checkpoint inhibitors in cancer treatment. We focus on the role of coagulation factors in priming a suppressive TIME and the huge potential of existing anticoagulant drugs in the clinical settings of cancer immunotherapy.
Collapse
Affiliation(s)
- Riajul Wahab
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Mahedi Hasan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zulfikar Azam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
105
|
Formosa A, Acton E, Lee A, Turgeon P, Izhar S, Plant P, Tsoporis JN, Soussi S, Trahtemberg U, Baker A, dos Santos CC. Validation of reference gene stability for miRNA quantification by reverse transcription quantitative PCR in the peripheral blood of patients with COVID-19 critical illness. PLoS One 2023; 18:e0286871. [PMID: 37643172 PMCID: PMC10464995 DOI: 10.1371/journal.pone.0286871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/25/2023] [Indexed: 08/31/2023] Open
Abstract
The COVID-19 pandemic has created an urgency to study the host gene response that leads to variable clinical presentations of the disease, particularly the critical illness response. miRNAs have been implicated in the mechanism of host immune dysregulation and thus hold potential as biomarkers and/or therapeutic agents with clinical application. Hence, further analyses of their altered expression in COVID-19 is warranted. An important basis for this is identifying appropriate reference genes for high quality expression analysis studies. In the current report, NanoString technology was used to study the expression of 798 miRNAs in the peripheral blood of 24 critically ill patients, 12 had COVID-19 and 12 were COVID-19 negative. A list of potentially stable candidate reference genes was generated that included ten miRNAs. The top six were analyzed using reverse transcription quantitative polymerase chain reaction (RT-qPCR) in a total of 41 patients so as to apply standard computational algorithms for validating reference genes, namely geNorm, NormFinder, BestKeeper and RefFinder. There was general agreement among all four algorithms in the ranking of four stable miRNAs: miR-186-5p, miR-148b-3p, miR-194-5p and miR-448. A detailed analysis of their output rankings led to the conclusion that miR-186-5p and miR-148b-3p are appropriate reference genes for miRNA expression studies using PaxGene tubes in the peripheral blood of patients critically ill with COVID-19 disease.
Collapse
Affiliation(s)
- Amanda Formosa
- Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
| | - Erica Acton
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
- Molecular Biology & Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Amy Lee
- Molecular Biology & Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Paul Turgeon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shehla Izhar
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
| | - Pamela Plant
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
| | - Jim N. Tsoporis
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
| | - Sabri Soussi
- Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
| | - Uriel Trahtemberg
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
- Critical Care Department, Galilee Medical Center, Nahariya, Israel
| | - Andrew Baker
- Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Critical Care, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Claudia C. dos Santos
- Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- The Keenan Research Centre for Biomedical Sciences, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Critical Care, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
106
|
Campolo F, Sesti F, Feola T, Puliani G, Faggiano A, Tarsitano MG, Tenuta M, Hasenmajer V, Ferretti E, Verrico M, Gianfrilli D, Venneri MA, Isidori AM, Giannetta E. Platelet-derived circRNAs signature in patients with gastroenteropancreatic neuroendocrine tumors. J Transl Med 2023; 21:548. [PMID: 37587471 PMCID: PMC10428534 DOI: 10.1186/s12967-023-04417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Neuroendocrine tumors (NETs) early diagnosis is a clinical challenge that require a deep understanding of molecular and genetic features of this heterogeneous group of neoplasms. However, few biomarkers exist to aid diagnosis and to predict prognosis and treatment response. In the oncological field, tumor-educated platelets (TEPs) have been implicated as central players in the systemic and local responses to tumor growth, thereby altering tumor specific RNA profile. Although TEPs have been found to be enriched in RNAs, few studies have investigated the potential of a type of RNA, circular RNAs (circRNA), as platelet-derived biomarkers for cancer. In this proof-of-concept study, we aim to demonstrate whether the circRNAs signature of tumor educated platelets can be used as a liquid biopsy biomarker for the detection of gastroenteropancreatic (GEP)-NETs and the prediction of the early response to treatment. METHODS We performed a 24-months, prospective proof-of-concept study in men and women with histologically proven well-differentiated G1-G2 GEP-NET, aged 18-80 years, naïve to treatment. We performed a RNAseq analysis of circRNAs obtained from TEPs samples of 10 GEP-NETs patients at baseline and after 3 months from therapy (somatostatin analogs or surgery) and from 5 patients affected by non-malignant endocrinological diseases enrolled as a control group. RESULTS Statistical analysis based on p < 0.05 resulted in the identification of 252 circRNAs differentially expressed between GEP-NET and controls of which 109 were up-regulated and 143 were down-regulated in NET patients. Further analysis based on an FDR value ≤ 0.05 resulted in the selection of 5 circRNAs all highly significant downregulated. The same analysis on GEP-NETs at baseline and after therapy in 5 patients revealed an average of 4983 remarkably differentially expressed circRNAs between follow-up and baseline samples of which 2648 up-regulated and 2334 down-regulated, respectively. Applying p ≤ 0.05 and FDR ≤ 0.05 filters, only 3/5 comparisons gave statistically significant results. CONCLUSIONS Our findings identified for the first time a circRNAs signature from TEPs as potential diagnostic and predictive biomarkers for GEP-NETs.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Tiziana Feola
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Neuroendocrinology, Neuromed Institute, IRCCS, Pozzilli, Italy
| | - Giulia Puliani
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antongiulio Faggiano
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | | | - Marta Tenuta
- UOC Endocrinology, Metabolic Diseases, Andrology SMIC08, Policlinico Umberto I, Rome, Italy
| | - Valeria Hasenmajer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Monica Verrico
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Centre for Rare Diseases (ENDO-ERN Accredited), Policlinico Umberto I, Rome, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
107
|
Wang L, Zhang K, Feng J, Wang D, Liu J. The Progress of Platelets in Breast Cancer. Cancer Manag Res 2023; 15:811-821. [PMID: 37589033 PMCID: PMC10426457 DOI: 10.2147/cmar.s418574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
Breast cancer is the most common female cancer and the sixth leading cause of death, seriously affecting the quality of life of women. Platelets, one of the fragments derived from megakaryocytes, are being increasingly investigated by tumor researchers because of their anticoagulant function. According to relevant studies, platelets, as the key source of circulating angiogenesis-related factors, can regulate tumor angiogenesis and vascular integrity, and they can also affect the tumor microenvironment, thereby facilitating the proliferation and differentiation of tumor cells. By covering or transferring normal MHC I molecules to tumor cells, platelets can protect tumor cells from being killed by the immune system and facilitate tumor cell metastasis. However, details on the mechanisms involved have remained elusive. This paper reviews and analyzes studies of the role of platelets in tumorigenesis, tumor cell proliferation, tumor metastasis, and cancer treatment to provide readers with a better understanding of the relevant studies.
Collapse
Affiliation(s)
- Luchang Wang
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Clinical Laboratory, Chengdu Second People’s Hospital, Chengdu, 610017, People’s Republic of China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
| | - Jia Feng
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
108
|
Karimi F, Azadbakht O, Veisi A, Sabaghan M, Owjfard M, Kharazinejad E, Dinarvand N. Liquid biopsy in ovarian cancer: advantages and limitations for prognosis and diagnosis. Med Oncol 2023; 40:265. [PMID: 37561363 DOI: 10.1007/s12032-023-02128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Ovarian cancer (OC) is a highly fatal gynecologic malignancy, often diagnosed at an advanced stage which presents significant challenges for disease management. The clinical application of conventional tissue biopsy methods and serological biomarkers has limitations for the diagnosis and prognosis of OC patients. Liquid biopsy is a novel sampling method that involves analyzing distinctive tumor elements secreted into the peripheral blood. Growing evidence suggests that liquid biopsy methods such as circulating tumor cells, cell-free RNA, circulating tumor DNA, exosomes, and tumor-educated platelets may improve early prognosis and diagnosis of OC, leading to enhanced therapeutic management of the disease. This study reviewed the evidence demonstrating the utility of liquid biopsy components in OC prognosis and diagnosis, and evaluated the current advantages and limitations of these methods. Additionally, the existing obstacles and crucial topics for future studies utilizing liquid biopsy in OC patients were discussed.
Collapse
Affiliation(s)
- Farzaneh Karimi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| | - Omid Azadbakht
- Department of Radiology Technology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Ali Veisi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mohammad Sabaghan
- Department of Parasitology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | | | - Negar Dinarvand
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
109
|
Eslami-S Z, Cortés-Hernández LE, Glogovitis I, Antunes-Ferreira M, D’Ambrosi S, Kurma K, Garima F, Cayrefourcq L, Best MG, Koppers-Lalic D, Wurdinger T, Alix-Panabières C. In vitro cross-talk between metastasis-competent circulating tumor cells and platelets in colon cancer: a malicious association during the harsh journey in the blood. Front Cell Dev Biol 2023; 11:1209846. [PMID: 37601099 PMCID: PMC10433913 DOI: 10.3389/fcell.2023.1209846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background: Platelets are active players in hemostasis, coagulation and also tumorigenesis. The cross-talk between platelets and circulating tumor cells (CTCs) may have various pro-cancer effects, including promoting tumor growth, epithelial-mesenchymal transition (EMT), metastatic cell survival, adhesion, arrest and also pre-metastatic niche and metastasis formation. Interaction with CTCs might alter the platelet transcriptome. However, as CTCs are rare events, the cross-talk between CTCs and platelets is poorly understood. Here, we used our established colon CTC lines to investigate the colon CTC-platelet cross-talk in vitro and its impact on the behavior/phenotype of both cell types. Methods: We exposed platelets isolated from healthy donors to thrombin (positive control) or to conditioned medium from three CTC lines from one patient with colon cancer and then we monitored the morphological and protein expression changes by microscopy and flow cytometry. We then analyzed the transcriptome by RNA-sequencing of platelets indirectly (presence of a Transwell insert) co-cultured with the three CTC lines. We also quantified by reverse transcription-quantitative PCR the expression of genes related to EMT and cancer development in CTCs after direct co-culture (no Transwell insert) with platelets. Results: We observed morphological and transcriptomic changes in platelets upon exposure to CTC conditioned medium and indirect co-culture (secretome). Moreover, the expression levels of genes involved in EMT (p < 0.05) were decreased in CTCs co-cultured with platelets, but not of genes encoding mesenchymal markers (FN1 and SNAI2). The expression levels of genes involved in cancer invasiveness (MYC, VEGFB, IL33, PTGS2, and PTGER2) were increased. Conclusion: For the first time, we studied the CTC-platelet cross-talk using our unique colon CTC lines. Incubation with CTC conditioned medium led to platelet aggregation and activation, supporting the hypothesis that their interaction may contribute to preserve CTC integrity during their journey in the bloodstream. Moreover, co-culture with platelets influenced the expression of several genes involved in invasiveness and EMT maintenance in CTCs.
Collapse
Affiliation(s)
- Zahra Eslami-S
- Laboratory of Rare Circulating Human Cells—University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Luis Enrique Cortés-Hernández
- Laboratory of Rare Circulating Human Cells—University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Ilias Glogovitis
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mafalda Antunes-Ferreira
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Silvia D’Ambrosi
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Keerthi Kurma
- Laboratory of Rare Circulating Human Cells—University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Françoise Garima
- Laboratory of Rare Circulating Human Cells—University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Circulating Human Cells—University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Myron G. Best
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Thomas Wurdinger
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Catherine Alix-Panabières
- Laboratory of Rare Circulating Human Cells—University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
110
|
Quddusi DM, Bajcinca N. Identification of genomic biomarkers and their pathway crosstalks for deciphering mechanistic links in glioblastoma. IET Syst Biol 2023; 17:143-161. [PMID: 37277696 PMCID: PMC10439498 DOI: 10.1049/syb2.12066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Glioblastoma is a grade IV pernicious neoplasm occurring in the supratentorial region of brain. As its causes are largely unknown, it is essential to understand its dynamics at the molecular level. This necessitates the identification of better diagnostic and prognostic molecular candidates. Blood-based liquid biopsies are emerging as a novel tool for cancer biomarker discovery, guiding the treatment and improving its early detection based on their tumour origin. There exist previous studies focusing on the identification of tumour-based biomarkers for glioblastoma. However, these biomarkers inadequately represent the underlying pathological state and incompletely illustrate the tumour because of non-recursive nature of this approach to monitor the disease. Also, contrary to the tumour biopsies, liquid biopsies are non-invasive and can be performed at any interval during the disease span to surveil the disease. Therefore, in this study, a unique dataset of blood-based liquid biopsies obtained primarily from tumour-educated blood platelets (TEP) is utilised. This RNA-seq data from ArrayExpress is acquired comprising human cohort with 39 glioblastoma subjects and 43 healthy subjects. Canonical and machine learning approaches are applied for identification of the genomic biomarkers for glioblastoma and their crosstalks. In our study, 97 genes appeared enriched in 7 oncogenic pathways (RAF-MAPK, P53, PRC2-EZH2, YAP conserved, MEK-MAPK, ErbB2 and STK33 signalling pathways) using GSEA, out of which 17 have been identified participating actively in crosstalks. Using PCA, 42 genes are found enriched in 7 pathways (cytoplasmic ribosomal proteins, translation factors, electron transport chain, ribosome, Huntington's disease, primary immunodeficiency pathways, and interferon type I signalling pathway) harbouring tumour when altered, out of which 25 actively participate in crosstalks. All the 14 pathways foster well-known cancer hallmarks and the identified DEGs can serve as genomic biomarkers, not only for the diagnosis and prognosis of Glioblastoma but also in providing a molecular foothold for oncogenic decision making in order to fathom the disease dynamics. Moreover, SNP analysis for the identified DEGs is performed to investigate their roles in disease dynamics in an elaborated manner. These results suggest that TEPs are capable of providing disease insights just like tumour cells with an advantage of being extracted anytime during the course of disease in order to monitor it.
Collapse
Affiliation(s)
- Darrak Moin Quddusi
- Chair of Mechatronics in the Faculty of Mechanical and Process EngineeringRheinland‐Pfälzische Technische Universität Kaiserslautern‐LandauKaiserslauternGermany
| | - Naim Bajcinca
- Chair of Mechatronics in the Faculty of Mechanical and Process EngineeringRheinland‐Pfälzische Technische Universität Kaiserslautern‐LandauKaiserslauternGermany
| |
Collapse
|
111
|
Razzaghi H, Khabbazpour M, Heidary Z, Heiat M, Shirzad Moghaddam Z, Derogar P, Khoncheh A, Zaki-Dizaji M. Emerging Role of Tumor-Educated Platelets as a New Liquid Biopsy Tool for Colorectal Cancer. ARCHIVES OF IRANIAN MEDICINE 2023; 26:447-454. [PMID: 38301107 PMCID: PMC10685733 DOI: 10.34172/aim.2023.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/03/2023] [Indexed: 02/03/2024]
Abstract
Colorectal cancer (CRC) is a major cause of cancer-associated death universally. Currently, the diagnosis, prognosis, and treatment monitoring of CRC mostly depends on endoscopy integrated with tissue biopsy. Recently, liquid biopsy has gained more and more attention in the area of molecular detection and monitoring of tumors due to ease of sampling, and its safe, non-invasive, and dynamic nature. Platelets, despite their role in hemostasis and thrombosis, are known to have an active, bifacial relationship with cancers. Platelets are the second most common type of cell in the blood and are one of the wealthy liquid biopsy biosources. These cells have the potential to absorb nucleic acids and proteins and modify their transcriptome with regard to external signals, which are termed tumor-educated platelets (TEPs). Liquid biopsies depend on TEPs' biomarkers which can be used to screen and also detect cancer in terms of prognosis, personalized treatment, monitoring, and prediction of recurrence. The value of TEPs as an origin of tumor biomarkers is relatively new, but platelets are commonly isolated using formidable and rapid techniques in clinical practice. Numerous preclinical researches have emphasized the potential of platelets as a new liquid biopsy biosource for detecting several types of tumors. This review discusses the potential use of platelets as a liquid biopsy for CRC.
Collapse
Affiliation(s)
- Hossein Razzaghi
- Department of Laboratory Sciences, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| | - Milad Khabbazpour
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zohreh Heidary
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirzad Moghaddam
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Derogar
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ahmad Khoncheh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
112
|
Anderson R, Rapoport BL, Steel HC, Theron AJ. Pro-Tumorigenic and Thrombotic Activities of Platelets in Lung Cancer. Int J Mol Sci 2023; 24:11927. [PMID: 37569299 PMCID: PMC10418868 DOI: 10.3390/ijms241511927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Aside from their key protective roles in hemostasis and innate immunity, platelets are now recognized as having multifaceted, adverse roles in the pathogenesis, progression and outcome of many types of human malignancy. The most consistent and compelling evidence in this context has been derived from the notable association of elevated circulating platelet counts with the onset and prognosis of various human malignancies, particularly lung cancer, which represents the primary focus of the current review. Key topics include an overview of the association of lung cancer with the circulating platelet count, as well as the mechanisms of platelet-mediated, pro-tumorigenic immunosuppression, particularly the role of transforming growth factor beta 1. These issues are followed by a discussion regarding the pro-tumorigenic role of platelet-derived microparticles (PMPs), the most abundant type of microparticles (MPs) in human blood. In this context, the presence of increased levels of PMPs in the blood of lung cancer patients has been associated with tumor growth, invasion, angiogenesis and metastasis, which correlate with disease progression and decreased survival times. The final section of the review addresses, firstly, the role of cancer-related platelet activation and thrombosis in the pathogenesis of secondary cardiovascular disorders and the associated mortality, particularly in lung cancer, which is second only to disease progression; secondly, the review addresses the potential role of antiplatelet agents in the adjunctive therapy of cancer.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (B.L.R.); (H.C.S.); (A.J.T.)
| | - Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (B.L.R.); (H.C.S.); (A.J.T.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (B.L.R.); (H.C.S.); (A.J.T.)
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (B.L.R.); (H.C.S.); (A.J.T.)
| |
Collapse
|
113
|
Miao S, Zhang Q. Circulating circRNA: a social butterfly in tumors. Front Oncol 2023; 13:1203696. [PMID: 37546422 PMCID: PMC10401440 DOI: 10.3389/fonc.2023.1203696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded non-coding RNAs that form circular structures through irregular splicing or post-splicing events. CircRNAs are abnormally expressed in many cancers and regulate the occurrence and development of tumors. Circulating circRNAs are cell-free circRNAs present in peripheral blood, they are considered promising biomarkers due to their high stability. In recent years, more and more studies have revealed that circulating circRNAs participate in various cellular communication and regulate the occurrence and development of tumors, which involve many pathological processes such as tumorigenesis, tumor-related immunity, tumor angiogenesis, and tumor metastasis. Understanding the role of cell communication mediated by circulating circRNAs in tumor will further reveal the value and significance behind their use as biomarkers and potential therapeutic targets. In this review, we summarize the recent findings and provide an overview of the cell-cell communication mediated by circulating circRNAs, aiming to explore the role and application value of circulating circRNAs in tumors.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
114
|
Wolf S, Melo D, Garske KM, Pallares LF, Lea AJ, Ayroles JF. Characterizing the landscape of gene expression variance in humans. PLoS Genet 2023; 19:e1010833. [PMID: 37410774 DOI: 10.1371/journal.pgen.1010833] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
Gene expression variance has been linked to organismal function and fitness but remains a commonly neglected aspect of molecular research. As a result, we lack a comprehensive understanding of the patterns of transcriptional variance across genes, and how this variance is linked to context-specific gene regulation and gene function. Here, we use 57 large publicly available RNA-seq data sets to investigate the landscape of gene expression variance. These studies cover a wide range of tissues and allowed us to assess if there are consistently more or less variable genes across tissues and data sets and what mechanisms drive these patterns. We show that gene expression variance is broadly similar across tissues and studies, indicating that the pattern of transcriptional variance is consistent. We use this similarity to create both global and within-tissue rankings of variation, which we use to show that function, sequence variation, and gene regulatory signatures contribute to gene expression variance. Low-variance genes are associated with fundamental cell processes and have lower levels of genetic polymorphisms, have higher gene-gene connectivity, and tend to be associated with chromatin states associated with transcription. In contrast, high-variance genes are enriched for genes involved in immune response, environmentally responsive genes, immediate early genes, and are associated with higher levels of polymorphisms. These results show that the pattern of transcriptional variance is not noise. Instead, it is a consistent gene trait that seems to be functionally constrained in human populations. Furthermore, this commonly neglected aspect of molecular phenotypic variation harbors important information to understand complex traits and disease.
Collapse
Affiliation(s)
- Scott Wolf
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Diogo Melo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Kristina M Garske
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Luisa F Pallares
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Child and Brain Development, Canadian Institute for Advanced Research, Toronto, Canada
| | - Julien F Ayroles
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
115
|
Wei J, Meng X, Wei X, Zhu K, Du L, Wang H. Down-regulated lncRNA ROR in tumor-educated platelets as a liquid-biopsy biomarker for nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2023; 149:4403-4409. [PMID: 36107245 PMCID: PMC10349751 DOI: 10.1007/s00432-022-04350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
PURPOSES To evaluate the diagnostic value of tumor-educated platelets (TEP) lncRNA ROR for nasopharyngeal carcinoma (NPC). METHODS Quantitative real-time PCR was used to determine the expression level of TEP lncRNA ROR in NPC patients (n = 50) as compared to normal subjects (n = 33). The ROC curve analysis was performed to assess the diagnostic value of TEP lncRNA ROR for NPC. Correlations between TEP lncRNA ROR and clinical parameters were further analyzed. RESULTS The median of TEP lncRNA ROR was significantly lower in NPC patients than that in normal subjects (0.0209 vs 0.0610, p = 0.0019), while no significant difference was found in plasma lncRNA ROR. ROC analysis showed that TEP lncRNA ROR had a sensitivity of 60%, specificity of 70%, and accuracy of 63.9% in diagnosing NPC, and the area under ROC curve (AUC) was 0.70. The expression level of TEP lncRNA ROR in NPC showed no significant difference among different TNM stages. However, low level of TEP lncRNA ROR correlated well with positive Epstein-Barr virus (EBV) DNA (kappa value = 0.314, p = 0.06), TEP lncRNA ROR and EBV DNA had similar diagnostic positive rate (58.3%) for NPC, and the combination of TEP lncRNA ROR and EBV DNA increased the positive rate to 74%. CONCLUSION The expression level of TEP lncRNA ROR was down-regulated in NPC and the diagnostic value of TEP lncRNA ROR was similar to EBV DNA. Our study indicated that TEP lncRNA ROR might serve as a novel type of liquid biopsy biomarker in diagnosis of NPC patients.
Collapse
Affiliation(s)
- Jiazhou Wei
- Department of Laboratory Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xian Meng
- Department of Laboratory Medicine, Wuhan Jiangxia Hospital of Traditional Chinese Medicine, Wuhan, 430022, People's Republic of China
| | - Xiuqi Wei
- Department of Laboratory Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kaidong Zhu
- Department of Laboratory Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Du
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Hui Wang
- Department of Laboratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
116
|
Huber LT, Kraus JM, Ezić J, Wanli A, Groth M, Laban S, Hoffmann TK, Wollenberg B, Kestler HA, Brunner C. Liquid biopsy: an examination of platelet RNA obtained from head and neck squamous cell carcinoma patients for predictive molecular tumor markers. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:422-446. [PMID: 37455825 PMCID: PMC10344902 DOI: 10.37349/etat.2023.00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/01/2023] [Indexed: 07/18/2023] Open
Abstract
Aim Recently, a tumor cell-platelet interaction was identified in different tumor entities, resulting in a transfer of tumor-derived RNA into platelets, named further "tumor-educated platelets (TEP)". The present pilot study aims to investigate whether such a tumor-platelet transfer of RNA occurs also in patients suffering from head and neck squamous cell carcinoma (HNSCC). Methods Sequencing analysis of RNA derived from platelets of tumor patients (TPs) and healthy donors (HDs) were performed. Subsequently, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used for verification of differentially expressed genes in platelets from TPs and HDs in a second cohort of patients and HDs. Data were analyzed by applying bioinformatic tools. Results Sequencing of RNA derived from the tumor as well as from platelets of TPs and HDs revealed 426 significantly differentially existing RNA, at which 406 RNA were more and 20 RNA less abundant in platelets from TPs in comparison to that of HDs. In TPs' platelets, abundantly existing RNA coding for 49 genes were detected, characteristically expressed in epithelial cells and RNA, the products of which are involved in tumor progression. Applying bioinformatic tools and verification on a second TP/HD cohort, collagen type I alpha 1 chain (COL1A1) and zinc finger protein 750 (ZNF750) were identified as the strongest potentially platelet-RNA-sequencing (RNA-seq)-based biomarkers for HNSCC. Conclusions These results indicate a transfer of tumor-derived messenger RNA (mRNA) into platelets of HNSCC patients. Therefore, analyses of a patient's platelet RNA could be an efficient option for liquid biopsy in order to diagnose HNSCC or to monitor tumorigenesis as well as therapeutic responses at any time and in real time.
Collapse
Affiliation(s)
- Lisa T. Huber
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Jasmin Ezić
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Amin Wanli
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Marco Groth
- Leibniz Institute of Aging – Fritz Lipmann Institute, CF DNA sequencing, 07745 Jena, Germany
| | - Simon Laban
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Thomas K. Hoffmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Barbara Wollenberg
- Clinic for Otorhinolaryngology, Head and Neck Surgery, Technical University of Munich, 80333 Munich, Germany
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| |
Collapse
|
117
|
Wang W, He Y, Yang F, Chen K. Current and emerging applications of liquid biopsy in pan-cancer. Transl Oncol 2023; 34:101720. [PMID: 37315508 DOI: 10.1016/j.tranon.2023.101720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Cancer morbidity and mortality are growing rapidly worldwide and it is urgent to develop a convenient and effective method that can identify cancer patients at an early stage and predict treatment outcomes. As a minimally invasive and reproducible tool, liquid biopsy (LB) offers the opportunity to detect, analyze and monitor cancer in any body fluids including blood, complementing the limitations of tissue biopsy. In liquid biopsy, circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are the two most common biomarkers, displaying great potential in the clinical application of pan-cancer. In this review, we expound the samples, targets, and newest techniques in liquid biopsy and summarize current clinical applications in several specific cancers. Besides, we put forward a bright prospect for further exploring the emerging application of liquid biopsy in the field of pan-cancer precision medicine.
Collapse
Affiliation(s)
- Wenxiang Wang
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China
| | - Yue He
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China
| | - Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China.
| |
Collapse
|
118
|
Antunes-Ferreira M, D'Ambrosi S, Arkani M, Post E, In 't Veld SGJG, Ramaker J, Zwaan K, Kucukguzel ED, Wedekind LE, Griffioen AW, Oude Egbrink M, Kuijpers MJE, van den Broek D, Noske DP, Hartemink KJ, Sabrkhany S, Bahce I, Sol N, Bogaard HJ, Koppers-Lalic D, Best MG, Wurdinger T. Tumor-educated platelet blood tests for Non-Small Cell Lung Cancer detection and management. Sci Rep 2023; 13:9359. [PMID: 37291189 PMCID: PMC10250384 DOI: 10.1038/s41598-023-35818-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Liquid biopsy approaches offer a promising technology for early and minimally invasive cancer detection. Tumor-educated platelets (TEPs) have emerged as a promising liquid biopsy biosource for the detection of various cancer types. In this study, we processed and analyzed the TEPs collected from 466 Non-small Cell Lung Carcinoma (NSCLC) patients and 410 asymptomatic individuals (controls) using the previously established thromboSeq protocol. We developed a novel particle-swarm optimization machine learning algorithm which enabled the selection of an 881 RNA biomarker panel (AUC 0.88). Herein we propose and validate in an independent cohort of samples (n = 558) two approaches for blood samples testing: one with high sensitivity (95% NSCLC detected) and another with high specificity (94% controls detected). Our data explain how TEP-derived spliced RNAs may serve as a biomarker for minimally-invasive clinical blood tests, complement existing imaging tests, and assist the detection and management of lung cancer patients.
Collapse
Affiliation(s)
- Mafalda Antunes-Ferreira
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Silvia D'Ambrosi
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Mohammad Arkani
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Biomedical Data Science, Leiden University Medical Center, Leiden, The Netherlands
| | - Edward Post
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Sjors G J G In 't Veld
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Jip Ramaker
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Kenn Zwaan
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Ece Demirel Kucukguzel
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Laurine E Wedekind
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Mirjam Oude Egbrink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Daan van den Broek
- Department of Laboratory Medicine, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - David P Noske
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Koen J Hartemink
- Department of Thoracic Surgery, The Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Siamack Sabrkhany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Idris Bahce
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Nik Sol
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Harm-Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | | | - Myron G Best
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
119
|
Lai Z, Wang Z, Yuan Z, Zhang J, Zhou J, Li D, Zhang D, Li N, Peng P, Zhou J, Li Z. Disease-Specific Haptoglobin N-Glycosylation in Inflammatory Disorders between Cancers and Benign Diseases of 3 Types of Female Internal Genital Organs. Clin Chim Acta 2023:117420. [PMID: 37285951 DOI: 10.1016/j.cca.2023.117420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND N-glycosylation of the haptoglobin is closely related to pathological states. This study aims to evaluate the association of glycosylation of disease-specific Hp (DSHp) β chain with different pathological states of the cervix, uterus, and ovary to explore differences in their inflammatory responses and to screen potential biomarkers to distinguish cancer from benign diseases. METHODS DSHp-β chains of 1956 patients with cancers and benign diseases located in the cervix, uterus, and ovary organs were separated from serum immunoinflammatory-related protein complexes (IIRPCs). The N-glycopeptides from DSHp-β chains were detected using mass spectrometry, followed by an analysis of machine learning algorithms. RESULTS 55 N-glycopeptides at N207/N211, 19 at N241, and 21 at N184 glycosylation sites of DSHp for each sample were identified. Fucosylation and sialylation of DSHp in cervix, uterus, and ovary cancer were significantly increased compared to their corresponding benign diseases (p < 0.001). The cervix diagnostic model, a combination of G2N3F, G4NFS, G7N2F2S5, GS-N&GS-N, G2N2&G4N3FS, G7N2F2S5, G2S2&G-N, and GN2F&G2F at N207/N211 sites, G3NFS2 and G3NFS at N241site, G9N2S, G6N3F6, G4N3F5S, G4N3F4S2, and G6N3F4S at N184 site), has shown a good diagnostic capability to distinguish cancer from benign diseases, with the area under curve (AUC) of 0.912. The uterus diagnostic model including G4NFS, G2S2&G2S2, G3N2S2, GG5N2F5, G2&G3NFS, and G5N2F3S3 at N207/N211 sites, and G2NF3S2 at N184 site, with an AUC of 0.731. The ovary diagnostic model including G2N3F, GF2S-N &G2F3S2, G2S&G2, and G2S&G3NS at N207/N211 sites; G2S and G3NFS at N241 site, G6N3F4S at N184 site, with an AUC of 0.747. CONCLUSIONS These findings provide insights into differences in organ-specific inflammatory responses of DSHp for different pathological states among the organs of the cervix, uterus, and ovary.
Collapse
Affiliation(s)
- Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhigang Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhonghao Yuan
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Jiyun Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Jinyu Zhou
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Dan Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Dan Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Na Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, 1 Shuai Fu Yuan, Beijing, 100730, China.
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Beijing, 100871, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China.
| |
Collapse
|
120
|
Semenkovich NP, Szymanski JJ, Earland N, Chauhan PS, Pellini B, Chaudhuri AA. Genomic approaches to cancer and minimal residual disease detection using circulating tumor DNA. J Immunother Cancer 2023; 11:e006284. [PMID: 37349125 PMCID: PMC10314661 DOI: 10.1136/jitc-2022-006284] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Liquid biopsies using cell-free circulating tumor DNA (ctDNA) are being used frequently in both research and clinical settings. ctDNA can be used to identify actionable mutations to personalize systemic therapy, detect post-treatment minimal residual disease (MRD), and predict responses to immunotherapy. ctDNA can also be isolated from a range of different biofluids, with the possibility of detecting locoregional MRD with increased sensitivity if sampling more proximally than blood plasma. However, ctDNA detection remains challenging in early-stage and post-treatment MRD settings where ctDNA levels are minuscule giving a high risk for false negative results, which is balanced with the risk of false positive results from clonal hematopoiesis. To address these challenges, researchers have developed ever-more elegant approaches to lower the limit of detection (LOD) of ctDNA assays toward the part-per-million range and boost assay sensitivity and specificity by reducing sources of low-level technical and biological noise, and by harnessing specific genomic and epigenomic features of ctDNA. In this review, we highlight a range of modern assays for ctDNA analysis, including advancements made to improve the signal-to-noise ratio. We further highlight the challenge of detecting ultra-rare tumor-associated variants, overcoming which will improve the sensitivity of post-treatment MRD detection and open a new frontier of personalized adjuvant treatment decision-making.
Collapse
Affiliation(s)
- Nicholas P Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey J Szymanski
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Noah Earland
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pradeep S Chauhan
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruna Pellini
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Aadel A Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
121
|
Grizzi G, Salati M, Bonomi M, Ratti M, Holladay L, De Grandis MC, Spada D, Baiocchi GL, Ghidini M. Circulating Tumor DNA in Gastric Adenocarcinoma: Future Clinical Applications and Perspectives. Int J Mol Sci 2023; 24:9421. [PMID: 37298371 PMCID: PMC10254023 DOI: 10.3390/ijms24119421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Gastric cancer (GC) is still one of the most aggressive cancers with a few targetable alterations and a dismal prognosis. A liquid biopsy allows for identifying and analyzing the DNA released from tumor cells into the bloodstream. Compared to tissue-based biopsy, liquid biopsy is less invasive, requires fewer samples, and can be repeated over time in order to longitudinally monitor tumor burden and molecular changes. Circulating tumor DNA (ctDNA) has been recognized to have a prognostic role in all the disease stages of GC. The aim of this article is to review the current and future applications of ctDNA in gastric adenocarcinoma, in particular, with respect to early diagnosis, the detection of minimal residual disease (MRD) following curative surgery, and in the advanced disease setting for treatment decision choice and therapeutic monitoring. Although liquid biopsies have shown potentiality, pre-analytical and analytical steps must be standardized and validated to ensure the reproducibility and standardization of the procedures and data analysis methods. Further research is needed to allow the use of liquid biopsy in everyday clinical practice.
Collapse
Affiliation(s)
- Giulia Grizzi
- Oncology Unit, ASST Cremona, 26100 Cremona, Italy; (G.G.); (M.B.); (M.R.); (D.S.)
| | - Massimiliano Salati
- Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy;
| | - Maria Bonomi
- Oncology Unit, ASST Cremona, 26100 Cremona, Italy; (G.G.); (M.B.); (M.R.); (D.S.)
| | - Margherita Ratti
- Oncology Unit, ASST Cremona, 26100 Cremona, Italy; (G.G.); (M.B.); (M.R.); (D.S.)
| | - Lauren Holladay
- Anne Burnett Marion School of Medicine, Texas Christian University, Fort Worth, TX 76129, USA;
| | | | - Daniele Spada
- Oncology Unit, ASST Cremona, 26100 Cremona, Italy; (G.G.); (M.B.); (M.R.); (D.S.)
| | | | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
122
|
Dudiki T, Veleeparambil M, Zhevlakova I, Biswas S, Klein EA, Ford P, Podrez EA, Byzova TV. Mechanism of Tumor-Platelet Communications in Cancer. Circ Res 2023; 132:1447-1461. [PMID: 37144446 PMCID: PMC10213120 DOI: 10.1161/circresaha.122.321861] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Thrombosis is one of the main complications in cancer patients often leading to mortality. However, the mechanisms underlying platelet hyperactivation are poorly understood. METHODS Murine and human platelets were isolated and treated with small extracellular vesicles (sEVs) from various cancer cell lines. The effects of these cancer-sEVs on platelets were evaluated both in vitro and in vivo using various approaches, including the detection of cancer-sEV-specific markers in murine platelets and patient samples, measurement of platelet activation and thrombosis assays. Signaling events induced by cancer-sEVs and leading to platelet activation were identified, and the use of blocking antibodies to prevent thrombosis was demonstrated. RESULTS We demonstrate that platelets very effectively take up sEVs from aggressive cancer cells. The process of uptake is fast, proceeds effectively in circulation in mice, and is mediated by the abundant sEV membrane protein-CD63. The uptake of cancer-sEVs leads to the accumulation of cancer cell-specific RNA in platelets in vitro and in vivo. The human prostate cancer-sEV-specific RNA marker PCA3 is detected in platelets of ~70% of prostate cancer patients. This was markedly reduced after prostatectomy. In vitro studies showed that platelet uptake of cancer-sEVs induces strong platelet activation in a CD63-RPTPα (receptor-like protein tyrosine phosphatase alpha)-dependent manner. In contrast to physiological agonists ADP and thrombin, cancer-sEVs activate platelets via a noncanonical mechanism. Intravital studies demonstrated accelerated thrombosis both in murine tumor models and in mice that received intravenous injections of cancer-sEVs. The prothrombotic effects of cancer-sEVs were rescued by blocking CD63. CONCLUSIONS Tumors communicate with platelets by means of sEVs, which deliver cancer markers and activate platelets in a CD63-dependent manner leading to thrombosis. This emphasizes the diagnostic and prognostic value of platelet-associated cancer markers and identifies new pathways for intervention.
Collapse
Affiliation(s)
- Tejasvi Dudiki
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Manoj Veleeparambil
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Irina Zhevlakova
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Sudipta Biswas
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Eric A. Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Education Institute, Cleveland Clinic, Cleveland, OH
| | - Peter Ford
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Eugene A. Podrez
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tatiana V. Byzova
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
123
|
Souza VGP, Forder A, Brockley LJ, Pewarchuk ME, Telkar N, de Araújo RP, Trejo J, Benard K, Seneda AL, Minutentag IW, Erkan M, Stewart GL, Hasimoto EN, Garnis C, Lam WL, Martinez VD, Reis PP. Liquid Biopsy in Lung Cancer: Biomarkers for the Management of Recurrence and Metastasis. Int J Mol Sci 2023; 24:ijms24108894. [PMID: 37240238 DOI: 10.3390/ijms24108894] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Liquid biopsies have emerged as a promising tool for the detection of metastases as well as local and regional recurrence in lung cancer. Liquid biopsy tests involve analyzing a patient's blood, urine, or other body fluids for the detection of biomarkers, including circulating tumor cells or tumor-derived DNA/RNA that have been shed into the bloodstream. Studies have shown that liquid biopsies can detect lung cancer metastases with high accuracy and sensitivity, even before they are visible on imaging scans. Such tests are valuable for early intervention and personalized treatment, aiming to improve patient outcomes. Liquid biopsies are also minimally invasive compared to traditional tissue biopsies, which require the removal of a sample of the tumor for further analysis. This makes liquid biopsies a more convenient and less risky option for patients, particularly those who are not good candidates for invasive procedures due to other medical conditions. While liquid biopsies for lung cancer metastases and relapse are still being developed and validated, they hold great promise for improving the detection and treatment of this deadly disease. Herein, we summarize available and novel approaches to liquid biopsy tests for lung cancer metastases and recurrence detection and describe their applications in clinical practice.
Collapse
Affiliation(s)
- Vanessa G P Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Liam J Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araújo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Jessica Trejo
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Ana Laura Seneda
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Iael W Minutentag
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Melis Erkan
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Greg L Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Erica N Hasimoto
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Cathie Garnis
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Wan L Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Victor D Martinez
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Patricia P Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| |
Collapse
|
124
|
Gonzalez RD, Small GW, Green AJ, Akhtari FS, Motsinger-Reif AA, Quintanilha JCF, Havener TM, Reif DM, McLeod HL, Wiltshire T. MKX-AS1 Gene Expression Associated with Variation in Drug Response to Oxaliplatin and Clinical Outcomes in Colorectal Cancer Patients. Pharmaceuticals (Basel) 2023; 16:ph16050757. [PMID: 37242540 DOI: 10.3390/ph16050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Oxaliplatin (OXAL) is a commonly used chemotherapy for treating colorectal cancer (CRC). A recent genome wide association study (GWAS) showed that a genetic variant (rs11006706) in the lncRNA gene MKX-AS1 and partnered sense gene MKX could impact the response of genetically varied cell lines to OXAL treatment. This study found that the expression levels of MKX-AS1 and MKX in lymphocytes (LCLs) and CRC cell lines differed between the rs11006706 genotypes, indicating that this gene pair could play a role in OXAL response. Further analysis of patient survival data from the Cancer Genome Atlas (TCGA) and other sources showed that patients with high MKX-AS1 expression status had significantly worse overall survival (HR = 3.2; 95%CI = (1.17-9); p = 0.024) compared to cases with low MKX-AS1 expression status. Alternatively, high MKX expression status had significantly better overall survival (HR = 0.22; 95%CI = (0.07-0.7); p = 0.01) compared to cases with low MKX expression status. These results suggest an association between MKX-AS1 and MKX expression status that could be useful as a prognostic marker of response to OXAL and potential patient outcomes in CRC.
Collapse
Affiliation(s)
- Ricardo D Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - George W Small
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian J Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Howard L McLeod
- Center for Precision Medicine and Functional Genomics, Utah Tech University, St. George, UT 84770, USA
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
125
|
Bruno A, Tacconelli S, Contursi A, Ballerini P, Patrignani P. Cyclooxygenases and platelet functions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:133-165. [PMID: 37236757 DOI: 10.1016/bs.apha.2022.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cyclooxygenase (COX) isozymes, i.e., COX-1 and COX-2, are encoded by separate genes and are involved in the generation of the same products, prostaglandin (PG)G2 and PGH2 from arachidonic acid (AA) by the COX and peroxidase activities of the enzymes, respectively. PGH2 is then transformed into prostanoids in a tissue-dependent fashion due to the different expression of downstream synthases. Platelets present almost exclusively COX-1, which generates large amounts of thromboxane (TX)A2, a proaggregatory and vasoconstrictor mediator. This prostanoid plays a central role in atherothrombosis, as shown by the benefit of the antiplatelet agent low-dose aspirin, a preferential inhibitor of platelet COX-1. Recent findings have shown the relevant role played by platelets and TXA2 in developing chronic inflammation associated with several diseases, including tissue fibrosis and cancer. COX-2 is induced in response to inflammatory and mitogenic stimuli to generate PGE2 and PGI2 (prostacyclin), in inflammatory cells. However, PGI2 is constitutively expressed in vascular cells in vivo and plays a crucial role in protecting the cardiovascular systems due to its antiplatelet and vasodilator effects. Here, platelets' role in regulating COX-2 expression in cells of the inflammatory microenvironment is described. Thus, the selective inhibition of platelet COX-1-dependent TXA2 by low-dose aspirin prevents COX-2 induction in stromal cells leading to antifibrotic and antitumor effects. The biosynthesis and functions of other prostanoids, such as PGD2, and isoprostanes, are reported. In addition to aspirin, which inhibits platelet COX-1 activity, possible strategies to affect platelet functions by influencing platelet prostanoid receptors or synthases are discussed.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G.d'Annunzio" University, Chieti, Italy
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
126
|
Ding S, Dong X, Song X. Tumor educated platelet: the novel BioSource for cancer detection. Cancer Cell Int 2023; 23:91. [PMID: 37170255 PMCID: PMC10176761 DOI: 10.1186/s12935-023-02927-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023] Open
Abstract
Platelets, involved in the whole process of tumorigenesis and development, constantly absorb and enrich tumor-specific substances in the circulation during their life span, thus called "Tumor Educated Platelets" (TEPs). The alterations of platelet mRNA profiles have been identified as tumor markers due to the regulatory mechanism of post-transcriptional splicing. Small nuclear RNAs (SnRNAs), the important spliceosome components in platelets, dominate platelet RNA splicing and regulate the splicing intensity of pre-mRNA. Endogenous variation at the snRNA levels leads to widespread differences in alternative splicing, thereby driving the development and progression of neoplastic diseases. This review systematically expounds the bidirectional tumor-platelets interactions, especially the tumor induced alternative splicing in TEP, and further explores whether molecules related to alternative splicing such as snRNAs can serve as novel biomarkers for cancer diagnostics.
Collapse
Affiliation(s)
- Shanshan Ding
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xiaohan Dong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
127
|
Burciaga-Hernandez LA, Cueto-Villalobos CF, Ortega-Piñon N, Gonzalez-Curiel IE, Godina-Gonzalez S, Mendez-Frausto G, Aguilar-Esquivel AP, Maldonado-Lagunas V, Guerrero-de la Torre LE, Melendez-Zajgla J, Sanchez-Garcia EK, Mitre-Aguilar IB, Mendoza-Almanza G. Gene Expression Behavior of a Set of Genes in Platelet and Tissue Samples from Patients with Breast Cancer. Int J Mol Sci 2023; 24:ijms24098348. [PMID: 37176055 PMCID: PMC10179257 DOI: 10.3390/ijms24098348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor microenvironment (TME) is constituted by a great diversity of highly dynamic cell populations, each of which contributes ligands, receptors, soluble proteins, mRNAs, and miRNAs, in order to regulate cellular activities within the TME and even promote processes such as angiogenesis or metastasis. Intravasated platelets (PLT) undergo changes in the TME that convert them into tumor-educated platelets (TEP), which supports the development of cancer, angiogenesis, and metastasis through the degranulation and release of biomolecules. Several authors have reported that the deregulation of PF4, VEGF, PDGF, ANG-1, WASF3, LAPTM4B, TPM3, and TAC1 genes participates in breast cancer progression, angiogenesis, and metastasis. The present work aimed to analyze the expression levels of this set of genes in tumor tissues and platelets derived from breast cancer patients by reverse transcription-quantitative polymerase chain reaction (RTqPCR) assays, in order to determine if there was an expression correlation between these sources and to take advantage of the new information to be used in possible diagnosis by liquid biopsy. Data from these assays showed that platelets and breast cancer tumors present similar expression levels of a subset of these genes' mRNAs, depending on the molecular subtype, comorbidities, and metastasis presence.
Collapse
Affiliation(s)
- Luis A Burciaga-Hernandez
- Maestría en Ciencias Biomédicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
- Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico
| | | | - Nancy Ortega-Piñon
- Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico
| | - Irma E Gonzalez-Curiel
- Laboratorio de InmunotoxicologÍa y Terapéutica Experimental, Unidad Académica de Ciencias QuÍmicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Susana Godina-Gonzalez
- Laboratorio de Biomarcadores, Unidad Académica de Ciencias QuÍmicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Gwendolyne Mendez-Frausto
- Laboratorio de InmunotoxicologÍa y Terapéutica Experimental, Unidad Académica de Ciencias QuÍmicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | | | - Vilma Maldonado-Lagunas
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México 14610, Mexico
| | - Luis E Guerrero-de la Torre
- Maestría en Ciencias Biomédicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
- Hospital General Zacatecas "Luz González Cosío", Zacatecas 98160, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México 14610, Mexico
| | - Erika K Sanchez-Garcia
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México 14610, Mexico
| | - Irma B Mitre-Aguilar
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran (INCMNSZ), Ciudad de México 14080, Mexico
| | - Gretel Mendoza-Almanza
- Maestría en Ciencias Biomédicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México 14610, Mexico
- Consejo Nacional de Ciencia y Tecnología, Ciudad de México 03940, Mexico
| |
Collapse
|
128
|
Zhang Q, Bi Z, Song X, Zhang Y, Wang S, Xie L, Song X. Tumor-educated platelet SNORA58, SNORA68 and SNORD93 as novel diagnostic biomarkers for esophageal cancer. Future Oncol 2023; 19:651-661. [PMID: 37129021 DOI: 10.2217/fon-2023-0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Aim: The purpose of this study was to evaluate whether tumor-educated platelet (TEP) snoRNAs could be used as a diagnostic biomarker for esophageal cancer (ESCA). Methods: Platelet precipitates were obtained from platelet-rich plasma by low-speed centrifugation, and total RNA was extracted from platelets using Trizol™ reagent. RT-qPCR was used to detect snoRNA expression, and the receiver operating characteristic was used to assess its diagnostic potential. Results: SNORA58, SNORA68 and SNORD93 were significantly upregulated in TEPs from ESCA patients and early-stage patients compared with healthy controls. Importantly, the three snoRNAs were capable of serving as circulating biomarkers of diagnostics and early diagnosis of ESCA, possessing areas under the curve of 0.846 and 0.857, respectively. Conclusion: TEP SNORA58, SNORA68 and SNORD93 could potentially serve as noninvasive biomarkers for diagnosis and early diagnosis of ESCA.
Collapse
Affiliation(s)
- Qianru Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Zhao Bi
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Yue Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Shiwen Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Li Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xianrang Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| |
Collapse
|
129
|
Zhang X, Yu S, Li X, Wen X, Liu S, Zu R, Ren H, Li T, Yang C, Luo H. Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacol Res 2023; 191:106777. [PMID: 37080257 DOI: 10.1016/j.phrs.2023.106777] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Oxidative stress (OS) is a chemical imbalance between an oxidant and an antioxidant, causing damage to redox signaling and control or causing molecular damage. Unbalanced oxidative metabolism can produce excessive reactive oxygen species (ROS). These excess ROS can cause drastic changes in platelet metabolism and further affect platelet function. It will also lead to an increase in platelet procoagulant phenotype and cell apoptosis, which will increase the risk of thrombosis. The creation of ROS and subsequent platelet activation, adhesion, and recruitment are then further encouraged in an auto-amplifying loop by ROS produced from platelets. Meanwhile, cancer cells produce a higher concentration of ROS due to their fast metabolism and high proliferation rate. However, excessive ROS can result in damage to and modification of cellular macromolecules. The formation of cancer and its progression is strongly associated with oxidative stress and the resulting oxidative damage. In addition, platelets are an important part of the tumor microenvironment, and there is a significant cross-communication between platelets and cancer cells. Cancer cells alter the activation status of platelets, their RNA spectrum, proteome, and other properties. The "cloaking" of cancer cells by platelets providing physical protection,avoiding destruction from shear stress and the attack of immune cells, promoting tumor cell invasion.We explored the vicious circle interaction between ROS, platelets, and cancer in this review, and we believe that ROS can play a stimulative role in tumor growth and metastasis through platelets.
Collapse
Affiliation(s)
- Xingmei Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Sisi Yu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China
| | - Xiaobo Li
- Molecular Diagnostic Laboratory of Department of Microbiology and Immunology, 3201 Hospital Affiliated to Medical College of Xi'an Jiaotong University, Hanzhong 723099, China
| | - Xiaoxia Wen
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Shan Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Ruiling Zu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China
| | - Hanxiao Ren
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Chaoguo Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China.
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China.
| |
Collapse
|
130
|
Cimmino G, Conte S, Palumbo D, Sperlongano S, Torella M, Della Corte A, Golino P. The Novel Role of Noncoding RNAs in Modulating Platelet Function: Implications in Activation and Aggregation. Int J Mol Sci 2023; 24:7650. [PMID: 37108819 PMCID: PMC10144470 DOI: 10.3390/ijms24087650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
It is currently believed that plaque complication, with the consequent superimposed thrombosis, is a key factor in the clinical occurrence of acute coronary syndromes (ACSs). Platelets are major players in this process. Despite the considerable progress made by the new antithrombotic strategies (P2Y12 receptor inhibitors, new oral anticoagulants, thrombin direct inhibitors, etc.) in terms of a reduction in major cardiovascular events, a significant number of patients with previous ACSs treated with these drugs continue to experience events, indicating that the mechanisms of platelet remain largely unknown. In the last decade, our knowledge of platelet pathophysiology has improved. It has been reported that, in response to physiological and pathological stimuli, platelet activation is accompanied by de novo protein synthesis, through a rapid and particularly well-regulated translation of resident mRNAs of megakaryocytic derivation. Although the platelets are anucleate, they indeed contain an important fraction of mRNAs that can be quickly used for protein synthesis following their activation. A better understanding of the pathophysiology of platelet activation and the interaction with the main cellular components of the vascular wall will open up new perspectives in the treatment of the majority of thrombotic disorders, such as ACSs, stroke, and peripheral artery diseases before and after the acute event. In the present review, we will discuss the novel role of noncoding RNAs in modulating platelet function, highlighting the possible implications in activation and aggregation.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Stefano Conte
- Department of Translational Medical Sciences, Section of Lung Diseases, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy
| | - Domenico Palumbo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Simona Sperlongano
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Michele Torella
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| |
Collapse
|
131
|
Cygert S, Pastuszak K, Górski F, Sieczczyński M, Juszczyk P, Rutkowski A, Lewalski S, Różański R, Jopek MA, Jassem J, Czyżewski A, Wurdinger T, Best MG, Żaczek AJ, Supernat A. Platelet-Based Liquid Biopsies through the Lens of Machine Learning. Cancers (Basel) 2023; 15:cancers15082336. [PMID: 37190262 DOI: 10.3390/cancers15082336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Liquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This biosource is often analyzed using sequencing, which generates highly complex data that can be used using machine learning tools. Nevertheless, validating the clinical applications of such methods is challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning sample collection; and (c) adding interpretability to the model. In this work, we have used RNA sequencing data of tumor-educated platelets (TEPs) and performed a binary classification (cancer vs. no-cancer). First, we compiled a large-scale dataset with more than a thousand donors. Further, we used different convolutional neural networks (CNNs) and boosting methods to evaluate the classifier performance. We have obtained an impressive result of 0.96 area under the curve. We then identified different clusters of splice variants using expert knowledge from the Kyoto Encyclopedia of Genes and Genomes (KEGG). Employing boosting algorithms, we identified the features with the highest predictive power. Finally, we tested the robustness of the models using test data from novel hospitals. Notably, we did not observe any decrease in model performance. Our work proves the great potential of using TEP data for cancer patient classification and opens the avenue for profound cancer diagnostics.
Collapse
Affiliation(s)
- Sebastian Cygert
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
- Ideas NCBR, 00-801 Warsaw, Poland
| | - Krzysztof Pastuszak
- Department of Algorithms and System Modeling, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- Center of Biostatistics and Bioinformatics, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Franciszek Górski
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Michał Sieczczyński
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Piotr Juszczyk
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Antoni Rutkowski
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Sebastian Lewalski
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | | | - Maksym Albin Jopek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- Center of Biostatistics and Bioinformatics, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Andrzej Czyżewski
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Thomas Wurdinger
- Department of Neurosurgery, Amsterdam University Medical Center, 1081 Amsterdam, The Netherlands
| | - Myron G Best
- Department of Neurosurgery, Amsterdam University Medical Center, 1081 Amsterdam, The Netherlands
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Anna Supernat
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- Center of Biostatistics and Bioinformatics, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
132
|
Pilotto Heming C, Niemeyer Filho P, Moura-Neto V, Aran V. Recent advances in the use of liquid biopsy to fight central nervous system tumors. Cancer Treat Res Commun 2023; 35:100709. [PMID: 37088042 DOI: 10.1016/j.ctarc.2023.100709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Brain tumors are considered one of the deadliest types of cancer, being challenging to treat, especially due to the blood-brain barrier, which has been linked to treatment resistance. The genomic classification of brain tumors has been helping in the diagnostic precision, however tumor heterogeneity in addition to the difficulties to obtain tissue biopsies, represent a challenge. The biopsies are usually obtained either via neurosurgical removal or stereotactic tissue biopsy, which can be risky procedures for the patient. To overcome these challenges, liquid biopsy has become an interesting option by constituting a safer procedure than conventional biopsy, which may offer valuable cellular and molecular information representative of the whole organism. Besides, it is relatively easy to obtain such as in the case of blood (venipuncture) and urine sample collection. In the present comprehensive review, we discuss the newest information regarding liquid biopsy in the brain tumors' field, methods employed, the different sources of bio-fluids and their potential circulating targets.
Collapse
Affiliation(s)
- Carlos Pilotto Heming
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil
| | - Paulo Niemeyer Filho
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil
| | - Veronica Aran
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil.
| |
Collapse
|
133
|
Di Sario G, Rossella V, Famulari ES, Maurizio A, Lazarevic D, Giannese F, Felici C. Enhancing clinical potential of liquid biopsy through a multi-omic approach: A systematic review. Front Genet 2023; 14:1152470. [PMID: 37077538 PMCID: PMC10109350 DOI: 10.3389/fgene.2023.1152470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
In the last years, liquid biopsy gained increasing clinical relevance for detecting and monitoring several cancer types, being minimally invasive, highly informative and replicable over time. This revolutionary approach can be complementary and may, in the future, replace tissue biopsy, which is still considered the gold standard for cancer diagnosis. "Classical" tissue biopsy is invasive, often cannot provide sufficient bioptic material for advanced screening, and can provide isolated information about disease evolution and heterogeneity. Recent literature highlighted how liquid biopsy is informative of proteomic, genomic, epigenetic, and metabolic alterations. These biomarkers can be detected and investigated using single-omic and, recently, in combination through multi-omic approaches. This review will provide an overview of the most suitable techniques to thoroughly characterize tumor biomarkers and their potential clinical applications, highlighting the importance of an integrated multi-omic, multi-analyte approach. Personalized medical investigations will soon allow patients to receive predictable prognostic evaluations, early disease diagnosis, and subsequent ad hoc treatments.
Collapse
|
134
|
Jin J, Shao Y, Zhang J, Cao J, Tao Z, Hu X. High-purity isolation platelets by gradient centrifugation plus filtration. Int J Lab Hematol 2023; 45:187-194. [PMID: 36470678 DOI: 10.1111/ijlh.13998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Platelets can be used as a liquid biopsy source to provide rapid, up-to-date, and relevant information on tumor pathology and treatment response. However, there is still a lack of high efficiency methods for platelet isolation with high purity. METHODS Three platelet isolation methods were evaluated by platelet recovery and purity. The platelet inhibition cocktail (PIC) was added into peripheral blood, or was not allowed to access the effect of the platelet activation. The CD61, CD45, and CD62P labelled platelets, leukocytes and activated platelets were detected by flow cytometry. Quantitative polymerase chain reaction (qPCR) and next-generation sequencing (NGS) were employed to determine the gene expression levels. A time-dependent experiment combined with qPCR was used to determine the time limit for platelet isolation at room temperature. RESULTS Compared to the gradient centrifugation alone, and gradient centrifugation plus filtration and magnetic beads separation, gradient centrifugation plus filtration was the preferred method for more efficient and high-purity platelet isolation, with a recovery rate of 9.1% and a purity of 99.98%. Furthermore, there was no difference in platelet activation level, regardless of whether PIC was used. Moreover, the rate of platelet RNA degradation did not differ when platelets were isolated within 48 h of blood collection. CONCLUSION Gradient centrifugation plus filtration at room temperature within 48 h of blood collection, without PIC, is a novel protocol with high recovery and purity rate to isolate platelets.
Collapse
Affiliation(s)
- Jia Jin
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yilin Shao
- Department of Oncology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jian Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Junning Cao
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhonghua Tao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xichun Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
135
|
David P, Mittelstädt A, Kouhestani D, Anthuber A, Kahlert C, Sohn K, Weber GF. Current Applications of Liquid Biopsy in Gastrointestinal Cancer Disease-From Early Cancer Detection to Individualized Cancer Treatment. Cancers (Basel) 2023; 15:cancers15071924. [PMID: 37046585 PMCID: PMC10093361 DOI: 10.3390/cancers15071924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Worldwide, gastrointestinal (GI) cancers account for a significant amount of cancer-related mortality. Tests that allow an early diagnosis could lead to an improvement in patient survival. Liquid biopsies (LBs) due to their non-invasive nature as well as low risk are the current focus of cancer research and could be a promising tool for early cancer detection. LB involves the sampling of any biological fluid (e.g., blood, urine, saliva) to enrich and analyze the tumor's biological material. LBs can detect tumor-associated components such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), and circulating tumor cells (CTCs). These components can reflect the status of the disease and can facilitate clinical decisions. LBs offer a unique and new way to assess cancers at all stages of treatment, from cancer screenings to prognosis to management of multidisciplinary therapies. In this review, we will provide insights into the current status of the various types of LBs enabling early detection and monitoring of GI cancers and their use in in vitro diagnostics.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anke Mittelstädt
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dina Kouhestani
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Anthuber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Kahlert
- Department of Surgery, Carl Gustav Carus University Hospital, 01307 Dresden, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Georg F Weber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
136
|
Brito-Rocha T, Constâncio V, Henrique R, Jerónimo C. Shifting the Cancer Screening Paradigm: The Rising Potential of Blood-Based Multi-Cancer Early Detection Tests. Cells 2023; 12:cells12060935. [PMID: 36980276 PMCID: PMC10047029 DOI: 10.3390/cells12060935] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer remains a leading cause of death worldwide, partly owing to late detection which entails limited and often ineffective therapeutic options. Most cancers lack validated screening procedures, and the ones available disclose several drawbacks, leading to low patient compliance and unnecessary workups, adding up the costs to healthcare systems. Hence, there is a great need for innovative, accurate, and minimally invasive tools for early cancer detection. In recent years, multi-cancer early detection (MCED) tests emerged as a promising screening tool, combining molecular analysis of tumor-related markers present in body fluids with artificial intelligence to simultaneously detect a variety of cancers and further discriminate the underlying cancer type. Herein, we aim to provide a highlight of the variety of strategies currently under development concerning MCED, as well as the major factors which are preventing clinical implementation. Although MCED tests depict great potential for clinical application, large-scale clinical validation studies are still lacking.
Collapse
Affiliation(s)
- Tiago Brito-Rocha
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Master Program in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Doctoral Program in Biomedical Sciences, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
137
|
Combinatorial Blood Platelets-Derived circRNA and mRNA Signature for Early-Stage Lung Cancer Detection. Int J Mol Sci 2023; 24:ijms24054881. [PMID: 36902312 PMCID: PMC10003255 DOI: 10.3390/ijms24054881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Despite the diversity of liquid biopsy transcriptomic repertoire, numerous studies often exploit only a single RNA type signature for diagnostic biomarker potential. This frequently results in insufficient sensitivity and specificity necessary to reach diagnostic utility. Combinatorial biomarker approaches may offer a more reliable diagnosis. Here, we investigated the synergistic contributions of circRNA and mRNA signatures derived from blood platelets as biomarkers for lung cancer detection. We developed a comprehensive bioinformatics pipeline permitting an analysis of platelet-circRNA and mRNA derived from non-cancer individuals and lung cancer patients. An optimal selected signature is then used to generate the predictive classification model using machine learning algorithm. Using an individual signature of 21 circRNA and 28 mRNA, the predictive models reached an area under the curve (AUC) of 0.88 and 0.81, respectively. Importantly, combinatorial analysis including both types of RNAs resulted in an 8-target signature (6 mRNA and 2 circRNA), enhancing the differentiation of lung cancer from controls (AUC of 0.92). Additionally, we identified five biomarkers potentially specific for early-stage detection of lung cancer. Our proof-of-concept study presents the first multi-analyte-based approach for the analysis of platelets-derived biomarkers, providing a potential combinatorial diagnostic signature for lung cancer detection.
Collapse
|
138
|
Cui S, Liu W, Wang W, Miao K, Guan X. Advances in the Diagnosis and Prognosis of Minimal Residual Lesions of Breast Cancer. Pathol Res Pract 2023; 245:154428. [PMID: 37028109 DOI: 10.1016/j.prp.2023.154428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE To review the latest research of minimal residual disease (MRD) in breast cancer as well as some emerging or potential detection methods for MRD in breast cancer. METHODS Springer, Wiley, and PubMed databases were searched for the electronic literature with search terms of breast cancer, minimal residual disease, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, etc. RESULTS: Minimal residual disease refers to the occult micrometastasis or minimal residual lesions detected in patients with tumor after radical treatment. An early and dynamic monitoring of breast cancer MRD can contribute to clinical treatment decision-making, improving the diagnosis accuracy and prognosis of breast cancer patients. The updated knowledge regarding MRD in breast cancer diagnosis and prognosis were summarized, followed by the review of several emerging or potential detection technologies for MRD in breast cancer. With the developed new MRD detection technologies referring to CTCs, ctDNA and exosomes, the role of MRD in breast cancer has been growingly verified, which is expected to serve as a new risk stratification factor and prognostic indicator for breast cancer. CONCLUSION This paper systematically reviews the research progress, opportunities and challenges in MRD in breast cancer in recent years.
Collapse
Affiliation(s)
- Shiyun Cui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Weici Liu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Wenxiang Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Keyan Miao
- Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
139
|
Hagey DW, El Andaloussi S. The promise and challenges of extracellular vesicles in the diagnosis of neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:227-241. [PMID: 36803813 DOI: 10.1016/b978-0-323-85555-6.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Extracellular vesicles (EVs) have emerged as essential means of intercommunication for all cell types, and their role in CNS physiology is increasingly appreciated. Accumulating evidence has demonstrated that EVs play important roles in neural cell maintenance, plasticity, and growth. However, EVs have also been demonstrated to spread amyloids and inflammation characteristic of neurodegenerative disease. Such dual roles suggest that EVs may be prime candidates for neurodegenerative disease biomarker analysis. This is supported by several intrinsic properties of EVs: Populations can be enriched by capturing surface proteins from their cell of origin, their diverse cargo represent the complex intracellular states of the cells they derive from, and they can pass the blood-brain barrier. Despite this promise, there are important questions outstanding in this young field that will need to be answered before it can fulfill its potential. Namely, overcoming the technical challenges of isolating rare EV populations, the difficulties inherent in detecting neurodegeneration, and the ethical considerations of diagnosing asymptomatic individuals. Although daunting, succeeding to answer these questions has the potential to provide unprecedented insight and improved treatment of neurodegenerative disease in the future.
Collapse
Affiliation(s)
- Daniel W Hagey
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
140
|
Lee Y, Ni J, Beretov J, Wasinger VC, Graham P, Li Y. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. Mol Cancer 2023; 22:33. [PMID: 36797736 PMCID: PMC9933347 DOI: 10.1186/s12943-023-01741-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Current clinical tools for breast cancer (BC) diagnosis are insufficient but liquid biopsy of different bodily fluids has recently emerged as a minimally invasive strategy that provides a real-time snapshot of tumour biomarkers for early diagnosis, active surveillance of progression, and post-treatment recurrence. Extracellular vesicles (EVs) are nano-sized membranous structures 50-1000 nm in diameter that are released by cells into biological fluids. EVs contain proteins, nucleic acids, and lipids which play pivotal roles in tumourigenesis and metastasis through cell-to-cell communication. Proteins and miRNAs from small EVs (sEV), which range in size from 50-150 nm, are being investigated as a potential source for novel BC biomarkers using mass spectrometry-based proteomics and next-generation sequencing. This review covers recent developments in sEV isolation and single sEV analysis technologies and summarises the sEV protein and miRNA biomarkers identified for BC diagnosis, prognosis, and chemoresistance. The limitations of current sEV biomarker research are discussed along with future perspective applications.
Collapse
Affiliation(s)
- Yujin Lee
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Jie Ni
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Julia Beretov
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia ,grid.416398.10000 0004 0417 5393Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Valerie C. Wasinger
- grid.1005.40000 0004 4902 0432Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Medical Science, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Peter Graham
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Yong Li
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia. .,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia.
| |
Collapse
|
141
|
A straightforward method to quantify circulating mRNAs as biomarkers of colorectal cancer. Sci Rep 2023; 13:2739. [PMID: 36792801 PMCID: PMC9932139 DOI: 10.1038/s41598-023-29948-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Optimizing the biomarker combination to be analyzed in liquid biopsies should improve personalized medicine. We developed a method to purify circulating cell-free mRNAs from plasma samples and to quantify them by RT-qPCR. We selected three candidate colorectal cancer biomarkers (B2M, TIMP-1, and CLU). Their mRNA levels were significantly higher in plasma of patients with metastatic colorectal cancer patients (mCRC) (n = 107) than in healthy individuals (HI) (n = 53). To increase the discriminating performance of our method, we analyzed the sum of the three mRNA levels (BTC index). The area under the ROC curve (AUC) to estimate the BTC index capacity to discriminate between mCRC and HI plasma was 0.903. We also determined the optimal BTC index cut-off to distinguish between plasma samples, with 82% of sensitivity and 93% of specificity. By using mRNA as a novel liquid biopsy analytical parameter, our method has the potential to facilitate rapid screening of CRCm.
Collapse
|
142
|
Liu X, Song J, Zhang H, Liu X, Zuo F, Zhao Y, Zhao Y, Yin X, Guo X, Wu X, Zhang H, Xu J, Hu J, Jing J, Ma X, Shi H. Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell 2023; 41:272-287.e9. [PMID: 36706761 DOI: 10.1016/j.ccell.2023.01.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
Circulating tumor cells (CTCs), shed by primary malignancies, function as "seeds" for distant metastasis. However, it is still largely unknown how CTCs escape immune surveillance. Here, we characterize the transcriptomes of human pancreatic ductal adenocarcinoma CTCs, primary, and metastatic lesions at single-cell scale. Cell-interaction analysis and functional studies in vitro and in vivo reveal that CTCs and natural killer (NK) cells interact via the immune checkpoint molecule pair HLA-E:CD94-NKG2A. Disruption of this interaction by blockade of NKG2A or knockdown of HLA-E expression enhances NK-mediated tumor cell killing in vitro and prevents tumor metastasis in vivo. Mechanistic studies indicate that platelet-derived RGS18 promotes the expression of HLA-E through AKT-GSK3β-CREB signaling, and overexpression of RGS18 facilitates pancreatic tumor hepatic metastasis. In conclusion, platelet-derived RGS18 protects CTCs from NK-mediated immune surveillance by engaging the immune checkpoint HLA-E:CD94-NKG2A. Interruption of the suppressive signaling prevents tumor metastasis in vivo by immune elimination of CTCs.
Collapse
Affiliation(s)
- Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Jinen Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Hao Zhang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinyu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Fengli Zuo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Yunuo Zhao
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yujie Zhao
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xiaomeng Yin
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinyu Guo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xi Wu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Hu Zhang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Jie Xu
- Institutes of Biological Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Jianping Hu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Jing Jing
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hubing Shi
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China.
| |
Collapse
|
143
|
Connal S, Cameron JM, Sala A, Brennan PM, Palmer DS, Palmer JD, Perlow H, Baker MJ. Liquid biopsies: the future of cancer early detection. J Transl Med 2023; 21:118. [PMID: 36774504 PMCID: PMC9922467 DOI: 10.1186/s12967-023-03960-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
Cancer is a worldwide pandemic. The burden it imposes grows steadily on a global scale causing emotional, physical, and financial strains on individuals, families, and health care systems. Despite being the second leading cause of death worldwide, many cancers do not have screening programs and many people with a high risk of developing cancer fail to follow the advised medical screening regime due to the nature of the available screening tests and other challenges with compliance. Moreover, many liquid biopsy strategies being developed for early detection of cancer lack the sensitivity required to detect early-stage cancers. Early detection is key for improved quality of life, survival, and to reduce the financial burden of cancer treatments which are greater at later stage detection. This review examines the current liquid biopsy market, focusing in particular on the strengths and drawbacks of techniques in achieving early cancer detection. We explore the clinical utility of liquid biopsy technologies for the earlier detection of solid cancers, with a focus on how a combination of various spectroscopic and -omic methodologies may pave the way for more efficient cancer diagnostics.
Collapse
Affiliation(s)
- Siobhan Connal
- Dxcover Ltd., Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G11XL, UK
| | - James M Cameron
- Dxcover Ltd., Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| | - Alexandra Sala
- Dxcover Ltd., Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, 49 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4BS, UK
| | - David S Palmer
- Dxcover Ltd., Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G11XL, UK
| | - Joshua D Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Haley Perlow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Matthew J Baker
- Dxcover Ltd., Royal College Building, 204 George Street, Glasgow, G1 1XW, UK.
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G11XL, UK.
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
144
|
Liefaard MC, Moore KS, Mulder L, van den Broek D, Wesseling J, Sonke GS, Wessels LFA, Rookus M, Lips EH. Tumour-educated platelets for breast cancer detection: biological and technical insights. Br J Cancer 2023; 128:1572-1581. [PMID: 36765174 PMCID: PMC10070267 DOI: 10.1038/s41416-023-02174-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Studies have shown that blood platelets contain tumour-specific mRNA profiles tumour-educated platelets (TEPs). Here, we aim to train a TEP-based breast cancer detection classifier. METHODS Platelet mRNA was sequenced from 266 women with stage I-IV breast cancer and 212 female controls from 6 hospitals. A particle swarm optimised support vector machine (PSO-SVM) and an elastic net-based classifier (EN) were trained on 71% of the study population. Classifier performance was evaluated in the remainder (29%) of the population, followed by validation in an independent set (37 cases and 36 controls). Potential confounding was assessed in post hoc analyses. RESULTS Both classifiers reached an area under the curve (AUC) of 0.85 upon internal validation. Reproducibility in the independent validation set was poor with an AUC of 0.55 and 0.54 for the PSO-SVM and EN classifier, respectively. Post hoc analyses indicated that 19% of the variance in gene expression was associated with hospital. Genes related to platelet activity were differentially expressed between hospitals. CONCLUSIONS We could not validate two TEP-based breast cancer classifiers in an independent validation cohort. The TEP protocol is sensitive to within-protocol variation and revision might be necessary before TEPs can be reconsidered for breast cancer detection.
Collapse
Affiliation(s)
- Marte C Liefaard
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kat S Moore
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lennart Mulder
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan van den Broek
- Department of Clinical Chemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Matti Rookus
- Department of Psychosocial and Epidemiology Research, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
145
|
Makowska M, Smolarz B, Romanowicz H. microRNAs (miRNAs) in Glioblastoma Multiforme (GBM)-Recent Literature Review. Int J Mol Sci 2023; 24:3521. [PMID: 36834933 PMCID: PMC9965735 DOI: 10.3390/ijms24043521] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common, malignant, poorly promising primary brain tumor. GBM is characterized by an infiltrating growth nature, abundant vascularization, and a rapid and aggressive clinical course. For many years, the standard treatment of gliomas has invariably been surgical treatment supported by radio- and chemotherapy. Due to the location and significant resistance of gliomas to conventional therapies, the prognosis of glioblastoma patients is very poor and the cure rate is low. The search for new therapy targets and effective therapeutic tools for cancer treatment is a current challenge for medicine and science. microRNAs (miRNAs) play a key role in many cellular processes, such as growth, differentiation, cell division, apoptosis, and cell signaling. Their discovery was a breakthrough in the diagnosis and prognosis of many diseases. Understanding the structure of miRNAs may contribute to the understanding of the mechanisms of cellular regulation dependent on miRNA and the pathogenesis of diseases underlying these short non-coding RNAs, including glial brain tumors. This paper provides a detailed review of the latest reports on the relationship between changes in the expression of individual microRNAs and the formation and development of gliomas. The use of miRNAs in the treatment of this cancer is also discussed.
Collapse
Affiliation(s)
- Marianna Makowska
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
146
|
Čelešnik H, Potočnik U. Blood-Based mRNA Tests as Emerging Diagnostic Tools for Personalised Medicine in Breast Cancer. Cancers (Basel) 2023; 15:1087. [PMID: 36831426 PMCID: PMC9954278 DOI: 10.3390/cancers15041087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Molecular diagnostic tests help clinicians understand the underlying biological mechanisms of their patients' breast cancer (BC) and facilitate clinical management. Several tissue-based mRNA tests are used routinely in clinical practice, particularly for assessing the BC recurrence risk, which can guide treatment decisions. However, blood-based mRNA assays have only recently started to emerge. This review explores the commercially available blood mRNA diagnostic assays for BC. These tests enable differentiation of BC from non-BC subjects (Syantra DX, BCtect), detection of small tumours <10 mm (early BC detection) (Syantra DX), detection of different cancers (including BC) from a single blood sample (multi-cancer blood test Aristotle), detection of BC in premenopausal and postmenopausal women and those with high breast density (Syantra DX), and improvement of diagnostic outcomes of DNA testing (variant interpretation) (+RNAinsight). The review also evaluates ongoing transcriptomic research on exciting possibilities for future assays, including blood transcriptome analyses aimed at differentiating lymph node positive and negative BC, distinguishing BC and benign breast disease, detecting ductal carcinoma in situ, and improving early detection further (expression changes can be detected in blood up to eight years before diagnosing BC using conventional approaches, while future metastatic and non-metastatic BC can be distinguished two years before BC diagnosis).
Collapse
Affiliation(s)
- Helena Čelešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
147
|
Kircher M, Säurich J, Selle M, Jung K. Assessing Outlier Probabilities in Transcriptomics Data When Evaluating a Classifier. Genes (Basel) 2023; 14:genes14020387. [PMID: 36833313 PMCID: PMC9956321 DOI: 10.3390/genes14020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Outliers in the training or test set used to fit and evaluate a classifier on transcriptomics data can considerably change the estimated performance of the model. Hence, an either too weak or a too optimistic accuracy is then reported and the estimated model performance cannot be reproduced on independent data. It is then also doubtful whether a classifier qualifies for clinical usage. We estimate classifier performances in simulated gene expression data with artificial outliers and in two real-world datasets. As a new approach, we use two outlier detection methods within a bootstrap procedure to estimate the outlier probability for each sample and evaluate classifiers before and after outlier removal by means of cross-validation. We found that the removal of outliers changed the classification performance notably. For the most part, removing outliers improved the classification results. Taking into account the fact that there are various, sometimes unclear reasons for a sample to be an outlier, we strongly advocate to always report the performance of a transcriptomics classifier with and without outliers in training and test data. This provides a more diverse picture of a classifier's performance and prevents reporting models that later turn out to be not applicable for clinical diagnoses.
Collapse
|
148
|
Tan P, Chen X, Zhang H, Wei Q, Luo K. Artificial intelligence aids in development of nanomedicines for cancer management. Semin Cancer Biol 2023; 89:61-75. [PMID: 36682438 DOI: 10.1016/j.semcancer.2023.01.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Over the last decade, the nanomedicine has experienced unprecedented development in diagnosis and management of diseases. A number of nanomedicines have been approved in clinical use, which has demonstrated the potential value of clinical transition of nanotechnology-modified medicines from bench to bedside. The application of artificial intelligence (AI) in development of nanotechnology-based products could transform the healthcare sector by realizing acquisition and analysis of large datasets, and tailoring precision nanomedicines for cancer management. AI-enabled nanotechnology could improve the accuracy of molecular profiling and early diagnosis of patients, and optimize the design pipeline of nanomedicines by tuning the properties of nanomedicines, achieving effective drug synergy, and decreasing the nanotoxicity, thereby, enhancing the targetability, personalized dosing and treatment potency of nanomedicines. Herein, the advances in AI-enabled nanomedicines in cancer management are elaborated and their application in diagnosis, monitoring and therapy as well in precision medicine development is discussed.
Collapse
Affiliation(s)
- Ping Tan
- Department of Urology, and Department of Radiology, Institute of Urology, and Huaxi MR Research Center (HMRRC), Animal Experimental Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoting Chen
- Department of Urology, and Department of Radiology, Institute of Urology, and Huaxi MR Research Center (HMRRC), Animal Experimental Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Qiang Wei
- Department of Urology, and Department of Radiology, Institute of Urology, and Huaxi MR Research Center (HMRRC), Animal Experimental Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Kui Luo
- Department of Urology, and Department of Radiology, Institute of Urology, and Huaxi MR Research Center (HMRRC), Animal Experimental Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
149
|
Zhang T, Pang A, Lyu J, Ren H, Song J, Zhu F, Liu J, Cui Y, Ling C, Tian Y. Application of Nonlinear Models Combined with Conventional Laboratory Indicators for the Diagnosis and Differential Diagnosis of Ovarian Cancer. J Clin Med 2023; 12:jcm12030844. [PMID: 36769493 PMCID: PMC9917843 DOI: 10.3390/jcm12030844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Existing biomarkers for ovarian cancer lack sensitivity and specificity. We compared the diagnostic efficacy of nonlinear machine learning and linear statistical models for diagnosing ovarian cancer using a combination of conventional laboratory indicators. We divided 901 retrospective samples into an ovarian cancer group and a control group, comprising non-ovarian malignant gynecological tumor (NOMGT), benign gynecological disease (BGD), and healthy control subgroups. Cases were randomly assigned to training and internal validation sets. Two linear (logistic regression (LR) and Fisher's linear discriminant (FLD)) and three nonlinear models (support vector machine (SVM), random forest (RF), and artificial neural network (ANN)) were constructed using 22 conventional laboratory indicators and three demographic characteristics. Model performance was compared. In an independent prospectively recruited validation set, the order of diagnostic efficiency was RF, SVM, ANN, FLD, LR, and carbohydrate antigen 125 (CA125)-only (AUC, accuracy: 0.989, 95.6%; 0.985, 94.4%; 0.974, 93.4%; 0.915, 82.1%; 0.859, 80.1%; and 0.732, 73.0%, respectively). RF maintained satisfactory classification performance for identifying different ovarian cancer stages and for discriminating it from NOMGT-, BGD-, or CA125-positive control. Nonlinear models outperformed linear models, indicating that nonlinear machine learning models can efficiently use conventional laboratory indicators for ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Tongshuo Zhang
- Department of Laboratory Medicine and Pathology, Jiangsu Provincial Corps Hospital of Chinese People’s Armed Police Force (PAP), Yangzhou 225003, China
| | - Aibo Pang
- Center for Birth Defects Prevention and Control Technology Research, Chinese PLA General Hospital, Beijing 100853, China
| | - Jungang Lyu
- Third Department of Internal Medicine, Beijing Corps Hospital of PAP, Beijing 100027, China
| | - Hefei Ren
- Department of Laboratory Medicine, The Second Affiliated Hospital, Naval Medical University, Shanghai 200003, China
| | - Jiangnan Song
- Department of Obstetrics and Gynecology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Zhu
- Department of Laboratory Medicine and Pathology, Jiangsu Provincial Corps Hospital of Chinese People’s Armed Police Force (PAP), Yangzhou 225003, China
| | - Jinlong Liu
- Department of Obstetrics and Gynecology, The 79th Group Army Hospital of PLA, Liaoyang 111000, China
| | - Yuntao Cui
- Department of Laboratory Medicine, Characteristic Medical Center of PAP, Tianjin 300162, China
| | - Cunbao Ling
- Center for Birth Defects Prevention and Control Technology Research, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaping Tian
- Center for Birth Defects Prevention and Control Technology Research, Chinese PLA General Hospital, Beijing 100853, China
- Correspondence:
| |
Collapse
|
150
|
Menter DG, Bresalier RS. An Aspirin a Day: New Pharmacological Developments and Cancer Chemoprevention. Annu Rev Pharmacol Toxicol 2023; 63:165-186. [PMID: 36202092 DOI: 10.1146/annurev-pharmtox-052020-023107] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemoprevention refers to the use of natural or synthetic agents to reverse, suppress, or prevent the progression or recurrence of cancer. A large body of preclinical and clinical data suggest the ability of aspirin to prevent precursor lesions and cancers, but much of the clinical data are inferential and based on descriptive epidemiology, case control, and cohort studies or studies designed to answer other questions (e.g., cardiovascular mortality). Multiple pharmacological, clinical, and epidemiologic studies suggest that aspirin can prevent certain cancers but may also cause other effects depending on the tissue or disease and organ site in question. The best-known biological targets of aspirin are cyclooxygenases, which drive a wide variety of functions, including hemostasis, inflammation, and immune modulation. Newly recognized molecular and cellular interactions suggest additional modifiable functional targets, and the existence of consensus molecular cancer subtypes suggests that aspirin may have differential effects based on tumor heterogeneity. This review focuses on new pharmacological developments and innovations in biopharmacology that clarify the potential role of aspirin in cancer chemoprevention.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| |
Collapse
|