101
|
Deng F, Magee N, Zhang Y. Decoding the Role of Extracellular Vesicles in Liver Diseases. LIVER RESEARCH 2017; 1:147-155. [PMID: 29552373 PMCID: PMC5851463 DOI: 10.1016/j.livres.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-to-cell communication is a fascinating process that is essential for maintaining tissue and whole-body homeostasis. Extracellular vesicles (EVs) are cell-derived membrane-bound nanoparticles that are a means of communication between cells. Accumulating evidence indicates that EVs can render either beneficial or harmful outcomes, depending on the specific cargos (e.g. proteins, lipids, RNAs) transferred between cells. EVs also have great value as diagnostic and prognostic markers of disease because they are present in a variety of biological fluids and carry bioactive molecules from their cells or tissues of origin. Liver cells can both release and receive EVs derived from other cells and emerging evidence indicates that liver EVs play important roles in the pathogenesis of various liver diseases, including liver cancer, viral hepatitis, non-alcoholic fatty liver disease, and alcoholic liver disease. This review provides an overview of the biogenesis and secretion of EVs and summarizes the most recent advances in understanding the role of EVs in liver physiology and diseases. Additionally, we discuss potential applications of liver EVs as biomarkers and in therapeutic approaches to treat liver diseases.
Collapse
Affiliation(s)
- Fengyan Deng
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nancy Magee
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
102
|
Sadoul R, Laporte MH, Chassefeyre R, Chi KI, Goldberg Y, Chatellard C, Hemming FJ, Fraboulet S. The role of ESCRT during development and functioning of the nervous system. Semin Cell Dev Biol 2017; 74:40-49. [PMID: 28811263 DOI: 10.1016/j.semcdb.2017.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/21/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
The endosomal sorting complex required for transport (ESCRT) is made of subcomplexes (ESCRT 0-III), crucial to membrane remodelling at endosomes, nuclear envelope and cell surface. ESCRT-III shapes membranes and in most cases cooperates with the ATPase VPS4 to mediate fission of membrane necks from the inside. The first ESCRT complexes mainly serve to catalyse the formation of ESCRT-III but can be bypassed by accessory proteins like the Alg-2 interacting protein-X (ALIX). In the nervous system, ALIX/ESCRT controls the survival of embryonic neural progenitors and later on the outgrowth and pruning of axons and dendrites, all necessary steps to establish a functional brain. In the adult brain, ESCRTs allow the endosomal turn over of synaptic vesicle proteins while stable ESCRT complexes might serve as scaffolds for the postsynaptic parts. The necessity of ESCRT for the harmonious function of the brain has its pathological counterpart, the mutations in CHMP2B of ESCRT-III giving rise to several neurodegenerative diseases.
Collapse
Affiliation(s)
- Rémy Sadoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France.
| | - Marine H Laporte
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Romain Chassefeyre
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Kwang Il Chi
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Yves Goldberg
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Christine Chatellard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Fiona J Hemming
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Sandrine Fraboulet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| |
Collapse
|
103
|
Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol 2017; 74:66-77. [PMID: 28807885 DOI: 10.1016/j.semcdb.2017.08.022] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
Abstract
From bacteria to humans, cells secrete a large variety of membrane-bound extracellular vesicles. Only relatively recently has it however started to become clear that the exovesicular transport of proteins and RNAs is important for normal physiology and numerous pathological conditions. Extracellular vesicles can be formed through the release of the intralumenal vesicles of multivesicular endosomes as so-called exosomes, or through direct, ectosomal, budding from the cell surface. Through their ability to promote the bending of membranes away from the cytoplasm, the components of the Endosomal Sorting Complex Required for Transport (ESCRT) have been implicated in both exo- and ectosomal biogenesis. Studies of the ESCRT machinery may therefore provide important insights into the formation and function of extracellular vesicles. In the present review, we first describe the cell biological mechanisms through which ESCRT components contribute to the biogenesis of different types of extracellular vesicles. We then discuss how recent functional studies have started to uncover important roles of ESCRT-dependent extracellular vesicles in a wide variety of processes, including the transport of developmental signaling molecules and embryonic morphogenesis, the regulation of social behavior and host-pathogen interactions, as well as the etiology and progression of neurodegenerative pathologies and cancer.
Collapse
Affiliation(s)
- Thomas Juan
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | | |
Collapse
|
104
|
Dickey SW, Cheung GY, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16:457-471. [PMID: 28337021 PMCID: PMC11849574 DOI: 10.1038/nrd.2017.23] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid evolution and dissemination of antibiotic resistance among bacterial pathogens are outpacing the development of new antibiotics, but antivirulence agents provide an alternative. These agents can circumvent antibiotic resistance by disarming pathogens of virulence factors that facilitate human disease while leaving bacterial growth pathways - the target of traditional antibiotics - intact. Either as stand-alone medications or together with antibiotics, these drugs are intended to treat bacterial infections in a largely pathogen-specific manner. Notably, development of antivirulence drugs requires an in-depth understanding of the roles that diverse virulence factors have in disease processes. In this Review, we outline the theory behind antivirulence strategies and provide examples of bacterial features that can be targeted by antivirulence approaches. Furthermore, we discuss the recent successes and failures of this paradigm, and new developments that are in the pipeline.
Collapse
Affiliation(s)
- Seth W. Dickey
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Gordon Y.C. Cheung
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
105
|
Takasugi M, Okada R, Takahashi A, Virya Chen D, Watanabe S, Hara E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun 2017; 8:15729. [PMID: 28585531 PMCID: PMC5467215 DOI: 10.1038/ncomms15728] [Citation(s) in RCA: 297] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
Cellular senescence prevents the proliferation of cells at risk for neoplastic transformation. However, the altered secretome of senescent cells can promote the growth of the surrounding cancer cells. Although extracellular vesicles (EVs) have emerged as new players in intercellular communication, their role in the function of senescent cell secretome has been largely unexplored. Here, we show that exosome-like small EVs (sEVs) are important mediators of the pro-tumorigenic function of senescent cells. sEV-associated EphA2 secreted from senescent cells binds to ephrin-A1, that is, highly expressed in several types of cancer cells and promotes cell proliferation through EphA2/ephrin-A1 reverse signalling. sEV sorting of EphA2 is increased in senescent cells because of its enhanced phosphorylation resulting from oxidative inactivation of PTP1B phosphatase. Our results demonstrate a novel mechanism of reactive oxygen species (ROS)-regulated cargo sorting into sEVs, which is critical for the potentially deleterious growth-promoting effect of the senescent cell secretome. Although senescent cell secretome can promote the growth of surrounding cancer cells, the role of extracellular vesicles in this process has not been well understood. Here the authors show that ROS increase the sorting of EphA2 into extracellular vesicles in senescent cells, which promotes proliferation of cancer cells.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Okada
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Akiko Takahashi
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - David Virya Chen
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sugiko Watanabe
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
106
|
Rezaie J, Ajezi S, Avci ÇB, Karimipour M, Geranmayeh MH, Nourazarian A, Sokullu E, Rezabakhsh A, Rahbarghazi R. Exosomes and their Application in Biomedical Field: Difficulties and Advantages. Mol Neurobiol 2017; 55:3372-3393. [DOI: 10.1007/s12035-017-0582-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/27/2017] [Indexed: 12/31/2022]
|
107
|
Skotland T, Sandvig K, Llorente A. Lipids in exosomes: Current knowledge and the way forward. Prog Lipid Res 2017; 66:30-41. [PMID: 28342835 DOI: 10.1016/j.plipres.2017.03.001] [Citation(s) in RCA: 737] [Impact Index Per Article: 92.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 12/29/2022]
Abstract
Lipids are essential components of exosomal membranes, and it is well-known that specific lipids are enriched in exosomes compared to their parent cells. In this review we discuss current knowledge about the lipid composition of exosomes. We compare published data for different lipid classes in exosomes, and what is known about their lipid species, i.e. lipid molecules with different fatty acyl groups. Moreover, we elaborate on the hypothesis about hand-shaking between the very-long-chain sphingolipids in the outer leaflet and PS 18:0/18:1 in the inner leaflet, and we propose this to be an important mechanism in membrane biology, not only for exosomes. The similarity between the lipid composition of exosomes, HIV particles, and detergent resistant membranes, used as lipid rafts models, is also discussed. Furthermore, we summarize knowledge about the role of specific lipids and lipid metabolizing enzymes on the formation and release of exosomes. Finally, the use of exosomal lipids as biomarkers and how the lipid composition of exosomes may be of importance for researchers aiming to use exosomes as drug delivery vehicles is discussed. In conclusion, we have summarized what is presently known about lipids in exosomes and identified issues that should be taken into consideration in future studies.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway.
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway; Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| |
Collapse
|
108
|
Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 2017; 9:95-106. [PMID: 28135905 PMCID: PMC5902209 DOI: 10.1080/21541248.2016.1264352] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the last two decades, extracellular vesicle-mediated communication between cells has become a major field in cell biology. However, the function of extracellular vesicles is far from clear, especially due to the disparity of released vesicles by cells. Basically, one must consider vesicles budding from the cell plasma membrane (ectosomes) and vesicles released upon fusion of an endosomal multivesicular compartment (exosomes). Moreover, even for exosomes, we report and discuss here the possibility that different routes regulated by specific Rab GTPases might produce exosomes having various biologic functions.
Collapse
Affiliation(s)
- Lionel Blanc
- a Laboratory of Developmental Erythropoiesis, The Feinstein Institute for Medical Research Hofstra Northwell School of Medicine , Manhasset , NY , USA
| | - Michel Vidal
- b UMR 5235, CNRS, Université Montpellier , cc107, Montpellier , France
| |
Collapse
|
109
|
Abstract
Clostridium perfringens enterotoxin (CPE) binds to claudin receptors, e.g., claudin-4, and then forms a pore that triggers cell death. Pure cultures of host cells that do not express claudin receptors, e.g., fibroblasts, are unaffected by pathophysiologically relevant CPE concentrations in vitro. However, both CPE-insensitive and CPE-sensitive host cells are present in vivo. Therefore, this study tested whether CPE treatment might affect fibroblasts when cocultured with CPE-sensitive claudin-4 fibroblast transfectants or Caco-2 cells. Under these conditions, immunofluorescence microscopy detected increased death of fibroblasts. This cytotoxic effect involved release of a toxic factor from the dying CPE-sensitive cells, since it could be reproduced using culture supernatants from CPE-treated sensitive cells. Supernatants from CPE-treated sensitive cells, particularly Caco-2 cells, were found to contain high levels of membrane vesicles, often containing a CPE species. However, most cytotoxic activity remained in those supernatants even after membrane vesicle depletion, and CPE was not detected in fibroblasts treated with supernatants from CPE-treated sensitive cells. Instead, characterization studies suggest that a major cytotoxic factor present in supernatants from CPE-treated sensitive cells may be a 10- to 30-kDa host serine protease or require the action of that host serine protease. Induction of caspase-3-mediated apoptosis was found to be important for triggering release of the cytotoxic factor(s) from CPE-treated sensitive host cells. Furthermore, the cytotoxic factor(s) in these supernatants was shown to induce a caspase-3-mediated killing of fibroblasts. This bystander killing effect due to release of cytotoxic factors from CPE-treated sensitive cells could contribute to CPE-mediated disease. In susceptible host cells, Clostridium perfringens enterotoxin (CPE) binds to claudin receptors and then forms pores that result in cell death. Using cocultures of CPE receptor-expressing sensitive cells mixed with CPE-insensitive cells lacking receptors for this toxin, the current study determined that CPE-treated sensitive cells release soluble cytotoxic factors, one of which may be a 10- to 30-kDa serine protease, to cause apoptotic death of cells that are themselves CPE insensitive. These findings suggest a novel bystander killing mechanism by which a pore-forming toxin may extend its damage to affect cells not directly responsive to that toxin. If confirmed to occur in vivo by future studies, this bystander killing effect may have significance during CPE-mediated disease and could impact the translational use of CPE for purposes such as cancer therapy.
Collapse
|
110
|
Eitan E, Suire C, Zhang S, Mattson MP. Impact of lysosome status on extracellular vesicle content and release. Ageing Res Rev 2016; 32:65-74. [PMID: 27238186 DOI: 10.1016/j.arr.2016.05.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale size bubble-like membranous structures released from cells. EVs contain RNA, lipids and proteins and are thought to serve various roles including intercellular communication and removal of misfolded proteins. The secretion of misfolded and aggregated proteins in EVs may be a cargo disposal alternative to the autophagy-lysosomal and ubiquitin-proteasome pathways. In this review we will discuss the importance of lysosome functionality for the regulation of EV secretion and content. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies (MVB) with the plasma membrane. MVBs can also fuse with lysosomes, and the trafficking pathway of MVBs can therefore determine whether or not exosomes are released from cells. Here we summarize data from studies of the effects of lysosome inhibition on the secretion of EVs and on the possibility that cells compensate for lysosome malfunction by disposal of potentially toxic cargos in EVs. A better understanding of the molecular mechanisms that regulate trafficking of MVBs to lysosomes and the plasma membrane may advance an understanding of diseases in which pathogenic proteins, lipids or infectious agents accumulate within or outside of cells.
Collapse
|
111
|
de la Torre-Escudero E, Bennett AP, Clarke A, Brennan GP, Robinson MW. Extracellular Vesicle Biogenesis in Helminths: More than One Route to the Surface? Trends Parasitol 2016; 32:921-929. [DOI: 10.1016/j.pt.2016.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
|
112
|
Impact of Dendrimer Terminal Group Chemistry on Blockage of the Anthrax Toxin Channel: A Single Molecule Study. Toxins (Basel) 2016; 8:toxins8110337. [PMID: 27854272 PMCID: PMC5127133 DOI: 10.3390/toxins8110337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
Nearly all the cationic molecules tested so far have been shown to reversibly block K⁺ current through the cation-selective PA63 channels of anthrax toxin in a wide nM-mM range of effective concentrations. A significant increase in channel-blocking activity of the cationic compounds was achieved when multiple copies of positively charged ligands were covalently linked to multivalent scaffolds, such as cyclodextrins and dendrimers. Even though multivalent binding can be strong when the individual bonds are relatively weak, for drug discovery purposes we often strive to design multivalent compounds with high individual functional group affinity toward the respective binding site on a multivalent target. Keeping this requirement in mind, here we perform a single-channel/single-molecule study to investigate kinetic parameters of anthrax toxin PA63 channel blockage by second-generation (G2) poly(amido amine) (PAMAM) dendrimers functionalized with different surface ligands, including G2-NH₂, G2-OH, G2-succinamate, and G2-COONa. We found that the previously reported difference in IC50 values of the G2-OH/PA63 and G2-NH₂/PA63 binding was determined by both on- and off-rates of the reversible dendrimer/channel binding reaction. In 1 M KCl, we observed a decrease of about three folds in k o n and a decrease of only about ten times in t r e s with G2-OH compared to G2-NH₂. At the same time for both blockers, k o n and t r e s increased dramatically with transmembrane voltage increase. PAMAM dendrimers functionalized with negatively charged succinamate, but not carboxyl surface groups, still had some residual activity in inhibiting the anthrax toxin channels. At 100 mV, the on-rate of the G2-succinamate binding was comparable with that of G2-OH but showed weaker voltage dependence when compared to G2-OH and G2-NH₂. The residence time of G2-succinamate in the channel exhibited opposite voltage dependence compared to G2-OH and G2-NH₂, increasing with the cis-negative voltage increase. We also describe kinetics of the PA63 ion current modulation by two different types of the "imperfect" PAMAM dendrimers, the mixed-surface G2 75% OH 25% NH₂ dendrimer and G3-NH₂ dendron. At low voltages, both "imperfect" dendrimers show similar rate constants but significantly weaker voltage sensitivity when compared with the intact G2-NH₂ PAMAM dendrimer.
Collapse
|
113
|
Klinkert K, Echard A. Rab35 GTPase: A Central Regulator of Phosphoinositides and F-actin in Endocytic Recycling and Beyond. Traffic 2016; 17:1063-77. [PMID: 27329675 DOI: 10.1111/tra.12422] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/12/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022]
Abstract
Rab35 is one of the first discovered members of the large Rab GTPase family, yet it received little attention for 10 years being considered merely as a Rab1-like GTPase. In 2006, Rab35 was recognized as a unique Rab GTPase localized both at the plasma membrane and on endosomes, playing essential roles in endocytic recycling and cytokinesis. Since then, Rab35 has become one of the most studied Rabs involved in a growing number of cellular functions, including endosomal trafficking, exosome release, phagocytosis, cell migration, immunological synapse formation and neurite outgrowth. Recently, Rab35 has been acknowledged as an oncogenic GTPase with activating mutations being found in cancer patients. In this review, we provide a comprehensive summary of known Rab35-dependent cellular functions and detail the few Rab35 effectors characterized so far. We also review how the Rab35 GTP/GDP cycle is regulated, and emphasize a newly discovered mechanism that controls its tight activation on newborn endosomes. We propose that the involvement of Rab35 in such diverse and apparently unrelated cellular functions can be explained by the central role of this GTPase in regulating phosphoinositides and F-actin, both on endosomes and at the plasma membrane.
Collapse
Affiliation(s)
- Kerstin Klinkert
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France.,Centre National de la Recherche Scientifique, UMR3691, 75015, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de formation doctorale, 75252, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France. .,Centre National de la Recherche Scientifique, UMR3691, 75015, Paris, France.
| |
Collapse
|
114
|
Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 2016; 6:287-96. [PMID: 27471669 PMCID: PMC4951582 DOI: 10.1016/j.apsb.2016.02.001] [Citation(s) in RCA: 957] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 02/07/2023] Open
Abstract
Exosomes are small intracellular membrane-based vesicles with different compositions that are involved in several biological and pathological processes. The exploitation of exosomes as drug delivery vehicles offers important advantages compared to other nanoparticulate drug delivery systems such as liposomes and polymeric nanoparticles; exosomes are non-immunogenic in nature due to similar composition as body׳s own cells. In this article, the origin and structure of exosomes as well as their biological functions are outlined. We will then focus on specific applications of exosomes as drug delivery systems in pharmaceutical drug development. An overview of the advantages and challenges faced when using exosomes as a pharmaceutical drug delivery vehicles will also be discussed.
Collapse
Key Words
- ALIX, ALG-2 interacting protein X
- ATPase, adenosine triphosphatase
- BBB, blood–brain barrier
- CCK-8, cell counting kit-8
- CD, cluster of differentiation
- DIL, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate
- DNA, deoxyribonucleic acid
- Drug delivery systems
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- ESCRT, endosomal sorting complexes required for transport
- EV, extracellular vesicle
- EpCAM, epithelial cell adhesion molecule
- Exosomes
- Extracellular vesicles
- HEK293, human embryonic kidney cell line 293
- HIV, human immunodeficiency virus
- HMGA2, high-mobility group AT-hook protein
- HeLa, Henrietta Lacks cells
- Hsp, heat shock proteins
- IL-6, interleukin-6
- ILVs, intraluminal vesicles
- LPS, lipopolysaccharides
- MAPK-1, mitogen-activated protein kinase 1
- MHC, major histocompatibility complex
- MPS, mononuclear phagocyte system
- MVB, multi-vesicular body biogenesis
- Nanocarrier
- PBMC, peripheral blood mononuclear cells
- PD, Parkinson’s disease
- PEG, polyethylene glycol
- RNA, ribonucleic acid
- ROS, reactive oxygen species
- RPE1, retinal pigment epithelial cells 1
- TNF-α, tumor necrosis factor α
- TSG101, tumor susceptibility gene 101
- VPS4, vacuolar protein sorting-associated protein 4
- kRAS, Kirsten rat sarcoma
- mRNA, messenger RNA
- miRNA, micro RNA
- siRNA, small interference RNA
Collapse
Affiliation(s)
| | | | - Venkatareddy Nadithe
- Manchester University, College of Pharmacy, Natural & Health Sciences, Fort Wayne, IN 46845, USA
| |
Collapse
|
115
|
Mercier V, Laporte MH, Destaing O, Blot B, Blouin CM, Pernet-Gallay K, Chatellard C, Saoudi Y, Albiges-Rizo C, Lamaze C, Fraboulet S, Petiot A, Sadoul R. ALG-2 interacting protein-X (Alix) is essential for clathrin-independent endocytosis and signaling. Sci Rep 2016; 6:26986. [PMID: 27244115 PMCID: PMC4886688 DOI: 10.1038/srep26986] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms and the biological functions of clathrin independent endocytosis (CIE) remain largely elusive. Alix (ALG-2 interacting protein X), has been assigned roles in membrane deformation and fission both in endosomes and at the plasma membrane. Using Alix ko cells, we show for the first time that Alix regulates fluid phase endocytosis and internalization of cargoes entering cells via CIE, but has no apparent effect on clathrin mediated endocytosis or downstream endosomal trafficking. We show that Alix acts with endophilin-A to promote CIE of cholera toxin and to regulate cell migration. We also found that Alix is required for fast endocytosis and downstream signaling of the interleukin-2 receptor giving a first indication that CIE is necessary for activation of at least some surface receptors. In addition to characterizing a new function for Alix, our results highlight Alix ko cells as a unique tool to unravel the biological consequences of CIE.
Collapse
Affiliation(s)
- Vincent Mercier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Marine H Laporte
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Olivier Destaing
- INSERM U1209, Grenoble, F-38042, France.,Université Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France.,CNRS UMR 5309, F-38000 Grenoble, France
| | - Béatrice Blot
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Cédric M Blouin
- Institut Curie, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Paris, France.,INSERM, U1143, Paris, France.,CNRS, UMR 3666, Paris, France
| | - Karin Pernet-Gallay
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Christine Chatellard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Yasmina Saoudi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Corinne Albiges-Rizo
- INSERM U1209, Grenoble, F-38042, France.,Université Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France.,CNRS UMR 5309, F-38000 Grenoble, France
| | - Christophe Lamaze
- Institut Curie, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Paris, France.,INSERM, U1143, Paris, France.,CNRS, UMR 3666, Paris, France
| | - Sandrine Fraboulet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Anne Petiot
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Rémy Sadoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| |
Collapse
|
116
|
Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol 2016; 36:301-12. [PMID: 27053351 DOI: 10.1007/s10571-016-0366-z] [Citation(s) in RCA: 1220] [Impact Index Per Article: 135.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles are a heterogeneous group of membrane-limited vesicles loaded with various proteins, lipids, and nucleic acids. Release of extracellular vesicles from its cell of origin occurs either through the outward budding of the plasma membrane or through the inward budding of the endosomal membrane, resulting in the formation of multivesicular bodies, which release vesicles upon fusion with the plasma membrane. The release of vesicles can facilitate intercellular communication by contact with or by internalization of contents, either by fusion with the plasma membrane or by endocytosis into "recipient" cells. Although the interest in extracellular vesicle research is increasing, there are still no real standards in place to separate or classify the different types of vesicles. This review provides an introduction into this expanding and complex field of research focusing on the biogenesis, nucleic acid cargo loading, content, release, and uptake of extracellular vesicles.
Collapse
Affiliation(s)
- Erik R Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA. .,Department of Neurosurgery, Neuro-Oncology Research Group, VU University Medical Center, 1007MB, Amsterdam, The Netherlands.
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
117
|
Schorey JS, Harding CV. Extracellular vesicles and infectious diseases: new complexity to an old story. J Clin Invest 2016; 126:1181-9. [PMID: 27035809 DOI: 10.1172/jci81132] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exosomes and other extracellular microvesicles (ExMVs) have important functions in intercellular communication and regulation. During the course of infection, these vesicles can convey pathogen molecules that serve as antigens or agonists of innate immune receptors to induce host defense and immunity, or that serve as regulators of host defense and mediators of immune evasion. These molecules may include proteins, nucleic acids, lipids, and carbohydrates. Pathogen molecules may be disseminated by incorporation into vesicles that are created and shed by host cells, or they may be incorporated into vesicles shed from microbial cells. Involvement of ExMVs in the induction of immunity and host defense is widespread among many pathogens, whereas their involvement in immune evasion mechanisms is prominent among pathogens that establish chronic infection and is found in some that cause acute infection. Because of their immunogenicity and enrichment of pathogen molecules, exosomes may also have potential in vaccine preparations and as diagnostic markers. Additionally, the ability of exosomes to deliver molecules to recipient cells raises the possibility of their use for drug/therapy delivery. Thus, ExMVs play a major role in the pathogenesis of infection and provide exciting potential for the development of novel diagnostic and therapeutic approaches.
Collapse
|
118
|
Friebe S, van der Goot FG, Bürgi J. The Ins and Outs of Anthrax Toxin. Toxins (Basel) 2016; 8:toxins8030069. [PMID: 26978402 PMCID: PMC4810214 DOI: 10.3390/toxins8030069] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Anthrax is a severe, although rather rare, infectious disease that is caused by the Gram-positive, spore-forming bacterium Bacillus anthracis. The infectious form is the spore and the major virulence factors of the bacterium are its poly-γ-D-glutamic acid capsule and the tripartite anthrax toxin. The discovery of the anthrax toxin receptors in the early 2000s has allowed in-depth studies on the mechanisms of anthrax toxin cellular entry and translocation from the endocytic compartment to the cytoplasm. The toxin generally hijacks the endocytic pathway of CMG2 and TEM8, the two anthrax toxin receptors, in order to reach the endosomes. From there, the pore-forming subunit of the toxin inserts into endosomal membranes and enables translocation of the two catalytic subunits. Insertion of the pore-forming unit preferentially occurs in intraluminal vesicles rather than the limiting membrane of the endosome, leading to the translocation of the enzymatic subunits in the lumen of these vesicles. This has important consequences that will be discussed. Ultimately, the toxins reach the cytosol where they act on their respective targets. Target modification has severe consequences on cell behavior, in particular on cells of the immune system, allowing the spread of the bacterium, in severe cases leading to host death. Here we will review the literature on anthrax disease with a focus on the structure of the toxin, how it enters cells and its immunological effects.
Collapse
Affiliation(s)
- Sarah Friebe
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - F Gisou van der Goot
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Jérôme Bürgi
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
119
|
Multidrug resistant tumour cells shed more microvesicle-like EVs and less exosomes than their drug-sensitive counterpart cells. Biochim Biophys Acta Gen Subj 2016; 1860:618-27. [DOI: 10.1016/j.bbagen.2015.12.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/06/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022]
|
120
|
Bezrukov SM, Nestorovich EM. Inhibiting bacterial toxins by channel blockage. Pathog Dis 2016; 74:ftv113. [PMID: 26656888 PMCID: PMC4830228 DOI: 10.1093/femspd/ftv113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/15/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
Emergent rational drug design techniques explore individual properties of target biomolecules, small and macromolecule drug candidates, and the physical forces governing their interactions. In this minireview, we focus on the single-molecule biophysical studies of channel-forming bacterial toxins that suggest new approaches for their inhibition. We discuss several examples of blockage of bacterial pore-forming and AB-type toxins by the tailor-made compounds. In the concluding remarks, the most effective rationally designed pore-blocking antitoxins are compared with the small-molecule inhibitors of ion-selective channels of neurophysiology.
Collapse
Affiliation(s)
- Sergey M Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
121
|
Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 2016; 113:E968-77. [PMID: 26858453 PMCID: PMC4776515 DOI: 10.1073/pnas.1521230113] [Citation(s) in RCA: 2527] [Impact Index Per Article: 280.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have become the focus of rising interest because of their numerous functions in physiology and pathology. Cells release heterogeneous vesicles of different sizes and intracellular origins, including small EVs formed inside endosomal compartments (i.e., exosomes) and EVs of various sizes budding from the plasma membrane. Specific markers for the analysis and isolation of different EV populations are missing, imposing important limitations to understanding EV functions. Here, EVs from human dendritic cells were first separated by their sedimentation speed, and then either by their behavior upon upward floatation into iodixanol gradients or by immuno-isolation. Extensive quantitative proteomic analysis allowing comparison of the isolated populations showed that several classically used exosome markers, like major histocompatibility complex, flotillin, and heat-shock 70-kDa proteins, are similarly present in all EVs. We identified proteins specifically enriched in small EVs, and define a set of five protein categories displaying different relative abundance in distinct EV populations. We demonstrate the presence of exosomal and nonexosomal subpopulations within small EVs, and propose their differential separation by immuno-isolation using either CD63, CD81, or CD9. Our work thus provides guidelines to define subtypes of EVs for future functional studies.
Collapse
Affiliation(s)
- Joanna Kowal
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Guillaume Arras
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de masse Protéomique, 75248 Paris, France
| | - Marina Colombo
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Mabel Jouve
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Jakob Paul Morath
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Bjarke Primdal-Bengtson
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de masse Protéomique, 75248 Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de masse Protéomique, 75248 Paris, France
| | - Mercedes Tkach
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Clotilde Théry
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France;
| |
Collapse
|
122
|
Hyenne V, Apaydin A, Rodriguez D, Spiegelhalter C, Hoff-Yoessle S, Diem M, Tak S, Lefebvre O, Schwab Y, Goetz JG, Labouesse M. RAL-1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol 2016; 211:27-37. [PMID: 26459596 PMCID: PMC4602040 DOI: 10.1083/jcb.201504136] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exosomes are secreted vesicles arising from the fusion of multivesicular bodies (MVBs) with the plasma membrane. Despite their importance in various processes, the molecular mechanisms controlling their formation and release remain unclear. Using nematodes and mammary tumor cells, we show that Ral GTPases are involved in exosome biogenesis. In Caenorhabditis elegans, RAL-1 localizes at the surface of secretory MVBs. A quantitative electron microscopy analysis of RAL-1-deficient animals revealed that RAL-1 is involved in both MVB formation and their fusion with the plasma membrane. These functions do not involve the exocyst complex, a common Ral guanosine triphosphatase (GTPase) effector. Furthermore, we show that the target membrane SNARE protein SYX-5 colocalizes with a constitutively active form of RAL-1 at the plasma membrane, and MVBs accumulate under the plasma membrane when SYX-5 is absent. In mammals, RalA and RalB are both required for the secretion of exosome-like vesicles in cultured cells. Therefore, Ral GTPases represent new regulators of MVB formation and exosome release.
Collapse
Affiliation(s)
- Vincent Hyenne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Development and Stem Cells Program, Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U964), Université de Strasbourg, 67400 Illkirch, France MN3T, Institut National de la Santé et de la Recherche Médicale (U1109), LabEx Medalis, Université de Strasbourg, 67200 Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg, 67200 Strasbourg, France
| | - Ahmet Apaydin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Development and Stem Cells Program, Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U964), Université de Strasbourg, 67400 Illkirch, France
| | - David Rodriguez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Development and Stem Cells Program, Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U964), Université de Strasbourg, 67400 Illkirch, France
| | - Coralie Spiegelhalter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Imaging Center, Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U964), Université de Strasbourg, 67400 Illkirch, France
| | - Sarah Hoff-Yoessle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Development and Stem Cells Program, Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U964), Université de Strasbourg, 67400 Illkirch, France
| | - Maxime Diem
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Development and Stem Cells Program, Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U964), Université de Strasbourg, 67400 Illkirch, France
| | - Saurabh Tak
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Development and Stem Cells Program, Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U964), Université de Strasbourg, 67400 Illkirch, France
| | - Olivier Lefebvre
- MN3T, Institut National de la Santé et de la Recherche Médicale (U1109), LabEx Medalis, Université de Strasbourg, 67200 Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg, 67200 Strasbourg, France
| | - Yannick Schwab
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Imaging Center, Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U964), Université de Strasbourg, 67400 Illkirch, France Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacky G Goetz
- MN3T, Institut National de la Santé et de la Recherche Médicale (U1109), LabEx Medalis, Université de Strasbourg, 67200 Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg, 67200 Strasbourg, France
| | - Michel Labouesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Development and Stem Cells Program, Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U964), Université de Strasbourg, 67400 Illkirch, France Institut de Biologie Paris (UMR7622), UPMC, 75005 Paris, France
| |
Collapse
|
123
|
Carrière J, Barnich N, Nguyen HTT. Exosomes: From Functions in Host-Pathogen Interactions and Immunity to Diagnostic and Therapeutic Opportunities. Rev Physiol Biochem Pharmacol 2016; 172:39-75. [PMID: 27600934 DOI: 10.1007/112_2016_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since their first description in the 1980s, exosomes, small endosomal-derived extracellular vesicles, have been involved in innate and adaptive immunity through modulating immune responses and mediating antigen presentation. Increasing evidence has reported the role of exosomes in host-pathogen interactions and particularly in the activation of antimicrobial immune responses. The growing interest concerning exosomes in infectious diseases, their accessibility in various body fluids, and their capacity to convey a rich content (e.g., proteins, lipids, and nucleic acids) to distant recipient cells led the scientific community to consider the use of exosomes as potential new diagnostic and therapeutic tools. In this review, we summarize current understandings of exosome biogenesis and their composition and highlight the function of exosomes as immunomodulators in pathological states such as in infectious disorders. The potential of using exosomes as diagnostic and therapeutic tools is also discussed.
Collapse
Affiliation(s)
- Jessica Carrière
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France.,INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Nicolas Barnich
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France.,INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Hang Thi Thu Nguyen
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France. .,INRA USC 2018, Clermont-Ferrand, 63001, France.
| |
Collapse
|
124
|
Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, Chaput N, Chatterjee D, Court FA, Del Portillo HA, O'Driscoll L, Fais S, Falcon-Perez JM, Felderhoff-Mueser U, Fraile L, Gho YS, Görgens A, Gupta RC, Hendrix A, Hermann DM, Hill AF, Hochberg F, Horn PA, de Kleijn D, Kordelas L, Kramer BW, Krämer-Albers EM, Laner-Plamberger S, Laitinen S, Leonardi T, Lorenowicz MJ, Lim SK, Lötvall J, Maguire CA, Marcilla A, Nazarenko I, Ochiya T, Patel T, Pedersen S, Pocsfalvi G, Pluchino S, Quesenberry P, Reischl IG, Rivera FJ, Sanzenbacher R, Schallmoser K, Slaper-Cortenbach I, Strunk D, Tonn T, Vader P, van Balkom BWM, Wauben M, Andaloussi SE, Théry C, Rohde E, Giebel B. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 2015; 4:30087. [PMID: 26725829 PMCID: PMC4698466 DOI: 10.3402/jev.v4.30087] [Citation(s) in RCA: 1051] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.
Collapse
Affiliation(s)
- Thomas Lener
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Mario Gimona
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Ludwig Aigner
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Giovanni Camussi
- Molecular Biotechnology Center, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, UMS 3655 CNRS/US23 Inserm, Villejuif, France
- Centre of Clinical Investigation in Biotherapy CICBT 1248, Institut Gustave Roussy, Villejuif, France
| | - Devasis Chatterjee
- Division of Hematology & Oncology, Rhode Island Hospital, Providence, RI, USA
- The Alpert Medical School of Brown University, Providence, RI, USA
| | - Felipe A Court
- Department of Physiology, Faculty of Biology, Pontificia-Universidad Católica de Chile, Santiago, Chile
| | - Hernando A Del Portillo
- ICREA at Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Stefano Fais
- Anti-Tumor Drugs Section, Department of Therapeutic Research and Medicines Evaluation, National Institute of Health (ISS), Rome, Italy
| | - Juan M Falcon-Perez
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ursula Felderhoff-Mueser
- Department of Paediatrics I, Neonatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lorenzo Fraile
- Departament de Producció Animal, ETSEA, Universitat de Lleida, Lleida, Spain
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | | | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Lambros Kordelas
- Department of Bone Marrow Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Boris W Kramer
- Experimental Perinatology/Neonatology, School of Mental Health and Neuroscience, School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Eva-Maria Krämer-Albers
- Molecular Cell Biology and Focus Program Translational Neurosciences, University of Mainz, Mainz, Germany
| | - Sandra Laner-Plamberger
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Saara Laitinen
- Research and Cell Services, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Tommaso Leonardi
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Magdalena J Lorenowicz
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Casey A Maguire
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Antonio Marcilla
- Dpto. Biología Celular y Parasitologia, Facultat de Farmacia, Universitat de Valencia, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Universitat de València-Health Research Institute La Fe, Valencia, Spain
| | - Irina Nazarenko
- Institute for Environmental Health Sciences and Hospital Infection Control Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Shona Pedersen
- Centre for Cardiovascular Research, Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Stefano Pluchino
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Peter Quesenberry
- Division of Hematology & Oncology, Rhode Island Hospital, Providence, RI, USA
- The Alpert Medical School of Brown University, Providence, RI, USA
| | - Ilona G Reischl
- BASG - Bundesamt für Sicherheit im Gesundheitswesen - Federal Office for Safety in Health Care, AGES - Agentur für Gesundheit und Ernährungssicherheit - Austrian Agency for Health and Food Safety, Institut Überwachung - Institute Surveillance, Wien, Austria
| | - Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Ralf Sanzenbacher
- Ralf Sanzenbacher, Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Katharina Schallmoser
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Ineke Slaper-Cortenbach
- Cell Therapy Facility, Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dirk Strunk
- Experimental & Clinical Cell Therapy Institute, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Torsten Tonn
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Pieter Vader
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bas W M van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marca Wauben
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Clotilde Théry
- Centre of Clinical Investigation in Biotherapy CICBT 1248, Institut Gustave Roussy, Villejuif, France
- INSERM U932, Institut Curie, Paris, France
| | - Eva Rohde
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria;
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
| |
Collapse
|
125
|
Cell-to-cell propagation of the bacterial toxin CNF1 via extracellular vesicles: potential impact on the therapeutic use of the toxin. Toxins (Basel) 2015; 7:4610-21. [PMID: 26556375 PMCID: PMC4663523 DOI: 10.3390/toxins7114610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/21/2015] [Accepted: 11/02/2015] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic cells secrete extracellular vesicles (EVs), either constitutively or in a regulated manner, which represent an important mode of intercellular communication. EVs serve as vehicles for transfer between cells of membrane and cytosolic proteins, lipids and RNA. Furthermore, certain bacterial protein toxins, or possibly their derived messages, can be transferred cell to cell via EVs. We have herein demonstrated that eukaryotic EVs represent an additional route of cell-to-cell propagation for the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1). Our results prove that EVs from CNF1 pre-infected epithelial cells can induce cytoskeleton changes, Rac1 and NF-κB activation comparable to that triggered by CNF1. The observation that the toxin is detectable inside EVs derived from CNF1-intoxicated cells strongly supports the hypothesis that extracellular vesicles can offer to the toxin a novel route to travel from cell to cell. Since anthrax and tetanus toxins have also been reported to engage in the same process, we can hypothesize that EVs represent a common mechanism exploited by bacterial toxins to enhance their pathogenicity.
Collapse
|
126
|
Schwab A, Meyering SS, Lepene B, Iordanskiy S, van Hoek ML, Hakami RM, Kashanchi F. Extracellular vesicles from infected cells: potential for direct pathogenesis. Front Microbiol 2015; 6:1132. [PMID: 26539170 PMCID: PMC4611157 DOI: 10.3389/fmicb.2015.01132] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022] Open
Abstract
Infections that result in natural or manmade spread of lethal biological agents are a concern and require national and focused preparedness. In this manuscript, as part of an early diagnostics and pathogen treatment strategy, we have focused on extracellular vesicles (EVs) that arise following infections. Although the field of biodefense does not currently have a rich resource in EVs literature, none the less, similar pathogens belonging to the more classical emerging and non-emerging diseases have been studied in their EV/exosomal contents and function. These exosomes are formed in late endosomes and released from the cell membrane in almost every cell type in vivo. These vesicles contain proteins, RNA, and lipids from the cells they originate from and function in development, signal transduction, cell survival, and transfer of infectious material. The current review focuses on how different forms of infection exploit the exosomal pathway and how exosomes can be exploited artificially to treat infection and disease and potentially also be used as a source of vaccine. Virally-infected cells can secrete viral as well as cellular proteins and RNA in exosomes, allowing viruses to cause latent infection and spread of miRNA to nearby cells prior to a subsequent infection. In addition to virally-infected host cells, bacteria, protozoa, and fungi can all release small vesicles that contain pathogen-associated molecular patterns, regulating the neighboring uninfected cells. Examples of exosomes from both virally and bacterially infected cells point toward a re-programming network of pathways in the recipient cells. Finally, many of these exosomes contain cytokines and miRNAs that in turn can effect gene expression in the recipient cells through the classical toll-like receptor and NFκB pathway. Therefore, although exosomes do not replicate as an independent entity, they however facilitate movement of infectious material through tissues and may be the cause of many pathologies seen in infected hosts.
Collapse
Affiliation(s)
- Angela Schwab
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, VA, USA
| | - Shabana S Meyering
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, VA, USA ; School of Nursing and Health Studies, Georgetown University , Washington, DC, USA
| | - Ben Lepene
- Ceres Nanosciences, Inc. , Manassas, VA, USA
| | - Sergey Iordanskiy
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, VA, USA
| | - Monique L van Hoek
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, VA, USA
| | - Ramin M Hakami
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, VA, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, VA, USA
| |
Collapse
|
127
|
Williamson ED, Dyson EH. Anthrax prophylaxis: recent advances and future directions. Front Microbiol 2015; 6:1009. [PMID: 26441934 PMCID: PMC4585224 DOI: 10.3389/fmicb.2015.01009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Anthrax is a serious, potentially fatal disease that can present in four distinct clinical patterns depending on the route of infection (cutaneous, gastrointestinal, pneumonic, or injectional); effective strategies for prophylaxis and therapy are therefore required. This review addresses the complex mechanisms of pathogenesis employed by the bacterium and describes how, as understanding of these has developed over many years, so too have current strategies for vaccination and therapy. It covers the clinical and veterinary use of live attenuated strains of anthrax and the subsequent identification of protein sub-units for incorporation into vaccines, as well as combinations of protein sub-units with spore or other components. It also addresses the application of these vaccines for conventional prophylactic use, as well as post-exposure use in conjunction with antibiotics. It describes the licensed acellular vaccines AVA and AVP and discusses the prospects for a next generation of recombinant sub-unit vaccines for anthrax, balancing the regulatory requirement and current drive for highly defined vaccines, against the risk of losing the “danger” signals required to induce protective immunity in the vaccinee. It considers novel approaches to reduce time to immunity by means of combining, for example, dendritic cell vaccination with conventional approaches and considers current opportunities for the immunotherapy of anthrax.
Collapse
Affiliation(s)
| | - Edward Hugh Dyson
- Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| |
Collapse
|
128
|
Alenquer M, Amorim MJ. Exosome Biogenesis, Regulation, and Function in Viral Infection. Viruses 2015; 7:5066-83. [PMID: 26393640 PMCID: PMC4584306 DOI: 10.3390/v7092862] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 12/16/2022] Open
Abstract
Exosomes are extracellular vesicles released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation. This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system, which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and defining their functions will ultimately provide additional insights into the virulence and persistence of infections.
Collapse
Affiliation(s)
- Marta Alenquer
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2778-156 Oeiras, Portugal.
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2778-156 Oeiras, Portugal.
| |
Collapse
|
129
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
130
|
Abstract
Defensins are a class of immune peptides with a broad range of activities against bacterial, fungal and viral pathogens. Besides exerting direct anti-microbial activity via dis-organization of bacterial membranes, defensins are also able to neutralize various unrelated bacterial toxins. Recently, we have demonstrated that in the case of human α- and β-defensins, this later ability is achieved through exploiting toxins' marginal thermodynamic stability, i.e. defensins act as molecular anti-chaperones unfolding toxin molecules and exposing their hydrophobic regions and thus promoting toxin precipitation and inactivation [Kudryashova et al. (2014) Immunity 41, 709-721]. Retrocyclins (RCs) are humanized synthetic θ-defensin peptides that possess unique cyclic structure, differentiating them from α- and β-defensins. Importantly, RCs are more potent against some bacterial and viral pathogens and more stable than their linear counterparts. However, the mechanism of bacterial toxin inactivation by RCs is not known. In the present study, we demonstrate that RCs facilitate unfolding of bacterial toxins. Using differential scanning fluorimetry (DSF), limited proteolysis and collisional quenching of internal tryptophan fluorescence, we show that hydrophobic regions of toxins normally buried in the molecule interior become more exposed to solvents and accessible to proteolytic cleavage in the presence of RCs. The RC-induced unfolding of toxins led to their precipitation and abrogated activity. Toxin inactivation by RCs was strongly diminished under reducing conditions, but preserved at physiological salt and serum concentrations. Therefore, despite significant structural diversity, α-, β- and θ-defensins employ similar mechanisms of toxin inactivation, which may be shared by anti-microbial peptides from other families.
Collapse
|
131
|
Scott CC, Vossio S, Vacca F, Snijder B, Larios J, Schaad O, Guex N, Kuznetsov D, Martin O, Chambon M, Turcatti G, Pelkmans L, Gruenberg J. Wnt directs the endosomal flux of LDL-derived cholesterol and lipid droplet homeostasis. EMBO Rep 2015; 16:741-52. [PMID: 25851648 DOI: 10.15252/embr.201540081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/06/2015] [Indexed: 01/24/2023] Open
Abstract
The Wnt pathway, which controls crucial steps of the development and differentiation programs, has been proposed to influence lipid storage and homeostasis. In this paper, using an unbiased strategy based on high-content genome-wide RNAi screens that monitored lipid distribution and amounts, we find that Wnt3a regulates cellular cholesterol. We show that Wnt3a stimulates the production of lipid droplets and that this stimulation strictly depends on endocytosed, LDL-derived cholesterol and on functional early and late endosomes. We also show that Wnt signaling itself controls cholesterol endocytosis and flux along the endosomal pathway, which in turn modulates cellular lipid homeostasis. These results underscore the importance of endosome functions for LD formation and reveal a previously unknown regulatory mechanism of the cellular programs controlling lipid storage and endosome transport under the control of Wnt signaling.
Collapse
Affiliation(s)
- Cameron C Scott
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Stefania Vossio
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Fabrizio Vacca
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Berend Snijder
- Faculty of Sciences, Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jorge Larios
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Nicolas Guex
- Vital-IT Group, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Dmitry Kuznetsov
- Vital-IT Group, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Olivier Martin
- Vital-IT Group, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Marc Chambon
- Biomolecular Screening Facility, SV-PTECH-PTCB, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, SV-PTECH-PTCB, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Lucas Pelkmans
- Faculty of Sciences, Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
132
|
Friebe S, Deuquet J, van der Goot FG. Differential dependence on N-glycosylation of anthrax toxin receptors CMG2 and TEM8. PLoS One 2015; 10:e0119864. [PMID: 25781883 PMCID: PMC4363784 DOI: 10.1371/journal.pone.0119864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/16/2015] [Indexed: 11/29/2022] Open
Abstract
ANTXR 1 and 2, also known as TEM8 and CMG2, are two type I membrane proteins, which have been extensively studied for their role as anthrax toxin receptors, but with a still elusive physiological function. Here we have analyzed the importance of N-glycosylation on folding, trafficking and ligand binding of these closely related proteins. We find that TEM8 has a stringent dependence on N-glycosylation. The presence of at least one glycan on each of its two extracellular domains, the vWA and Ig-like domains, is indeed necessary for efficient trafficking to the cell surface. In the absence of any N-linked glycans, TEM8 fails to fold correctly and is recognized by the ER quality control machinery. Expression of N-glycosylation mutants reveals that CMG2 is less vulnerable to sugar loss. The absence of N-linked glycans in one of the extracellular domains indeed has little impact on folding, trafficking or receptor function of the wild type protein expressed in tissue culture cells. N-glycans do, however, seem required in primary fibroblasts from human patients. Here, the presence of N-linked sugars increases the tolerance to mutations in cmg2 causing the rare genetic disease Hyaline Fibromatosis Syndrome. It thus appears that CMG2 glycosylation provides a buffer towards genetic variation by promoting folding of the protein in the ER lumen.
Collapse
Affiliation(s)
- Sarah Friebe
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julie Deuquet
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
133
|
Verdurmen WPR, Luginbühl M, Honegger A, Plückthun A. Efficient cell-specific uptake of binding proteins into the cytoplasm through engineered modular transport systems. J Control Release 2015; 200:13-22. [PMID: 25526701 DOI: 10.1016/j.jconrel.2014.12.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/13/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022]
Abstract
Through advances in protein scaffold engineering and selection technologies, highly specific binding proteins, which fold under reducing conditions, can be generated against virtually all targets. Despite tremendous therapeutic opportunities, intracellular applications are hindered by difficulties associated with achieving cytosolic delivery, compounded by even correctly measuring it. Here, we addressed cytosolic delivery systematically through the development of a biotin ligase-based assay that objectively quantifies cytosolic delivery in a generic fashion. We developed modular transport systems that consist of a designed ankyrin repeat protein (DARPin) for receptor targeting and a different DARPin for intracellular recognition and a bacterial toxin-derived component for cytosolic translocation. We show that both anthrax pores and the translocation domain of Pseudomonas exotoxin A (ETA) efficiently deliver DARPins into the cytosol. We found that the cargo must not exceed a threshold thermodynamic stability for anthrax pores, which can be addressed by engineering, while the ETA pathway does not appear to have this restriction.
Collapse
Affiliation(s)
- Wouter P R Verdurmen
- Dept of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| | - Manuel Luginbühl
- Dept of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| | - Annemarie Honegger
- Dept of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| | - Andreas Plückthun
- Dept of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| |
Collapse
|
134
|
Ibrahim T, McLaurin J. Protein seeding in Alzheimer’s disease and Parkinson’s disease: Similarities and differences. World J Neurol 2014; 4:23-35. [DOI: 10.5316/wjn.v4.i4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/21/2014] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative pathology can be seeded by introduction of misfolded proteins and peptides into the nervous system. Models of Alzheimer’s disease (AD) and Parkinson’s disease (PD) have both demonstrated susceptibility to this seeding mechanism, emphasizing the role of misfolded conformations of disease-specific proteins and peptides in disease progression. Thinking of the amyloidogenic amyloid-beta peptide (Aβ) and alpha-synuclein (α-syn), of AD and PD, respectively, as prionoids requires a comparison of these molecules and the mechanisms underlying the progression of disease. Aβ and α-syn, despite their size differences, are both natively unstructured and misfold into β-structured conformers. Additionally, several studies implicate the significant role of membrane interactions, such as those with lipid rafts in the plasma membrane, in mediating protein aggregation and transfer of Aβ and α-syn between cells that may be common to both AD and PD. Examination of inter-neuronal transfer of proteins/peptides provides evidence into the core mechanism of neuropathological propagation. Specifically, uptake of aggregates likely occurs by the endocytic pathway, possibly in response to their formation of membrane pores via a mechanism shared with pore-forming toxins. Failure of cellular clearance machinery to degrade misfolded proteins favours their release into the extracellular space, where they can be taken up by directly connected, nearby neurons. Although similarities between AD and PD are frequent and include mechanistically similar transfer processes, what differentiates these diseases, in terms of temporal and spatial patterns of propagation, may be in part due to the differing kinetics of protein misfolding. Several examples of animal models demonstrating seeding and propagation by exogenous treatment with Aβ and α-syn highlight the importance of both the environment in which these seeds are formed as well as the environment into which the seeds are propagated. Although these studies suggest potent seeding effects by both Aβ and α-syn, they emphasize the need for future studies to thoroughly characterize “seeds” as well as analyze changes in the nervous system in response to exogenous insults.
Collapse
|
135
|
Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 2014; 16:24-43. [PMID: 25488940 DOI: 10.15252/embr.201439363] [Citation(s) in RCA: 546] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An effective immune response requires the engagement of host receptors by pathogen-derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes-which are extracellular vesicles that function in intercellular communication-may play a key role in the dissemination of pathogen- as well as host-derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| | - Yong Cheng
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| | - Prachi P Singh
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| | - Victoria L Smith
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
136
|
Colombo M, Raposo G, Théry C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu Rev Cell Dev Biol 2014; 30:255-89. [DOI: 10.1146/annurev-cellbio-101512-122326] [Citation(s) in RCA: 3537] [Impact Index Per Article: 321.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marina Colombo
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- Structure and Membrane Compartments CNRS, UMR144, Paris F-75248, France
- INSERM U932, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| | - Graça Raposo
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- Structure and Membrane Compartments CNRS, UMR144, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| | - Clotilde Théry
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- INSERM U932, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| |
Collapse
|
137
|
Intracellular trafficking of AIP56, an NF-κB-cleaving toxin from Photobacterium damselae subsp. piscicida. Infect Immun 2014; 82:5270-85. [PMID: 25287919 DOI: 10.1128/iai.02623-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIP56 (apoptosis-inducing protein of 56 kDa) is a metalloprotease AB toxin secreted by Photobacterium damselae subsp. piscicida that acts by cleaving NF-κB. During infection, AIP56 spreads systemically and depletes phagocytes by postapoptotic secondary necrosis, impairing the host phagocytic defense and contributing to the genesis of infection-associated necrotic lesions. Here we show that mouse bone marrow-derived macrophages (mBMDM) intoxicated by AIP56 undergo NF-κB p65 depletion and apoptosis. Similarly to what was reported for sea bass phagocytes, intoxication of mBMDM involves interaction of AIP56 C-terminal region with cell surface components, suggesting the existence of a conserved receptor. Biochemical approaches and confocal microscopy revealed that AIP56 undergoes clathrin-dependent endocytosis, reaches early endosomes, and follows the recycling pathway. Translocation of AIP56 into the cytosol requires endosome acidification, and an acidic pulse triggers translocation of cell surface-bound AIP56 into the cytosol. Accordingly, at acidic pH, AIP56 becomes more hydrophobic, interacting with artificial lipid bilayer membranes. Altogether, these data indicate that AIP56 is a short-trip toxin that reaches the cytosol using an acidic-pH-dependent mechanism, probably from early endosomes. Usually, for short-trip AB toxins, a minor pool reaches the cytosol by translocating from endosomes, whereas the rest is routed to lysosomes for degradation. Here we demonstrate that part of endocytosed AIP56 is recycled back and released extracellularly through a mechanism requiring phosphoinositide 3-kinase (PI3K) activity but independent of endosome acidification. So far, we have been unable to detect biological activity of recycled AIP56, thereby bringing into question its biological relevance as well as the importance of the recycling pathway.
Collapse
|
138
|
Fürthauer M, Smythe E. Systems dynamics in endocytosis. Traffic 2014; 15:338-46. [PMID: 24405722 DOI: 10.1111/tra.12147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 12/22/2013] [Accepted: 01/09/2014] [Indexed: 11/28/2022]
Abstract
The endocytic system acts at the crossroads of different cellular activities to play a central role in the regulation of cell signaling and membrane dynamics. An European Molecular Biology Organization (EMBO) conference held in October 2013 in Villars-sur-Ollon gathered researchers from all over the world to present their latest findings on the endolysosomal system and identify major challenges for the future. The conference covered the entire spectrum of research in this rapidly evolving field ranging from the cellular mechanics of endocytosis to the role of proteins and lipids in the biogenesis and function of endolysosomal organelles and the analysis of higher order system properties in multicellular contexts. In particular, the meeting highlighted current efforts to complement the insights that can be gained by biochemical and cell biological approaches with the use of quantitative biophysics, systems biology and animal model systems to achieve an integrated view of the properties of the endomembrane system and its role in cellular information processing.
Collapse
Affiliation(s)
- Maximilian Fürthauer
- Institut de Biologie Valrose, CNRS UMR7277, INSERM 1091, University of Nice Sophia-Antipolis, Nice, France
| | | |
Collapse
|
139
|
Förstner P, Bayer F, Kalu N, Felsen S, Förtsch C, Aloufi A, Ng DYW, Weil T, Nestorovich EM, Barth H. Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors. Biomacromolecules 2014; 15:2461-74. [PMID: 24954629 PMCID: PMC4215879 DOI: 10.1021/bm500328v] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.
Collapse
Affiliation(s)
- Philip Förstner
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center , D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Endosome maturation, transport and functions. Semin Cell Dev Biol 2014; 31:2-10. [DOI: 10.1016/j.semcdb.2014.03.034] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 12/29/2022]
|
141
|
Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29:116-25. [PMID: 24959705 DOI: 10.1016/j.ceb.2014.05.004] [Citation(s) in RCA: 1366] [Impact Index Per Article: 124.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/17/2014] [Accepted: 05/10/2014] [Indexed: 12/19/2022]
Abstract
Although observed for several decades, the release of membrane-enclosed vesicles by cells into their surrounding environment has been the subject of increasing interest in the past few years, which led to the creation, in 2012, of a scientific society dedicated to the subject: the International Society for Extracellular Vesicles. Convincing evidence that vesicles allow exchange of complex information fuelled this rise in interest. But it has also become clear that different types of secreted vesicles co-exist, with different intracellular origins and modes of formation, and thus probably different compositions and functions. Exosomes are one sub-type of secreted vesicles. They form inside eukaryotic cells in multivesicular compartments, and are secreted when these compartments fuse with the plasma membrane. Interestingly, different families of molecules have been shown to allow intracellular formation of exosomes and their subsequent secretion, which suggests that even among exosomes different sub-types exist.
Collapse
Affiliation(s)
- Joanna Kowal
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, Paris F-75248, France; INSERM U932, Paris F-75248, France
| | - Mercedes Tkach
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, Paris F-75248, France; INSERM U932, Paris F-75248, France
| | - Clotilde Théry
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, Paris F-75248, France; INSERM U932, Paris F-75248, France; Paris Sciences et Lettres (PSL*), Paris F-75005, France.
| |
Collapse
|
142
|
Zheng S, Zhang G, Li J, Chen PR. Monitoring Endocytic Trafficking of Anthrax Lethal Factor by Precise and Quantitative Protein Labeling. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Siqi Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
| | - Gong Zhang
- Peking‐Tsinghua Center for Life Sciences, Beijing (China)
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
| | - Peng R. Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
- Peking‐Tsinghua Center for Life Sciences, Beijing (China)
| |
Collapse
|
143
|
Zheng S, Zhang G, Li J, Chen PR. Monitoring endocytic trafficking of anthrax lethal factor by precise and quantitative protein labeling. Angew Chem Int Ed Engl 2014; 53:6449-53. [PMID: 24828812 DOI: 10.1002/anie.201403945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 12/16/2022]
Abstract
Coupling the genetic code expansion technique with bioorthogonal reactions enables precise control over the conjugation site as well as the choice of fluorescent probes during protein labeling. However, the advantages of this strategy over bulky and rigid fluorescent proteins (FPs) remain to be fully explored. Here we applied site-specific bioorthogonal labeling on anthrax lethal factor (LF) to visualize its membrane translocation inside live cells. In contrast to the previously reported FP tags that significantly perturbed LF's membrane trafficking, our precisely and quantitatively labeled LF exhibited an endocytic activity comparable to wild-type LF. This allowed time-lapse imaging of LF's natural translocation process from host cell membrane to cytosol, which revealed molecular details of its virulence mechanism. Our strategy is generally applicable for monitoring intracellular protein membrane translocation that is difficult to access using conventional protein labeling methodologies.
Collapse
Affiliation(s)
- Siqi Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
| | | | | | | |
Collapse
|
144
|
Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M. Sorting it out: regulation of exosome loading. Semin Cancer Biol 2014; 28:3-13. [PMID: 24769058 DOI: 10.1016/j.semcancer.2014.04.009] [Citation(s) in RCA: 587] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/16/2014] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs), a term that includes both exosomes of endocytic origin and vesicles derived from plasma membranes, are continuously secreted by cells to the extracellular environment, and represent a novel vehicle for cell-cell communication. Exosomes contain specific repertoires of proteins and RNAs, indicating the existence of mechanisms that control the sorting of molecules into them. Although the molecular mechanisms that regulate the loading of proteins into exosomes have been studied for years, the sorting of RNA has been elusive until recently. Here we review the molecular mechanisms that control the sorting of molecules into exosomes, with special attention to the sorting of RNA. We also discuss how the cellular context affects the composition of exosomes, and thus the outcome of the communication between the exosome-producer and recipient cells, with particular focus on the communication between tumor cells and with cells of the tumor microenvironment.
Collapse
Affiliation(s)
- Carolina Villarroya-Beltri
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain
| | - Francesc Baixauli
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain
| | - Cristina Gutiérrez-Vázquez
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain.
| | - María Mittelbrunn
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
145
|
Nour AM, Modis Y. Endosomal vesicles as vehicles for viral genomes. Trends Cell Biol 2014; 24:449-54. [PMID: 24746011 DOI: 10.1016/j.tcb.2014.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/26/2014] [Accepted: 03/17/2014] [Indexed: 11/28/2022]
Abstract
The endocytic pathway is the principal cell entry pathway for large cargos and pathogens. Among the wide variety of specialized lipid structures within endosomes, the intraluminal vesicles (ILVs) formed in early endosomes (EEs) and transferred to late endosomal compartments are emerging as critical effectors of viral infection and immune recognition. Various viruses deliver their genomes into these ILVs, which serve as vehicles to transport the genome to the nuclear periphery for replication. When secreted as exosomes, ILVs containing viral genomes can infect permissive cells or activate immune responses in myeloid cells. We therefore propose that endosomal ILVs and exosomes are key effectors of viral pathogenesis.
Collapse
Affiliation(s)
- Adel M Nour
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Yorgo Modis
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
146
|
Liu S, Moayeri M, Leppla SH. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol 2014; 22:317-25. [PMID: 24684968 DOI: 10.1016/j.tim.2014.02.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
The pathophysiological effects resulting from many bacterial diseases are caused by exotoxins released by the bacteria. Bacillus anthracis, a spore-forming bacterium, is such a pathogen, causing anthrax through a combination of bacterial infection and toxemia. B. anthracis causes natural infection in humans and animals and has been a top bioterrorism concern since the 2001 anthrax attacks in the USA. The exotoxins secreted by B. anthracis use capillary morphogenesis protein 2 (CMG2) as the major toxin receptor and play essential roles in pathogenesis during the entire course of the disease. This review focuses on the activities of anthrax toxins and their roles in initial and late stages of anthrax infection.
Collapse
Affiliation(s)
- Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
147
|
Abstract
INTRODUCTION Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded 'for the development of multiscale models for complex chemical systems' once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial-and-error approach to a minimum. The intentional dissemination of Bacillus anthracis spores in 2001 via the so-called anthrax letters has led to increased efforts, politically and scientifically, to develop medical countermeasures that will protect people from the threat of anthrax bioterrorism. AREAS COVERED This article provides an overview of the recent rational drug design approaches for discovering inhibitors of anthrax toxin. The review also directs the readers to the vast literature on the recognized advances and future possibilities in the field. EXPERT OPINION Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (protective antigen-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, the situation, in our view, is still insecure. Further, the FDA's animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Better identification and validation of anthrax toxin therapeutic targets at the molecular level as well as elucidation of the parameters determining the corresponding therapeutic windows are still necessary for more effective therapeutic options.
Collapse
Affiliation(s)
- Ekaterina M Nestorovich
- The Catholic University of America, Department of Biology , Washington, DC , USA +1 202 319 6723 ;
| | | |
Collapse
|
148
|
Bissig C, Gruenberg J. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol 2014; 24:19-25. [DOI: 10.1016/j.tcb.2013.10.009] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/19/2023]
|