101
|
Weng CY, Kao CX, Chang TS, Huang YH. Immuno-Metabolism: The Role of Cancer Niche in Immune Checkpoint Inhibitor Resistance. Int J Mol Sci 2021; 22:1258. [PMID: 33514004 PMCID: PMC7865434 DOI: 10.3390/ijms22031258] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
The use of immune checkpoint inhibitors (ICI) in treating cancer has revolutionized the approach to eradicate cancer cells by reactivating immune responses. However, only a subset of patients benefits from this treatment; the majority remains unresponsive or develops resistance to ICI therapy. Increasing evidence suggests that metabolic machinery in the tumor microenvironment (TME) plays a role in the development of ICI resistance. Within the TME, nutrients and oxygen are scarce, forcing immune cells to undergo metabolic reprogramming to adapt to harsh conditions. Cancer-induced metabolic deregulation in immune cells can attenuate their anti-cancer properties, but can also increase their immunosuppressive properties. Therefore, targeting metabolic pathways of immune cells in the TME may strengthen the efficacy of ICIs and prevent ICI resistance. In this review, we discuss the interactions of immune cells and metabolic alterations in the TME. We also discuss current therapies targeting cellular metabolism in combination with ICIs for the treatment of cancer, and provide possible mechanisms behind the cellular metabolic rewiring that may improve clinical outcomes.
Collapse
Affiliation(s)
- Chao-Yuan Weng
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Cheng-Xiang Kao
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
102
|
Ko C, Zhang L, Jie Z, Zhu L, Zhou X, Xie X, Gao T, Yang J, Cheng X, Sun S. The E3 ubiquitin ligase Peli1 regulates the metabolic actions of mTORC1 to suppress antitumor T cell responses. EMBO J 2021; 40:e104532. [PMID: 33215753 PMCID: PMC7809702 DOI: 10.15252/embj.2020104532] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues contribute to the induction of T cell metabolic reprogramming, but the underlying mechanism is incompletely understood. Here, we identified the E3 ubiquitin ligase Peli1 as an important regulator of T cell metabolism and antitumor immunity. Peli1 ablation profoundly promotes tumor rejection, associated with increased tumor-infiltrating CD4 and CD8 T cells. The Peli1-deficient T cells display markedly stronger metabolic activities, particularly glycolysis, than wild-type T cells. Peli1 controls the activation of a metabolic kinase, mTORC1, stimulated by both the TCR signal and growth factors, and this function of Peli1 is mediated through regulation of the mTORC1-inhibitory proteins, TSC1 and TSC2. Peli1 mediates non-degradative ubiquitination of TSC1, thereby promoting TSC1-TSC2 dimerization and TSC2 stabilization. These results establish Peli1 as a novel regulator of mTORC1 and downstream mTORC1-mediated actions on T cell metabolism and antitumor immunity.
Collapse
Affiliation(s)
- Chun‐Jung Ko
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Lingyun Zhang
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Center for Reproductive MedicineHenan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zuliang Jie
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Lele Zhu
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Xiaofei Zhou
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Xiaoping Xie
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Tianxiao Gao
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Jin‐Young Yang
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Biological SciencesPusan National UniversityBusanSouth Korea
| | - Xuhong Cheng
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Shao‐Cong Sun
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical SciencesHoustonTXUSA
| |
Collapse
|
103
|
Endolysosomal TRPMLs in Cancer. Biomolecules 2021; 11:biom11010065. [PMID: 33419007 PMCID: PMC7825278 DOI: 10.3390/biom11010065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomes, the degradative endpoints and sophisticated cellular signaling hubs, are emerging as intracellular Ca2+ stores that govern multiple cellular processes. Dys-homeostasis of lysosomal Ca2+ is intimately associated with a variety of human diseases including cancer. Recent studies have suggested that the Ca2+-permeable channels Transient Receptor Potential (TRP) Mucolipins (TRPMLs, TRPML1-3) integrate multiple processes of cell growth, division and metabolism. Dysregulation of TRPMLs activity has been implicated in cancer development. In this review, we provide a summary of the latest development of TRPMLs in cancer. The expression of TRPMLs in cancer, TRPMLs in cancer cell nutrient sensing, TRPMLs-mediated lysosomal exocytosis in cancer development, TRPMLs in TFEB-mediated gene transcription of cancer cells, TRPMLs in bacteria-related cancer development and TRPMLs-regulated antitumor immunity are discussed. We hope to guide readers toward a more in-depth discussion of the importance of lysosomal TRPMLs in cancer progression and other human diseases.
Collapse
|
104
|
Piffoux M, Eriau E, Cassier PA. Autophagy as a therapeutic target in pancreatic cancer. Br J Cancer 2021; 124:333-344. [PMID: 32929194 PMCID: PMC7852577 DOI: 10.1038/s41416-020-01039-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/22/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by early metastasis and resistance to anti-cancer therapy, leading to an overall poor prognosis. Despite continued research efforts, no targeted therapy has yet shown meaningful efficacy in PDAC; mutations in the oncogene KRAS and the tumour suppressor TP53, which are the most common genomic alterations in PDAC, have so far shown poor clinical actionability. Autophagy, a conserved process allowing cells to recycle altered or unused organelles and cellular components, has been shown to be upregulated in PDAC and is implicated in resistance to both cytotoxic chemotherapy and targeted therapy. Autophagy is thus regarded as a potential therapeutic target in PDAC and other cancers. Although the molecular mechanisms of autophagy activation in PDAC are only beginning to emerge, several groups have reported interesting results when combining inhibitors of the extracellular-signal-regulated kinase/mitogen-activated protein kinase pathway and inhibitors of autophagy in models of PDAC and other KRAS-driven cancers. In this article, we review the existing preclinical data regarding the role of autophagy in PDAC, as well as results of relevant clinical trials with agents that modulate autophagy in this cancer.
Collapse
Affiliation(s)
- Max Piffoux
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- INSERM UMR 1197-Interaction cellules souches-niches: physiologie, tumeurs et réparation tissulaire, Villejuif, France
- Laboratoire matière et systèmes complexes, Université de Paris, Paris, France
| | - Erwan Eriau
- Team 11 « Metabolism, Cancer, Immunity », UMR S1138, Centre de Recherche des Cordeliers, Paris, France
| | - Philippe A Cassier
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France.
- TGFβ and Pancreatic Cancer Lab, UMR INSERM 1052 - CNRS 5286, Centre de Recherche en Cancérologie de LYON (CRCL), Centre Léon Bérard, Lyon, France.
| |
Collapse
|
105
|
Young TM, Reyes C, Pasnikowski E, Castanaro C, Wong C, Decker CE, Chiu J, Song H, Wei Y, Bai Y, Zambrowicz B, Thurston G, Daly C. Autophagy protects tumors from T cell–mediated cytotoxicity via inhibition of TNFα-induced apoptosis. Sci Immunol 2020; 5:5/54/eabb9561. [DOI: 10.1126/sciimmunol.abb9561] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
Although T cell checkpoint inhibitors have transformed the treatment of cancer, the molecular determinants of tumor cell sensitivity to T cell–mediated killing need further elucidation. Here, we describe a mouse genome–scale CRISPR knockout screen that identifies tumor cell TNFα signaling as an important component of T cell–induced apoptosis, with NF-κB signaling and autophagy as major protective mechanisms. Knockout of individual autophagy genes sensitized tumor cells to killing by T cells that were activated via specific TCR or by a CD3 bispecific antibody. Conversely, inhibition of mTOR signaling, which results in increased autophagic activity, protected tumor cells from T cell killing. Autophagy functions at a relatively early step in the TNFα signaling pathway, limiting FADD-dependent caspase-8 activation. Genetic inactivation of tumor cell autophagy enhanced the efficacy of immune checkpoint blockade in mouse tumor models. Thus, targeting the protective autophagy pathway might sensitize tumors to T cell–engaging immunotherapies in the clinic.
Collapse
Affiliation(s)
- Tara M. Young
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Claudia Reyes
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | - Chung Wong
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Joyce Chiu
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Hang Song
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Yu Bai
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Gavin Thurston
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | |
Collapse
|
106
|
de Souza ASC, Gonçalves LB, Lepique AP, de Araujo-Souza PS. The Role of Autophagy in Tumor Immunology-Complex Mechanisms That May Be Explored Therapeutically. Front Oncol 2020; 10:603661. [PMID: 33335860 PMCID: PMC7736605 DOI: 10.3389/fonc.2020.603661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) is complex, and its composition and dynamics determine tumor fate. From tumor cells themselves, with their capacity for unlimited replication, migration, and invasion, to fibroblasts, endothelial cells, and immune cells, which can have pro and/or anti-tumor potential, interaction among these elements determines tumor progression. The understanding of molecular pathways involved in immune escape has permitted the development of cancer immunotherapies. Targeting molecules or biological processes that inhibit antitumor immune responses has allowed a significant improvement in cancer patient’s prognosis. Autophagy is a cellular process required to eliminate dysfunctional proteins and organelles, maintaining cellular homeostasis. Usually a process associated with protection against cancer, autophagy associated to cancer cells has been reported in response to hypoxia, nutrient deficiency, and oxidative stress, conditions frequently observed in the TME. Recent studies have shown a paradoxical association between autophagy and tumor immune responses. Tumor cell autophagy increases the expression of inhibitory molecules, such as PD-1 and CTLA-4, which block antitumor cytotoxic responses. Moreover, it can also directly affect antitumor immune responses by, for example, degrading NK cell-derived granzyme B and protecting tumor cells. Interestingly, the activation of autophagy on dendritic cells has the opposite effects, enhancing antigen presentation, triggering CD8+ T cells cytotoxic activity, and reducing tumor growth. Therefore, this review will focus on the most recent aspects of autophagy and tumor immune environment. We describe the dual role of autophagy in modulating tumor immune responses and discuss some aspects that must be considered to improve cancer treatment.
Collapse
Affiliation(s)
- Alana Serrano Campelo de Souza
- Laboratório de Imunogenética e Histocompatibilidade (LIGH), Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.,Programa de Pós-graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Letícia Boslooper Gonçalves
- Laboratório de Imunogenética e Histocompatibilidade (LIGH), Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.,Programa de Pós-graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ana Paula Lepique
- Laboratório de Imunomodulação, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Savio de Araujo-Souza
- Laboratório de Imunogenética e Histocompatibilidade (LIGH), Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
107
|
Flerin NC, Cappellesso F, Pretto S, Mazzone M. Metabolic traits ruling the specificity of the immune response in different cancer types. Curr Opin Biotechnol 2020; 68:124-143. [PMID: 33248423 DOI: 10.1016/j.copbio.2020.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy aims to augment the response of the patient's own immune system against cancer cells. Despite effective for some patients and some cancer types, the therapeutic efficacy of this treatment is limited by the composition of the tumor microenvironment (TME), which is not well-suited for the fitness of anti-tumoral immune cells. However, the TME differs between cancer types and tissues, thus complicating the possibility of the development of therapies that would be effective in a large range of patients. A possible scenario is that each type of cancer cell, granted by its own mutations and reminiscent of the functions of the tissue of origin, has a specific metabolism that will impinge on the metabolic composition of the TME, which in turn specifically affects T cell fitness. Therefore, targeting cancer or T cell metabolism could increase the efficacy and specificity of existing immunotherapies, improving disease outcome and minimizing adverse reactions.
Collapse
Affiliation(s)
- Nina C Flerin
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, B3000, Belgium
| | - Federica Cappellesso
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, B3000, Belgium
| | - Samantha Pretto
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, B3000, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, B3000, Belgium.
| |
Collapse
|
108
|
Lim J, Murthy A. Targeting Autophagy to Treat Cancer: Challenges and Opportunities. Front Pharmacol 2020; 11:590344. [PMID: 33381037 PMCID: PMC7768823 DOI: 10.3389/fphar.2020.590344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic process that targets its cargo for lysosomal degradation. In addition to its function in maintaining tissue homeostasis, autophagy is recognized to play a context-dependent role in cancer. Autophagy may inhibit tumor initiation under specific contexts; however, a growing body of evidence supports a pro-tumorigenic role of this pathway in established disease. In this setting, autophagy drives treatment resistance, metabolic changes, and immunosuppression both in a tumor-intrinsic and extrinsic manner. This observation has prompted renewed interest in targeting autophagy for cancer therapy. Novel genetic models have proven especially insightful, revealing unique and overlapping roles of individual autophagy-related genes in tumor progression. Despite identification of pharmacologically actionable nodes in the pathway, fundamental challenges still exist for successful therapeutic inhibition of autophagy. Here we summarize the current understanding of autophagy as a driver of resistance against targeted and immuno-therapies and highlight knowledge gaps that, if addressed, may provide meaningful advances in the treatment of cancer.
Collapse
Affiliation(s)
| | - Aditya Murthy
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
109
|
Ouyang Y, Wu Q, Li J, Sun S, Sun S. S-adenosylmethionine: A metabolite critical to the regulation of autophagy. Cell Prolif 2020; 53:e12891. [PMID: 33030764 PMCID: PMC7653241 DOI: 10.1111/cpr.12891] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a mechanism that enables cells to maintain cellular homeostasis by removing damaged materials and mobilizing energy reserves in conditions of starvation. Although nutrient availability strongly impacts the process of autophagy, the specific metabolites that regulate autophagic responses have not yet been determined. Recent results indicate that S-adenosylmethionine (SAM) represents a critical inhibitor of methionine starvation-induced autophagy. SAM is primarily involved in four key metabolic pathways: transmethylation, transsulphuration, polyamine synthesis and 5'-deoxyadenosyl 5'-radical-mediated biochemical transformations. SAM is the sole methyl group donor involved in the methylation of DNA, RNA and histones, modulating the autophagic process by mediating epigenetic effects. Moreover, the metabolites of SAM, such as homocysteine, glutathione, decarboxylated SAM and spermidine, also exert important influences on the regulation of autophagy. From our perspective, nuclear-cytosolic SAM is a conserved metabolic inhibitor that connects cellular metabolic status and the regulation of autophagy. In the future, SAM might be a new target of autophagy regulators and be widely used in the treatment of various diseases.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qi Wu
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juanjuan Li
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Si Sun
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shengrong Sun
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
110
|
Affiliation(s)
- Noboru Mizushima
- From the Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, University of Tokyo, Tokyo (N.M.); and the Center for Autophagy Research, Department of Internal Medicine and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas (B.L.)
| | - Beth Levine
- From the Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, University of Tokyo, Tokyo (N.M.); and the Center for Autophagy Research, Department of Internal Medicine and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas (B.L.)
| |
Collapse
|
111
|
Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response. ACTA ACUST UNITED AC 2020; 1:923-934. [PMID: 34476408 DOI: 10.1038/s43018-020-00110-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macroautophagy (hereafter autophagy) degrades and recycles intracellular components to sustain metabolism and survival during starvation. Host autophagy promotes tumor growth by providing essential tumor nutrients. Autophagy also regulates immune cell homeostasis and function and suppresses inflammation. Although host autophagy does not promote a T-cell anti-tumor immune response in tumors with low tumor mutational burden (TMB), whether this was the case in tumors with high TMB was not known. Here we show that autophagy, especially in the liver, promotes tumor immune tolerance by enabling regulatory T-cell function and limiting stimulator of interferon genes, T-cell response and interferon-γ, which enables growth of high-TMB tumors. We have designated this as hepatic autophagy immune tolerance. Autophagy thereby promotes tumor growth through both metabolic and immune mechanisms depending on mutational load and autophagy inhibition is an effective means to promote an antitumor T-cell response in high-TMB tumors.
Collapse
|
112
|
Abstract
In this commentary I discuss a recent paper that describes a new mechanism for how macroautophagy/autophagy regulates the immune response to cancer, and relate it to other recent studies in this area. These recent developments may allow more effective strategies to manipulate autophagy to improve cancer therapy.
Collapse
Affiliation(s)
- Andrew Thorburn
- Department of Pharmacology, University of Colorado School of Medicine , Aurora, CO, USA
| |
Collapse
|
113
|
Flerin NC, Pinioti S, Menga A, Castegna A, Mazzone M. Impact of Immunometabolism on Cancer Metastasis: A Focus on T Cells and Macrophages. Cold Spring Harb Perspect Med 2020; 10:a037044. [PMID: 31615868 PMCID: PMC7461771 DOI: 10.1101/cshperspect.a037044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite improved treatment options, cancer remains the leading cause of morbidity and mortality worldwide, with 90% of this mortality correlated to the development of metastasis. Since metastasis has such an impact on treatment success, disease outcome, and global health, it is important to understand the different steps and factors playing key roles in this process, how these factors relate to immune cell function and how we can target metabolic processes at different steps of metastasis in order to improve cancer treatment and patient prognosis. Recent insights in immunometabolism direct to promising therapeutic targets for cancer treatment, however, the specific contribution of metabolism on antitumor immunity in different metastatic niches warrant further investigation. Here, we provide an overview of what is so far known in the field of immunometabolism at different steps of the metastatic cascade, and what may represent the next steps forward. Focusing on metabolic checkpoints in order to translate these findings from in vitro and mouse studies to the clinic has the potential to revolutionize cancer immunotherapy and greatly improve patient prognosis.
Collapse
Affiliation(s)
- Nina C Flerin
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Sotiria Pinioti
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Alessio Menga
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70125, Italy
- IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Italy
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| |
Collapse
|
114
|
Yeo SK, Wang C, Guan JL. Role of FIP200 in inflammatory processes beyond its canonical autophagy function. Biochem Soc Trans 2020; 48:1599-1607. [PMID: 32662824 DOI: 10.1042/bst20191156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
FIP200 (RB1CC1) is a critical regulator of canonical macroautophagy and has also emerged as a crucial regulator of selective autophagy as well as inflammatory processes. The illumination of FIP200's role in autophagy at the molecular level has been accompanied by studies demonstrating the importance of its autophagy function in physiological processes in mammals and pathological contexts such as cancer. However, there is an increasing appreciation that most, if not all of the autophagy genes, also play a role in other processes such as LC3-associated phagocytosis, vesicle trafficking and protein secretion. Consequently, this has led to efforts in generating specific mutants of autophagy genes that are more amenable to dissecting their autophagy versus non-autophagy functions. In this aspect, we have generated a FIP200 knock-in mouse allele that is defective for canonical macroautophagy. This has revealed a canonical-autophagy-independent function of FIP200 that is responsible for limiting pro-inflammatory signaling. In this review, we will discuss FIP200's role in this process, the implications with regards to cancer immunotherapy and highlight key prospective avenues to specifically dissect the distinct functions of FIP200.
Collapse
Affiliation(s)
- Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
115
|
Arensman MD, Yang XS, Zhong W, Bisulco S, Upeslacis E, Rosfjord EC, Deng S, Abraham RT, Eng CH. Anti-tumor immunity influences cancer cell reliance upon ATG7. Oncoimmunology 2020; 9:1800162. [PMID: 32923161 PMCID: PMC7458662 DOI: 10.1080/2162402x.2020.1800162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
Macroautophagy (autophagy) is an essential cellular catabolic process required for survival under conditions of starvation. The role of autophagy in cancer is complex, context-dependent and at times contradictory, as it has been shown to inhibit, promote or be dispensable for tumor progression. In this study, we evaluated the contribution of the immune system to the reliance of tumors on autophagy by depleting autophagy-related 7 (ATG7) in murine tumor cells and grafting into immunocompetent versus immunodeficient hosts. Although loss of ATG7 did not affect tumor growth in vitro or in immunodeficient mice, our studies revealed that cancer cell reliance on autophagy was influenced by anti-tumor immune responses, including those mediated by CD8+ T cells. Furthermore, we provide insights into possible mechanisms by which autophagy disruption can enhance anti-tumor immune responses and suggest that autophagy disruption may further benefit patients with immunoreactive tumors.
Collapse
Affiliation(s)
| | - Xiaoran S. Yang
- Pfizer, Oncology Research & Development, Pearl River, NY, USA
| | - Wenyan Zhong
- Pfizer, Oncology Research & Development, Pearl River, NY, USA
| | | | - Erik Upeslacis
- Pfizer, Oncology Research & Development, Pearl River, NY, USA
| | | | - Shibing Deng
- Pfizer, Oncology Research & Development, San Diego, CA, USA
| | | | | |
Collapse
|
116
|
Towers CG, Wodetzki D, Thorburn A. Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations. J Cell Biol 2020; 219:jcb.201909033. [PMID: 31753861 PMCID: PMC7039213 DOI: 10.1083/jcb.201909033] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is intricately linked with many intracellular signaling pathways, particularly nutrient-sensing mechanisms and cell death signaling cascades. In cancer, the roles of autophagy are context dependent. Tumor cell-intrinsic effects of autophagy can be both tumor suppressive and tumor promotional. Autophagy can therefore not only activate and inhibit cell death, but also facilitate the switch between cell death mechanisms. Moreover, autophagy can play opposing roles in the tumor microenvironment via non-cell-autonomous mechanisms. Preclinical data support a tumor-promotional role of autophagy in established tumors and during cancer therapy; this has led to the launch of dozens of clinical trials targeting autophagy in multiple cancer types. However, many questions remain: which tumors and genetic backgrounds are the most sensitive to autophagy inhibition, and which therapies should be combined with autophagy inhibitors? Additionally, since cancer cells are under selective pressure and are prone to adaptation, particularly after treatment, it is unclear if and how cells adapt to autophagy inhibition. Here we review recent literature addressing these issues.
Collapse
Affiliation(s)
- Christina G Towers
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Darya Wodetzki
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
117
|
Painter JD, Galle-Treger L, Akbari O. Role of Autophagy in Lung Inflammation. Front Immunol 2020; 11:1337. [PMID: 32733448 PMCID: PMC7358431 DOI: 10.3389/fimmu.2020.01337] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a cellular recycling system found in almost all types of eukaryotic organisms. The system is made up of a variety of proteins which function to deliver intracellular cargo to lysosomes for formation of autophagosomes in which the contents are degraded. The maintenance of cellular homeostasis is key in the survival and function of a variety of human cell populations. The interconnection between metabolism and autophagy is extensive, therefore it has a role in a variety of different cell functions. The disruption or dysfunction of autophagy in these cell types have been implicated in the development of a variety of inflammatory diseases including asthma. The role of autophagy in non-immune and immune cells both lead to the pathogenesis of lung inflammation. Autophagy in pulmonary non-immune cells leads to tissue remodeling which can develop into chronic asthma cases with long term effects. The role autophagy in the lymphoid and myeloid lineages in the pathology of asthma differ in their functions. Impaired autophagy in lymphoid populations have been shown, in general, to decrease inflammation in both asthma and inflammatory disease models. Many lymphoid cells rely on autophagy for effector function and maintained inflammation. In stark contrast, autophagy deficient antigen presenting cells have been shown to have an activated inflammasome. This is largely characterized by a TH17 response that is accompanied with a much worse prognosis including granulocyte mediated inflammation and steroid resistance. The cell specificity associated with changes in autophagic flux complicates its targeting for amelioration of asthmatic symptoms. Differing asthmatic phenotypes between TH2 and TH17 mediated disease may require different autophagic modulations. Therefore, treatments call for a more cell specific and personalized approach when looking at chronic asthma cases. Viral-induced lung inflammation, such as that caused by SARS-CoV-2, also may involve autophagic modulation leading to inflammation mediated by lung resident cells. In this review, we will be discussing the role of autophagy in non-immune cells, myeloid cells, and lymphoid cells for their implications into lung inflammation and asthma. Finally, we will discuss autophagy's role viral pathogenesis, immunometabolism, and asthma with insights into autophagic modulators for amelioration of lung inflammation.
Collapse
Affiliation(s)
- Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
118
|
Okamoto T, Yeo SK, Hao M, Copley MR, Haas MA, Chen S, Guan JL. FIP200 Suppresses Immune Checkpoint Therapy Responses in Breast Cancers by Limiting AZI2/TBK1/IRF Signaling Independent of Its Canonical Autophagy Function. Cancer Res 2020; 80:3580-3592. [PMID: 32580962 DOI: 10.1158/0008-5472.can-20-0519] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Immune checkpoint inhibitors (ICI) have the potential to induce durable therapeutic responses, yet response rates in breast cancer are modest and limited to particular subtypes. To expand the applicability of ICI, we examined the role of an essential autophagy gene, FIP200, which has been shown to be important for tumor progression in mammary tumors. Specific disruption of the autophagy function of FIP200 or complete ablation of FIP200 in genetic mouse models revealed that FIP200 autophagy function was required for progression of PyMT-driven mammary tumors. However, a noncanonical autophagy function of FIP200 was responsible for limiting T-cell recruitment and activation of the TBK1-IFN signaling axis. FIP200 also interacted with the TBK1 adaptor protein, AZI2, which was crucial for activation of TBK1 following FIP200 ablation. Accordingly, disrupting the noncanonical autophagy function of FIP200 in combination with ICI therapy led to superior, durable responses in immune-competent models of breast cancer. Collectively, these insights could guide future development of therapeutic agents against FIP200 for combinatorial ICI therapies in nonresponsive breast cancers. SIGNIFICANCE: These findings show that deletion of FIP200 enhances immune checkpoint inhibitor efficacy in nonresponsive breast cancer.
Collapse
Affiliation(s)
- Takako Okamoto
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mary Rose Copley
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael A Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
119
|
Ho CJ, Samarasekera G, Rothe K, Xu J, Yang KC, Leung E, Chan M, Jiang X, Gorski SM. Puncta intended: connecting the dots between autophagy and cell stress networks. Autophagy 2020; 17:1028-1033. [PMID: 32507070 DOI: 10.1080/15548627.2020.1775394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proteome profiling and global protein-interaction approaches have significantly improved our knowledge of the protein interactomes of autophagy and other cellular stress-response pathways. New discoveries regarding protein complexes, interaction partners, interaction domains, and biological roles of players that are part of these pathways are emerging. The fourth Vancouver Autophagy Symposium showcased research that expands our understanding of the protein interaction networks and molecular mechanisms underlying autophagy and other cellular stress responses in the context of distinct stressors. In the keynote presentation, Dr. Wade Harper described his team's recent discovery of a novel reticulophagy receptor for selective autophagic degradation of the endoplasmic reticulum, and discussed molecular mechanisms involved in ribophagy and non-autophagic ribosomal turnover. In other presentations, both omic and targeted approaches were used to reveal molecular players of other cellular stress responses including amyloid body and stress granule formation, anastasis, and extracellular vesicle biogenesis. Additional topics included the roles of autophagy in disease pathogenesis, autophagy regulatory mechanisms, and crosstalk between autophagy and cellular metabolism in anti-tumor immunity. The relationship between autophagy and other cell stress responses remains a relatively unexplored area in the field, with future investigations required to understand how the various processes are coordinated and connected in cells and tissues.Abbreviations: A-bodies: amyloid bodies; ACM: amyloid-converting motif; AMFR/gp78: autocrine motility factor receptor; ATG: autophagy-related; ATG4B: autophagy related 4B cysteine peptidase; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CAR T: chimeric antigen receptor T; CASP3: caspase 3; CCPG1: cell cycle progression 1; CAR: chimeric antigen receptor; CML: chronic myeloid leukemia; CCOCs: clear cell ovarian cancers; CVB3: coxsackievirus B3; CRISPR-Cas9: clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9; DDXs: DEAD-box helicases; EIF2S1/EIF-2alpha: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; EV: extracellular vesicle; FAO: fatty acid oxidation; GABARAP: GABA type A receptor-associated protein; ILK: integrin linked kinase; ISR: integrated stress response; MTOR: mechanistic target of rapamycin kinase; MPECs: memory precursory effector T cells; MAVS: mitochondrial antiviral signaling protein; NBR1: NBR1 autophagy cargo receptor; PI4KB/PI4KIIIβ: phosphatidylinositol 4-kinase beta; PLEKHM1: pleckstrin homology and RUN domain containing M1; RB1CC1: RB1 inducible coiled-coil 1; RTN3: reticulon 3; rIGSRNAs: ribosomal intergenic noncoding RNAs; RPL29: ribosomal protein L29; RPS3: ribosomal protein S3; S. cerevisiae: Saccharomyces cerevisiae; sEV: small extracellular vesicles; S. pombe: Schizosaccharomyces pombe; SQSTM1: sequestosome 1; SF3B1: splicing factor 3b subunit 1; SILAC-MS: stable isotope labeling with amino acids in cell culture-mass spectrometry; SNAP29: synaptosome associated protein 29; TEX264: testis expressed 264, ER-phagy receptor; TNBC: triple-negative breast cancer; ULK1: unc-51 like autophagy activating kinase 1; VAS: Vancouver Autophagy Symposium.
Collapse
Affiliation(s)
- Cally J Ho
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Gayathri Samarasekera
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Katharina Rothe
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Jing Xu
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kevin C Yang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Emily Leung
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Michelle Chan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Xiaoyan Jiang
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Sharon M Gorski
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
120
|
Noman MZ, Parpal S, Van Moer K, Xiao M, Yu Y, Viklund J, De Milito A, Hasmim M, Andersson M, Amaravadi RK, Martinsson J, Berchem G, Janji B. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy. SCIENCE ADVANCES 2020; 6:eaax7881. [PMID: 32494661 PMCID: PMC7190323 DOI: 10.1126/sciadv.aax7881] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 02/05/2020] [Indexed: 05/08/2023]
Abstract
One of the major challenges limiting the efficacy of anti-PD-1/PD-L1 therapy in nonresponding patients is the failure of T cells to penetrate the tumor microenvironment. We showed that genetic or pharmacological inhibition of Vps34 kinase activity using SB02024 or SAR405 (Vps34i) decreased the tumor growth and improved mice survival in multiple tumor models by inducing an infiltration of NK, CD8+, and CD4+ T effector cells in melanoma and CRC tumors. Such infiltration resulted in the establishment of a T cell-inflamed tumor microenvironment, characterized by the up-regulation of pro-inflammatory chemokines and cytokines, CCL5, CXCL10, and IFNγ. Vps34i treatment induced STAT1 and IRF7, involved in the up-regulation of CCL5 and CXCL10. Combining Vps34i improved the therapeutic benefit of anti-PD-L1/PD-1 in melanoma and CRC and prolonged mice survival. Our study revealed that targeting Vps34 turns cold into hot inflamed tumors, thus enhancing the efficacy of anti-PD-L1/PD-1 blockade.
Collapse
Affiliation(s)
- Muhammad Zaeem Noman
- Tumor Immunotherapy and Microenvironment Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Santiago Parpal
- Sprint Bioscience, Stockholm, Sweden
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Kris Van Moer
- Tumor Immunotherapy and Microenvironment Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Malina Xiao
- Tumor Immunotherapy and Microenvironment Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Yasmin Yu
- Sprint Bioscience, Stockholm, Sweden
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | | | - Angelo De Milito
- Sprint Bioscience, Stockholm, Sweden
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Meriem Hasmim
- Tumor Immunotherapy and Microenvironment Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | | | - Ravi K. Amaravadi
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Guy Berchem
- Tumor Immunotherapy and Microenvironment Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
- Corresponding author.
| |
Collapse
|
121
|
Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 2020; 581:100-105. [PMID: 32376951 PMCID: PMC7296553 DOI: 10.1038/s41586-020-2229-5] [Citation(s) in RCA: 802] [Impact Index Per Article: 160.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Immune evasion is a major obstacle for cancer treatment. Common mechanisms include impaired antigen presentation through mutations or loss of heterozygosity (LOH) of the major histocompatibility complex class I (MHC-I), which has been implicated in resistance to immune checkpoint blockade (ICB) therapy1–3. However, in pancreatic ductal adenocarcinoma (PDAC), a malignancy refractory to most therapies including ICB4, mutations causing MHC-I loss are rarely found5 despite the frequent downregulation of MHC-I expression6–8. Here we find that, in PDAC, MHC-I molecules are selectively targeted for lysosomal degradation through an autophagy-dependent mechanism that involves the autophagy cargo receptor NBR1. PDAC cells display reduced MHC-I cell surface expression and instead demonstrate predominant localization within autophagosomes and lysosomes. Notably, autophagy inhibition restores surface MHC-I levels, leading to improved antigen presentation, enhanced anti-tumour T cell response and reduced tumour growth in syngeneic hosts. Accordingly, anti-tumour effects of autophagy inhibition are reversed by depleting CD8+ T cells or reducing surface MHC-I expression. Autophagy inhibition, either genetically or pharmacologically with Chloroquine (CQ), synergizes with dual ICB (anti-PD1 and anti-CTLA4), and leads to an enhanced anti-tumour immune response. Our findings uncover a role for enhanced autophagy/lysosome function in immune evasion through selective targeting of MHC-I molecules for degradation, and provide a rationale for the combination of autophagy inhibition and dual ICB as a therapeutic strategy against PDAC.
Collapse
|
122
|
Saravia J, Raynor JL, Chapman NM, Lim SA, Chi H. Signaling networks in immunometabolism. Cell Res 2020; 30:328-342. [PMID: 32203134 PMCID: PMC7118125 DOI: 10.1038/s41422-020-0301-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Adaptive immunity is essential for pathogen and tumor eradication, but may also trigger uncontrolled or pathological inflammation. T cell receptor, co-stimulatory and cytokine signals coordinately dictate specific signaling networks that trigger the activation and functional programming of T cells. In addition, cellular metabolism promotes T cell responses and is dynamically regulated through the interplay of serine/threonine kinases, immunological cues and nutrient signaling networks. In this review, we summarize the upstream regulators and signaling effectors of key serine/threonine kinase-mediated signaling networks, including PI3K–AGC kinases, mTOR and LKB1–AMPK pathways that regulate metabolism, especially in T cells. We also provide our perspectives about the pending questions and clinical applicability of immunometabolic signaling. Understanding the regulators and effectors of immunometabolic signaling networks may uncover therapeutic targets to modulate metabolic programming and T cell responses in human disease.
Collapse
Affiliation(s)
- Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
123
|
Ishaq M, Ojha R, Sharma AP, Singh SK. Autophagy in cancer: Recent advances and future directions. Semin Cancer Biol 2020; 66:171-181. [PMID: 32201367 DOI: 10.1016/j.semcancer.2020.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/10/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is being explored as a potential therapeutic target for enhancing the cytotoxic effects of chemotherapeutic regimens in various malignancies. Autophagy plays a very important role in cancer pathogenesis. Here, we discuss the updates on the modulation of autophagy via dynamic interactions with different organelles and the exploitation of selective autophagy for exploring therapeutic strategies. We further discuss the role of autophagy inhibitors in cancer preclinical and clinical trials, novel autophagy inhibitors, and challenges likely to be faced by clinicians while inducting autophagy modulators in clinical practice.
Collapse
Affiliation(s)
- Mohd Ishaq
- School of Medicine, Department of Pathology, Stanford University, CA, USA.
| | - Rani Ojha
- School of Medicine, Department of Pathology, Stanford University, CA, USA.
| | - Aditya P Sharma
- Department of Urology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Shrawan K Singh
- Department of Urology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
124
|
Mulcahy Levy JM, Thorburn A. Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ 2020; 27:843-857. [PMID: 31836831 PMCID: PMC7206017 DOI: 10.1038/s41418-019-0474-7] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy allows for cellular material to be delivered to lysosomes for degradation resulting in basal or stress-induced turnover of cell components that provide energy and macromolecular precursors. These activities are thought to be particularly important in cancer where both tumor-promoting and tumor-inhibiting functions of autophagy have been described. Autophagy has also been intricately linked to apoptosis and programmed cell death, and understanding these interactions is becoming increasingly important in improving cancer therapy and patient outcomes. In this review, we consider how recent discoveries about how autophagy manipulation elicits its effects on cancer cell behavior can be leveraged to improve therapeutic responses.
Collapse
Affiliation(s)
- Jean M Mulcahy Levy
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
125
|
Zahedi S, Mulcahy Levy JM. Autophagy: When to strike? JOURNAL OF CANCER IMMUNOLOGY 2020; 2:13-16. [PMID: 32457939 PMCID: PMC7250464 DOI: 10.33696/cancerimmunol.2.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Shadi Zahedi
- Department of of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA
| | - Jean M Mulcahy Levy
- Department of of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
126
|
Kang R, Zeh H, Lotze M, Tang D. The Multifaceted Effects of Autophagy on the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:99-114. [PMID: 32030650 DOI: 10.1007/978-3-030-35727-6_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment is composed of cancer cells, noncancer cells (e.g., immune cells, stromal cells, endothelial cells, and adipocytes), and various mediators (e.g., cytokines, chemokines, growth factors, and humoral factors) that work together to support cancer growth, progression, and resistance to therapies. Autophagy is an evolutionarily conserved degradation mechanism by which various cytosolic cargos (e.g., damaged organelles, unused molecules, or invaded pathogens) are engulfed by double-membrane autophagosomes, and then delivered into the lysosome for degradation and recycling. The level of autophagy is a crucial threshold to either promote cell survival or induce cell death in response to environmental stresses. Autophagy plays a context-dependent role in tumorigenesis and anticancer therapy via shaping the inflammatory, hypoxic, immunosuppressive, and metabolic tumor microenvironment. In particular, impaired autophagy flux is associated with chronic inflammation, immunosuppression, stromal formation, cancer stemness, angiogenesis, metastasis, and metabolic reprogramming in the tumor microenvironment. Understanding the molecular machinery of autophagy and its communication with hallmarks of cancer could lead to potential new anticancer strategies or drugs.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Herbert Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
127
|
Sheppard AD, Lysaght J. Immunometabolism and Its Potential to Improve the Current Limitations of Immunotherapy. Methods Mol Biol 2020; 2184:233-263. [PMID: 32808230 DOI: 10.1007/978-1-0716-0802-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The last century of research in tumor immunology has culminated in the advent of immunotherapy, most notably immune checkpoint inhibitors. These drugs have shown encouraging results across a multitude of malignancies and have shifted the paradigm of cancer treatment. However, no more than 40% of patients treated with these immune checkpoint blockade inhibitors respond. Thus, resistance is a barrier to therapy that remains poorly understood. All cells require energy and biosynthetic precursors for survival, growth, and functioning, where multiple metabolic pathways allow for flexibility in how nutrients are utilized. A defining hallmark of many cancers is altered cellular metabolism, creating an imbalanced demand for nutrients within the tumor microenvironment. Immunometabolism is increasingly understood to be vital to the functions and phenotypes of a myriad of immune cell subsets. In tumors, the high demand for nutrients by the tumor drives competition between tumor cells and infiltrating immune cells, culminating in dysfunctional immune responses. This chapter discusses the recent successes in cancer immunotherapy and highlights challenges to therapy. We also outline the major metabolic processes involved in the generation of an immune response, how this can become dysregulated in the context of the tumor microenvironment, and how this contributes to resistance to immunotherapy. Finally, we explore the potential for targeting immunometabolic pathways to improve immunotherapy, and examine current trials targeting various aspects of metabolism in an attempt to improve the outcomes from immunotherapy.
Collapse
Affiliation(s)
- Andrew D Sheppard
- Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
128
|
Autophagy in the Immunosuppressive Perivascular Microenvironment of Glioblastoma. Cancers (Basel) 2019; 12:cancers12010102. [PMID: 31906065 PMCID: PMC7016956 DOI: 10.3390/cancers12010102] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GB) has been shown to up-regulate autophagy with anti- or pro-oncogenic effects. Recently, our group has shown how GB cells aberrantly up-regulate chaperone-mediated autophagy (CMA) in pericytes of peritumoral areas to modulate their immune function through cell-cell interaction and in the tumor’s own benefit. Thus, to understand GB progression, the effect that GB cells could have on autophagy of immune cells that surround the tumor needs to be deeply explored. In this review, we summarize all the latest evidence of several molecular and cellular immunosuppressive mechanisms in the perivascular tumor microenvironment. This immunosuppression has been reported to facilitate GB progression and may be differently modulated by several types of autophagy as a critical point to be considered for therapeutic interventions.
Collapse
|
129
|
Abstract
Autophagy is cellular recycling process that plays a complex role in cancer. Pre-clinical studies indicating a pro-tumorigenic role of autophagy have led to the launch of dozens of clinical trials combining autophagy inhibition with other standard of care therapies in different tumor types. A recent publication utilized a novel, acute, CRISPR/Cas9 assay to identify cancer cell lines that are exquisitely sensitive to loss of core autophagy genes within the first 7 days. However, weeks later, rare populations of originally autophagy dependent cells were found that could circumvent autophagy inhibition. Analysis of these rare clones revealed that in the process of circumventing loss of autophagy, the cells upregulated NRF2 signaling to maintain protein homeostasis and consequently become more sensitive to proteasome inhibition as well as knock down of NRF2. This review highlights recent publications regarding the role of autophagy in cancer and potential mechanisms cancer cells may be able to commandeer to circumvent autophagy inhibition. We hope to make significant clinical advances by understanding if and when cancer cells will become resistant to autophagy inhibition, and pre-clinical studies may be able to provide insight into the best combinatorial therapies to prevent tumor relapse while on autophagy inhibitors.
Collapse
Affiliation(s)
- Christina G Towers
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
130
|
Galle-Treger L, Hurrell BP, Lewis G, Howard E, Jahani PS, Banie H, Razani B, Soroosh P, Akbari O. Autophagy is critical for group 2 innate lymphoid cell metabolic homeostasis and effector function. J Allergy Clin Immunol 2019; 145:502-517.e5. [PMID: 31738991 DOI: 10.1016/j.jaci.2019.10.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Allergic asthma is a chronic inflammatory disorder characterized by airway hyperreactivity (AHR) and driven by TH2 cytokine production. Group 2 innate lymphoid cells (ILC2s) secrete high amounts of TH2 cytokines and contribute to the development of AHR. Autophagy is a cellular degradation pathway that recycles cytoplasmic content. However, the role of autophagy in ILC2s remains to be fully elucidated. OBJECTIVE We characterized the effects of autophagy deficiency on ILC2 effector functions and metabolic balance. METHODS ILC2s from autophagy-deficient mice were isolated to evaluate proliferation, apoptosis, cytokine secretion, gene expression and cell metabolism. Also, autophagy-deficient ILC2s were adoptively transferred into Rag-/-GC-/- mice, which were then challenged with IL-33 and assessed for AHR and lung inflammation. RESULTS We demonstrate that autophagy is extensively used by activated ILC2s to maintain their homeostasis and effector functions. Deletion of the critical autophagy gene autophagy-related 5 (Atg5) resulted in decreased cytokine secretion and increased apoptosis. Moreover, lack of autophagy among ILC2s impaired their ability to use fatty acid oxidation and strikingly promoted glycolysis, as evidenced by our transcriptomic and metabolite analyses. This shift of fuel dependency led to impaired homeostasis and TH2 cytokine production, thus inhibiting the development of ILC2-mediated AHR. Notably, this metabolic reprogramming was also associated with an accumulation of dysfunctional mitochondria, producing excessive reactive oxygen species. CONCLUSION These findings provide new insights into the metabolic profile of ILC2s and suggest that modulation of fuel dependency by autophagy is a potentially new therapeutic approach to target ILC2-dependent inflammation.
Collapse
Affiliation(s)
- Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Gavin Lewis
- Janssen Research and Development, San Diego, Calif
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Pedram Shafiei Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | | | - Babak Razani
- Departments of Medicine and Pathology & Immunology, Washington University School of Medicine and John Cochran VA Medical Center, St Louis, Mo
| | | | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif.
| |
Collapse
|
131
|
时 宗, 张 配, 鲁 星, 朱 晨, 陈 长, 赵 素, 刘 浩. [Down-regulation of miR-205-5p enhances pro-apoptotic effect of 3-bromopyruvate on human nasopharyngeal carcinoma CNE2Z cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1166-1172. [PMID: 31801705 PMCID: PMC6867955 DOI: 10.12122/j.issn.1673-4254.2019.10.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of down-regulation of miR-205-5p on 3-bromopyruvate-induced apoptosis in human nasopharyngeal carcinoma CNE2Z cells. METHODS Nasopharyngeal carcinoma CNE2Z cells were transfected with miR- 205-5p-mimic or miR-205-5p-inhibitor, treated with 80 μmol/L 3-bromopyruvate alone, or exposed to both of the treatments. The proliferation of the treated cells was examined with MTT assay, and early apoptosis of the cells was detected using a mitochondrial membrane potential detection kit (JC-1). DAPI fluorescence staining was used to detect morphological changes of the cell nuclei and late cell apoptosis; Annexin V-FITC/PI double staining was employed to detect the cell apoptosis rate. Western blotting was used to detect the expressions of Bcl-2, Bax, Mcl-1 and Bak proteins. RESULTS Exposure to 3-bromopyruvate significantly inhibited the proliferation of CNE2Z cells, and increasing the drug concentration and extending the treatment time produced stronger inhibitory effects. Treatment with 80 μmol/L 3-bromopyruvate for 24, 48 and 72 h resulted in inhibition rates of (45.7±1.21)%, (64.4±2.02)% and (78.3±1.55)% in non-transfected CNE2Z cells, respectively; the inhibition rates were (27.7±1.04)%, (34.8±2.10)% and (44.3±1.57)% in the cells transfected with miR-205-5p-mimic, and were (80.5 ± 0.94)%, (87.9 ± 0.50)% and (93.8 ± 1.16)% in cells transfected with miR-205-5p-inhibitor, respectively. The results of mitochondrial membrane potential detection showed that the relative proportion of red and green fluorescence decreased significantly in miR-205-5p-inhibitor-transfected cells with 3-bromopyruvate treatment. Combined treatment of the cells with 3-bromopyruvate and miR-205-5p-inhibitor transfection obviously increased nuclear fragmentation and nuclear pyknosis and significantly increased cell apoptotic rate as compared with the two treatments alone (P < 0.01), causing also decreased expressions of Bcl-2 and Mcl-1 proteins and increased expressions of Bax and Bak proteins. CONCLUSIONS Inhibition of miR-205-5p enhances the proapototic effect of 3-bromopyruvate in CNE2Z cells possibly in relation to the down-regulation of Mcl-1 and Bcl-2 and the up-regulation of Bak and Bax proteins.
Collapse
Affiliation(s)
- 宗芬 时
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 配 张
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 星月 鲁
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 晨露 朱
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 长江 陈
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 素容 赵
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 浩 刘
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| |
Collapse
|
132
|
Abstract
Dysregulation of autophagy with age has been identified as a central mechanism of aging affecting many cells and tissues. T cells do also show decreased activity with age of different autophagic pathways. Here, we will review the current knowledge of the different functions that autophagy has in the regulation of T cell homeostasis, differentiation and function and explore how the age-associated decreased in autophagy activity may contribute to the altered T cell responses that characterize T cell immunosenescence.
Collapse
Affiliation(s)
- Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
133
|
Yin Z, Bai L, Li W, Zeng T, Tian H, Cui J. Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic strategy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:403. [PMID: 31519198 PMCID: PMC6743108 DOI: 10.1186/s13046-019-1409-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
T cells play important roles in anti-tumor immunity. Emerging evidence has revealed that distinct metabolic changes impact the activation and differentiation of T cells. Tailoring immune responses by manipulating cellular metabolic pathways and the identification of new targets may provide new options for cancer immunotherapy. In this review, we focus on recent advances in the metabolic reprogramming of different subtypes of T cells and T cell functions. We summarize how metabolic pathways accurately regulate T cell development, differentiation, and function in the tumor microenvironment. Because of the similar metabolism in activated T cells and tumor cells, we also describe the effect of the tumor microenvironment on T cell metabolism reprogramming, which may provide strategies for maximal anti-cancer effects and enhancing the immunity of T cells. Thus, studies of T lymphocyte metabolism can not only facilitate the basic research of immune metabolism, but also provide potential targets for drug development and new strategies for clinical treatment of cancer.
Collapse
Affiliation(s)
- Zhongping Yin
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Ling Bai
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Tanlun Zeng
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Huimin Tian
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
134
|
Abstract
Tumors display reprogrammed metabolic activities that promote cancer progression. We currently possess a limited understanding of the processes governing tumor metabolism in vivo and of the most efficient approaches to identify metabolic vulnerabilities susceptible to therapeutic targeting. While much of the literature focuses on stereotyped, cell-autonomous pathways like glycolysis, recent work emphasizes heterogeneity and flexibility of metabolism between tumors and even within distinct regions of solid tumors. Metabolic heterogeneity is important because it influences therapeutic vulnerabilities and may predict clinical outcomes. This Review describes current concepts about metabolic regulation in tumors, focusing on processes intrinsic to cancer cells and on factors imposed upon cancer cells by the tumor microenvironment. We discuss experimental approaches to identify subtype-selective metabolic vulnerabilities in preclinical cancer models. Finally, we describe efforts to characterize metabolism in primary human tumors, which should produce new insights into metabolic heterogeneity in the context of clinically relevant microenvironments.
Collapse
Affiliation(s)
- Jiyeon Kim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Ralph J DeBerardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
135
|
Amaravadi RK, Kimmelman AC, Debnath J. Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov 2019; 9:1167-1181. [PMID: 31434711 DOI: 10.1158/2159-8290.cd-19-0292] [Citation(s) in RCA: 651] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/31/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Autophagy, a multistep lysosomal degradation pathway that supports nutrient recycling and metabolic adaptation, has been implicated as a process that regulates cancer. Although autophagy induction may limit the development of tumors, evidence in mouse models demonstrates that autophagy inhibition can limit the growth of established tumors and improve response to cancer therapeutics. Certain cancer genotypes may be especially prone to autophagy inhibition. Different strategies for autophagy modulation may be needed depending on the cancer context. Here, we review new advances in the molecular control of autophagy, the role of selective autophagy in cancer, and the role of autophagy within the tumor microenvironment and tumor immunity. We also highlight clinical efforts to repurpose lysosomal inhibitors, such as hydroxychloroquine, as anticancer agents that block autophagy, as well as the development of more potent and specific autophagy inhibitors for cancer treatment, and review future directions for autophagy research. SIGNIFICANCE: Autophagy plays a complex role in cancer, but autophagy inhibition may be an effective therapeutic strategy in advanced cancer. A deeper understanding of autophagy within the tumor microenvironment has enabled the development of novel inhibitors and clinical trial strategies. Challenges and opportunities remain to identify patients most likely to benefit from this approach.
Collapse
Affiliation(s)
- Ravi K Amaravadi
- Abramson Cancer Center and the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Jayanta Debnath
- Department of Pathology, University of California, San Francisco, California
| |
Collapse
|
136
|
Anderson CM, Macleod KF. Autophagy and cancer cell metabolism. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:145-190. [PMID: 31451213 PMCID: PMC8211395 DOI: 10.1016/bs.ircmb.2019.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy is an ancient catabolic process used by cells to clear excess or dysfunctional organelles and large subcellular structures and thus performs an important housekeeping role for the cell. Autophagy is acutely sensitive to nutrient availability and is upregulated at a transcriptional and posttranslational level in response to nutrient deprivation. This serves to promote turnover of cellular content and recycling of nutrients for continued growth and survival. While important for most normal tissues, tumor cells appear to be particularly dependent on autophagy for survival under ischemic or therapeutic stress, and in response to loss of matrix attachment; autophagy is upregulated markedly in cancers as they progress to malignancy. Ras-driven tumors appear to be particularly dependent on autophagy and thus inhibition of autophagy is being pursued as a productive clinical approach for such cancers. However, this enthusiasm needs to be offset against possible negative effects of autophagy inhibition on normal tissue function and on limiting antitumor immune responses. In addressing all of these topics, we focus in on understanding how autophagy is induced by nutrient stress, its role in recycling metabolites for growing tumors, how selective forms of autophagy, such as mitophagy and ribophagy contribute specifically to tumorigenesis, how autophagy in the tumor microenvironment and throughout the animal affects access of the tumor to nutrients, and finally how different oncogenic pathways may determine which tumors respond to autophagy inhibition and which ones will not.
Collapse
Affiliation(s)
- Cara M Anderson
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, The University of Chicago, Chicago, IL, United States; The Committee on Molecular Metabolism & Nutrition, The University of Chicago, Chicago, IL, United States
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, The University of Chicago, Chicago, IL, United States; The Committee on Molecular Metabolism & Nutrition, The University of Chicago, Chicago, IL, United States; The Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|