101
|
Sakkos JK, Wackett LP, Aksan A. Enhancement of biocatalyst activity and protection against stressors using a microbial exoskeleton. Sci Rep 2019; 9:3158. [PMID: 30816335 PMCID: PMC6395662 DOI: 10.1038/s41598-019-40113-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Whole cell biocatalysts can perform numerous industrially-relevant chemical reactions. While they are less expensive than purified enzymes, whole cells suffer from inherent reaction rate limitations due to transport resistance imposed by the cell membrane. Furthermore, it is desirable to immobilize the biocatalysts to enable ease of separation from the reaction mixture. In this study, we used a layer-by-layer (LbL) self-assembly process to create a microbial exoskeleton which, simultaneously immobilized, protected, and enhanced the reactivity of a whole cell biocatalyst. As a proof of concept, we used Escherichia coli expressing homoprotocatechuate 2,3-dioxygenase (HPCD) as a model biocatalyst and coated it with up to ten alternating layers of poly(diallyldimethylammonium chloride) (PDADMAC) and silica. The microbial exoskeleton also protected the biocatalyst against a variety of external stressors including: desiccation, freeze/thaw, exposure to high temperatures, osmotic shock, as well as against enzymatic attack by lysozyme, and predation by protozoa. While we observed increased permeability of the outer membrane after exoskeleton deposition, this had a moderate effect on the reaction rate (up to two-fold enhancement). When the exoskeleton construction was followed by detergent treatment to permeabilize the cytoplasmic membrane, up to 15-fold enhancement in the reaction rate was reached. With the exoskeleton, we increased in the reaction rate constants as much as 21-fold by running the biocatalyst at elevated temperatures ranging from 40 °C to 60 °C, a supraphysiologic temperature range not accessible by unprotected bacteria.
Collapse
Affiliation(s)
- Jonathan K Sakkos
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lawrence P Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
- The BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Alptekin Aksan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
- The BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
102
|
de Paula RG, Antoniêto ACC, Ribeiro LFC, Srivastava N, O'Donovan A, Mishra PK, Gupta VK, Silva RN. Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnol Adv 2019; 37:107347. [PMID: 30771467 DOI: 10.1016/j.biotechadv.2019.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/27/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
Lignocellulose is a rich and sustainable globally available carbon source and is considered a prominent alternative raw material for producing biofuels and valuable chemical compounds. Enzymatic hydrolysis is one of the crucial steps of lignocellulose degradation. Cellulolytic and hemicellulolytic enzyme mixes produced by different microorganisms including filamentous fungi, yeasts and bacteria, are used to degrade the biomass to liberate monosaccharides and other compounds for fermentation or conversion to value-added products. During biomass pretreatment and degradation, toxic compounds are produced, and undesirable carbon catabolic repression (CCR) can occur. In order to solve this problem, microbial metabolic pathways and transcription factors involved have been investigated along with the application of protein engineering to optimize the biorefinery platform. Engineered Microorganisms have been used to produce specific enzymes to breakdown biomass polymers and metabolize sugars to produce ethanol as well other biochemical compounds. Protein engineering strategies have been used for modifying lignocellulolytic enzymes to overcome enzymatic limitations and improving both their production and functionality. Furthermore, promoters and transcription factors, which are key proteins in this process, are modified to promote microbial gene expression that allows a maximum performance of the hydrolytic enzymes for lignocellulosic degradation. The present review will present a critical discussion and highlight the aspects of the use of microorganisms to convert lignocellulose into value-added bioproduct as well combat the bottlenecks to make the biorefinery platform from lignocellulose attractive to the market.
Collapse
Affiliation(s)
- Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Liliane Fraga Costa Ribeiro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Anthonia O'Donovan
- School of Science and Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - P K Mishra
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Vijai K Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
103
|
Quaglia D, Alejaldre L, Ouadhi S, Rousseau O, Pelletier JN. Holistic engineering of Cal-A lipase chain-length selectivity identifies triglyceride binding hot-spot. PLoS One 2019; 14:e0210100. [PMID: 30640952 PMCID: PMC6331120 DOI: 10.1371/journal.pone.0210100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023] Open
Abstract
Through the application of a region-focused saturation mutagenesis and randomization approach, protein engineering of the Cal-A enzyme was undertaken with the goal of conferring new triglyceride selectivity. Little is known about the mode of triglyceride binding to Cal-A. Engineering Cal-A thus requires a systemic approach. Targeted and randomized Cal-A libraries were created, recombined using the Golden Gate approach and screened to detect variants able to discriminate between long-chain (olive oil) and short-chain (tributyrin) triglyceride substrates using a high-throughput in vivo method to visualize hydrolytic activity. Discriminative variants were analyzed using an in-house script to identify predominant substitutions. This approach allowed identification of variants that exhibit strong discrimination for the hydrolysis of short-chain triglycerides and others that discriminate towards hydrolysis of long-chain triglycerides. A clear pattern emerged from the discriminative variants, identifying the 217–245 helix-loop-helix motif as being a hot-spot for triglyceride recognition. This was the consequence of introducing the entire mutational load in selected regions, without putting a strain on distal parts of the protein. Our results improve our understanding of the Cal-A lipase mode of action and selectivity. This holistic perspective to protein engineering, where parts of the gene are individually mutated and the impact evaluated in the context of the whole protein, can be applied to any protein scaffold.
Collapse
Affiliation(s)
- Daniela Quaglia
- Département de Chimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
| | - Lorea Alejaldre
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada
| | - Sara Ouadhi
- Département de Chimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
| | - Olivier Rousseau
- Département de Chimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
| | - Joelle N. Pelletier
- Département de Chimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada
- * E-mail:
| |
Collapse
|
104
|
Ying H, Wang J, Shi T, Zhao Y, Ouyang P, Chen K. Engineering of lysine cyclodeaminase conformational dynamics for relieving substrate and product inhibitions in the biosynthesis of l-pipecolic acid. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02301h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient biocatalytic process construction by relieving substrate and product inhibitions via identification and engineering of enzyme conformational dynamics.
Collapse
Affiliation(s)
- Hanxiao Ying
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Jing Wang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Ting Shi
- School of Life Sciences and Biotechnology
- Shanghai Jiaotong University
- Shanghai
- China
| | - Yilei Zhao
- School of Life Sciences and Biotechnology
- Shanghai Jiaotong University
- Shanghai
- China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
| |
Collapse
|
105
|
Upadhyay R, Kim JY, Hong EY, Lee SG, Seo JH, Kim BG. RiSLnet: Rapid identification of smart mutant libraries using protein structure network. Application to thermal stability enhancement. Biotechnol Bioeng 2018; 116:250-259. [PMID: 30414290 DOI: 10.1002/bit.26861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 01/22/2023]
Abstract
A key point of protein stability engineering is to identify specific target residues whose mutations can stabilize the protein structure without negatively affecting the function or activity of the protein. Here, we propose a method called RiSLnet (Rapid identification of Smart mutant Library using residue network) to identify such residues by combining network analysis for protein residue interactions, identification of conserved residues, and evaluation of relative solvent accessibility. To validate its performance, the method was applied to four proteins, that is, T4 lysozyme, ribonuclease H, barnase, and cold shock protein B. Our method predicted beneficial mutations in thermal stability with ~62% average accuracy when the thermal stability of the mutants was compared with the ones in the Protherm database. It was further applied to lysine decarboxylase (CadA) to experimentally confirm its accuracy and effectiveness. RiSLnet identified mutations increasing the thermal stability of CadA with the accuracy of ~60% and significantly reduced the number of candidate residues (~99%) for mutation. Finally, combinatorial mutations designed by RiSLnet and in silico saturation mutagenesis yielded a thermally stable triple mutant with the half-life (T 1/2 ) of 114.9 min at 58°C, which is approximately twofold higher than that of the wild-type.
Collapse
Affiliation(s)
- Roopali Upadhyay
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Jin Young Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Eun Young Hong
- School of Chemical and Biological Engineering Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Sun-Gu Lee
- Department of Chemical and Biochemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Joo-Hyun Seo
- Department of BT-Convergent Pharmaceutical Engineering, Sunmoon University, Asan, Republic of Korea
| | - Byung-Gee Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.,School of Chemical and Biological Engineering Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
106
|
You ZN, Chen Q, Shi SC, Zheng MM, Pan J, Qian XL, Li CX, Xu JH. Switching Cofactor Dependence of 7β-Hydroxysteroid Dehydrogenase for Cost-Effective Production of Ursodeoxycholic Acid. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03561] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhi-Neng You
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shou-Cheng Shi
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ming-Min Zheng
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Long Qian
- Suzhou Bioforany EnzyTech Co. Ltd., No. 8 Yanjiuyuan Road, Economic Development Zone, Changshu, Jiangsu 215512, China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
107
|
Burnside D, Schoenrock A, Moteshareie H, Hooshyar M, Basra P, Hajikarimlou M, Dick K, Barnes B, Kazmirchuk T, Jessulat M, Pitre S, Samanfar B, Babu M, Green JR, Wong A, Dehne F, Biggar KK, Golshani A. In Silico Engineering of Synthetic Binding Proteins from Random Amino Acid Sequences. iScience 2018; 11:375-387. [PMID: 30660105 PMCID: PMC6348295 DOI: 10.1016/j.isci.2018.11.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/19/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022] Open
Abstract
Synthetic proteins with high affinity and selectivity for a protein target can be used as research tools, biomarkers, and pharmacological agents, but few methods exist to design such proteins de novo. To this end, the In-Silico Protein Synthesizer (InSiPS) was developed to design synthetic binding proteins (SBPs) that bind pre-determined targets while minimizing off-target interactions. InSiPS is a genetic algorithm that refines a pool of random sequences over hundreds of generations of mutation and selection to produce SBPs with pre-specified binding characteristics. As a proof of concept, we design SBPs against three yeast proteins and demonstrate binding and functional inhibition of two of three targets in vivo. Peptide SPOT arrays confirm binding sites, and a permutation array demonstrates target specificity. Our foundational approach will support the field of de novo design of small binding polypeptide motifs and has robust applicability while offering potential advantages over the limited number of techniques currently available. InSiPS engineers synthetic binding proteins (SBPs) using primary protein sequence SBPs are designed to a bind a target protein and avoid “off-target” interactions Binding and functional inhibition of two of three target proteins in yeast is demonstrated Our new approach offers advantages over alternative tools that rely on 3D models
Collapse
Affiliation(s)
- Daniel Burnside
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Andrew Schoenrock
- School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Mohsen Hooshyar
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Prabh Basra
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Maryam Hajikarimlou
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Kevin Dick
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Brad Barnes
- School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Tom Kazmirchuk
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Matthew Jessulat
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sylvain Pitre
- School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C5, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - James R Green
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Frank Dehne
- School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Kyle K Biggar
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Institute of Biochemistry, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Institute of Biochemistry, Carleton University, Ottawa, ON K1S5B6, Canada.
| |
Collapse
|
108
|
The state-of-the-art strategies of protein engineering for enzyme stabilization. Biotechnol Adv 2018; 37:530-537. [PMID: 31138425 DOI: 10.1016/j.biotechadv.2018.10.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 10/12/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022]
Abstract
Enzymes generated by natural recruitment and protein engineering have greatly contribute in various sets of applications. However, their insufficient stability is a bottleneck that limit the rapid development of biocatalysis. Novel approaches based on precise and global structural dissection, advanced gene manipulation, and combination with the multidisciplinary techniques open a new horizon to generate stable enzymes efficiently. Here, we comprehensively introduced emerging advances of protein engineering strategies for enzyme stabilization. Then, we highlighted practical cases to show importance of enzyme stabilization in pharmaceutical and industrial applications. Combining computational enzyme design with molecular evolution will hold considerable promise in this field.
Collapse
|
109
|
Raboni S, Revtovich S, Demitri N, Giabbai B, Storici P, Cocconcelli C, Faggiano S, Rosini E, Pollegioni L, Galati S, Buschini A, Morozova E, Kulikova V, Nikulin A, Gabellieri E, Cioni P, Demidkina T, Mozzarelli A. Engineering methionine γ-lyase from Citrobacter freundii for anticancer activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1260-1270. [PMID: 30268810 DOI: 10.1016/j.bbapap.2018.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Methionine deprivation of cancer cells, which are deficient in methionine biosynthesis, has been envisioned as a therapeutic strategy to reduce cancer cell viability. Methionine γ-lyase (MGL), an enzyme that degrades methionine, has been exploited to selectively remove the amino acid from cancer cell environment. In order to increase MGL catalytic activity, we performed sequence and structure conservation analysis of MGLs from various microorganisms. Whereas most of the residues in the active site and at the dimer interface were found to be conserved, residues located in the C-terminal flexible loop, forming a wall of the active site entry channel, were found to be variable. Therefore, we carried out site-saturation mutagenesis at four independent positions of the C-terminal flexible loop, P357, V358, P360 and A366 of MGL from Citrobacter freundii, generating libraries that were screened for activity. Among the active variants, V358Y exhibits a 1.9-fold increase in the catalytic rate and a 3-fold increase in KM, resulting in a catalytic efficiency similar to wild type MGL. V358Y cytotoxic activity was assessed towards a panel of cancer and nonmalignant cell lines and found to exhibit IC50 lower than the wild type. The comparison of the 3D-structure of V358Y MGL with other MGL available structures indicates that the C-terminal loop is either in an open or closed conformation that does not depend on the amino acid at position 358. Nevertheless, mutations at this position allosterically affects catalysis.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Svetlana Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Serena Galati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vitalia Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Edi Gabellieri
- Institute of Biophysics, National Research Council, Pisa, Italy
| | - Patrizia Cioni
- Institute of Biophysics, National Research Council, Pisa, Italy
| | - Tatyana Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia.
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy; National Institute of Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
110
|
Directed Evolution of a Homodimeric Laccase from Cerrena unicolor BBP6 by Random Mutagenesis and In Vivo Assembly. Int J Mol Sci 2018; 19:ijms19102989. [PMID: 30274366 PMCID: PMC6213006 DOI: 10.3390/ijms19102989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 11/21/2022] Open
Abstract
Laccases have great potential for industrial applications due to their green catalytic properties and broad substrate specificities, and various studies have attempted to improve the catalytic performance of these enzymes. Here, to the best of our knowledge, we firstly report the directed evolution of a homodimeric laccase from Cerrena unicolor BBP6 fused with α-factor prepro-leader that was engineered through random mutagenesis followed by in vivo assembly in Saccharomyces cerevisiae. Three evolved fusion variants selected from ~3500 clones presented 31- to 37-fold increases in total laccase activity, with better thermostability and broader pH profiles. The evolved α-factor prepro-leader enhanced laccase expression levels by up to 2.4-fold. Protein model analysis of these variants reveals that the beneficial mutations have influences on protein pKa shift, subunit interaction, substrate entrance, and C-terminal function.
Collapse
|
111
|
Sutiono S, Carsten J, Sieber V. Structure-Guided Engineering of α-Keto Acid Decarboxylase for the Production of Higher Alcohols at Elevated Temperature. CHEMSUSCHEM 2018; 11:3335-3344. [PMID: 29953730 DOI: 10.1002/cssc.201800944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Branched-chain keto acid decarboxylases (KDCs) are a class of enzymes that catalyze the decarboxylation of α-keto acids. They are key enzymes for production of higher alcohols in vivo and in vitro. However, the two most active KDCs (KivD and KdcA) have only moderate thermostability (<55 °C), which hinders the production of alcohols at high temperatures. Herein, structure-guided engineering toward improved thermostability of KdcA is outlined. Strategies such as stabilization of the catalytic center, surface engineering, and optimization of dimer interactions were applied. With seven amino acid substitutions, variant 7M.D showed an increase of the temperature at which 50 % of activity remains after one-hour incubation T1h50 by 14.8 °C without compromising its substrate specificity. 7M.D exhibited greater than 400-fold improvement of half-life at 70 °C and greater than 600-fold increase in process stability in the presence of 4 % isobutanol at 50 °C. 7M.D is more promising for the production of higher alcohols in thermophiles (>65 °C) and in cell-free applications.
Collapse
Affiliation(s)
- Samuel Sutiono
- Chair of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Jörg Carsten
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
- Straubing Branch BioCat, Fraunhofer IGB, Schulgasse 11a, 94315, Straubing, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St., Lucia, 4072, Australia
| |
Collapse
|
112
|
Abstract
In the period 1985 to 1995 applications of biocatalysis, driven by the need for more sustainable manufacture of chemicals and catalytic, (enantio)selective methods for the synthesis of pharmaceutical intermediates, largely involved the available hydrolases. This was followed, in the next two decades, by revolutionary developments in protein engineering and directed evolution for the optimisation of enzyme function and performance that totally changed the biocatalysis landscape. In the same period, metabolic engineering and synthetic biology revolutionised the use of whole cell biocatalysis in the synthesis of commodity chemicals by fermentation. In particular, developments in the enzymatic enantioselective synthesis of chiral alcohols and amines are highlighted. Progress in enzyme immobilisation facilitated applications under harsh industrial conditions, such as in organic solvents. The emergence of biocatalytic or chemoenzymatic cascade processes, often with co-immobilised enzymes, has enabled telescoping of multi-step processes. Discovering and inventing new biocatalytic processes, based on (meta)genomic sequencing, evolving enzyme promiscuity, chemomimetic biocatalysis, artificial metalloenzymes, and the introduction of non-canonical amino acids into proteins, are pushing back the limits of biocatalysis function. Finally, the integral role of biocatalysis in developing a biobased carbon-neutral economy is discussed.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| | | |
Collapse
|
113
|
An integrated portable system for single chip simultaneous measurement of multiple disease associated metabolites. Biosens Bioelectron 2018; 122:88-94. [PMID: 30245326 DOI: 10.1016/j.bios.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 01/22/2023]
Abstract
Metabolites, the small molecules that underpin life, can act as indicators of the physiological state of the body when their abundance varies, offering routes to diagnosis of many diseases. The ability to assay for multiple metabolites simultaneously will underpin a new generation of precision diagnostic tools. Here, we report the development of a handheld device based on complementary metal oxide semiconductor (CMOS) technology with multiple isolated micro-well reaction zones and integrated optical sensing allowing simultaneous enzyme-based assays of multiple metabolites (choline, xanthine, sarcosine and cholesterol) associated with multiple diseases. These metabolites were measured in clinically relevant concentration range with minimum concentrations measured: 25 μM for choline, 100 μM for xanthine, 1.25 μM for sarcosine and 50 μM for cholesterol. Linking the device to an Android-based user interface allows for quantification of metabolites in serum and urine within 2 min of applying samples to the device. The quantitative performance of the device was validated by comparison to accredited tests for cholesterol and glucose.
Collapse
|
114
|
Bugada LF, Smith MR, Wen F. Engineering Spatially Organized Multienzyme Assemblies for Complex Chemical Transformation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01883] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Luke F. Bugada
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mason R. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
115
|
Enhancement of Z-aspartame synthesis by rational engineering of metalloprotease. Food Chem 2018; 253:30-36. [DOI: 10.1016/j.foodchem.2018.01.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
|
116
|
Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, Wang F, Shaheen S, Syed JH, Reichenauer TG. Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1582-1599. [PMID: 30045575 DOI: 10.1016/j.scitotenv.2018.02.037] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 05/18/2023]
Abstract
Environmental problems such as the deterioration of groundwater quality, soil degradation and various threats to human, animal and ecosystem health are closely related to the presence of high concentrations of organic xenobiotics in the environment. Employing appropriate technologies to remediate contaminated soils is crucial due to the site-specificity of most remediation methods. The limitations of conventional remediation technologies include poor environmental compatibility, high cost of implementation and poor public acceptability. This raises the call to employ biological methods for remediation. Bioremediation and microbe-assisted bioremediation (phytoremediation) offer many ecological and cost-associated benefits. The overall efficiency and performance of bio- and phytoremediation approaches can be enhanced by genetically modified microbes and plants. Moreover, phytoremediation can also be stimulated by suitable plant-microbe partnerships, i.e. plant-endophytic or plant-rhizospheric associations. Synergistic interactions between recombinant bacteria and genetically modified plants can further enhance the restoration of environments impacted by organic pollutants. Nevertheless, releasing genetically modified microbes and plants into the environment does pose potential risks. These can be minimized by adopting environmental biotechnological techniques and guidelines provided by environmental protection agencies and other regulatory frameworks. The current contribution provides a comprehensive overview on enhanced bioremediation and phytoremediation approaches using transgenic plants and microbes. It also sheds light on the mitigation of associated environmental risks.
Collapse
Affiliation(s)
- Imran Hussain
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria; Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Austria
| | - Gajender Aleti
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Markus Puschenreiter
- Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shahida Shaheen
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS Institute of Information Technology, Park Road Tarlai Kalan 45550, Islamabad, Pakistan; Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong.
| | - Thomas G Reichenauer
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria.
| |
Collapse
|
117
|
Kwan DH. Structure-Guided Directed Evolution of Glycosidases: A Case Study in Engineering a Blood Group Antigen-Cleaving Enzyme. Methods Enzymol 2018; 597:25-53. [PMID: 28935105 DOI: 10.1016/bs.mie.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Directed evolution is an incredibly powerful strategy for engineering enzyme function. Applying this approach to glycosidases offers enormous potential for the development of highly specialized tools in chemical glycobiology. Performing enzyme directed evolution requires the generation, by random mutagenesis, of mutant libraries from which large numbers of variant enzymes must be screened in high-throughput assays. A structure-guided "semirational" method for library creation allows researchers to target specific amino acid positions for mutagenesis, concentrating mutations where they might be most effective in order to produce mutant libraries of a manageable size, minimizing screening effort while maximizing the chances of finding improved mutants. Well-designed assays, which may use specially prepared substrates, enable efficient screening of these mutant libraries. This chapter will detail general methods in the structure-guided directed evolution of glycosidases, which have previously been employed in engineering a blood group antigen-cleaving enzyme.
Collapse
Affiliation(s)
- David H Kwan
- Centre for Applied Synthetic Biology, Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec, Canada.
| |
Collapse
|
118
|
Seo JH, Min WK, Lee SG, Yun H, Kim BG. To the Final Goal: Can We Predict and Suggest Mutations for Protein to Develop Desired Phenotype? BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0064-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
119
|
Biundo A, Ribitsch D, Guebitz GM. Surface engineering of polyester-degrading enzymes to improve efficiency and tune specificity. Appl Microbiol Biotechnol 2018; 102:3551-3559. [PMID: 29511846 DOI: 10.1007/s00253-018-8850-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 01/06/2023]
Abstract
Certain members of the carboxylesterase superfamily can act at the interface between water and water-insoluble substrates. However, nonnatural bulky polyesters usually are not efficiently hydrolyzed. In the recent years, the potential of enzyme engineering to improve hydrolysis of synthetic polyesters has been demonstrated. Regions on the enzyme surface have been modified by using site-directed mutagenesis in order to tune sorption processes through increased hydrophobicity of the enzyme surface. Such modifications can involve specific amino acid substitutions, addition of binding modules, or truncation of entire domains improving sorption properties and/or dynamics of the enzyme. In this review, we provide a comprehensive overview on different strategies developed in the recent years for enzyme surface engineering to improve the activity of polyester-hydrolyzing enzymes.
Collapse
Affiliation(s)
- Antonino Biundo
- Austrian Centre of Industrial Biotechnology (ACIB), Tulln an der Donau, Austria
| | - Doris Ribitsch
- Austrian Centre of Industrial Biotechnology (ACIB), Tulln an der Donau, Austria. .,Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln an der Donau, Austria.
| | - Georg M Guebitz
- Austrian Centre of Industrial Biotechnology (ACIB), Tulln an der Donau, Austria.,Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln an der Donau, Austria
| |
Collapse
|
120
|
Xia Y, Cui W, Cheng Z, Peplowski L, Liu Z, Kobayashi M, Zhou Z. Improving the Thermostability and Catalytic Efficiency of the Subunit-Fused Nitrile Hydratase by Semi-Rational Engineering. ChemCatChem 2018. [DOI: 10.1002/cctc.201701374] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics; Nicolaus Copernicus University; Grudziadzka 5 87-100 Torun Poland
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and the Graduate School of Life, and Environment Sciences; University of Tsukuba; Ibaraki 305-8572 Japan
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| |
Collapse
|
121
|
Evolution of enzymes with new specificity by high-throughput screening using DmpR-based genetic circuits and multiple flow cytometry rounds. Sci Rep 2018; 8:2659. [PMID: 29422524 PMCID: PMC5805759 DOI: 10.1038/s41598-018-20943-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/26/2018] [Indexed: 11/12/2022] Open
Abstract
Genetic circuit-based biosensors are useful in detecting target metabolites or in vivo enzymes using transcription factors (Tx) as a molecular switch to express reporter signals, such as cellular fluorescence and antibiotic resistance. Herein, a phenol-detecting Tx (DmpR) was employed as a critical tool for enzyme engineering, specifically for the rapid analysis of numerous mutants with multiple mutations at the active site of tryptophan-indole lyase (TIL, EC 4.1.99.1). Cellular fluorescence was monitored cell-by-cell using flow cytometry to detect the creation of phenolic compounds by a new tyrosine-phenol-lyase (TPL, EC 4.1.99.2). In the TIL scaffold, target amino acids near the indole ring (Asp137, Phe304, Val394, Ile396 and His463) were mutated randomly to construct a large diversity of specificity variations. Collection of candidate positives by cell sorting using flow cytometry and subsequent shuffling of beneficial mutations identified a critical hit with four mutations (D137P, F304D, V394L, and I396R) in the TIL sequence. The variant displayed one-thirteenth the level of TPL activity, compared with native TPLs, and completely lost the original TIL activity. The findings demonstrate that hypersensitive, Tx-based biosensors could be useful critically to generate new activity from a related template, which would alleviate the current burden to high-throughput screening.
Collapse
|
122
|
Abstract
In biocatalysis, structural knowledge regarding an enzyme and its substrate interactions complements and guides experimental investigations. Structural knowledge regarding an enzyme or a biocatalytic reaction system can be generated through computational techniques, such as homology- or molecular modeling. For this type of computational work, a computer program developed for molecular modeling of proteins is required. Here, we describe the use of the program YASARA Structure. Protocols for two specific biocatalytic applications, including both homology modeling and molecular modeling such as energy minimization, molecular docking simulations and molecular dynamics simulations, are shown. The applications are chosen to give realistic examples showing how structural knowledge through homology and molecular modeling is used to guide biocatalytic investigations and protein engineering studies.
Collapse
|
123
|
Affiliation(s)
- Niels Borlinghaus
- Institute of Biochemistry and Technical Biochemistry, Chair of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Bettina M. Nestl
- Institute of Biochemistry and Technical Biochemistry, Chair of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
124
|
Brödel AK, Isalan M, Jaramillo A. Engineering of biomolecules by bacteriophage directed evolution. Curr Opin Biotechnol 2017; 51:32-38. [PMID: 29175708 DOI: 10.1016/j.copbio.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/10/2017] [Accepted: 11/09/2017] [Indexed: 01/21/2023]
Abstract
Conventional in vivo directed evolution methods have primarily linked the biomolecule's activity to bacterial cell growth. Recent developments instead rely on the conditional growth of bacteriophages (phages), viruses that infect and replicate within bacteria. Here we review recent phage-based selection systems for in vivo directed evolution. These approaches have been applied to evolve a wide range of proteins including transcription factors, polymerases, proteases, DNA-binding proteins, and protein-protein interactions. Advances in this field expand the possible applications of protein and RNA engineering. This will ultimately result in new biomolecules with tailor-made properties, as well as giving us a better understanding of basic evolutionary processes.
Collapse
Affiliation(s)
- Andreas K Brödel
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; CNRS-UMR8030, Laboratoire iSSB, Évry 91000, France; Université Paris-Saclay, Évry 91000, France; Université d'Évry, Évry 91000, France; CEA, DRF, IG, Genoscope, Évry 91000, France; Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, 46980 Paterna, Spain.
| |
Collapse
|
125
|
Jung E, Park BG, Yoo HW, Kim J, Choi KY, Kim BG. Semi-rational engineering of CYP153A35 to enhance ω-hydroxylation activity toward palmitic acid. Appl Microbiol Biotechnol 2017; 102:269-277. [DOI: 10.1007/s00253-017-8584-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 01/14/2023]
|
126
|
Rachel NM, Quaglia D, Lévesque É, Charette AB, Pelletier JN. Engineered, highly reactive substrates of microbial transglutaminase enable protein labeling within various secondary structure elements. Protein Sci 2017; 26:2268-2279. [PMID: 28857311 DOI: 10.1002/pro.3286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022]
Abstract
Microbial transglutaminase (MTG) is a practical tool to enzymatically form isopeptide bonds between peptide or protein substrates. This natural approach to crosslinking the side-chains of reactive glutamine and lysine residues is solidly rooted in food and textile processing. More recently, MTG's tolerance for various primary amines in lieu of lysine have revealed its potential for site-specific protein labeling with aminated compounds, including fluorophores. Importantly, MTG can label glutamines at accessible positions in the body of a target protein, setting it apart from most labeling enzymes that react exclusively at protein termini. To expand its applicability as a labeling tool, we engineered the B1 domain of Protein G (GB1) to probe the selectivity and enhance the reactivity of MTG toward its glutamine substrate. We built a GB1 library where each variant contained a single glutamine at positions covering all secondary structure elements. The most reactive and selective variants displayed a >100-fold increase in incorporation of a recently developed aminated benzo[a]imidazo[2,1,5-cd]indolizine-type fluorophore, relative to native GB1. None of the variants were destabilized. Our results demonstrate that MTG can react readily with glutamines in α-helical, β-sheet, and unstructured loop elements and does not favor one type of secondary structure. Introducing point mutations within MTG's active site further increased reactivity toward the most reactive substrate variant, I6Q-GB1, enhancing MTG's capacity to fluorescently label an engineered, highly reactive glutamine substrate. This work demonstrates that MTG-reactive glutamines can be readily introduced into a protein domain for fluorescent labeling.
Collapse
Affiliation(s)
- Natalie M Rachel
- Department of Chemistry, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.,PROTEO, the Québec Network for Protein Function, Engineering and Applications, Québec, G1V 0A6, Canada.,CGCC, the Center in Green Chemistry and Catalysis, Montréal, Québec, H3A 0B8, Canada
| | - Daniela Quaglia
- Department of Chemistry, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.,PROTEO, the Québec Network for Protein Function, Engineering and Applications, Québec, G1V 0A6, Canada.,CGCC, the Center in Green Chemistry and Catalysis, Montréal, Québec, H3A 0B8, Canada
| | - Éric Lévesque
- Department of Chemistry, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.,CGCC, the Center in Green Chemistry and Catalysis, Montréal, Québec, H3A 0B8, Canada
| | - André B Charette
- Department of Chemistry, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.,CGCC, the Center in Green Chemistry and Catalysis, Montréal, Québec, H3A 0B8, Canada
| | - Joelle N Pelletier
- Department of Chemistry, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.,PROTEO, the Québec Network for Protein Function, Engineering and Applications, Québec, G1V 0A6, Canada.,CGCC, the Center in Green Chemistry and Catalysis, Montréal, Québec, H3A 0B8, Canada.,Department of Biochemistry, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
127
|
You C, Huang R, Wei X, Zhu Z, Zhang YHP. Protein engineering of oxidoreductases utilizing nicotinamide-based coenzymes, with applications in synthetic biology. Synth Syst Biotechnol 2017; 2:208-218. [PMID: 29318201 PMCID: PMC5655348 DOI: 10.1016/j.synbio.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/08/2017] [Accepted: 09/22/2017] [Indexed: 01/01/2023] Open
Abstract
Two natural nicotinamide-based coenzymes (NAD and NADP) are indispensably required by the vast majority of oxidoreductases for catabolism and anabolism, respectively. Most NAD(P)-dependent oxidoreductases prefer one coenzyme as an electron acceptor or donor to the other depending on their different metabolic roles. This coenzyme preference associated with coenzyme imbalance presents some challenges for the construction of high-efficiency in vivo and in vitro synthetic biology pathways. Changing the coenzyme preference of NAD(P)-dependent oxidoreductases is an important area of protein engineering, which is closely related to product-oriented synthetic biology projects. This review focuses on the methodology of nicotinamide-based coenzyme engineering, with its application in improving product yields and decreasing production costs. Biomimetic nicotinamide-containing coenzymes have been proposed to replace natural coenzymes because they are more stable and less costly than natural coenzymes. Recent advances in the switching of coenzyme preference from natural to biomimetic coenzymes are also covered in this review. Engineering coenzyme preferences from natural to biomimetic coenzymes has become an important direction for coenzyme engineering, especially for in vitro synthetic pathways and in vivo bioorthogonal redox pathways.
Collapse
Affiliation(s)
- Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Rui Huang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yi-Heng Percival Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.,Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA
| |
Collapse
|
128
|
Ebert MCCJC, Guzman Espinola J, Lamoureux G, Pelletier JN. Substrate-Specific Screening for Mutational Hotspots Using Biased Molecular Dynamics Simulations. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maximilian C. C. J. C. Ebert
- Département
de Biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC H3T 1J4, Canada
- PROTEO, The Québec
Network for Research on Protein Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
| | - Joaquin Guzman Espinola
- Département
de Biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC H3T 1J4, Canada
- PROTEO, The Québec
Network for Research on Protein Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
| | - Guillaume Lamoureux
- PROTEO, The Québec
Network for Research on Protein Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- Department
of Chemistry and Biochemistry and Centre for Research in Molecular
Modeling (CERMM), Concordia University, Montréal, QC H4B 1R6, Canada
| | - Joelle N. Pelletier
- Département
de Biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC H3T 1J4, Canada
- PROTEO, The Québec
Network for Research on Protein Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- Département
de Chimie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
129
|
Affiliation(s)
- Roger A. Sheldon
- Molecular
Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg, PO Wits 2050, South Africa
- Department
of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
130
|
Ensari Y, Dhoke GV, Davari MD, Bocola M, Ruff AJ, Schwaneberg U. Inversion of cpADH5 Enantiopreference and Altered Chain Length Specificity for Methyl 3-Hydroxyalkanoates. Chemistry 2017; 23:12636-12645. [DOI: 10.1002/chem.201702581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Yunus Ensari
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 52074 Aachen Germany
- Faculty of Engineering and Architecture; Department of Bioengineering; Kafkas University; Kars Turkey
| | - Gaurao V. Dhoke
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 52074 Aachen Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 52074 Aachen Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 52074 Aachen Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 52074 Aachen Germany
- DWI-Leibniz Institut für Interaktive Materialien; Forckenbeckstraße 50 52056 Aachen Germany
| |
Collapse
|
131
|
Wang Z, Zhou S, Zhang S, Zhang S, Zhu F, Jin X, Chen Z, Xu X. Semi-rational engineering of a thermostable aldo-keto reductase from Thermotoga maritima for synthesis of enantiopure ethyl-2-hydroxy-4-phenylbutyrate (EHPB). Sci Rep 2017; 7:4007. [PMID: 28638047 PMCID: PMC5479831 DOI: 10.1038/s41598-017-03947-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/05/2017] [Indexed: 11/29/2022] Open
Abstract
A novel aldo-keto reductase Tm1743 characterized from Thermotoga maritima was explored as an effective biocatalyst in chiral alcohol production. Natural Tm1743 catalyzes asymmetric reduction of ethyl 2-oxo-4-phenylbutyrate (EOPB) at high efficiency, but the production of, ethyl (S)-2-hydroxy-4-phenylbutyrate ((S)-EHPB), which is less desirable, is preferred with an enantiomeric excess (ee) value of 76.5%. Thus, altering the enantioselectivity of Tm1743 to obtain the more valuable product (R)-EHPB for angiotensin drug synthesis is highly desired. In this work, we determined the crystal structure of Tm1743 in complex with its cofactor NADP+ at 2.0 Å resolution, and investigated the enantioselectivity of Tm1743 through semi-rational enzyme design. Molecular simulations based on the crystal structure obtained two binding models representing the pro-S and pro-R conformations of EOPB. Saturation mutagenesis studies revealed that Trp21 and Trp86 play important roles in determining the enantioselectivity of Tm1743. The best (R)- and (S)-EHPB preferring Tm1743 mutants, denoted as W21S/W86E and W21L/W118H, were identified; their ee values are 99.4% and 99.6% and the catalytic efficiencies are 0.81 and 0.12 mM-1s-1, respectively. Our work presents an efficient strategy to improve the enantioselectivity of a natural biocatalyst, which will serve as a guide for further exploration of new green catalysts for asymmetric reactions.
Collapse
Affiliation(s)
- Zhiguo Wang
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shuo Zhou
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | | | - Sa Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Fangmeng Zhu
- Apeloa Pharmaceutical Co., Ltd., Dongyang, Zhejiang, 322118, China
| | - Xiaolu Jin
- Yosemade Pharmaceutical Co., Ltd., Jinhua, Zhejiang, 321025, China
| | - Zhenming Chen
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Xiaoling Xu
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
132
|
Modification of fatty acid selectivity of Candida antarctica lipase A by error-prone PCR. Biotechnol Lett 2017; 39:767-773. [PMID: 28281023 PMCID: PMC5409807 DOI: 10.1007/s10529-017-2299-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/02/2017] [Indexed: 11/30/2022]
Abstract
Objective To generate Candida antarctica lipase A (CAL-A) mutants with modified fatty acid selectivities and improved lipolytic activities using error-prone PCR (epPCR). Results A Candida antarctica lipase A mutant was obtained in three rounds of epPCR. This mutant showed a 14 times higher ability to hydrolyze triacylglycerols containing conjugated linoleic acids, and was 12 and 14 times more selective towards cis-9, trans-11 and trans-10, cis-12 isomers respectively, compared to native lipase. Lipolytic activities towards fatty acid esters were markedly improved, in particular towards butyric, lauric, stearic and palmitic esters. Conclusion Directed molecular evolution is an efficient method to generate lipases with desirable selectivity towards CLA isomers and improved lipolytic activities towards esters of fatty acids. Electronic supplementary material The online version of this article (doi:10.1007/s10529-017-2299-0) contains supplementary material, which is available to authorized users.
Collapse
|
133
|
Extending enzyme molecular recognition with an expanded amino acid alphabet. Proc Natl Acad Sci U S A 2017; 114:2610-2615. [PMID: 28196894 DOI: 10.1073/pnas.1616816114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural enzymes are constructed from the 20 proteogenic amino acids, which may then require posttranslational modification or the recruitment of coenzymes or metal ions to achieve catalytic function. Here, we demonstrate that expansion of the alphabet of amino acids can also enable the properties of enzymes to be extended. A chemical mutagenesis strategy allowed a wide range of noncanonical amino acids to be systematically incorporated throughout an active site to alter enzymic substrate specificity. Specifically, 13 different noncanonical side chains were incorporated at 12 different positions within the active site of N-acetylneuraminic acid lyase (NAL), and the resulting chemically modified enzymes were screened for activity with a range of aldehyde substrates. A modified enzyme containing a 2,3-dihydroxypropyl cysteine at position 190 was identified that had significantly increased activity for the aldol reaction of erythrose with pyruvate compared with the wild-type enzyme. Kinetic investigation of a saturation library of the canonical amino acids at the same position showed that this increased activity was not achievable with any of the 20 proteogenic amino acids. Structural and modeling studies revealed that the unique shape and functionality of the noncanonical side chain enabled the active site to be remodeled to enable more efficient stabilization of the transition state of the reaction. The ability to exploit an expanded amino acid alphabet can thus heighten the ambitions of protein engineers wishing to develop enzymes with new catalytic properties.
Collapse
|
134
|
Quaglia D, Ebert MCCJC, Mugford PF, Pelletier JN. Enzyme engineering: A synthetic biology approach for more effective library generation and automated high-throughput screening. PLoS One 2017; 12:e0171741. [PMID: 28178357 PMCID: PMC5298319 DOI: 10.1371/journal.pone.0171741] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/25/2017] [Indexed: 12/29/2022] Open
Abstract
The Golden Gate strategy entails the use of type IIS restriction enzymes, which cut outside of their recognition sequence. It enables unrestricted design of unique DNA fragments that can be readily and seamlessly recombined. Successfully employed in other synthetic biology applications, we demonstrate its advantageous use to engineer a biocatalyst. Hot-spots for mutations were individuated in three distinct regions of Candida antarctica lipase A (Cal-A), the biocatalyst chosen as a target to demonstrate the versatility of this recombination method. The three corresponding gene segments were subjected to the most appropriate method of mutagenesis (targeted or random). Their straightforward reassembly allowed combining products of different mutagenesis methods in a single round for rapid production of a series of diverse libraries, thus facilitating directed evolution. Screening to improve discrimination of short-chain versus long-chain fatty acid substrates was aided by development of a general, automated method for visual discrimination of the hydrolysis of varied substrates by whole cells.
Collapse
Affiliation(s)
- Daniela Quaglia
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
- Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
| | - Maximilian C. C. J. C. Ebert
- Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada
| | - Paul F. Mugford
- DSM Nutritional Products, 101 Research Drive, Dartmouth, NS, Canada
| | - Joelle N. Pelletier
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
- Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
135
|
Wang QY, Xie NZ, Du QS, Qin Y, Li JX, Meng JZ, Huang RB. Active Hydrogen Bond Network (AHBN) and Applications for Improvement of Thermal Stability and pH-Sensitivity of Pullulanase from Bacillus naganoensis. PLoS One 2017; 12:e0169080. [PMID: 28103251 PMCID: PMC5245800 DOI: 10.1371/journal.pone.0169080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/12/2016] [Indexed: 11/19/2022] Open
Abstract
A method, so called “active hydrogen bond network” (AHBN), is proposed for site-directed mutations of hydrolytic enzymes. In an enzyme the AHBN consists of the active residues, functional residues, and conservative water molecules, which are connected by hydrogen bonds, forming a three dimensional network. In the catalysis hydrolytic reactions of hydrolytic enzymes AHBN is responsible for the transportation of protons and water molecules, and maintaining the active and dynamic structures of enzymes. The AHBN of pullulanase BNPulA324 from Bacillus naganoensis was constructed based on a homologous model structure using Swiss Model Protein-modeling Server according to the template structure of pullulanase BAPulA (2WAN). The pullulanase BNPulA324 are mutated at the mutation sites selected by means of the AHBN method. Both thermal stability and pH-sensitivity of pullulanase BNPulA324 were successfully improved. The mutations at the residues located at the out edge of AHBN may yield positive effects. On the other hand the mutations at the residues inside the AHBN may deprive the bioactivity of enzymes. The AHBN method, proposed in this study, may provide an assistant and alternate tool for protein rational design and protein engineering.
Collapse
Affiliation(s)
- Qing-Yan Wang
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Neng-Zhong Xie
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Qi-Shi Du
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Gordon Life Science Institute, Belmont, MA, United States of America
- * E-mail:
| | - Yan Qin
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Jian-Xiu Li
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Life Science and Technology College, Guangxi University, Nanning, Guangxi, China
| | - Jian-Zong Meng
- Life Science and Technology College, Guangxi University, Nanning, Guangxi, China
| | - Ri-Bo Huang
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Life Science and Technology College, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
136
|
Yuan J, Mishra P, Ching CB. Metabolically engineered Saccharomyces cerevisiae for branched-chain ester productions. J Biotechnol 2016; 239:90-97. [DOI: 10.1016/j.jbiotec.2016.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022]
|
137
|
van der Meer JY, Biewenga L, Poelarends GJ. The Generation and Exploitation of Protein Mutability Landscapes for Enzyme Engineering. Chembiochem 2016; 17:1792-1799. [PMID: 27441919 PMCID: PMC5095810 DOI: 10.1002/cbic.201600382] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 11/08/2022]
Abstract
The increasing number of enzyme applications in chemical synthesis calls for new engineering methods to develop the biocatalysts of the future. An interesting concept in enzyme engineering is the generation of large-scale mutational data in order to chart protein mutability landscapes. These landscapes allow the important discrimination between beneficial mutations and those that are neutral or detrimental, thus providing detailed insight into sequence-function relationships. As such, mutability landscapes are a powerful tool with which to identify functional hotspots at any place in the amino acid sequence of an enzyme. These hotspots can be used as targets for combinatorial mutagenesis to yield superior enzymes with improved catalytic properties, stability, or even new enzymatic activities. The generation of mutability landscapes for multiple properties of one enzyme provides the exciting opportunity to select mutations that are beneficial either for one or for several of these properties. This review presents an overview of the recent advances in the construction of mutability landscapes and discusses their importance for enzyme engineering.
Collapse
Affiliation(s)
- Jan-Ytzen van der Meer
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Lieuwe Biewenga
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
138
|
Feng T, Yang X, Wang D, Hu X, Liao J, Pu J, Zhao X, Zhan CG, Liao F. A Practical System for High-Throughput Screening of Mutants of Bacillus fastidiosus Uricase. Appl Biochem Biotechnol 2016; 181:667-681. [DOI: 10.1007/s12010-016-2240-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/05/2016] [Indexed: 11/28/2022]
|
139
|
Yang G, Hong N, Baier F, Jackson CJ, Tokuriki N. Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects. Biochemistry 2016; 55:4583-93. [PMID: 27444875 DOI: 10.1021/acs.biochem.6b00561] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How remote mutations can lead to changes in enzyme function at a molecular level is a central question in evolutionary biochemistry and biophysics. Here, we combine laboratory evolution with biochemical, structural, genetic, and computational analysis to dissect the molecular basis for the functional optimization of phosphotriesterase activity in a bacterial lactonase (AiiA) from the metallo-β-lactamase (MBL) superfamily. We show that a 1000-fold increase in phosphotriesterase activity is caused by a more favorable catalytic binding position of the paraoxon substrate in the evolved enzyme that resulted from conformational tinkering of the active site through peripheral mutations. A nonmutated active site residue, Phe68, was displaced by ∼3 Å through the indirect effects of two second-shell trajectory mutations, allowing molecular interactions between the residue and paraoxon. Comparative mutational scanning, i.e., examining the effects of alanine mutagenesis on different genetic backgrounds, revealed significant changes in the functional roles of Phe68 and other nonmutated active site residues caused by the indirect effects of trajectory mutations. Our work provides a quantitative measurement of the impact of second-shell mutations on the catalytic contributions of nonmutated residues and unveils the underlying intramolecular network of strong epistatic mutational relationships between active site residues and more remote residues. Defining these long-range conformational and functional epistatic relationships has allowed us to better understand the subtle, but cumulatively significant, role of second- and third-shell mutations in evolution.
Collapse
Affiliation(s)
- Gloria Yang
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Nansook Hong
- Research School of Chemistry, Australian National University , Canberra, ACT 0200, Australia
| | - Florian Baier
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Colin J Jackson
- Research School of Chemistry, Australian National University , Canberra, ACT 0200, Australia
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
140
|
Maeda Y, Makhlynets OV, Matsui H, Korendovych IV. Design of Catalytic Peptides and Proteins Through Rational and Combinatorial Approaches. Annu Rev Biomed Eng 2016; 18:311-28. [PMID: 27022702 PMCID: PMC6345664 DOI: 10.1146/annurev-bioeng-111215-024421] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review focuses on recent progress in noncomputational methods to introduce catalytic function into proteins, peptides, and peptide assemblies. We discuss various approaches to creating catalytic activity and classification of noncomputational methods into rational and combinatorial classes. The section on rational design covers recent progress in the development of short peptides and oligomeric peptide assemblies for various natural and unnatural reactions. The section on combinatorial design describes recent advances in the discovery of catalytic peptides. We present the future prospects of these and other new approaches in a broader context, including implications for functional material design.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Department of Chemistry, City University of New York-Hunter College, New York, New York 10065;
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Olga V Makhlynets
- Department of Chemistry, Syracuse University, Syracuse, New York 13244;
| | - Hiroshi Matsui
- Department of Chemistry, City University of New York-Hunter College, New York, New York 10065;
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021
| | | |
Collapse
|
141
|
Kaushik M, Sinha P, Jaiswal P, Mahendru S, Roy K, Kukreti S. Protein engineering andde novodesigning of a biocatalyst. J Mol Recognit 2016; 29:499-503. [DOI: 10.1002/jmr.2546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/16/2016] [Accepted: 04/01/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Mahima Kaushik
- Cluster Innovation Centre; University of Delhi; Delhi 110 007 India
- Nucleic Acids Research Laboratory, Department of Chemistry; University of Delhi; Delhi 110007 India
| | - Prashant Sinha
- Cluster Innovation Centre; University of Delhi; Delhi 110 007 India
| | - Pragya Jaiswal
- Cluster Innovation Centre; University of Delhi; Delhi 110 007 India
| | - Swati Mahendru
- Nucleic Acids Research Laboratory, Department of Chemistry; University of Delhi; Delhi 110007 India
| | - Kapil Roy
- Nucleic Acids Research Laboratory, Department of Chemistry; University of Delhi; Delhi 110007 India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry; University of Delhi; Delhi 110007 India
| |
Collapse
|
142
|
Liu Y, Yan Z, Lu X, Xiao D, Jiang H. Improving the catalytic activity of isopentenyl phosphate kinase through protein coevolution analysis. Sci Rep 2016; 6:24117. [PMID: 27052337 PMCID: PMC4823809 DOI: 10.1038/srep24117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
Protein rational design has become more and more popular for protein engineering with the advantage of biological big-data. In this study, we described a method of rational design that is able to identify desired mutants by analyzing the coevolution of protein sequence. We employed this approach to evolve an archaeal isopentenyl phosphate kinase that can convert dimethylallyl alcohol (DMA) into precursor of isoprenoids. By designing 9 point mutations, we improved the catalytic activities of IPK about 8-fold in vitro. After introducing the optimal mutant of IPK into engineered E. coli strain for β-carotenoids production, we found that β-carotenoids production exhibited 97% increase over the starting strain. The process of enzyme optimization presented here could be used to improve the catalytic activities of other enzymes.
Collapse
Affiliation(s)
- Ying Liu
- College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhihui Yan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaoyun Lu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dongguang Xiao
- College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300308, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
143
|
Fungal Biotechnology for Industrial Enzyme Production: Focus on (Hemi)cellulase Production Strategies, Advances and Challenges. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
144
|
Engineering of isoamylase: improvement of protein stability and catalytic efficiency through semi-rational design. ACTA ACUST UNITED AC 2016; 43:3-12. [DOI: 10.1007/s10295-015-1708-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/31/2015] [Indexed: 11/26/2022]
Abstract
Abstract
Isoamylase catalyzes the hydrolysis of α-1,6-glycosidic linkages in glycogen, amylopectin and α/β-limit dextrins. A semi-rational design strategy was performed to improve catalytic properties of isoamylase from Bacillus lentus. Three residues in vicinity of the essential residues, Arg505, Asn513, and Gly608, were chosen as the mutation sites and were substituted by Ala, Pro, Glu, and Lys, respectively. Thermal stability of the mutant R505P and acidic stability of the mutant R505E were enhanced. The k cat /K m values of the mutant G608V have been promoted by 49 %, and the specific activity increased by 33 %. This work provides an effective strategy for improving the catalytic activity and stability of isoamylase, and the results obtained here may be useful for the improvement of catalytic properties of other α/β barrel enzymes.
Collapse
|
145
|
Pottel J, Moitessier N. Single-Point Mutation with a Rotamer Library Toolkit: Toward Protein Engineering. J Chem Inf Model 2015; 55:2657-71. [PMID: 26623941 DOI: 10.1021/acs.jcim.5b00525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein engineers have long been hard at work to harness biocatalysts as a natural source of regio-, stereo-, and chemoselectivity in order to carry out chemistry (reactions and/or substrates) not previously achieved with these enzymes. The extreme labor demands and exponential number of mutation combinations have induced computational advances in this domain. The first step in our virtual approach is to predict the correct conformations upon mutation of residues (i.e., rebuilding side chains). For this purpose, we opted for a combination of molecular mechanics and statistical data. In this work, we have developed automated computational tools to extract protein structural information and created conformational libraries for each amino acid dependent on a variable number of parameters (e.g., resolution, flexibility, secondary structure). We have also developed the necessary tool to apply the mutation and optimize the conformation accordingly. For side-chain conformation prediction, we obtained overall average root-mean-square deviations (RMSDs) of 0.91 and 1.01 Å for the 18 flexible natural amino acids within two distinct sets of over 3000 and 1500 side-chain residues, respectively. The commonly used dihedral angle differences were also evaluated and performed worse than the state of the art. These two metrics are also compared. Furthermore, we generated a family-specific library for kinases that produced an average 2% lower RMSD upon side-chain reconstruction and a residue-specific library that yielded a 17% improvement. Ultimately, since our protein engineering outlook involves using our docking software, Fitted/Impacts, we applied our mutation protocol to a benchmarked data set for self- and cross-docking. Our side-chain reconstruction does not hinder our docking software, demonstrating differences in pose prediction accuracy of approximately 2% (RMSD cutoff metric) for a set of over 200 protein/ligand structures. Similarly, when docking to a set of over 100 kinases, side-chain reconstruction (using both general and biased conformation libraries) had minimal detriment to the docking accuracy.
Collapse
Affiliation(s)
- Joshua Pottel
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| | - Nicolas Moitessier
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| |
Collapse
|
146
|
Grimaldi J, Collins CH, Belfort G. Towards cell-free isobutanol production: Development of a novel immobilized enzyme system. Biotechnol Prog 2015; 32:66-73. [DOI: 10.1002/btpr.2197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/07/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Joseph Grimaldi
- Dept. of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy NY 12180-3590
| | - Cynthia H. Collins
- Dept. of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy NY 12180-3590
| | - Georges Belfort
- Dept. of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy NY 12180-3590
| |
Collapse
|
147
|
Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers. Biotechnol Adv 2015; 33:1671-84. [DOI: 10.1016/j.biotechadv.2015.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022]
|
148
|
Enhancing the thermal tolerance of a cis-epoxysuccinate hydrolase via combining directed evolution with various semi-rational redesign methods. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
149
|
Chen J, Jiang N, Wang T, Xie G, Zhang Z, Li H, Yuan J, Sun Z, Chen J. DNA shuffling of uricase gene leads to a more "human like" chimeric uricase with increased uricolytic activity. Int J Biol Macromol 2015; 82:522-9. [PMID: 26526169 DOI: 10.1016/j.ijbiomac.2015.10.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Urate oxidase (Uox) is the enzyme involved in purine metabolism. Pseudogenization of Uox gene is the underlying mechanism of hyperuricemia and gout in human. Although Uox from various microorganisms has been used in clinical practice for many years, its application is limited by potential immunogenicity. In order to develop a more "human like" uricase, DNA shuffling was used to create chimeric uricase with both improved enzymatic activity and increased homology with deduced human uricase (dHU) gene. By using wild porcine uricase (wPU) gene and dhu as parental genes, a diverse chimeric library was generated. After preliminary screening by a "homebrew" high throughput protocol, approximately 100 chimeras with relatively high enzymatic activity were obtained. By further activity comparison of the purified enzymes, chimera-62 with increase in both activity and homology with dHU compared with wPU was selected. Its Km and catalytic efficiency were determined as 9.43±0.04μM and 2.67s(-1)μM(-1) respectively. There were 33 amino acid substitutions in chimera-62 when compared with dHU and 5 substitutions when compared with wPU. By homology modeling and 3-D structure analysis, it was speculated that mutations G248S and L266F contributed to the increased activity of chimera-62 by increasing the stability of α-helix and surface polarity respectively.
Collapse
Affiliation(s)
- Jing Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Nan Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Wang
- Department of Neurosurgery, Shanghai 5th People's Hospital, Shanghai Medical College, Fudan University, Shanghai 200240, China
| | - Guangrong Xie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhilai Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Yuan
- School of life science, Faculty of Health and Life science, University of Liverpool, Liverpool, L69 3BX, UK
| | - Zengxian Sun
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang 222002, China.
| | - Jianhua Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
150
|
A high-throughput screening procedure for enhancing α-ketoglutaric acid production in Yarrowia lipolytica by random mutagenesis. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|