101
|
Kitazawa D, Yamaguchi M, Mori H, Inoue YH. COPI-mediated membrane trafficking is required for cytokinesis in Drosophila male meiotic divisions. J Cell Sci 2012; 125:3649-60. [DOI: 10.1242/jcs.103317] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coatomer protein complex, COPI, mediates retrograde vesicle transport from the Golgi apparatus to the ER. Here, we investigated the meiotic phenotype of Drosophila spermatocytes expressing dsRNA of 52 genes encoding membrane trafficking-related factors. We identified COPI as an essential factor for male meiosis. In Drosophila male meiotic divisions, COPI is localized in the ER-Golgi intermediate compartment of tER-Golgi units scattered throughout the spermatocyte cytoplasm. Prior to chromosome segregation, the vesicles assemble at the spindle pole periphery through a poleward movement, mediated by minus-ended motor dynein along astral microtubules. At the end of each meiotic division, COPI-containing vesicles are equally partitioned between 2 daughter cells. Our present data strongly suggest that spermatocytes possess a regulatory mechanism, to fulfill equal inheritance of several types of membrane vesicles. Using testis-specific knockdown of COPI subunits or small GTPase Arf, or mutations of the γCOP gene, we examined the role of COPI in male meiosis. COPI depletion resulted in the failure of cytokinesis, through disrupted accumulation of essential proteins and lipid components at the cleavage furrow region. Furthermore, it caused a reduction in the number of overlapping central spindle microtubules, which are essential for cytokinesis. Drosophila spermatocytes construct ER-based intracellular structures associated with astral and spindle microtubules. COPI depletion resulted in severe disruption of these ER-based structures. Thus, we propose that COPI plays an important role in Drosophila male meiosis, not only through vesicle transport to the cleavage furrow region, but also via the formation of ER-based structures.
Collapse
|
102
|
Yoshida K, Ono M, Bito H, Mikami T, Sawada H. Plasmodium induced by SU6656, an Src family kinase inhibitor, is accompanied by a contractile ring defect. Cell Biochem Funct 2011; 30:33-40. [PMID: 22034098 DOI: 10.1002/cbf.1814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 02/01/2011] [Accepted: 09/06/2011] [Indexed: 01/22/2023]
Abstract
We have shown that SU6656, a potent Src family kinase inhibitor, has the ability to induce multinucleation at a high frequency in diverse cells: rat skin fibroblasts, bone marrow adherent cells, 5F9A mesenchymal stem cell-like clones, 2C5 tracheal epithelial cells and MDCK epithelial cells from dog kidney. To gain insight into the mechanism of multinucleation, we observed the process by time-lapse and confocal microscopy. These multinuclei generally seem to exist independently in one cell without any connections with each other. By time-lapse microscopy, multinucleated cells were found to be formed through the mechanism of plasmodium: karyokinesis without cytokinesis. The observation of EGFP-actin transfected cells by time-lapse confocal laser scanning microscopy suggested that plasmodium occurred with deficient contractile ring formation. Although we examined the differentiation of these cells, the multinucleated cells could not be categorized into any type of cell in vivo known to exhibit multinuclei.
Collapse
Affiliation(s)
- Keiichiro Yoshida
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| | | | | | | | | |
Collapse
|
103
|
Zacharogianni M, Kondylis V, Tang Y, Farhan H, Xanthakis D, Fuchs F, Boutros M, Rabouille C. ERK7 is a negative regulator of protein secretion in response to amino-acid starvation by modulating Sec16 membrane association. EMBO J 2011; 30:3684-700. [PMID: 21847093 DOI: 10.1038/emboj.2011.253] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 07/07/2011] [Indexed: 01/08/2023] Open
Abstract
RNAi screening for kinases regulating the functional organization of the early secretory pathway in Drosophila S2 cells has identified the atypical Mitotic-Associated Protein Kinase (MAPK) Extracellularly regulated kinase 7 (ERK7) as a new modulator. We found that ERK7 negatively regulates secretion in response to serum and amino-acid starvation, in both Drosophila and human cells. Under these conditions, ERK7 turnover through the proteasome is inhibited, and the resulting higher levels of this kinase lead to a modification in a site within the C-terminus of Sec16, a key ER exit site component. This post-translational modification elicits the cytoplasmic dispersion of Sec16 and the consequent disassembly of the ER exit sites, which in turn results in protein secretion inhibition. We found that ER exit site disassembly upon starvation is TOR complex 1 (TORC1) independent, showing that under nutrient stress conditions, cell growth is not only inhibited at the transcriptional and translational levels, but also independently at the level of secretion by inhibiting the membrane flow through the early secretory pathway. These results reveal the existence of new signalling circuits participating in the complex regulation of cell growth.
Collapse
Affiliation(s)
- Margarita Zacharogianni
- Department of Cell Biology, Cell microscopy Centre, UMC Utrecht, Heidelberglaan, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Wang W, Gilligan DM, Sun S, Wu X, Reems JA. Distinct functional effects for dynamin 3 during megakaryocytopoiesis. Stem Cells Dev 2011; 20:2139-51. [PMID: 21671749 DOI: 10.1089/scd.2011.0159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dynamin 3 (DNM3) is a member of a family of motor proteins that participate in a number of membrane rearrangements such as cytokinesis, budding of transport vesicles, phagocytosis, and cell motility. Recently, DNM3 was implicated as having a role in megakaryocyte (MK) development. To further investigate the functional role of DNM3 during megakaryocytopoiesis, we introduced sequence-specific short hairpin RNAs (shRNAs) into developing MKs. The results showed that knockdown of DNM3 inhibited a stage of MK development that involved progenitor amplification. This was evident by significant decreases in the number of colony forming unit-megakaryocytes, the total number of nucleated cells, and the number of CD41(+) and CD61(+) MKs produced in culture. Using a styrl membrane dye to quantify the demarcation membrane system (DMS) of terminally differentiated MKs, we found that DNM3 co-localized with the DMS and that DNM3 lentiviral shRNAs precluded the formation of the DMS. Knockdown of dynamin 3 in murine MKs also caused a decrease in the number of morphologically large MKs and the overall size of large MKs was decreased relative to controls. MK protein lysates were used in overlay blots to show that both DNM3 and actin bind to nonmuscle myosin IIA (MYH9). Consistent with these observations, immunofluorescence studies of MKs and proplatelet processes showed co-localization of DNM3 with MYH9. Overall, these studies demonstrate that DNM3 not only participates in MK progenitor amplification, but is also involved in cytoplasmic enlargement and the formation of the DMS.
Collapse
Affiliation(s)
- Wenjing Wang
- Puget Sound Blood Center, Seattle, Washington 98104, USA.
| | | | | | | | | |
Collapse
|
105
|
Haglund K, Nezis IP, Stenmark H. Structure and functions of stable intercellular bridges formed by incomplete cytokinesis during development. Commun Integr Biol 2011; 4:1-9. [PMID: 21509167 DOI: 10.4161/cib.4.1.13550] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 01/12/2023] Open
Abstract
Cytokinesis, the final step of cell division, normally proceeds to completion in living organisms, so that daughter cells physically separate by abscission. In certain tissues and developmental stages, on the other hand, the cytokinesis process is incomplete, giving rise to cells interconnected in syncytia by stable intercellular bridges. This evolutionarily conserved physiological process occurs in the female and male germline in species ranging from insects to humans, and has also been observed in some somatic tissues in invertebrates. Stable intercellular bridges have fascinated cell biologists ever since they were first described more than 50 years ago, and even though substantial progress has been made concerning their ultrastructure and molecular composition, much remains to be understood about their biological functions. Another major question is by which mechanisms complete versus incomplete cytokinesis is determined. In this mini-review we will try to give an overview of the current knowledge about the structure, composition and functions of stable intercellular bridges, and discuss recent insights into the molecular control of the incomplete cytokinesis process.
Collapse
Affiliation(s)
- Kaisa Haglund
- Department of Biochemistry; Institute for Cancer Research; Oslo University Hospital; Centre for Cancer Biomedicine; Faculty of Medicine; University of Oslo; Montebello, Oslo, Norway
| | | | | |
Collapse
|
106
|
Green RA, Kao HL, Audhya A, Arur S, Mayers JR, Fridolfsson HN, Schulman M, Schloissnig S, Niessen S, Laband K, Wang S, Starr DA, Hyman AA, Schedl T, Desai A, Piano F, Gunsalus KC, Oegema K. A high-resolution C. elegans essential gene network based on phenotypic profiling of a complex tissue. Cell 2011; 145:470-82. [PMID: 21529718 DOI: 10.1016/j.cell.2011.03.037] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 12/21/2010] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
Abstract
High-content screening for gene profiling has generally been limited to single cells. Here, we explore an alternative approach-profiling gene function by analyzing effects of gene knockdowns on the architecture of a complex tissue in a multicellular organism. We profile 554 essential C. elegans genes by imaging gonad architecture and scoring 94 phenotypic features. To generate a reference for evaluating methods for network construction, genes were manually partitioned into 102 phenotypic classes, predicting functions for uncharacterized genes across diverse cellular processes. Using this classification as a benchmark, we developed a robust computational method for constructing gene networks from high-content profiles based on a network context-dependent measure that ranks the significance of links between genes. Our analysis reveals that multi-parametric profiling in a complex tissue yields functional maps with a resolution similar to genetic interaction-based profiling in unicellular eukaryotes-pinpointing subunits of macromolecular complexes and components functioning in common cellular processes.
Collapse
Affiliation(s)
- Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat Cell Biol 2011; 13:981-8. [DOI: 10.1038/ncb2279] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/09/2011] [Indexed: 12/17/2022]
|
108
|
Ben El Kadhi K, Roubinet C, Solinet S, Emery G, Carréno S. The Inositol 5-Phosphatase dOCRL Controls PI(4,5)P2 Homeostasis and Is Necessary for Cytokinesis. Curr Biol 2011; 21:1074-9. [DOI: 10.1016/j.cub.2011.05.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/07/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
|
109
|
Bonner MK, Poole DS, Xu T, Sarkeshik A, Yates JR, Skop AR. Mitotic spindle proteomics in Chinese hamster ovary cells. PLoS One 2011; 6:e20489. [PMID: 21647379 PMCID: PMC3103581 DOI: 10.1371/journal.pone.0020489] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/27/2011] [Indexed: 12/11/2022] Open
Abstract
Mitosis is a fundamental process in the development of all organisms. The mitotic spindle guides the cell through mitosis as it mediates the segregation of chromosomes, the orientation of the cleavage furrow, and the progression of cell division. Birth defects and tissue-specific cancers often result from abnormalities in mitotic events. Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO) cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology (MudPIT) analysis and tandem mass spectrometry. We identified 1155 proteins and used Gene Ontology (GO) analysis to categorize proteins into cellular component groups. We then compared our data to the previously published CHO midbody proteome and identified proteins that are unique to the CHO spindle. Our data represent the first mitotic spindle proteome in CHO cells, which augments the list of mitotic spindle components from mammalian cells.
Collapse
Affiliation(s)
- Mary Kate Bonner
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Daniel S. Poole
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tao Xu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ali Sarkeshik
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ahna R. Skop
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
110
|
Guest ST, Yu J, Liu D, Hines JA, Kashat MA, Finley RL. A protein network-guided screen for cell cycle regulators in Drosophila. BMC SYSTEMS BIOLOGY 2011; 5:65. [PMID: 21548953 PMCID: PMC3113730 DOI: 10.1186/1752-0509-5-65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/06/2011] [Indexed: 11/15/2022]
Abstract
Background Large-scale RNAi-based screens are playing a critical role in defining sets of genes that regulate specific cellular processes. Numerous screens have been completed and in some cases more than one screen has examined the same cellular process, enabling a direct comparison of the genes identified in separate screens. Surprisingly, the overlap observed between the results of similar screens is low, suggesting that RNAi screens have relatively high levels of false positives, false negatives, or both. Results We re-examined genes that were identified in two previous RNAi-based cell cycle screens to identify potential false positives and false negatives. We were able to confirm many of the originally observed phenotypes and to reveal many likely false positives. To identify potential false negatives from the previous screens, we used protein interaction networks to select genes for re-screening. We demonstrate cell cycle phenotypes for a significant number of these genes and show that the protein interaction network is an efficient predictor of new cell cycle regulators. Combining our results with the results of the previous screens identified a group of validated, high-confidence cell cycle/cell survival regulators. Examination of the subset of genes from this group that regulate the G1/S cell cycle transition revealed the presence of multiple members of three structurally related protein complexes: the eukaryotic translation initiation factor 3 (eIF3) complex, the COP9 signalosome, and the proteasome lid. Using a combinatorial RNAi approach, we show that while all three of these complexes are required for Cdk2/Cyclin E activity, the eIF3 complex is specifically required for some other step that limits the G1/S cell cycle transition. Conclusions Our results show that false positives and false negatives each play a significant role in the lack of overlap that is observed between similar large-scale RNAi-based screens. Our results also show that protein network data can be used to minimize false negatives and false positives and to more efficiently identify comprehensive sets of regulators for a process. Finally, our data provides a high confidence set of genes that are likely to play key roles in regulating the cell cycle or cell survival.
Collapse
Affiliation(s)
- Stephen T Guest
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | | | | | | | | | | |
Collapse
|
111
|
Elad N, Abramovitch S, Sabanay H, Medalia O. Microtubule organization in the final stages of cytokinesis as revealed by cryo-electron tomography. J Cell Sci 2011; 124:207-15. [DOI: 10.1242/jcs.073486] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The completion of cytokinesis is dominated by the midbody, a tightly-packed microtubule (MT)-based bridge that transiently connects the two daughter cells. Assembled from condensed, spindle-MTs and numerous associated proteins, the midbody gradually narrows down until daughter cell partitioning occurs at this site. Although described many years ago, detailed understanding of the abscission process remains lacking. Applying cryo-electron tomography to purified midbodies, in combination with fluorescence microscopy, we present here new insight into MT organization within the midbody. We find that the midbody is spatially divided into a core bundle of MTs that traverses the electron-dense overlap region (continuous MTs), surrounded by MTs that terminate within the overlap region (polar MTs). Residual continuous MTs remained intact up to the verge of abscission, whereas the residual polar MTs lost their organization and retreated from the overlap region at late cytokinesis stages. A detailed localization of the microtubule-bundling protein PRC1 supports the above notion. Our study thus provides a detailed account of the abscission process and suggests that the midbody, having acquired a distinct MT architecture as compared to the preceding central spindle, actively facilitates the final stage of cytokinesis.
Collapse
Affiliation(s)
- Nadav Elad
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shahar Abramovitch
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Helena Sabanay
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Ohad Medalia
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
112
|
Blackstone C, O'Kane CJ, Reid E. Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat Rev Neurosci 2011; 12:31-42. [PMID: 21139634 PMCID: PMC5584382 DOI: 10.1038/nrn2946] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Voluntary movement is a fundamental way in which animals respond to, and interact with, their environment. In mammals, the main CNS pathway controlling voluntary movement is the corticospinal tract, which encompasses connections between the cerebral motor cortex and the spinal cord. Hereditary spastic paraplegias (HSPs) are a group of genetic disorders that lead to a length-dependent, distal axonopathy of fibres of the corticospinal tract, causing lower limb spasticity and weakness. Recent work aimed at elucidating the molecular cell biology underlying the HSPs has revealed the importance of basic cellular processes — especially membrane trafficking and organelle morphogenesis and distribution— in axonal maintenance and degeneration.
Collapse
Affiliation(s)
- Craig Blackstone
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
113
|
Zhang L, Ten Hagen KG. Dissecting the biological role of mucin-type O-glycosylation using RNA interference in Drosophila cell culture. J Biol Chem 2010; 285:34477-84. [PMID: 20807760 DOI: 10.1074/jbc.m110.133561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mucin type O-glycosylation is a highly conserved form of post-translational modification initiated by the family of enzymes known as the polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAcTs in mammals and PGANTs in Drosophila). To address the cellular functions of the many PGANT family members, RNA interference (RNAi) to each pgant gene was performed in two independent Drosophila cell culture lines. We demonstrate that RNAi to individual pgant genes results in specific reduction in gene expression without affecting the expression of other family members. Cells with reduced expression of individual pgant genes were then examined for changes in viability, morphology, adhesion, and secretion to assess the contribution of each family member to these cellular functions. Here we find that RNAi to pgant3, pgant6, or pgant7 resulted in reduced secretion, further supporting a role for O-glycosylation in proper secretion. Additionally, RNAi to pgant3 or pgant6 resulted in altered Golgi organization, suggesting a role for each in establishing or maintaining proper secretory apparatus structure. Other subcellular effects observed included multinucleated cells seen after RNAi to either pgant2 or pgant35A, suggesting a role for these genes in the completion of cytokinesis. These studies demonstrate the efficient and specific knockdown of pgant gene expression in two Drosophila cell culture systems, resulting in specific morphological and functional effects. Our work provides new information regarding the biological roles of O-glycosylation and illustrates a new platform for interrogating the cellular and subcellular effects of this form of post-translational modification.
Collapse
Affiliation(s)
- Liping Zhang
- Developmental Glycobiology Unit, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA
| | | |
Collapse
|
114
|
Vielemeyer O, Nizak C, Jimenez AJ, Echard A, Goud B, Camonis J, Rain JC, Perez F. Characterization of single chain antibody targets through yeast two hybrid. BMC Biotechnol 2010; 10:59. [PMID: 20727208 PMCID: PMC2936416 DOI: 10.1186/1472-6750-10-59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/22/2010] [Indexed: 05/12/2023] Open
Abstract
Background Due to their unique ability to bind their targets with high fidelity, antibodies are used widely not only in biomedical research, but also in many clinical applications. Recombinant antibodies, including single chain variable fragments (scFv), are gaining momentum because they allow powerful in vitro selection and manipulation without loss of function. Regardless of the ultimate application or type of antibody used, precise understanding of the interaction between the antibody's binding site and its specific target epitope(s) is of great importance. However, such data is frequently difficult to obtain. Results We describe an approach that allows detailed characterization of a given antibody's target(s) using the yeast two-hybrid system. Several recombinant scFv were used as bait and screened against highly complex cDNA libraries. Systematic sequencing of all retained clones and statistical analysis allowed efficient ranking of the prey fragments. Multiple alignment of the obtained cDNA fragments provided a selected interacting domain (SID), efficiently narrowing the epitope-containing region. Interactions between antibodies and their respective targets were characterized for several scFv. For AA2 and ROF7, two conformation-specific sensors that exclusively bind the activated forms of the small GTPases Rab6 and Rab1 respectively, only fragments expressing the entire target protein's core region were retained. This strongly suggested interaction with a non-linear epitope. For two other scFv, TA10 and SF9, which recognize the large proteins giantin and non-muscle myosin IIA, respectively, precise antibody-binding regions within the target were defined. Finally, for some antibodies, secondary targets within and across species could be revealed. Conclusions Our method, utilizing the yeast two-hybrid technology and scFv as bait, is a simple yet powerful approach for the detailed characterization of antibody targets. It allows precise domain mapping for linear epitopes, confirmation of non-linear epitopes for conformational sensors, and detection of secondary binding partners. This approach may thus prove to be an elegant and rapid method for the target characterization of newly obtained scFv antibodies. It may be considered prior to any research application and particularly before any use of such recombinant antibodies in clinical medicine.
Collapse
Affiliation(s)
- Ole Vielemeyer
- Institut Curie-Research Center, 26 rue d'Ulm, Paris cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
115
|
The myriad roles of Anillin during cytokinesis. Semin Cell Dev Biol 2010; 21:881-91. [PMID: 20732437 DOI: 10.1016/j.semcdb.2010.08.002] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/03/2010] [Accepted: 08/03/2010] [Indexed: 11/21/2022]
Abstract
Anillin is a highly conserved multidomain protein that interacts with cytoskeletal components as well as their regulators. Throughout phylogeny, Anillins contribute to cytokinesis, the cell shape change that occurs at the end of meiosis and mitosis to separate a cell into daughter cells. Failed cytokinesis results in binucleation, which can lead to genomic instability. Study of Anillin in several model organisms has provided us with insight into how the cytoskeleton is coordinated to ensure that cytokinesis occurs with high fidelity. Here we review Anillin's interacting partners and the relevance of these interactions in vivo. We also discuss questions of how these interactions are coordinated, and finally provide some perspective regarding Anillin's role in cancer.
Collapse
|
116
|
Guizetti J, Gerlich DW. Cytokinetic abscission in animal cells. Semin Cell Dev Biol 2010; 21:909-16. [PMID: 20708087 DOI: 10.1016/j.semcdb.2010.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/27/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Cytokinesis leads to the separation of dividing cells, which in animal cells involves the contraction of an actin-myosin ring and subsequent fission during abscission. Abscission requires a series of dynamic events, including midbody-targeted vesicle secretion, specialization of plasma membrane domains, disassembly of midbody-associated microtubule bundles and plasma membrane fission. A large number of molecular factors required for abscission have been identified through localization, loss-of-function and proteomics studies, but their coordinate function in abscission is still poorly understood. Here, we review the structural elements and molecular factors known to contribute to abscission, and discuss their potential role in the context of proposed models for the abscission mechanism.
Collapse
Affiliation(s)
- Julien Guizetti
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland
| | | |
Collapse
|
117
|
Murthy M, Teodoro RO, Miller TP, Schwarz TL. Sec5, a member of the exocyst complex, mediates Drosophila embryo cellularization. Development 2010; 137:2773-83. [PMID: 20630948 DOI: 10.1242/dev.048330] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellularization of the Drosophila embryo is the process by which a syncytium of approximately 6000 nuclei is subdivided into discrete cells. In order to individualize the cells, massive membrane addition needs to occur by a process that is not fully understood. The exocyst complex is required for some, but not all, forms of exocytosis and plays a role in directing vesicles to appropriate domains of the plasma membrane. Sec5 is a central component of this complex and we here report the isolation of a new allele of sec5 that has a temperature-sensitive phenotype. Using this allele, we investigated whether the exocyst complex is required for cellularization. Embryos from germline clones of the sec5(ts1) allele progress normally through cycle 13. At cellularization, however, cleavage furrows do not invaginate between nuclei and consequently cells do not form. A zygotically translated membrane protein, Neurotactin, is not inserted into the plasma membrane and instead accumulates in cytoplasmic puncta. During cellularization, Sec5 becomes concentrated at the apical end of the lateral membranes, which is likely to be the major site of membrane addition. Subsequently, Sec5 concentrates at the sub-apical complex, indicating a role for Sec5 in the polarized epithelium. Thus, the exocyst is necessary for, and is likely to direct, the polarized addition of new membrane during this form of cytokinesis.
Collapse
Affiliation(s)
- Mala Murthy
- The F.M. Kirby Neurobiology Center, Children's Hospital, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
118
|
Ai E, Skop AR. Endosomal recycling regulation during cytokinesis. Commun Integr Biol 2010; 2:444-7. [PMID: 19907714 DOI: 10.4161/cib.2.5.8931] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 04/05/2009] [Indexed: 11/19/2022] Open
Abstract
Successful cytokinesis is critical for cell proliferation and development. In animal cells, cytokinesis relies on temporally and spatially regulated membrane addition to the cleavage site. An important source for the new membrane is recycling endosomes. Yet how these endocytic vesicles are transported and regulated remains unclear. Several potential factors have been recently identified that regulate the trafficking of recycling endosomes during cytokinesis. Dynein and dynactin are required for the retrograde transport of recycling endosomes, while Kinesin-1 is responsible for endosome delivery to the furrow and midbody. Other regulators of recycling endosome trafficking have been identified, including RACK1, JIP3/4 and ECT2, which target recycling endosomes during the cell cycle. Here, we provide insights into the mechanisms controlling endosomal trafficking during cytokinesis.
Collapse
Affiliation(s)
- Erkang Ai
- Department of Genetics & Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
119
|
Cindr Interacts with Anillin to Control Cytokinesis in Drosophila melanogaster. Curr Biol 2010; 20:944-50. [DOI: 10.1016/j.cub.2010.03.068] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 03/29/2010] [Accepted: 03/29/2010] [Indexed: 11/20/2022]
|
120
|
Goldbach P, Wong R, Beise N, Sarpal R, Trimble WS, Brill JA. Stabilization of the actomyosin ring enables spermatocyte cytokinesis in Drosophila. Mol Biol Cell 2010; 21:1482-93. [PMID: 20237160 PMCID: PMC2861608 DOI: 10.1091/mbc.e09-08-0714] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 01/25/2010] [Accepted: 03/05/2010] [Indexed: 12/15/2022] Open
Abstract
The scaffolding protein anillin is required for completion of cytokinesis. Anillin binds filamentous (F) actin, nonmuscle myosin II, and septins and in cell culture models has been shown to restrict actomyosin contractility to the cleavage furrow. Whether anillin also serves this function during the incomplete cytokinesis that occurs in developing germ cells has remained unclear. Here, we show that anillin is required for cytokinesis in dividing Drosophila melanogaster spermatocytes and that anillin, septins, and myosin II stably associate with the cleavage furrow in wild-type cells. Anillin is necessary for recruitment of septins to the cleavage furrow and for maintenance of F-actin and myosin II at the equator in late stages of cytokinesis. Remarkably, expression of DE-cadherin suppresses the cytokinesis defect of anillin-depleted spermatocytes. DE-cadherin recruits beta-catenin (armadillo) and alpha-catenin to the cleavage furrow and stabilizes F-actin at the equator. Similarly, E-cadherin expression suppresses the cytokinesis defect caused by anillin knockdown in mouse L-fibroblast cells. Our results show that the anillin-septin and cadherin-catenin complexes can serve as alternative cassettes to promote tight physical coupling of F-actin and myosin II to the cleavage furrow and successful completion of cytokinesis.
Collapse
Affiliation(s)
- Philip Goldbach
- *Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
- Department of Molecular Genetics, and
| | - Raymond Wong
- *Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
- Institute of Medical Science, and
| | - Nolan Beise
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada; and
| | - Ritu Sarpal
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - William S. Trimble
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada; and
| | - Julie A. Brill
- *Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
- Department of Molecular Genetics, and
- Institute of Medical Science, and
| |
Collapse
|
121
|
Abstract
Fluorescence microscopy is one of the most powerful tools to investigate complex cellular processes such as cell division, cell motility, or intracellular trafficking. The availability of RNA interference (RNAi) technology and automated microscopy has opened the possibility to perform cellular imaging in functional genomics and other large-scale applications. Although imaging often dramatically increases the content of a screening assay, it poses new challenges to achieve accurate quantitative annotation and therefore needs to be carefully adjusted to the specific needs of individual screening applications. In this review, we discuss principles of assay design, large-scale RNAi, microscope automation, and computational data analysis. We highlight strategies for imaging-based RNAi screening adapted to different library and assay designs.
Collapse
Affiliation(s)
- Christian Conrad
- Advanced Light Microscopy Core Facility, European Molecular Biology Laboratory Heidelberg, D-69117 Heidelberg, Germany.
| | | |
Collapse
|
122
|
Coffman VC, Nile AH, Lee IJ, Liu H, Wu JQ. Roles of formin nodes and myosin motor activity in Mid1p-dependent contractile-ring assembly during fission yeast cytokinesis. Mol Biol Cell 2010; 20:5195-210. [PMID: 19864459 DOI: 10.1091/mbc.e09-05-0428] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two prevailing models have emerged to explain the mechanism of contractile-ring assembly during cytokinesis in the fission yeast Schizosaccharomyces pombe: the spot/leading cable model and the search, capture, pull, and release (SCPR) model. We tested some of the basic assumptions of the two models. Monte Carlo simulations of the SCPR model require that the formin Cdc12p is present in >30 nodes from which actin filaments are nucleated and captured by myosin-II in neighboring nodes. The force produced by myosin motors pulls the nodes together to form a compact contractile ring. Live microscopy of cells expressing Cdc12p fluorescent fusion proteins shows for the first time that Cdc12p localizes to a broad band of 30-50 dynamic nodes, where actin filaments are nucleated in random directions. The proposed progenitor spot, essential for the spot/leading cable model, usually disappears without nucleating actin filaments. alpha-Actinin ain1 deletion cells form a normal contractile ring through nodes in the absence of the spot. Myosin motor activity is required to condense the nodes into a contractile ring, based on slower or absent node condensation in myo2-E1 and UCS rng3-65 mutants. Taken together, these data provide strong support for the SCPR model of contractile-ring formation in cytokinesis.
Collapse
Affiliation(s)
- Valerie C Coffman
- Department of Molecular Genetics, Graduate Program of Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
123
|
Atilla-Gokcumen GE, Castoreno AB, Sasse S, Eggert US. Making the cut: the chemical biology of cytokinesis. ACS Chem Biol 2010; 5:79-90. [PMID: 20014865 DOI: 10.1021/cb900256m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytokinesis is the last step in the cell cycle, where daughter cells finally separate. It is precisely regulated in both time and space to ensure that each daughter cell receives an equal share of DNA and other cellular materials. Chemical biology approaches have been used very successfully to study the mechanism of cytokinesis. In this review, we discuss the use of small molecule probes to perturb cytokinesis, as well as the role naturally occurring small molecule metabolites such as lipids play during cytokinesis.
Collapse
Affiliation(s)
- G. Ekin Atilla-Gokcumen
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Adam B. Castoreno
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Sofia Sasse
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
- Westfälische Wilhelms-Universität Münster, Germany
| | - Ulrike S. Eggert
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
124
|
Abstract
Cytokinesis is the final step in cell division. The process begins during chromosome segregation, when the ingressing cleavage furrow begins to partition the cytoplasm between the nascent daughter cells. The process is not completed until much later, however, when the final cytoplasmic bridge connecting the two daughter cells is severed. Cytokinesis is a highly ordered process, requiring an intricate interplay between cytoskeletal, chromosomal and cell cycle regulatory pathways. A surprisingly broad range of additional cellular processes are also important for cytokinesis, including protein and membrane trafficking, lipid metabolism, protein synthesis and signaling pathways. As a highly regulated, complex process, it is not surprising that cytokinesis can sometimes fail. Cytokinesis failure leads to both centrosome amplification and production of tetraploid cells, which may set the stage for the development of tumor cells. However, tetraploid cells are abundant components of some normal tissues including liver and heart, indicating that cytokinesis is physiologically regulated. In this chapter, we summarize our current understanding of the mechanisms of cytokinesis, emphasizing steps in the pathway that may be regulated or prone to failure. Our discussion emphasizes findings in vertebrate cells although we have attempted to highlight important contributions from other model systems.
Collapse
Affiliation(s)
| | - Randall W. King
- Corresponding Author Department of Cell Biology Harvard Medical School 240 Longwood Ave, Boston MA 02115
| |
Collapse
|
125
|
Guizetti J, Mäntler J, Müller-Reichert T, Gerlich DW. Correlative time-lapse imaging and electron microscopy to study abscission in HeLa cells. Methods Cell Biol 2010; 96:591-601. [PMID: 20869539 DOI: 10.1016/s0091-679x(10)96024-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HeLa cells are widely used as a model system to study cell division. The last step of cell division, abscission, occurs at an about 1 μm wide intercellular bridge that connects the post-mitotic sister cells. Abscission often occurs long after ingression of the cleavage furrow, and no efficient methods to synchronize cells to this stage are available. Here, we have developed a correlative fluorescence time-lapse imaging and electron microscopic approach using Aclar sheets with engraved grid patterns. This grid pattern, leaving a negative imprint on thin-layer embedded samples, allows identification of cells selected from the time-lapse imaging for serial-section electron microscopy. This method facilitates the ultrastructural analysis of specific stages of abscission.
Collapse
Affiliation(s)
- Julien Guizetti
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
126
|
|
127
|
Johnston CA, Hirono K, Prehoda KE, Doe CQ. Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway using induced cell polarity in S2 cells. Cell 2009; 138:1150-63. [PMID: 19766567 DOI: 10.1016/j.cell.2009.07.041] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/19/2009] [Accepted: 07/02/2009] [Indexed: 12/26/2022]
Abstract
Asymmetric cell division is intensely studied because it can generate cellular diversity as well as maintain stem cell populations. Asymmetric cell division requires mitotic spindle alignment with intrinsic or extrinsic polarity cues, but mechanistic detail of this process is lacking. Here, we develop a method to construct cortical polarity in a normally unpolarized cell line and use this method to characterize Partner of Inscuteable (Pins; LGN/AGS3 in mammals) -dependent spindle orientation. We identify a previously unrecognized evolutionarily conserved Pins domain (Pins(LINKER)) that requires Aurora-A phosphorylation to recruit Discs large (Dlg; PSD-95/hDlg in mammals) and promote partial spindle orientation. The well-characterized Pins(TPR) domain has no function alone, but placing the Pins(TPR) in cis to the Pins(LINKER) gives dynein-dependent precise spindle orientation. This "induced cortical polarity" assay is suitable for rapid identification of the proteins, domains, and amino acids regulating spindle orientation or cell polarity.
Collapse
|
128
|
Kondylis V, Rabouille C. The Golgi apparatus: lessons from Drosophila. FEBS Lett 2009; 583:3827-38. [PMID: 19800333 DOI: 10.1016/j.febslet.2009.09.048] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/10/2009] [Accepted: 09/26/2009] [Indexed: 11/19/2022]
Abstract
Historically, Drosophila has been a model organism for studying molecular and developmental biology leading to many important discoveries in this field. More recently, the fruit fly has started to be used to address cell biology issues including studies of the secretory pathway, and more specifically on the functional integrity of the Golgi apparatus. A number of advances have been made that are reviewed below. Furthermore, with the development of RNAi technology, Drosophila tissue culture cells have been used to perform genome-wide screens addressing similar issues. Last, the Golgi function has been involved in specific developmental processes, thus shedding new light on the functions of a number of Golgi proteins.
Collapse
Affiliation(s)
- Vangelis Kondylis
- Cell Microscopy Centre, Department of Cell Biology, UMC Utrecht, AZU H02.313, Heidelberglaan 100, Utrecht, The Netherlands.
| | | |
Collapse
|
129
|
Steigemann P, Gerlich DW. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol 2009; 19:606-16. [PMID: 19733077 DOI: 10.1016/j.tcb.2009.07.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/18/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
The intercellular canal containing the midbody is one of the most prominent structures in dividing animal cells, yet its function in the completion of cytokinesis by abscission remains largely unknown. This is because of its small size, which makes it difficult to investigate the cytoskeletal and membrane dynamics underlying abscission by standard light microscopy. The advent of new fluorescent probes and imaging technologies, along with sophisticated perturbation tools, provides new possibilities to elucidate the molecular control of this essential cell biological process. Here we discuss the control of midbody assembly and current models for the mechanism of abscission in animal cells. We highlight new methodologies that will facilitate testing and refining of these models.
Collapse
Affiliation(s)
- Patrick Steigemann
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Schafmattstr. 18, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
130
|
Morin P, Flors C, Olson MF. Constitutively active RhoA inhibits proliferation by retarding G(1) to S phase cell cycle progression and impairing cytokinesis. Eur J Cell Biol 2009; 88:495-507. [PMID: 19515453 PMCID: PMC2750871 DOI: 10.1016/j.ejcb.2009.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/21/2009] [Accepted: 04/26/2009] [Indexed: 01/21/2023] Open
Abstract
The actions of RhoA in cytoskeletal regulation have been extensively studied. RhoA also contributes to proliferation and oncogenic transformation by less well-characterized means. Elevated RhoA signalling has been associated with human cancer; through increased RhoA expression, mutation or elevated expression of activating Rho guanine-nucleotide exchange factors (GEFs), or from deletion or decreased expression of inhibitory Rho GTPase-activating proteins (GAPs). Unlike the Ras oncogene, constitutively-activated GTPase-deficient RhoA mutants have not been identified in tumours. To investigate the effects of active RhoA on proliferation, we generated Swiss3T3 cells that inducibly express wild-type RhoA or GTPase-deficient active V14RhoA. We found that V14RhoA inhibited cell proliferation by retarding entry into the DNA synthetic cell cycle phase and blocking successful completion of cytokinesis, resulting in an increased incidence of binucleate cells. These effects were associated with inhibition of mitogen-induced activation of the MAPK pathway, and suppression of several proteins involved in mitosis, including anillin, ECT2 and cyclin B1 which would be expected to result in reduced activation of endogenous RhoA at the cell equator. Accumulation of active RhoA protein in the midbody of cells in telophase was inhibited in V14RhoA-expressing cells, suggesting that RhoA inactivation must occur prior to re-activation. Defective cytokinesis was also associated with prominent actin structures in V14RhoA-expressing cells, which might be incompatible with equatorial furrowing. Using super-resolution imaging based on single-molecule switching, we have significantly improved the resolution of active RhoA in midbodies. These results indicate that constitutively-active RhoA antagonizes several cellular activities that contribute to proliferation, highlighting the importance for cycling between GTP/GDP-bound states.
Collapse
Affiliation(s)
- Pierre Morin
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Cristina Flors
- School of Chemistry, University of Edinburgh, Joseph Black Building, The King’s Buildings, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Michael F. Olson
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
131
|
Nishihama R, Schreiter JH, Onishi M, Vallen EA, Hanna J, Moravcevic K, Lippincott MF, Han H, Lemmon MA, Pringle JR, Bi E. Role of Inn1 and its interactions with Hof1 and Cyk3 in promoting cleavage furrow and septum formation in S. cerevisiae. ACTA ACUST UNITED AC 2009; 185:995-1012. [PMID: 19528296 PMCID: PMC2711614 DOI: 10.1083/jcb.200903125] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytokinesis requires coordination of actomyosin ring (AMR) contraction with rearrangements of the plasma membrane and extracellular matrix. In Saccharomyces cerevisiae, new membrane, the chitin synthase Chs2 (which forms the primary septum [PS]), and the protein Inn1 are all delivered to the division site upon mitotic exit even when the AMR is absent. Inn1 is essential for PS formation but not for Chs2 localization. The Inn1 C-terminal region is necessary for localization, and distinct PXXP motifs in this region mediate functionally important interactions with SH3 domains in the cytokinesis proteins Hof1 (an F-BAR protein) and Cyk3 (whose overexpression can restore PS formation in inn1Δ cells). The Inn1 N terminus resembles C2 domains but does not appear to bind phospholipids; nonetheless, when overexpressed or fused to Hof1, it can provide Inn1 function even in the absence of the AMR. Thus, Inn1 and Cyk3 appear to cooperate in activating Chs2 for PS formation, which allows coordination of AMR contraction with ingression of the cleavage furrow.
Collapse
Affiliation(s)
- Ryuichi Nishihama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Edwards AC, Zwarts L, Yamamoto A, Callaerts P, Mackay TFC. Mutations in many genes affect aggressive behavior in Drosophila melanogaster. BMC Biol 2009; 7:29. [PMID: 19519879 PMCID: PMC2707370 DOI: 10.1186/1741-7007-7-29] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 06/11/2009] [Indexed: 01/06/2023] Open
Abstract
Background Aggressive behavior in animals is important for survival and reproduction. Identifying the underlying genes and environmental contexts that affect aggressive behavior is important for understanding the evolutionary forces that maintain variation for aggressive behavior in natural populations, and to develop therapeutic interventions to modulate extreme levels of aggressive behavior in humans. While the role of neurotransmitters and a few other molecules in mediating and modulating levels of aggression is well established, it is likely that many additional genetic pathways remain undiscovered. Drosophila melanogaster has recently been established as an excellent model organism for studying the genetic basis of aggressive behavior. Here, we present the results of a screen of 170 Drosophila P-element insertional mutations for quantitative differences in aggressive behavior from their co-isogenic control line. Results We identified 59 mutations in 57 genes that affect aggressive behavior, none of which had been previously implicated to affect aggression. Thirty-two of these mutants exhibited increased aggression, while 27 lines were less aggressive than the control. Many of the genes affect the development and function of the nervous system, and are thus plausibly relevant to the execution of complex behaviors. Others affect basic cellular and metabolic processes, or are mutations in computationally predicted genes for which aggressive behavior is the first biological annotation. Most of the mutations had pleiotropic effects on other complex traits. We characterized nine of these mutations in greater detail by assessing transcript levels throughout development, morphological changes in the mushroom bodies, and restoration of control levels of aggression in revertant alleles. All of the P-element insertions affected the tagged genes, and had pleiotropic effects on brain morphology. Conclusion This study reveals that many more genes than previously suspected affect aggressive behavior, and that these genes have widespread pleiotropic effects. Given the conservation of aggressive behavior among different animal species, these are novel candidate genes for future study in other animals, including humans.
Collapse
Affiliation(s)
- Alexis C Edwards
- Department of Genetics, North Carolina State University, Raleigh, NC, USA.
| | | | | | | | | |
Collapse
|
133
|
D'Avino PP. How to scaffold the contractile ring for a safe cytokinesis - lessons from Anillin-related proteins. J Cell Sci 2009; 122:1071-9. [PMID: 19339546 DOI: 10.1242/jcs.034785] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ingression of a cleavage furrow separates the two daughter cells at the end of cell division. In many organisms this furrow ingression is driven by the assembly and contraction of actomyosin filaments, forming a contractile ring. To achieve a successful cytokinesis, these actomyosin filaments need to be assembled in an organized manner. For this purpose, a network of cytoskeletal proteins is built at the cleavage site to act as a scaffold for actomyosin filaments and to connect them to the plasma membrane. The Drosophila melanogaster protein Anillin, and its related proteins in other organisms, has a pivotal role in the organization of this scaffold in many species, ranging from yeast to humans. Recent studies indicate that Anillin-related proteins interact not only with the structural components of the contractile ring, but also with the signalling factors that control their dynamics. In addition, Drosophila Anillin connects the actomyosin ring to the spindle microtubules through its interaction with the RacGAP component of the centralspindlin complex. Here I review the structures and functions of Anillin and Anillin-related proteins in various model systems, and aim to highlight both the common and distinctive features of these essential organizers of the molecular machinery that drives furrow ingression.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| |
Collapse
|
134
|
Su L, Pertz O, Mikawa M, Hahn K, Parsons SJ. p190RhoGAP negatively regulates Rho activity at the cleavage furrow of mitotic cells. Exp Cell Res 2009; 315:1347-59. [PMID: 19254711 PMCID: PMC2731427 DOI: 10.1016/j.yexcr.2009.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 12/30/2022]
Abstract
Previous studies demonstrated that p190RhoGAP (p190) negatively affects cytokinesis in a RhoGAP-dependent manner, suggesting that regulation of Rho may be a critical mechanism of p190 action during cytokinesis. P190 localizes to the cleavage furrow (CF) of dividing cells, and its levels decrease during late mitosis by an ubiquitin-mediated mechanism, consistent with the hypothesis that high RhoGTP levels are required for completion of cytokinesis. To determine whether RhoGTP levels in the CF are affected by p190 and to define the phase(s) of cytokinesis in which p190 is involved, we used FRET analysis alone or in combination with time-lapse microscopy. In normal cell division activated Rho accumulated at the cell equator in early anaphase and in the contractile ring, where it co-localized with p190. Real-time movies revealed that cells expressing elevated levels of p190 exhibited multiple cycles of abnormal CF site selection and ingression/regression, which resulted in failed or prolonged cytokinesis. This was accompanied by mislocalization of active Rho at the aberrant CF sites. Quantified data revealed that in contrast to ECT2 and dominate negative p190 (Y1283Ap190), which resulted in hyper-activated Rho, Rho activity in the CF was reduced by wild type p190 in a dose-dependent manner. These results suggest that p190 regulates cytokinesis through modulation of RhoGTP levels, thereby affecting CF specification site selection and subsequent ring contraction.
Collapse
Affiliation(s)
- Ling Su
- Department of Microbiology and Cancer Center, University of Virginia Health System, P O Box 800734, Charlottesville, Virginia 22908
| | - Olivier Pertz
- University of North Carolina at Chapel Hill, Department of Pharmacology and Lineberger Cancer Center, Chapel Hill, North Carolina 27599
| | - Masahito Mikawa
- Department of Microbiology and Cancer Center, University of Virginia Health System, P O Box 800734, Charlottesville, Virginia 22908
| | - Klaus Hahn
- University of North Carolina at Chapel Hill, Department of Pharmacology and Lineberger Cancer Center, Chapel Hill, North Carolina 27599
| | - Sarah J. Parsons
- Department of Microbiology and Cancer Center, University of Virginia Health System, P O Box 800734, Charlottesville, Virginia 22908
| |
Collapse
|
135
|
Monnerat S, Clucas C, Brown E, Mottram JC, Hammarton TC. Searching for novel cell cycle regulators in Trypanosoma brucei with an RNA interference screen. BMC Res Notes 2009; 2:46. [PMID: 19309510 PMCID: PMC2674452 DOI: 10.1186/1756-0500-2-46] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/23/2009] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes Human African Trypanosomiasis. Its cell cycle is complex and not fully understood at the molecular level. The T. brucei genome contains over 6000 protein coding genes with >50% having no predicted function. A small scale RNA interference (RNAi) screen was carried out in Trypanosoma brucei to evaluate the prospects for identifying novel cycle regulators. RESULTS Procyclic form T. brucei were transfected with a genomic RNAi library and 204 clones isolated. However, only 76 RNAi clones were found to target a protein coding gene of potential interest. These clones were screened for defects in proliferation and cell cycle progression following RNAi induction. Sixteen clones exhibited proliferation defects upon RNAi induction, with eight clones displaying potential cell cycle defects. To confirm the phenotypes, new RNAi cell lines were generated and characterised for five genes targeted in these clones. While we confirmed that the targeted genes are essential for proliferation, we were unable to unambiguously classify them as cell cycle regulators. CONCLUSION Our study identified genes essential for proliferation, but did not, as hoped, identify novel cell cycle regulators. Screening of the RNAi library for essential genes was extremely labour-intensive, which was compounded by the suboptimal quality of the library. For such a screening method to be viable for a large scale or genome wide screen, a new, significantly improved RNAi library will be required, and automated phenotyping approaches will need to be incorporated.
Collapse
Affiliation(s)
- Séverine Monnerat
- Division of Infection & Immunity, Faculty of Biomedical and Life Sciences and Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, UK
| | - Caroline Clucas
- Division of Infection & Immunity, Faculty of Biomedical and Life Sciences and Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, UK
| | - Elaine Brown
- Division of Infection & Immunity, Faculty of Biomedical and Life Sciences and Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, UK
| | - Jeremy C Mottram
- Division of Infection & Immunity, Faculty of Biomedical and Life Sciences and Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, UK
| | - Tansy C Hammarton
- Division of Infection & Immunity, Faculty of Biomedical and Life Sciences and Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, UK
| |
Collapse
|
136
|
Abstract
In mammals, AU-rich elements (AREs) are critical regulators of mRNA turnover. They recruit ARE-binding proteins that inhibit or stimulate rapid mRNA degradation in response to stress or developmental cues. Using a bioinformatics approach, we have identified AREs in Drosophila melanogaster 3' untranslated regions and validated their cross-species conservation in distant Drosophila genomes. We have generated a Drosophila ARE database (D-ARED) and established that about 16% of D. melanogaster genes contain the mammalian ARE signature, an AUUUA pentamer in an A/U-rich context. Using candidate ARE genes, we show that Drosophila AREs stimulate reporter mRNA decay in cultured cells and in the physiological context of the immune response in D. melanogaster. In addition, we found that the conserved ARE-binding protein Tis11 regulates temporal gene expression through ARE-mediated decay (AMD) in D. melanogaster. Our work reveals that AREs are conserved and functional cis regulators of mRNA decay in Drosophila and highlights this organism as a novel model system to unravel in vivo the contribution of AMD to various processes.
Collapse
|
137
|
Liu T, Sims D, Baum B. Parallel RNAi screens across different cell lines identify generic and cell type-specific regulators of actin organization and cell morphology. Genome Biol 2009; 10:R26. [PMID: 19265526 PMCID: PMC2690997 DOI: 10.1186/gb-2009-10-3-r26] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/18/2009] [Accepted: 03/05/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years RNAi screening has proven a powerful tool for dissecting gene functions in animal cells in culture. However, to date, most RNAi screens have been performed in a single cell line, and results then extrapolated across cell types and systems. RESULTS Here, to dissect generic and cell type-specific mechanisms underlying cell morphology, we have performed identical kinome RNAi screens in six different Drosophila cell lines, derived from two distinct tissues of origin. This analysis identified a core set of kinases required for normal cell morphology in all lines tested, together with a number of kinases with cell type-specific functions. Most significantly, the screen identified a role for minibrain (mnb/DYRK1A), a kinase associated with Down's syndrome, in the regulation of actin-based protrusions in CNS-derived cell lines. This cell type-specific requirement was not due to the peculiarities in the morphology of CNS-derived cells and could not be attributed to differences in mnb expression. Instead, it likely reflects differences in gene expression that constitute the cell type-specific functional context in which mnb/DYRK1A acts. CONCLUSIONS Using parallel RNAi screens and gene expression analyses across cell types we have identified generic and cell type-specific regulators of cell morphology, which include mnb/DYRK1A in the regulation of protrusion morphology in CNS-derived cell lines. This analysis reveals the importance of using different cell types to gain a thorough understanding of gene function across the genome and, in the case of kinases, the difficulties of using the differential gene expression to predict function.
Collapse
Affiliation(s)
- Tao Liu
- MRC Laboratory of Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - David Sims
- The Institute of Cancer Research, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Buzz Baum
- MRC Laboratory of Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
138
|
Roberts-Galbraith RH, Chen JS, Wang J, Gould KL. The SH3 domains of two PCH family members cooperate in assembly of the Schizosaccharomyces pombe contractile ring. ACTA ACUST UNITED AC 2009; 184:113-27. [PMID: 19139265 PMCID: PMC2615086 DOI: 10.1083/jcb.200806044] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Schizosaccharomyces pombe cdc15 homology (PCH) family members participate in many cellular processes by bridging the plasma membrane and cytoskeleton. Their F-BAR domains bind and curve membranes, whereas other domains, typically SH3 domains, are expected to provide cytoskeletal links. We tested this prevailing model of functional division in the founding member of the family, Cdc15, which is essential for cytokinesis in S. pombe, and in the related PCH protein, Imp2. We find that the distinct functions of Imp2 and Cdc15 are SH3 domain independent. However, the Cdc15 and Imp2 SH3 domains share an essential role in recruiting proteins to the contractile ring, including Pxl1 and Fic1. Together, Pxl1 and Fic1, a previously uncharacterized C2 domain protein, add structural integrity to the contractile ring and prevent it from fragmenting during division. Our data indicate that the F-BAR proteins Cdc15 and Imp2 contribute to a single biological process with both distinct and overlapping functions.
Collapse
|
139
|
Seguin L, Liot C, Mzali R, Harada R, Siret A, Nepveu A, Bertoglio J. CUX1 and E2F1 regulate coordinated expression of the mitotic complex genes Ect2, MgcRacGAP, and MKLP1 in S phase. Mol Cell Biol 2009; 29:570-81. [PMID: 19015243 PMCID: PMC2612504 DOI: 10.1128/mcb.01275-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/13/2008] [Accepted: 11/03/2008] [Indexed: 01/19/2023] Open
Abstract
Rho GTPases are critical for mitosis progression and completion of cytokinesis. During mitosis, the GDP/GTP cycle of Rho GTPases is regulated by the exchange factor Ect2 and the GTPase activating protein MgcRacGAP which associates with the kinesin MKLP1 in the centralspindlin complex. We report here that expression of Ect2, MgcRacGAP, and MKLP1 is tightly regulated during cell cycle progression. These three genes share similar cell cycle-related signatures within their promoter regions: (i) cell cycle gene homology region (CHR) sites located at -20 to +40 nucleotides of their transcription start sites that are required for repression in G(1), (ii) E2F binding elements, and (iii) tandem repeats of target sequences for the CUX1 transcription factor. CUX1 and E2F1 bind these three promoters upon S-phase entry, as demonstrated by chromatin immunoprecipitation, and regulate transcription of these genes, as established using promoter-luciferase reporter constructs and expression of activated or dominant negative transcription factors. Overexpression of either E2F1 or CUX1 increased the levels of the endogenous proteins whereas small interfering RNA knockdown of E2F1 or use of a dominant negative E2F1 reduced their expression levels. Thus, CUX1, E2F, and CHR elements provide the transcriptional controls that coordinate induction of Ect2, MgcRacGAP, and MKLP1 in S phase, leading to peak expression of these interacting proteins in G(2)/M, at the time they are required to regulate cytokinesis.
Collapse
Affiliation(s)
- Laetitia Seguin
- INSERM U749, Faculté de Pharmacie Paris XI, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
140
|
Pereira AJ, Matos I, Lince-Faria M, Maiato H. Dissecting mitosis with laser microsurgery and RNAi in Drosophila cells. Methods Mol Biol 2009; 545:145-64. [PMID: 19475387 DOI: 10.1007/978-1-60327-993-2_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Progress from our present understanding of the mechanisms behind mitosis has been compromised by the fact that model systems that were ideal for molecular and genetic studies (such as yeasts, C. elegans, or Drosophila) were not suitable for intracellular micromanipulation. Unfortunately, those systems that were appropriate for micromanipulation (such as newt lung cells, PtK1 cells, or insect spermatocytes) are not amenable for molecular studies. We believe that we can significantly broaden this scenario by developing high-resolution live cell microscopy tools in a system where micromanipulation studies could be combined with modern gene-interference techniques. Here we describe a series of methodologies for the functional dissection of mitosis by the use of simultaneous live cell microscopy and state-of-the-art laser microsurgery, combined with RNA interference (RNAi) in Drosophila cell lines stably expressing fluorescent markers. This technological synergism allows the specific targeting and manipulation of several structural components of the mitotic apparatus in different genetic backgrounds, at the highest spatial and temporal resolution. Finally, we demonstrate the successful adaptation of agar overlay flattening techniques to human HeLa cells and discuss the advantages of its use for laser micromanipulation and molecular studies of mitosis in mammals.
Collapse
Affiliation(s)
- António J Pereira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
141
|
Connell JW, Lindon C, Luzio JP, Reid E. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 2009; 10:42-56. [PMID: 19000169 PMCID: PMC2709849 DOI: 10.1111/j.1600-0854.2008.00847.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 10/17/2008] [Indexed: 12/23/2022]
Abstract
Mutations in the gene encoding the microtubule (MT)-severing protein spastin are the most common cause of hereditary spastic paraplegia, a genetic condition in which axons of the corticospinal tracts degenerate. We show that not only does endogenous spastin colocalize with MTs, but that it is also located on the early secretory pathway, can be recruited to endosomes and is present in the cytokinetic midbody. Spastin has two main isoforms, a 68 kD full-length isoform and a 60 kD short form. These two isoforms preferentially localize to different membrane traffic pathways with 68 kD spastin being principally located at the early secretory pathway, where it regulates endoplasmic reticulum-to-Golgi traffic. Sixty kiloDalton spastin is the major form recruited to endosomes and is also present in the midbody, where its localization requires the endosomal sorting complex required for transport-III-interacting MIT domain. Loss of midbody MTs accompanies the abscission stage of cytokinesis. In cells lacking spastin, a MT disruption event that normally accompanies abscission does not occur and abscission fails. We suggest that this event represents spastin-mediated MT severing. Our results support a model in which membrane traffic and MT regulation are coupled through spastin. This model is relevant in the axon, where there also is co-ordinated MT regulation and membrane traffic.
Collapse
Affiliation(s)
- James W Connell
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of CambridgeCambridge, UK
| | - Catherine Lindon
- Gurdon Institute, University of CambridgeCambridge, UK
- Current address: Department of Genetics, University of CambridgeCambridge, UK
| | - J Paul Luzio
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of CambridgeCambridge, UK
| | - Evan Reid
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of CambridgeCambridge, UK
| |
Collapse
|
142
|
Tully GH, Nishihama R, Pringle JR, Morgan DO. The anaphase-promoting complex promotes actomyosin-ring disassembly during cytokinesis in yeast. Mol Biol Cell 2008; 20:1201-12. [PMID: 19109423 DOI: 10.1091/mbc.e08-08-0822] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The anaphase-promoting complex (APC) is a ubiquitin ligase that controls progression through mitosis by targeting specific proteins for degradation. It is unclear whether the APC also contributes to the control of cytokinesis, the process that divides the cell after mitosis. We addressed this question in the yeast Saccharomyces cerevisiae by studying the effects of APC mutations on the actomyosin ring, a structure containing actin, myosin, and several other proteins that forms at the division site and is important for cytokinesis. In wild-type cells, actomyosin-ring constituents are removed progressively from the ring during contraction and disassembled completely thereafter. In cells lacking the APC activator Cdh1, the actomyosin ring contracts at a normal rate, but ring constituents are not disassembled normally during or after contraction. After cytokinesis in mutant cells, aggregates of ring proteins remain at the division site and at additional foci in other parts of the cell. A key target of APC(Cdh1) is the ring component Iqg1, the destruction of which contributes to actomyosin-ring disassembly. Deletion of CDH1 also exacerbates actomyosin-ring disassembly defects in cells with mutations in the myosin light-chain Mlc2, suggesting that Mlc2 and the APC employ independent mechanisms to promote ring disassembly during cytokinesis.
Collapse
Affiliation(s)
- Gregory H Tully
- Department of Physiology, University of California, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
143
|
Kosodo Y, Toida K, Dubreuil V, Alexandre P, Schenk J, Kiyokage E, Attardo A, Mora-Bermúdez F, Arii T, Clarke JDW, Huttner WB. Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J 2008; 27:3151-63. [PMID: 18971946 PMCID: PMC2599871 DOI: 10.1038/emboj.2008.227] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 10/02/2008] [Indexed: 11/09/2022] Open
Abstract
Neuroepithelial (NE) cells, the primary stem and progenitor cells of the vertebrate central nervous system, are highly polarized and elongated. They retain a basal process extending to the basal lamina, while undergoing mitosis at the apical side of the ventricular zone. By studying NE cells in the embryonic mouse, chick and zebrafish central nervous system using confocal microscopy, electron microscopy and time-lapse imaging, we show here that the basal process of these cells can split during M phase. Splitting occurred in the basal-to-apical direction and was followed by inheritance of the processes by either one or both daughter cells. A cluster of anillin, an essential component of the cytokinesis machinery, appeared at the distal end of the basal process in prophase and was found to colocalize with F-actin at bifurcation sites, in both proliferative and neurogenic NE cells. GFP-anillin in the basal process moved apically to the cell body prior to anaphase onset, followed by basal-to-apical ingression of the cleavage furrow in telophase. The splitting of the basal process of M-phase NE cells has implications for cleavage plane orientation and the relationship between mitosis and cytokinesis.
Collapse
Affiliation(s)
- Yoichi Kosodo
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kazunori Toida
- Department of Anatomy and Cell Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Veronique Dubreuil
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Paula Alexandre
- Anatomy and Developmental Biology, University College London, London, UK
| | - Judith Schenk
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Emi Kiyokage
- Department of Anatomy and Cell Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Alessio Attardo
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Tatsuo Arii
- Section of Brain Structure Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Jon D W Clarke
- Anatomy and Developmental Biology, University College London, London, UK
| | - Wieland B Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
144
|
Compagnon J, Gervais L, Roman MS, Chamot-Boeuf S, Guichet A. Interplay between Rab5 and PtdIns(4,5)P2 controls early endocytosis in the Drosophila germline. J Cell Sci 2008; 122:25-35. [PMID: 19050045 DOI: 10.1242/jcs.033027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositides have emerged as key regulators of membrane traffic through their control of the localization and activity of several effector proteins. Both Rab5 and phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] are involved in the early steps of the clathrin-dependent endocytic pathway, but little is known about how their functions are coordinated. We have studied the role of PtdIns(4,5)P(2) and Rab5 in the Drosophila germline during oogenesis. We found that Rab5 is required for the maturation of early endocytic vesicles. We show that PtdIns(4,5)P(2) is required for endocytic-vesicle formation, for Rab5 recruitment to endosomes and, consistently, for endocytosis. Furthermore, we reveal a previously undescribed role of Rab5 in releasing PtdIns(4,5)P(2), PtdIns(4,5)P(2)-binding budding factors and F-actin from early endocytic vesicles. Finally, we show that overexpressing the PtdIns(4,5)P(2)-synthesizing enzyme Skittles leads to an endocytic defect that is similar to that seen in rab5 loss-of-function mutants. Hence, our results argue strongly in favor of the hypothesis that the Rab5-dependant release of PtdIns(4,5)P(2) from endosomes that we discovered in this study is crucial for endocytosis to proceed.
Collapse
Affiliation(s)
- Julien Compagnon
- Institut Jacques Monod, UMR 7592, Université Paris 7, 2 Place Jussieu, 75005, France
| | | | | | | | | |
Collapse
|
145
|
Abstract
Growing evidence indicates that membrane traffic plays a crucial role during the late post-furrowing steps of cytokinesis in animal cells. Indeed, both endocytosis and exocytosis contribute to stabilizing the intercellular bridge that connects the daughter cells and to the final abscission in diverse organisms. The need for several intracellular transport routes probably reflects the complex events that occur during the late cytokinesis steps such as local remodelling of the plasma membrane composition, removal of components required for earlier steps of cytokinesis and membrane sealing that leads to daughter cell separation. In this mini-review, I will focus on recent evidence showing that endocytic pathways, such as the Rab35-regulated recycling pathway, contribute to the establishment of a PtdIns(4,5)P(2) lipid domain at the intercellular bridge which is involved in the localization of cytoskeletal elements essential for the late steps of cytokinesis. Possible cross-talk between Rab35 and other endocytic pathways involved in cytokinesis are also discussed.
Collapse
|
146
|
Abstract
The final stages in mammalian cytokinesis are poorly understood. Previously, we reported that the ADP-ribosyltransferase activity of Pseudomonas aeruginosa type III secreted toxin ExoT inhibits late stages of cytokinesis. Given that Crk adaptor proteins are the major substrates of ExoT ADP-ribosyltransferase activity, we tested the involvement of Crk in cytokinesis. We report that the focal adhesion-associated proteins, Crk and paxillin are essential for completion of cytokinesis. When their function is absent, the cytoplasmic bridge fails to resolve and the daughter cells fuse to form a binucleated cell. During cytokinesis, Crk is required for syntaxin-2 recruitment to the midbody, while paxillin is required for both Crk and syntaxin-2 localization to this compartment. Our data demonstrate that the subcellular localization and the activity of RhoA and citron K, which are essential for early stages of cytokinesis, are not dependent on paxillin, Crk or syntaxin-2. These studies reveal a novel role for Crk and paxillin in cytokinesis and suggest that focal adhesion complex, as a unit, may partake in this fundamental cellular process.
Collapse
Affiliation(s)
- Sasha H Shafikhani
- Department of Medicine, University of California, San Francisco, California, USA
| | | | | |
Collapse
|
147
|
Abstract
Heart failure is a complex, complicated disease that is not yet fully understood. We used the Module Map algorithm to uncover groups of genes that have a similar pattern of expression under various conditions of heart stress. These groups of genes are called modules and may serve as computational predictions of biological pathways for the various clinical situations. The Module Map algorithm allows a large-scale analysis of genes expressed. We applied this algorithm to 700 different mouse experiments downloaded from the Gene Expression Omnibus database, which identified 884 modules. The analysis reconstructed partially known principles that play a role in governing the response of heart to stress, thus demonstrating the strength of the method. We have shown a role of genes related to the immune system in conditions of heart remodeling and failure. We have also shown changes in the expression of genes involved with energy metabolism and changes in the expression of contractile proteins of the heart following myocardial infarction. When focusing on another module we noted a new correlation between genes related to osteogenesis and heart failure, including Runx2 and Ahsg, whose role in heart failure was unknown so far. Despite a lack of prior biological knowledge, the Module Map algorithm has reconstructed known pathways, which demonstrates the strength of this new method for analyzing gene profiles related to clinical phenomenon. The method and the analysis presented are a new avenue to uncover the correlation of clinical conditions to the molecular level.
Collapse
Affiliation(s)
- Uri David Akavia
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
148
|
Cascone I, Selimoglu R, Ozdemir C, Del Nery E, Yeaman C, White M, Camonis J. Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs. EMBO J 2008; 27:2375-87. [PMID: 18756269 DOI: 10.1038/emboj.2008.166] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 07/31/2008] [Indexed: 01/03/2023] Open
Abstract
The Ras family G-proteins RalA and RalB make critical non-overlapping contributions to the generation of a tumorigenic regulatory network, supporting bypass of the normal restraints on both cell proliferation and survival. The Sec6/8 complex, or exocyst, has emerged as a principal direct effector complex for Ral GTPases. Here, we show that RalA and RalB support mitotic progression through mobilization of the exocyst for two spatially and kinetically distinct steps of cytokinesis. RalA is required to tether the exocyst to the cytokinetic furrow in early cytokinesis. RalB is then required for recruitment of the exocyst to the midbody of this bridge to drive abscission and completion of cytokinesis. The collaborative action of RalA and RalB is specified by discrete subcellular compartmentalization and unique pairs of RalGEF proteins that provide inputs from both Ras-family protein-dependent and protein-independent regulatory cues. This suggests that Ral GTPases integrate diverse upstream signals to choreograph multiple roles for the exocyst in mitotic progression.
Collapse
|
149
|
Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, Pellman D. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 2008; 22:2189-203. [PMID: 18662975 DOI: 10.1101/gad.1700908] [Citation(s) in RCA: 516] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Multiple centrosomes in tumor cells create the potential for multipolar divisions that can lead to aneuploidy and cell death. Nevertheless, many cancer cells successfully divide because of mechanisms that suppress multipolar mitoses. A genome-wide RNAi screen in Drosophila S2 cells and a secondary analysis in cancer cells defined mechanisms that suppress multipolar mitoses. In addition to proteins that organize microtubules at the spindle poles, we identified novel roles for the spindle assembly checkpoint, cortical actin cytoskeleton, and cell adhesion. Using live cell imaging and fibronectin micropatterns, we found that interphase cell shape and adhesion pattern can determine the success of the subsequent mitosis in cells with extra centrosomes. These findings may identify cancer-selective therapeutic targets: HSET, a normally nonessential kinesin motor, was essential for the viability of certain extra centrosome-containing cancer cells. Thus, morphological features of cancer cells can be linked to unique genetic requirements for survival.
Collapse
Affiliation(s)
- Mijung Kwon
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Lee SJ, Feldman R, O'Farrell PH. An RNA interference screen identifies a novel regulator of target of rapamycin that mediates hypoxia suppression of translation in Drosophila S2 cells. Mol Biol Cell 2008; 19:4051-61. [PMID: 18653470 DOI: 10.1091/mbc.e08-03-0265] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In addition to its central role in energy production, oxygen has pervasive regulatory actions. Hypoxia (oxygen limitation) triggers the shutdown of major cellular processes, including gene expression. We carried out a genome-wide RNA interference (RNAi) screen in Drosophila S2 cells for functions required to down-regulate translation during hypoxia. RNAi knockdown of specific genes allowed induction of a green fluorescent protein (GFP) reporter gene and continued protein synthesis during hypoxia. Among the identified genes, Tsc1 and Tsc2, which together form the tuberose sclerosis complex that negatively regulates target of rapamycin (TOR) kinase, gave an especially strong effect. This finding is consistent with the involvement of TOR in promoting translation. Another gene required for efficient inhibition of protein translation during hypoxia, the protein tyrosine phosphatase 61F (Ptp61F), down-regulates TOR activity under hypoxia. Lack of Ptp61F or Tsc2 improves cell survival under prolonged hypoxia in a TOR-dependent manner. Our results identify Ptp61F as a novel modulator of TOR activity and suggest that its function during hypoxia contributes to the down-regulation of protein synthesis.
Collapse
Affiliation(s)
- Soo-Jung Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517, USA
| | | | | |
Collapse
|