101
|
Baker DA, Russell S. Gene expression during Drosophila melanogaster egg development before and after reproductive diapause. BMC Genomics 2009; 10:242. [PMID: 19463195 PMCID: PMC2700134 DOI: 10.1186/1471-2164-10-242] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 05/24/2009] [Indexed: 11/30/2022] Open
Abstract
Background Despite the importance of egg development to the female life cycle in Drosophila, global patterns of gene expression have not been examined in detail, primarily due to the difficulty in isolating synchronised developmental stages in sufficient quantities for gene expression profiling. Entry into vitellogenesis is a key stage of oogenesis and by forcing females into reproductive diapause we are able to arrest oogenesis at the pre-vitellogenic stages. Releasing females from diapause allows collection of relatively synchronous developing egg populations and an investigation of some of the transcriptional dynamics apparent before and after reproductive diapause. Results Focusing on gender-biased transcription, we identified mechanisms of egg development suppressed during reproductive dormancy as well as other molecular changes unique to the diapausing female. A microarray based analysis generated a set of 3565 transcripts with at least 2-fold greater expression in females as compared to control males, 1392 such changes were biased during reproductive dormancy. In addition, we also detect 1922 up-regulated transcriptional changes after entry into vitellogenesis, which were classified into discrete blocks of co-expression. We discuss some of the regulatory aspects apparent after re-initiation of egg development, exploring the underlying functions, maternal contribution and evolutionary conservation of co-expression patterns involved in egg production. Conclusion Although much of the work we present is descriptive, fundamental aspects of egg development and gender-biased transcription can be derived from our time-series experiment. We believe that our dataset will facilitate further exploration of the developmental and evolutionary characteristics of oogenesis as well as the nature of reproductive arrest in Drosophila.
Collapse
Affiliation(s)
- Dean A Baker
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB13QA, UK.
| | | |
Collapse
|
102
|
Nuzhdin SV, Brisson JA, Pickering A, Wayne ML, Harshman LG, McIntyre LM. Natural genetic variation in transcriptome reflects network structure inferred with major effect mutations: insulin/TOR and associated phenotypes in Drosophila melanogaster. BMC Genomics 2009; 10:124. [PMID: 19317915 PMCID: PMC2674066 DOI: 10.1186/1471-2164-10-124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/24/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A molecular process based genotype-to-phenotype map will ultimately enable us to predict how genetic variation among individuals results in phenotypic alterations. Building such a map is, however, far from straightforward. It requires understanding how molecular variation re-shapes developmental and metabolic networks, and how the functional state of these networks modifies phenotypes in genotype specific way. We focus on the latter problem by describing genetic variation in transcript levels of genes in the InR/TOR pathway among 72 Drosophila melanogaster genotypes. RESULTS We observe tight co-variance in transcript levels of genes not known to influence each other through direct transcriptional control. We summarize transcriptome variation with factor analyses, and observe strong co-variance of gene expression within the dFOXO-branch and within the TOR-branch of the pathway. Finally, we investigate whether major axes of transcriptome variation shape phenotypes expected to be influenced through the InR/TOR pathway. We find limited evidence that transcript levels of individual upstream genes in the InR/TOR pathway predict fly phenotypes in expected ways. However, there is no evidence that these effects are mediated through the major axes of downstream transcriptome variation. CONCLUSION In summary, our results question the assertion of the 'sparse' nature of genetic networks, while validating and extending candidate gene approaches in the analyses of complex traits.
Collapse
Affiliation(s)
- Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer A Brisson
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Pickering
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Marta L Wayne
- University of Florida Genetics Institute, University of Florida, Gainesville FL 32610-36103, USA
| | - Lawrence G Harshman
- School of Biological Sciences, University of Nebraska at Lincoln, Lincoln, NE 68588, USA
| | - Lauren M McIntyre
- University of Florida Genetics Institute, University of Florida, Gainesville FL 32610-36103, USA
| |
Collapse
|
103
|
Abstract
BACKGROUND In multicellular animals, cell size is controlled by a limited set of conserved intracellular signaling pathways, which when deregulated contribute to tumorigenesis by enabling cells to grow outside their usual niche. To delineate the pathways controlling this process, we screened a genome-scale, image-based Drosophila RNA interference dataset for double-stranded RNAs that reduce the average size of adherent S2R+ cells. RESULTS Automated analysis of images from this RNA interference screen identified the receptor tyrosine kinase Pvr, Ras pathway components and several novel genes as regulators of cell size. Significantly, Pvr/Ras signaling also affected the size of other Drosophila cell lines and of larval hemocytes. A detailed genetic analysis of this growth signaling pathway revealed a role for redundant secreted ligands, Pvf2 and Pvf3, in the establishment of an autocrine growth signaling loop. Downstream of Ras1, growth signaling was found to depend on parallel mitogen-activated protein kinase (MAPK) and phospho-inositide-3-kinase (PI3K) signaling modules, as well as the Tor pathway. CONCLUSIONS This automated genome-wide screen identifies autocrine Pvf/Pvr signaling, upstream of Ras, MAPK and PI3K, as rate-limiting for the growth of immortalized fly cells in culture. Since, Pvf2/3 and Pvr show mutually exclusive in vivo patterns of gene expression, these data suggest that co-expression of this receptor-ligand pair plays a key role in driving cell autonomous growth during the establishment of Drosophila cell lines, as has been suggested to occur during tumor development.
Collapse
Affiliation(s)
- David Sims
- Morphogenesis Group, Ludwig Institute for Cancer Research (UCL Branch), Riding House Street, London, W1W 7BS, UK
| | | | | |
Collapse
|
104
|
Sims D, Duchek P, Baum B. PDGF/VEGF signaling controls cell size in Drosophila. Genome Biol 2009; 10:R20. [PMID: 19216764 PMCID: PMC2688285 DOI: 10.1186/gb-2009-10-2-r20] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/12/2009] [Indexed: 01/22/2023] Open
Abstract
Pvr and its ligands, Pvf 2 and 3, which are upstream of Ras and PI3kinase, are identified from a genome-wide screen in Drosophila cells, as regulators of cell growth. Background In multicellular animals, cell size is controlled by a limited set of conserved intracellular signaling pathways, which when deregulated contribute to tumorigenesis by enabling cells to grow outside their usual niche. To delineate the pathways controlling this process, we screened a genome-scale, image-based Drosophila RNA interference dataset for double-stranded RNAs that reduce the average size of adherent S2R+ cells. Results Automated analysis of images from this RNA interference screen identified the receptor tyrosine kinase Pvr, Ras pathway components and several novel genes as regulators of cell size. Significantly, Pvr/Ras signaling also affected the size of other Drosophila cell lines and of larval hemocytes. A detailed genetic analysis of this growth signaling pathway revealed a role for redundant secreted ligands, Pvf2 and Pvf3, in the establishment of an autocrine growth signaling loop. Downstream of Ras1, growth signaling was found to depend on parallel mitogen-activated protein kinase (MAPK) and phospho-inositide-3-kinase (PI3K) signaling modules, as well as the Tor pathway. Conclusions This automated genome-wide screen identifies autocrine Pvf/Pvr signaling, upstream of Ras, MAPK and PI3K, as rate-limiting for the growth of immortalized fly cells in culture. Since, Pvf2/3 and Pvr show mutually exclusive in vivo patterns of gene expression, these data suggest that co-expression of this receptor-ligand pair plays a key role in driving cell autonomous growth during the establishment of Drosophila cell lines, as has been suggested to occur during tumor development.
Collapse
Affiliation(s)
- David Sims
- Morphogenesis Group, Ludwig Institute for Cancer Research (UCL Branch), Riding House Street, London, W1W 7BS, UK
| | | | | |
Collapse
|
105
|
Drummond MJ, Dreyer HC, Fry CS, Glynn EL, Rasmussen BB. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. J Appl Physiol (1985) 2009; 106:1374-84. [PMID: 19150856 DOI: 10.1152/japplphysiol.91397.2008] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this review we discuss current findings in the human skeletal muscle literature describing the acute influence of nutrients (leucine-enriched essential amino acids in particular) and resistance exercise on muscle protein synthesis and mammalian target of rapamycin complex 1 (mTORC1) signaling. We show that essential amino acids and an acute bout of resistance exercise independently stimulate human skeletal muscle protein synthesis. It also appears that ingestion of essential amino acids following resistance exercise leads to an even larger increase in the rate of muscle protein synthesis compared with the independent effects of nutrients or muscle contraction. Until recently the cellular mechanisms responsible for controlling the rate of muscle protein synthesis in humans were unknown. In this review, we highlight new studies in humans that have clearly shown the mTORC1 signaling pathway is playing an important regulatory role in controlling muscle protein synthesis in response to nutrients and/or muscle contraction. We propose that essential amino acid ingestion shortly following a bout of resistance exercise is beneficial in promoting skeletal muscle growth and may be useful in counteracting muscle wasting in a variety of conditions such as aging, cancer cachexia, physical inactivity, and perhaps during rehabilitation following trauma or surgery.
Collapse
Affiliation(s)
- Micah J Drummond
- Department of Physical Therapy, University of Texas Medical Branch, , Galveston, TX 77555-1144, USA
| | | | | | | | | |
Collapse
|
106
|
|
107
|
Abstract
Proper growth and development of multicellular organisms require the tight regulation of cell growth, cell division and cell death. A recent study has identified a novel regulatory link between two of these processes: cell growth and cell death.
Collapse
Affiliation(s)
- Cathy Savage-Dunn
- Department of Biology, Queens College, CUNY, 65-30 Kissena Blvd., Flushing, New York 11367, USA.
| |
Collapse
|
108
|
Insulin/TOR signaling in growth and homeostasis: a view from the fly world. Int J Biochem Cell Biol 2008; 41:1006-10. [PMID: 18992839 DOI: 10.1016/j.biocel.2008.10.010] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/07/2008] [Accepted: 10/14/2008] [Indexed: 01/04/2023]
Abstract
The insulin/TOR pathway is a conserved regulator of cell and organism growth in metazoans. Over the last several years, an array of signaling inputs to this pathway has been defined. However the growth-regulatory outputs are less clear. Drosophila has proven to be a powerful genetic model system in which to study insulin/TOR signaling. This review highlights recent studies in Drosophila that have identified essential outputs and key effectors of the pathway. These include the regulation of ribosome synthesis, mRNA translation, autophagy and endocytosis, through downstream effectors such as Myc, FOXO, HIF1-alpha, TIF-IA, 4EBP and Atg1. This network of outputs and effectors can regulate cell and organismal metabolism, and is essential for the control of tissue growth, responses to starvation and stress, and aging. The mechanisms identified in Drosophila likely operate in most metazoans, and are relevent to our understanding of diseases caused by aberrent insulin/TOR signaling such as cancer, diabetes and obesity.
Collapse
|
109
|
Hietakangas V, Cohen SM. TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells. BMC Cancer 2008; 8:282. [PMID: 18831768 PMCID: PMC2566983 DOI: 10.1186/1471-2407-8-282] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 10/03/2008] [Indexed: 01/08/2023] Open
Abstract
Background AKT signaling promotes cell growth, proliferation and survival and is hyperactivated in many cancers. TOR complex 2 (TORC2) activates AKT by phosphorylating it on the 'hydrophobic motif' site. Hydrophobic motif site phosphorylation is needed only for a subset of AKT functions. Whether proliferation of tumor cells depends on TORC2 activity has not been thoroughly explored. Methods We used RNAi-mediated knockdown of rictor to inhibit TORC2 activity in MCF7 and PC3 tumor cells to analyze the importance of TORC2 on proliferation of tumor cells. Results TORC2 inhibition reduced proliferation and anchorage-independent growth of both cell lines. Rictor depleted cells accumulated G1 phase, and showed prominent downregulation of Cyclin D1. Conclusion This study provides further evidence that inhibition of TORC2 activity might be a useful strategy to inhibit proliferation of tumor cells and subsequent tumor growth.
Collapse
Affiliation(s)
- Ville Hietakangas
- Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, 117604, Singapore.
| | | |
Collapse
|
110
|
Drummond MJ, Miyazaki M, Dreyer HC, Pennings B, Dhanani S, Volpi E, Esser KA, Rasmussen BB. Expression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis. J Appl Physiol (1985) 2008; 106:1403-11. [PMID: 18787087 DOI: 10.1152/japplphysiol.90842.2008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Muscle growth is associated with an activation of the mTOR signaling pathway and satellite cell regulators. The purpose of this study was to determine whether 17 selected genes associated with mTOR/muscle protein synthesis and the satellite cells/myogenic program are differentially expressed in young and older human skeletal muscle at rest and in response to a potent anabolic stimulus [resistance exercise + essential amino acid ingestion (RE+EAA)]. Twelve male subjects (6 young, 6 old) completed a bout of heavy resistance exercise. Muscle biopsies were obtained before and at 3 and 6 h post RE+EAA. Subjects ingested leucine-enriched essential amino acids at 1 h postexercise. mRNA expression was determined using qRT-PCR. At rest, hVps34 mRNA was elevated in the older subjects (P < 0.05) while there was a tendency for levels of myoD, myogenin, and TSC2 mRNA to be higher than young. The anabolic stimulus (RE+EAA) altered mRNAs associated with mTOR regulation. Notably, REDD2 decreased in both age groups (P < 0.05) but the expression of Rheb mRNA increased only in the young. Finally, cMyc mRNA was elevated (P < 0.05) in both young and old at 6 h post RE+EAA. Furthermore, RE+EAA also increased expression of several mRNAs associated with satellite function in the young (P < 0.05), while expression of these mRNAs did not change in the old. We conclude that several anabolic genes in muscle are more responsive in young men post RE+EAA. Our data provide new insights into the regulation of genes important for transcription and translation in young and old human skeletal muscle post RE+EAA.
Collapse
Affiliation(s)
- Micah J Drummond
- University of Texas Medical Branch, Department of Physical Therapy, Division of Rehabilitation Sciences, 301 Univ. Blvd., Galveston, TX 77555-1144, USA.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Han J, Wang B, Xiao Z, Gao Y, Zhao Y, Zhang J, Chen B, Wang X, Dai J. Mammalian target of rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors induced by insulin. Mol Cell Neurosci 2008; 39:118-24. [DOI: 10.1016/j.mcn.2008.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/02/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022] Open
|
112
|
Neufeld TP, Baehrecke EH. Eating on the fly: function and regulation of autophagy during cell growth, survival and death in Drosophila. Autophagy 2008; 4:557-62. [PMID: 18319640 PMCID: PMC2749667 DOI: 10.4161/auto.5782] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Significant progress has been made over recent years in defining the normal progression and regulation of autophagy, particularly in cultured mammalian cells and yeast model systems. However, apart from a few notable exceptions, our understanding of the physiological roles of autophagy has lagged behind these advances, and identification of components and features of autophagy unique to higher eukaryotes also remains a challenge. In this review we describe recent insights into the roles and control mechanisms of autophagy gained from in vivo studies in Drosophila. We focus on potential roles of autophagy in controlling cell growth and death, and describe how the regulation of autophagy has evolved to include metazoan-specific signaling pathways. We discuss genetic screening approaches that are being used to identify novel regulators and effectors of autophagy, and speculate about areas of research in this system likely to bear fruit in future studies.
Collapse
Affiliation(s)
- Thomas P. Neufeld
- University of Minnesota; Department of Genetics, Cell Biology and Development; Minneapolis, Minnesota USA
| | - Eric H. Baehrecke
- Department of Cancer Biology; University of Massachusetts Medical School; Worcester, Massachusetts USA
| |
Collapse
|
113
|
Regulation of neurogenesis and epidermal growth factor receptor signaling by the insulin receptor/target of rapamycin pathway in Drosophila. Genetics 2008; 179:843-53. [PMID: 18505882 DOI: 10.1534/genetics.107.083097] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Determining how growth and differentiation are coordinated is key to understanding normal development, as well as disease states such as cancer, where that control is lost. We have previously shown that growth and neuronal differentiation are coordinated by the insulin receptor/target of rapamycin (TOR) kinase (InR/TOR) pathway. Here we show that the control of growth and differentiation diverge downstream of TOR. TOR regulates growth by controlling the activity of S6 kinase (S6K) and eIF4E. Loss of s6k delays differentiation, and is epistatic to the loss of tsc2, indicating that S6K acts downstream or in parallel to TOR in differentiation as in growth. However, loss of eIF4E inhibits growth but does not affect the timing of differentiation. We also show, for the first time in Drosophila, that there is crosstalk between the InR/TOR pathway and epidermal growth factor receptor (EGFR) signaling. InR/TOR signaling regulates the expression of several EGFR pathway components including pointedP2 (pntP2). In addition, reduction of EGFR signaling levels phenocopies inhibition of the InR/TOR pathway in the regulation of differentiation. Together these data suggest that InR/TOR signaling regulates the timing of differentiation through modulation of EGFR target genes in developing photoreceptors.
Collapse
|
114
|
Goncharova EA, Krymskaya VP. Pulmonary lymphangioleiomyomatosis (LAM): progress and current challenges. J Cell Biochem 2008; 103:369-82. [PMID: 17541983 DOI: 10.1002/jcb.21419] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lymphangioleiomyomatosis (LAM), a rare lung disease, is characterized by the progressive proliferation, migration, and differentiation of smooth muscle (SM)-like LAM cells, which lead to the cystic destruction of the lung parenchyma, obstruction of airways and lymphatics, and loss of pulmonary function. LAM is a disease predominantly affecting women and is exacerbated by pregnancy; only a lung transplant can save the life of a patient. It has been discovered that in LAM, somatic or genetic mutations of tumor suppressor genes tuberous sclerosis complex 1 (TSC1) or TSC2 occur and the TSC1/TSC2 protein complex functions as a negative regulator of the mTOR/S6K1 signaling pathway. These two pivotal observations paved the way for the first rapamycin clinical trial for LAM. The recent discoveries that TSC1/TSC2 complex functions as an integrator of signaling networks regulated by growth factors, insulin, nutrients, and energy heightened the interest regarding this rare disease because the elucidation of disease-relevant mechanisms of LAM will promote a better understanding of other metabolic diseases such as diabetes, cancer, and cardiovascular diseases. In this review, we will summarize the progress made in our understanding of TSC1/TSC2 cellular signaling and the molecular mechanisms of LAM; we will also highlight some of the lesser explored directions and challenges in LAM research.
Collapse
|
115
|
Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science 2008; 319:1827-30. [PMID: 18339900 DOI: 10.1126/science.1153069] [Citation(s) in RCA: 695] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fertile queens and sterile workers are alternative forms of the adult female honeybee that develop from genetically identical larvae following differential feeding with royal jelly. We show that silencing the expression of DNA methyltransferase Dnmt3, a key driver of epigenetic global reprogramming, in newly hatched larvae led to a royal jelly-like effect on the larval developmental trajectory; the majority of Dnmt3 small interfering RNA-treated individuals emerged as queens with fully developed ovaries. Our results suggest that DNA methylation in Apis is used for storing epigenetic information, that the use of that information can be differentially altered by nutritional input, and that the flexibility of epigenetic modifications underpins, profound shifts in developmental fates, with massive implications for reproductive and behavioral status.
Collapse
Affiliation(s)
- R Kucharski
- Molecular Genetics and Evolution, ARC Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, Canberra ACT 0200, Australia
| | | | | | | |
Collapse
|
116
|
ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 2008; 13:467-80. [PMID: 17925224 DOI: 10.1016/j.devcel.2007.07.016] [Citation(s) in RCA: 477] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/25/2007] [Accepted: 07/20/2007] [Indexed: 12/21/2022]
Abstract
The cellular response to unfolded and misfolded proteins in the mitochondrial matrix is poorly understood. Here, we report on a genome-wide RNAi-based screen for genes that signal the mitochondrial unfolded protein response (UPR(mt)) in C. elegans. Unfolded protein stress in the mitochondria correlates with complex formation between a homeodomain-containing transcription factor DVE-1 and the small ubiquitin-like protein UBL-5, both of which are encoded by genes required for signaling the UPR(mt). Activation of the UPR(mt) correlates temporally and spatially with nuclear redistribution of DVE-1 and with its enhanced binding to the promoters of mitochondrial chaperone genes. These events and the downstream UPR(mt) are attenuated in animals with reduced activity of clpp-1, which encodes a mitochondrial matrix protease homologous to bacterial ClpP. As ClpP is known to function in the bacterial heat-shock response, our findings suggest that eukaryotes utilize component(s) from the protomitochondrial symbiont to signal the UPR(mt).
Collapse
|
117
|
Teleman AA, Hietakangas V, Sayadian AC, Cohen SM. Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. Cell Metab 2008; 7:21-32. [PMID: 18177722 DOI: 10.1016/j.cmet.2007.11.010] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/28/2007] [Accepted: 11/20/2007] [Indexed: 12/31/2022]
Abstract
Animals use the insulin/TOR signaling pathway to mediate their response to fluctuations in nutrient availability. Energy and amino acids are monitored at the single-cell level via the TOR branch of the pathway and systemically via insulin signaling to regulate cellular growth and metabolism. Using a combination of genetics, expression profiling, and chromatin immunoprecipitation, we examine nutritional control of gene expression and identify the transcription factor Myc as an important mediator of TOR-dependent regulation of ribosome biogenesis. We also identify myc as a direct target of FOXO and provide genetic evidence that Myc has a key role in mediating the effects of TOR and FOXO on growth and metabolism. FOXO and TOR also converge to regulate protein synthesis, acting via 4E-BP and Lk6, regulators of the translation factor eIF4E. This study uncovers a network of convergent regulation of protein biosynthesis by the FOXO and TOR branches of the nutrient-sensing pathway.
Collapse
|
118
|
Krymskaya VP. Smooth muscle-like cells in pulmonary lymphangioleiomyomatosis. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2008; 5:119-26. [PMID: 18094094 PMCID: PMC2645298 DOI: 10.1513/pats.200705-061vs] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 06/13/2007] [Indexed: 11/20/2022]
Abstract
Proliferation, migration, and differentiation of smooth muscle (SM)-like lymphangioleiomyomatosis (LAM) cells in the lungs are pathologic manifestations of pulmonary LAM, a rare lung disease predominantly afflicting women and exacerbated by pregnancy. LAM cells form nodules throughout the lung without any predominant localization, but can also form small cell clusters dispersed within lung parenchyma. LAM cells have the appearance of "immature" SM-like cells, irregularly distributed within the nodule in contrast to organized SM cell layers in airways and vasculature. Progressive growth of LAM cells leads to the cystic destruction of the lung parenchyma, obstruction of airways and lymphatics, and loss of pulmonary function. Pathogenetically, LAM occurs from somatic or genetic mutations of tumor suppressor genes tuberous sclerosis complex 1 (TSC1) or TSC2. The TSC1/TSC2 protein complex is an integrator of signaling networks regulated by growth factors, insulin, nutrients, and energy. The observation that the TSC1/TSC2 functions as a negative regulator of the mammalian target of rapamycin (mTOR)/p70 S6 kinase (S6K1) signaling pathway yielded the first rapamycin clinical trial for LAM. Although LAM is a rare lung disease, the elucidation of disease-relevant mechanisms of LAM will provide a better understanding of not only SM-like cell growth, migration, and differentiation in LAM but may also offer insights into other metabolic diseases such as cardiovascular diseases, diabetes, and cancer. In this article, we will summarize the progress made in our understanding of LAM, and we will focus on how dysregulation of TSC1/TSC2 signaling results in abnormal proliferation and migration of SM-like LAM cells.
Collapse
Affiliation(s)
- Vera P Krymskaya
- Pulmonary Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-3403, USA.
| |
Collapse
|
119
|
Shiao SH, Hansen IA, Zhu J, Sieglaff DH, Raikhel AS. Juvenile hormone connects larval nutrition with target of rapamycin signaling in the mosquito Aedes aegypti. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:231-9. [PMID: 17981294 PMCID: PMC2242809 DOI: 10.1016/j.jinsphys.2007.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/20/2007] [Accepted: 09/24/2007] [Indexed: 05/11/2023]
Abstract
Anautogenous mosquitoes require blood meals to promote egg development. If adequate nutrients are not obtained during larval development, the resulting "small" sized adult mosquitoes require multiple blood meals for egg development; markedly increasing host-vector contacts and the likelihood of disease transmission. Nutrient-sensitive target of rapamycin (TOR) signaling is a key signaling pathway that links elevated hemolymph amino acid levels derived from the blood meal to the expression of yolk protein precursors in the fat body. Here we report that the blood-meal-induced activation of the TOR-signaling pathway and subsequent egg maturation depends on the accumulation of adequate nutritional reserves during larval development. We have established well-nourished, "standard" mosquitoes and malnourished, "small" mosquitoes as models to address this nutrient sensitive pathway. This regulatory mechanism involves juvenile hormone (JH), which acts as a mediator of fat body competence, permitting the response to amino acids derived from the blood meal. We demonstrate that treatment with JH results in recovery of the TOR molecular machinery, Aedes aegypti cationic amino acid transporter 2 (AaiCAT2), TOR, and S6 kinase (S6K), in fat bodies of small mosquitoes, enabling them to complete their first gonotrophic cycle after a single blood meal. These findings establish a direct link between nutrient reserves and the establishment of TOR signaling in mosquitoes.
Collapse
Affiliation(s)
- Shin-Hong Shiao
- Department of Entomology and the Institute for Integrative Genome Biology, University of California, Riverside, California
| | - Immo A. Hansen
- Department of Entomology and the Institute for Integrative Genome Biology, University of California, Riverside, California
| | - Jinsong Zhu
- Department of Entomology and the Institute for Integrative Genome Biology, University of California, Riverside, California
| | - Douglas H. Sieglaff
- Department of Entomology and the Institute for Integrative Genome Biology, University of California, Riverside, California
| | - Alexander S. Raikhel
- Department of Entomology and the Institute for Integrative Genome Biology, University of California, Riverside, California
| |
Collapse
|
120
|
Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:116-32. [PMID: 17913600 DOI: 10.1016/j.bbapap.2007.08.015] [Citation(s) in RCA: 268] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 01/04/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a serine-threonine protein kinase that regulates several intracellular processes in response to extracellular signals, nutrient availability, energy status of the cell and stress. mTOR regulates survival, differentiation and development of neurons. Axon growth and navigation, dendritic arborization, as well as synaptogenesis, depend on proper mTOR activity. In adult brain mTOR is crucial for synaptic plasticity, learning and memory formation, and brain control of food uptake. Recent studies reveal that mTOR activity is modified in various pathologic states of the nervous system, including brain tumors, tuberous sclerosis, cortical displasia and neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. This review presents current knowledge about the role of mTOR in the physiology and pathology of the nervous system, with special focus on molecular targets acting downstream of mTOR that potentially contribute to neuronal development, plasticity and neuropathology.
Collapse
Affiliation(s)
- Lukasz Swiech
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
121
|
Abstract
The size of cells, tissues and organisms is a fundamental yet poorly understood attribute of biological systems. Traditional difficulties in interrogating the basis for size regulation have been surmounted by recent systematic phenotypic analyses. Genome-wide size screens in yeast suggest that ribosome biogenesis rate dictates cell size thresholds, whereas analogous RNAi-based size screens in metazoans cells reveal further connections between cell size and translation, as well as myriad other pathways. Sophisticated genetic screens in flies have delineated the new Hippo-signalling pathway that controls tissue and organ size. While the plethora of genes that alter size phenotypes at present defies a unified model, systems-level analysis suggests many new inroads into the longstanding enigma of size control.
Collapse
Affiliation(s)
- Mike Cook
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | | |
Collapse
|
122
|
Jaworski J, Sheng M. The growing role of mTOR in neuronal development and plasticity. Mol Neurobiol 2007; 34:205-19. [PMID: 17308353 DOI: 10.1385/mn:34:3:205] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 11/30/1999] [Accepted: 08/04/2006] [Indexed: 01/01/2023]
Abstract
Neuronal development and synaptic plasticity are highly regulated processes in which protein kinases play a key role. Recently, increasing attention has been paid to a serine/threonine protein kinase called mammalian target of rapamycin (mTOR) that has well-known functions in cell proliferation and growth. In neuronal cells, mTOR is implicated in multiple processes, including transcription, ubiquitin-dependent proteolysis, and microtubule and actin dynamics, all of which are crucial for neuronal development and long-term modification of synaptic strength. The aim of this article is to present our current understanding of mTOR functions in axon guidance, dendritic tree development, formation of dendritic spines, and in several forms of long-term synaptic plasticity. We also aim to present explanation for the mTOR effects on neurons at the level of mTORregulated genes and proteins.
Collapse
Affiliation(s)
- Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | |
Collapse
|
123
|
Latella G, Fiocchi C, Caprilli R. Late-breaking news from the "4th International Meeting on Inflammatory Bowel Diseases" Capri, 2006. Inflamm Bowel Dis 2007; 13:1031-50. [PMID: 17309072 DOI: 10.1002/ibd.20127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
At the "4th International Meeting on Inflammatory Bowel Diseases: on the Way to New Therapies," Capri, 2006, genetics, bacteria-host interactions, immunomodulation, and tissue response were discussed deeply in order to understand, rationalize, and develop novel therapies. About genetics, the importance of a better understanding of the nature of known loci and of the putative associations was stressed. It was confirmed that genotype-phenotype associations in inflammatory bowel disease (IBD) have important clinical and therapeutic implications. The importance of the search for dominant bacterial antigens in chronic immune-mediated intestinal inflammation emerged, as well as knowledge of cellular and molecular mechanisms of bacterial-host interactions. It was discussed how innate and adaptive immunity signaling events can perpetuate chronic inflammation. Signal transduction pathways provide an intracellular mechanism by which cells respond and adapt to environmental stress. The identification of these signals have led to a greater understanding of the pathogenesis of IBD and pointed to potential therapeutic targets. It was shown that immune homeostasis is lost in IBD, resulting in a complex tissue response involving the action of immune and nonimmune cells. The nonimmune tissue response in IBD could be regarded as a new target for control of chronic intestinal inflammation. The changing role of biotherapy in IBD was widely discussed and in particular the anti-TNF-alpha monoclonal antibodies. Granulocyte-colony stimulating factor (GM-CSF) and stem cells therapies were also discussed. The risk-to-benefit ratio of the novel therapies was analyzed in detail. Finally, future directions for basic science and the unmet needs for clinical practice were presented.
Collapse
Affiliation(s)
- Giovanni Latella
- Department of Internal Medicine, GI Unit, University of L'Aquila, L'Aquila, Italy
| | | | | |
Collapse
|
124
|
Mieulet V, Roceri M, Espeillac C, Sotiropoulos A, Ohanna M, Oorschot V, Klumperman J, Sandri M, Pende M. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am J Physiol Cell Physiol 2007; 293:C712-22. [PMID: 17494629 DOI: 10.1152/ajpcell.00499.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A defect in protein turnover underlies multiple forms of cell atrophy. Since S6 kinase (S6K)-deficient cells are small and display a blunted response to nutrient and growth factor availability, we have hypothesized that mutant cell atrophy may be triggered by a change in global protein synthesis. By using mouse genetics and pharmacological inhibitors targeting the mammalian target of rapamycin (mTOR)/S6K pathway, here we evaluate the control of translational target phosphorylation and protein turnover by the mTOR/S6K pathway in skeletal muscle and liver tissues. The phosphorylation of ribosomal protein S6 (rpS6), eukaryotic initiation factor-4B (eIF4B), and eukaryotic elongation factor-2 (eEF2) is predominantly regulated by mTOR in muscle cells. Conversely, in liver, the MAPK and phosphatidylinositol 3-kinase pathways also play an important role, suggesting a tissue-specific control. S6K deletion in muscle mimics the effect of the mTOR inhibitor rapamycin on rpS6 and eIF4B phosphorylation without affecting eEF2 phosphorylation. To gain insight on the functional consequences of these modifications, methionine incorporation and polysomal distribution were assessed in muscle cells. Rates and rapamycin sensitivity of global translation initiation are not altered in S6K-deficient muscle cells. In addition, two major pathways of protein degradation, autophagy and expression of the muscle-specific atrophy-related E3 ubiquitin ligases, are not affected by S6K deletion. Our results do not support a role for global translational control in the growth defect due to S6K deletion, suggesting specific modes of growth control and translational target regulation downstream of mTOR.
Collapse
MESH Headings
- Animals
- Autophagy
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cells, Cultured
- Elongation Factor 2 Kinase
- Eukaryotic Initiation Factors/metabolism
- Hepatocytes/enzymology
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Insulin/metabolism
- Leucine/metabolism
- Liver/drug effects
- Liver/enzymology
- Liver/growth & development
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Muscle Development
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/enzymology
- Muscular Atrophy/genetics
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Protein Biosynthesis/drug effects
- Protein Kinases/metabolism
- Ribosomal Protein S6/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/deficiency
- Ribosomal Protein S6 Kinases, 90-kDa/genetics
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases
- Ubiquitin-Protein Ligases/metabolism
Collapse
|
125
|
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12:9-22. [PMID: 17613433 DOI: 10.1016/j.ccr.2007.05.008] [Citation(s) in RCA: 2292] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/10/2007] [Accepted: 05/18/2007] [Indexed: 11/21/2022]
Abstract
The mammalian target of rapamycin (mTOR) has emerged as a critical effector in cell-signaling pathways commonly deregulated in human cancers. This has led to the prediction that mTOR inhibitors may be useful in oncology, and derivatives of one such molecule, rapamycin (from which mTOR derives its name), are currently in clinical development. In this review, we discuss recent progress in understanding mTOR signaling, paying particular attention to its relevance in cancer. We further discuss the use of rapamycin in oncology and conclude with a discussion on the future of mTOR-targeted therapy.
Collapse
Affiliation(s)
- David A Guertin
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02141, USA
| | | |
Collapse
|
126
|
Mathey-Prevot B, Perrimon N. Drosophila genome-wide RNAi screens: are they delivering the promise? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:141-8. [PMID: 17381290 DOI: 10.1101/sqb.2006.71.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The emergence of RNA interference (RNAi) on the heels of the successful completion of the Drosophila genome project was seen by many as the ace in functional genomics: Its application would quickly assign a function to all genes in this organism and help delineate the complex web of interactions or networks linking them at the systemic level. A few years wiser and a number of genome-wide Drosophila RNAi screens later, we reflect on the state of high-throughput RNAi screens in Drosophila and ask whether the initial promise was fulfilled. We review the impact that this approach has had in the field of Drosophila research and chart out strategies to extract maximal benefit from the application of RNAi to gene discovery and pursuit of systems biology.
Collapse
Affiliation(s)
- B Mathey-Prevot
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
127
|
Patel A, Fondrk MK, Kaftanoglu O, Emore C, Hunt G, Frederick K, Amdam GV. The making of a queen: TOR pathway is a key player in diphenic caste development. PLoS One 2007; 2:e509. [PMID: 17551589 PMCID: PMC1876819 DOI: 10.1371/journal.pone.0000509] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 05/01/2007] [Indexed: 11/30/2022] Open
Abstract
Background Honey bees (Apis mellifera) provide a principal example of diphenic development. Excess feeding of female larvae results in queens (large reproductives). Moderate diet yields workers (small helpers). The signaling pathway that links provisioning to female developmental fate is not understood, yet we reasoned that it could include TOR (target of rapamycin), a nutrient- and energy-sensing kinase that controls organismal growth. Methodology/Principal Findings Here, the role of Apis mellifera TOR (amTOR) in caste determination is examined by rapamycin/FK506 pharmacology and RNA interference (RNAi) gene knockdown. We show that in queen-destined larvae, the TOR inhibitor rapamycin induces the development of worker characters that are blocked by the antagonist FK506. Further, queen fate is associated with elevated activity of the Apis mellifera TOR encoding gene, amTOR, and amTOR gene knockdown blocks queen fate and results in individuals with worker morphology. Conclusions/Significance A much-studied insect dimorphism, thereby, can be governed by the TOR pathway. Our results present the first evidence for a role of TOR in diphenic development, and suggest that adoption of this ancestral nutrient-sensing cascade is one evolutionary pathway for morphological caste differentiation in social insects.
Collapse
Affiliation(s)
- Avani Patel
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - M. Kim Fondrk
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Osman Kaftanoglu
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Christine Emore
- Entomology Department, Purdue University, West Lafayette, Indiana, United States of America
| | - Greg Hunt
- Entomology Department, Purdue University, West Lafayette, Indiana, United States of America
| | - Katy Frederick
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Gro V. Amdam
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Animal and Aquacultural Sciences Department, Norwegian University of Life Sciences, Aas, Norway
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
128
|
Perrimon N, Mathey-Prevot B. Applications of high-throughput RNA interference screens to problems in cell and developmental biology. Genetics 2007; 175:7-16. [PMID: 17244760 PMCID: PMC1775003 DOI: 10.1534/genetics.106.069963] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) in tissue culture cells has emerged as an excellent methodology for identifying gene functions systematically and in an unbiased manner. Here, we describe how RNAi high-throughput screening (HTS) in Drosophila cells are currently being performed and emphasize the strengths and weaknesses of the approach. Further, to demonstrate the versatility of the technology, we provide examples of the various applications of the method to problems in signal transduction and cell and developmental biology. Finally, we discuss emerging technological advances that will extend RNAi-based screening methods.
Collapse
Affiliation(s)
- Norbert Perrimon
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02175, USA.
| | | |
Collapse
|
129
|
Hall DJ, Grewal SS, de la Cruz AFA, Edgar BA. Rheb-TOR signaling promotes protein synthesis, but not glucose or amino acid import, in Drosophila. BMC Biol 2007; 5:10. [PMID: 17371599 PMCID: PMC1847425 DOI: 10.1186/1741-7007-5-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 03/19/2007] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Ras-related GTPase, Rheb, regulates the growth of animal cells. Genetic and biochemical tests place Rheb upstream of the target of rapamycin (TOR) protein kinase, and downstream of the tuberous sclerosis complex (TSC1/TSC2) and the insulin-signaling pathway. TOR activity is regulated by nutritional cues, suggesting that Rheb might either control, or respond to, nutrient availability. RESULTS We show that Rheb and TOR do not promote the import of glucose, bulk amino acids, or arginine in Drosophila S2 cells, but that both gene products are important regulators of ribosome biogenesis, protein synthesis, and cell size. S2 cell size, protein synthesis, and glucose import were largely insensitive to manipulations of insulin signaling components, suggesting that cellular energy levels and TOR activity can be maintained through insulin/PI3K-independent mechanisms in S2 cell culture. In vivo in Drosophila larvae, however, we found that insulin signaling can regulate protein synthesis, and thus may affect TOR activity. CONCLUSION Rheb-TOR signaling controls S2 cell growth by promoting ribosome production and protein synthesis, but apparently not by direct effects on the import of amino acids or glucose. The effect of insulin signaling upon TOR activity varies according to cellular type and context.
Collapse
Affiliation(s)
- Dayna J Hall
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | - Savraj S Grewal
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | - Aida Flor A de la Cruz
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | - Bruce A Edgar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| |
Collapse
|
130
|
Arsham AM, Neufeld TP. Thinking globally and acting locally with TOR. Curr Opin Cell Biol 2006; 18:589-97. [PMID: 17046229 DOI: 10.1016/j.ceb.2006.09.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/29/2006] [Indexed: 01/13/2023]
Abstract
The target of rapamycin (TOR) pathway regulates ribosome biogenesis, protein synthesis, nutrient import, autophagy and cell cycle progression. After 30 years of concentrated attention, how TOR controls these processes is only now beginning to be understood. Recent advances have identified a wide array of TOR inputs, including amino acids, oxygen, ATP and growth factors, as well the regulatory proteins that facilitate their effects on TOR. Such proteins include AMPK, Rheb and the tumor suppressors LKB1, p53, and Tsc1/2. It has only recently been appreciated that TOR resides in two distinct signaling complexes with differing regulatory roles, only one of which is rapamycin-sensitive, thus opening a new avenue of inquiry into TOR function. Finally, TOR appears to regulate feeding behavior by facilitating communication between organ systems, and is thus implicated in the regulation of glucose and fat homeostasis, and possibly diabetes and obesity. TOR thus functions to coordinate growth-permitting inputs with growth-promoting outputs on both a cellular and an organismal level.
Collapse
Affiliation(s)
- Andrew M Arsham
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
131
|
Perrimon N, Friedman A, Mathey-Prevot B, Eggert US. Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens. Drug Discov Today 2006; 12:28-33. [PMID: 17198970 DOI: 10.1016/j.drudis.2006.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 09/04/2006] [Accepted: 10/16/2006] [Indexed: 10/24/2022]
Abstract
RNA interference (RNAi) and small-molecule approaches are synergistic on multiple levels, from technology and high-throughput screen development to target identification and functional studies. Here, we describe the RNAi screening platform that we have established and made available to the community through the Drosophila RNAi Screening Center at Harvard Medical School. We then illustrate how the combination of RNAi and small-molecule HTS can lead to effective identification of targets in drug discovery.
Collapse
Affiliation(s)
- Norbert Perrimon
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
132
|
Abstract
The TOR (target of rapamycin) pathway is an evolutionarily conserved signaling module regulating cell growth (accumulation of mass) in response to a variety of environmental cues such as nutrient availability, hypoxia, DNA damage and osmotic stress. Its pivotal role in cellular and organismal homeostasis is reflected in the fact that unrestrained signaling activity in mammals is associated with the occurrence of disease states including inflammation, cancer and diabetes. The existence of TOR homologs in unicellular organisms whose growth is affected by environmental factors, such as temperature, nutrients and osmolarity, suggests an ancient role for the TOR signaling network in the surveillance of stress conditions. Here, we will summarize recent advances in the TOR signaling field with special emphasis on how stress conditions impinge on insulin/insulin-like growth factor signaling/TOR signaling.
Collapse
Affiliation(s)
- J H Reiling
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142-1479, USA
| | | |
Collapse
|