101
|
Kim JM. Molecular Link between DNA Damage Response and Microtubule Dynamics. Int J Mol Sci 2022; 23:ijms23136986. [PMID: 35805981 PMCID: PMC9266319 DOI: 10.3390/ijms23136986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Microtubules are major components of the cytoskeleton that play important roles in cellular processes such as intracellular transport and cell division. In recent years, it has become evident that microtubule networks play a role in genome maintenance during interphase. In this review, we highlight recent advances in understanding the role of microtubule dynamics in DNA damage response and repair. We first describe how DNA damage checkpoints regulate microtubule organization and stability. We then highlight how microtubule networks are involved in the nuclear remodeling following DNA damage, which leads to changes in chromosome organization. Lastly, we discuss how microtubule dynamics participate in the mobility of damaged DNA and promote consequent DNA repair. Together, the literature indicates the importance of microtubule dynamics in genome organization and stability during interphase.
Collapse
Affiliation(s)
- Jung Min Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 58128, Korea
| |
Collapse
|
102
|
Fila M, Sobczuk A, Pawlowska E, Blasiak J. Epigenetic Connection of the Calcitonin Gene-Related Peptide and Its Potential in Migraine. Int J Mol Sci 2022; 23:ijms23116151. [PMID: 35682830 PMCID: PMC9181031 DOI: 10.3390/ijms23116151] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The calcitonin gene-related peptide (CGRP) is implicated in the pathogenesis of several pain-related syndromes, including migraine. Targeting CGRP and its receptor by their antagonists and antibodies was a breakthrough in migraine therapy, but the need to improve efficacy and limit the side effects of these drugs justify further studies on the regulation of CGRP in migraine. The expression of the CGRP encoding gene, CALCA, is modulated by epigenetic modifications, including the DNA methylation, histone modification, and effects of micro RNAs (miRNAs), circular RNAs, and long-coding RNAs (lncRNAs). On the other hand, CGRP can change the epigenetic profile of neuronal and glial cells. The promoter of the CALCA gene has two CpG islands that may be specifically methylated in migraine patients. DNA methylation and lncRNAs were shown to play a role in the cell-specific alternative splicing of the CALCA primary transcript. CGRP may be involved in changes in neural cytoarchitecture that are controlled by histone deacetylase 6 (HDAC6) and can be related to migraine. Inhibition of HDAC6 results in reduced cortical-spreading depression and a blockade of the CGRP receptor. CGRP levels are associated with the expression of several miRNAs in plasma, making them useful peripheral markers of migraine. The fundamental role of CGRP in inflammatory pain transmission may be epigenetically regulated. In conclusion, epigenetic connections of CGRP should be further explored for efficient and safe antimigraine therapy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Anna Sobczuk
- Department of Gynaecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence:
| |
Collapse
|
103
|
Targeting HIF-1α Function in Cancer through the Chaperone Action of NQO1: Implications of Genetic Diversity of NQO1. J Pers Med 2022; 12:jpm12050747. [PMID: 35629169 PMCID: PMC9146583 DOI: 10.3390/jpm12050747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
HIF-1α is a master regulator of oxygen homeostasis involved in different stages of cancer development. Thus, HIF-1α inhibition represents an interesting target for anti-cancer therapy. It was recently shown that the HIF-1α interaction with NQO1 inhibits proteasomal degradation of the former, thus suggesting that targeting the stability and/or function of NQO1 could lead to the destabilization of HIF-1α as a therapeutic approach. Since the molecular interactions of NQO1 with HIF-1α are beginning to be unraveled, in this review we discuss: (1) Structure–function relationships of HIF-1α; (2) our current knowledge on the intracellular functions and stability of NQO1; (3) the pharmacological modulation of NQO1 by small ligands regarding function and stability; (4) the potential effects of genetic variability of NQO1 in HIF-1α levels and function; (5) the molecular determinants of NQO1 as a chaperone of many different proteins including cancer-associated factors such as HIF-1α, p53 and p73α. This knowledge is then further discussed in the context of potentially targeting the intracellular stability of HIF-1α by acting on its chaperone, NQO1. This could result in novel anti-cancer therapies, always considering that the substantial genetic variability in NQO1 would likely result in different phenotypic responses among individuals.
Collapse
|
104
|
You E, Jeong J, Lee J, Keum S, Hwang YE, Choi JH, Rhee S. Casein kinase 2 promotes the TGF-β-induced activation of α-tubulin acetyltransferase 1 in fibroblasts cultured on a soft matrix. BMB Rep 2022. [PMID: 35321783 PMCID: PMC9058472 DOI: 10.5483/bmbrep.2022.55.4.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell signals for growth factors depend on the mechanical properties of the extracellular matrix (ECM) surrounding the cells. Microtubule acetylation is involved in the transforming growth factor (TGF)-β-induced myofibroblast differentiation in the soft ECM. However, the mechanism of activation of α-tubulin acetyltransferase 1 (α-TAT1), a major α-tubulin acetyltransferase, in the soft ECM is not well defined. Here, we found that casein kinase 2 (CK2) is required for the TGF-β-induced activation of α-TAT1 that promotes microtubule acetylation in the soft matrix. Genetic mutation and pharmacological inhibition of CK2 catalytic activity specifically reduced microtubule acetylation in the cells cultured on a soft matrix rather than those cultured on a stiff matrix. Immunoprecipitation analysis showed that CK2α, a catalytic subunit of CK2, directly bound to the C-terminal domain of α-TAT1, and this interaction was more prominent in the cells cultured on the soft matrix. Moreover, the substitution of alanine with serine, the 236th amino acid located at the C-terminus, which contains the CK2-binding site of α-TAT1, sig-nificantly abrogated the TGF-β-induced microtubule acetylation in the soft matrix, indicating that the successful binding of CK2 and the C-terminus of α-TAT1 led to the phosphorylation of serine at the 236th position of amino acids in α-TAT1 and regulation of its catalytic activity. Taken together, our findings provide novel insights into the molecular mechanisms underlying the TGF-β-induced activation of α-TAT1 in a soft matrix.
Collapse
Affiliation(s)
- Eunae You
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jieun Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Ye Eun Hwang
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jee-Hye Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
105
|
Kikuchi K, Sakamoto Y, Uezu A, Yamamoto H, Ishiguro KI, Shimamura K, Saito T, Hisanaga SI, Nakanishi H. Map7D2 and Map7D1 facilitate microtubule stabilization through distinct mechanisms in neuronal cells. Life Sci Alliance 2022; 5:5/8/e202201390. [PMID: 35470240 PMCID: PMC9039348 DOI: 10.26508/lsa.202201390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/05/2022] Open
Abstract
The microtubule-associated proteins Map7D2 and Map7D1, which belong to the MAP7 family, stabilize microtubules through distinct mechanisms for the control of cell motility and neurite outgrowth. Microtubule (MT) dynamics are modulated through the coordinated action of various MT-associated proteins (MAPs). However, the regulatory mechanisms underlying MT dynamics remain unclear. We show that the MAP7 family protein Map7D2 stabilizes MTs to control cell motility and neurite outgrowth. Map7D2 directly bound to MTs through its N-terminal half and stabilized MTs in vitro. Map7D2 localized prominently to the centrosome and partially on MTs in mouse N1-E115 neuronal cells, which expresses two of the four MAP7 family members, Map7D2 and Map7D1. Map7D2 loss decreased the resistance to the MT-destabilizing agent nocodazole without affecting acetylated/detyrosinated stable MTs, suggesting that Map7D2 stabilizes MTs via direct binding. In addition, Map7D2 loss increased the rate of random cell migration and neurite outgrowth, presumably by disturbing the balance between MT stabilization and destabilization. Map7D1 exhibited similar subcellular localization and gene knockdown phenotypes to Map7D2. However, in contrast to Map7D2, Map7D1 was required for the maintenance of acetylated stable MTs. Taken together, our data suggest that Map7D2 and Map7D1 facilitate MT stabilization through distinct mechanisms in cell motility and neurite outgrowth.
Collapse
Affiliation(s)
- Koji Kikuchi
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhisa Sakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Taro Saito
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Hiroyuki Nakanishi
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
106
|
Sharma S, Patel F, Ara H, Bess E, Shum A, Bhattarai S, Subedi U, Bell DS, Bhuiyan MS, Sun H, Batinic-Haberle I, Panchatcharam M, Miriyala S. Rotenone-Induced 4-HNE Aggresome Formation and Degradation in HL-1 Cardiomyocytes: Role of Autophagy Flux. Int J Mol Sci 2022; 23:ijms23094675. [PMID: 35563066 PMCID: PMC9105393 DOI: 10.3390/ijms23094675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) cause oxidative stress by generating reactive aldehydes known as 4-hydroxynonenal (4-HNE). 4-HNE modifies protein via covalent adduction; however, little is known about the degradation mechanism of 4-HNE-adducted proteins. Autophagy is a dynamic process that maintains cellular homeostasis by removing damaged organelles and proteins. In this study, we determined the role of a superoxide dismutase (SOD) mimetic MnTnBuOE-2-PyP5+ (MnP, BMX-001) on rotenone-induced 4-HNE aggresome degradation in HL-1 cardiomyocytes. A rotenone treatment (500 nM) given for 24 h demonstrated both increased ROS and 4-HNE aggresome accumulation in HL-1 cardiomyocytes. In addition, cardiomyocytes treated with rotenone displayed an increase in the autophagy marker LC3-II, as shown by immunoblotting and immunofluorescence. A pre-treatment with MnP (20 µM) for 24 h attenuated rotenone-induced ROS formation. An MnP pre-treatment showed decreased 4-HNE aggresomes and LC3-II formation. A rotenone-induced increase in autophagosomes was attenuated by a pre-treatment with MnP, as shown by fluorescent-tagged LC3 (tfLC3). Rotenone increased tubulin hyperacetylation through the ROS-mediated pathway, which was attenuated by MnP. The disruption of autophagy caused HL-1 cell death because a 3-methyladenine inhibitor of autophagosomes caused reduced cell death. Yet, rapamycin, an inducer of autophagy, increased cell death. These results indicated that a pre-treatment with MnP decreased rotenone-induced 4-HNE aggresomes by enhancing the degradation process.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.S.); (F.P.); (H.A.); (E.B.); (A.S.); (S.B.); (U.S.); (D.S.B.); (H.S.)
| | - Foram Patel
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.S.); (F.P.); (H.A.); (E.B.); (A.S.); (S.B.); (U.S.); (D.S.B.); (H.S.)
| | - Hosne Ara
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.S.); (F.P.); (H.A.); (E.B.); (A.S.); (S.B.); (U.S.); (D.S.B.); (H.S.)
| | - Ezra Bess
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.S.); (F.P.); (H.A.); (E.B.); (A.S.); (S.B.); (U.S.); (D.S.B.); (H.S.)
| | - Alika Shum
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.S.); (F.P.); (H.A.); (E.B.); (A.S.); (S.B.); (U.S.); (D.S.B.); (H.S.)
| | - Susmita Bhattarai
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.S.); (F.P.); (H.A.); (E.B.); (A.S.); (S.B.); (U.S.); (D.S.B.); (H.S.)
| | - Utsab Subedi
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.S.); (F.P.); (H.A.); (E.B.); (A.S.); (S.B.); (U.S.); (D.S.B.); (H.S.)
| | - Daquonte Sanard Bell
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.S.); (F.P.); (H.A.); (E.B.); (A.S.); (S.B.); (U.S.); (D.S.B.); (H.S.)
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.S.); (F.P.); (H.A.); (E.B.); (A.S.); (S.B.); (U.S.); (D.S.B.); (H.S.)
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.S.); (F.P.); (H.A.); (E.B.); (A.S.); (S.B.); (U.S.); (D.S.B.); (H.S.)
- Correspondence: (M.P.); (S.M.); Tel.: +1-3-186-756-938 (M.P.); +1-3-186-758-326 (S.M.)
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.S.); (F.P.); (H.A.); (E.B.); (A.S.); (S.B.); (U.S.); (D.S.B.); (H.S.)
- Correspondence: (M.P.); (S.M.); Tel.: +1-3-186-756-938 (M.P.); +1-3-186-758-326 (S.M.)
| |
Collapse
|
107
|
Microtubule Depolymerization Limits Porcine Betacoronavirus PHEV Replication. Vet Microbiol 2022; 269:109448. [DOI: 10.1016/j.vetmic.2022.109448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 11/23/2022]
|
108
|
Effect of ACY-1215 on cytoskeletal remodeling and histone acetylation in bovine somatic cell nuclear transfer embryos. Theriogenology 2022; 183:98-107. [DOI: 10.1016/j.theriogenology.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022]
|
109
|
Campiani G, Khan T, Ulivieri C, Staiano L, Papulino C, Magnano S, Nathwani S, Ramunno A, Lucena-Agell D, Relitti N, Federico S, Pozzetti L, Carullo G, Casagni A, Brogi S, Vanni F, Galatello P, Ghanim M, McCabe N, Lamponi S, Valoti M, Ibrahim O, O'Sullivan J, Turkington R, Kelly VP, VanWemmel R, Díaz JF, Gemma S, Zisterer D, Altucci L, De Matteis A, Butini S, Benedetti R. Design and synthesis of multifunctional microtubule targeting agents endowed with dual pro-apoptotic and anti-autophagic efficacy. Eur J Med Chem 2022; 235:114274. [PMID: 35344902 DOI: 10.1016/j.ejmech.2022.114274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
Abstract
Autophagy is a lysosome dependent cell survival mechanism and is central to the maintenance of organismal homeostasis in both physiological and pathological situations. Targeting autophagy in cancer therapy attracted considerable attention in the past as stress-induced autophagy has been demonstrated to contribute to both drug resistance and malignant progression and recently interest in this area has re-emerged. Unlocking the therapeutic potential of autophagy modulation could be a valuable strategy for designing innovative tools for cancer treatment. Microtubule-targeting agents (MTAs) are some of the most successful anti-cancer drugs used in the clinic to date. Scaling up our efforts to develop new anti-cancer agents, we rationally designed multifunctional agents 5a-l with improved potency and safety that combine tubulin depolymerising efficacy with autophagic flux inhibitory activity. Through a combination of computational, biological, biochemical, pharmacokinetic-safety, metabolic studies and SAR analyses we identified the hits 5i,k. These MTAs were characterised as potent pro-apoptotic agents and also demonstrated autophagy inhibition efficacy. To measure their efficacy at inhibiting autophagy, we investigated their effects on basal and starvation-mediated autophagic flux by quantifying the expression of LC3II/LC3I and p62 proteins in oral squamous cell carcinoma and human leukaemia through western blotting and by immunofluorescence study of LC3 and LAMP1 in a cervical carcinoma cell line. Analogues 5i and 5k, endowed with pro-apoptotic activity on a range of hematological cancer cells (including ex-vivo chronic lymphocytic leukaemia (CLL) cells) and several solid tumor cell lines, also behaved as late-stage autophagy inhibitors by impairing autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy.
| | - Tuhina Khan
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I, 53100, Siena, Italy
| | - Leopoldo Staiano
- Cell Biology and Disease Mechanisms, Telethon Institute of Genetics and Medicine, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Institute for Genetic and Biomedical Research, National Research Council (CNR), via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L, De Crecchio 7, 80138, Naples, IT, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Seema Nathwani
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, via G. Paolo II 132, 84084, Fisciano (SA), Italy
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biologicas Margarita Salas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Nicola Relitti
- IRBM Science Park, Via Pontina km 30, 600, 00071, Pomezia, Rome, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Alice Casagni
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Francesca Vanni
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Paola Galatello
- Department of Pharmacy, University of Salerno, via G. Paolo II 132, 84084, Fisciano (SA), Italy
| | - Magda Ghanim
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Niamh McCabe
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Health Sciences Building, BT9 7BL, Belfast, United Kingdom
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Ola Ibrahim
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Jeffrey O'Sullivan
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Richard Turkington
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Health Sciences Building, BT9 7BL, Belfast, United Kingdom
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Ruben VanWemmel
- Centro de Investigaciones Biologicas Margarita Salas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - J Fernando Díaz
- Centro de Investigaciones Biologicas Margarita Salas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L, De Crecchio 7, 80138, Naples, IT, Italy; Biogem Institute of Molecular Biology and Genetics, Via Camporeale, 83031, Ariano Irpino, Italy
| | - Antonella De Matteis
- Cell Biology and Disease Mechanisms, Telethon Institute of Genetics and Medicine, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I, 53100, Siena, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L, De Crecchio 7, 80138, Naples, IT, Italy
| |
Collapse
|
110
|
Huang L, Peng Y, Tao X, Ding X, Li R, Jiang Y, Zuo W. Microtubule Organization Is Essential for Maintaining Cellular Morphology and Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1623181. [PMID: 35295719 PMCID: PMC8920689 DOI: 10.1155/2022/1623181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/10/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022]
Abstract
Microtubules (MTs) are highly dynamic polymers essential for a wide range of cellular physiologies, such as acting as directional railways for intracellular transport and position, guiding chromosome segregation during cell division, and controlling cell polarity and morphogenesis. Evidence has established that maintaining microtubule (MT) stability in neurons is vital for fundamental cellular and developmental processes, such as neurodevelopment, degeneration, and regeneration. To fulfill these diverse functions, the nervous system employs an arsenal of microtubule-associated proteins (MAPs) to control MT organization and function. Subsequent studies have identified that the disruption of MT function in neurons is one of the most prevalent and important pathological features of traumatic nerve damage and neurodegenerative diseases and that this disruption manifests as a reduction in MT polymerization and concomitant deregulation of the MT cytoskeleton, as well as downregulation of microtubule-associated protein (MAP) expression. A variety of MT-targeting agents that reverse this pathological condition, which is regarded as a therapeutic opportunity to intervene the onset and development of these nervous system abnormalities, is currently under development. Here, we provide an overview of the MT-intrinsic organization process and how MAPs interact with the MT cytoskeleton to promote MT polymerization, stabilization, and bundling. We also highlight recent advances in MT-targeting therapeutic agents applied to various neurological disorders. Together, these findings increase our current understanding of the function and regulation of MT organization in nerve growth and regeneration.
Collapse
Affiliation(s)
- Lijiang Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
| | - Yan Peng
- Hangzhou Institute for Food and Drug Control, Hangzhou, Zhejiang, China
| | - Xuetao Tao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaoxiao Ding
- Department of Pharmacy, The People's Hospital of Beilun District, Ningbo, Zhejiang 315807, China
| | - Rui Li
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongsheng Jiang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
| | - Wei Zuo
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
| |
Collapse
|
111
|
Seetharaman S, Vianay B, Roca V, Farrugia AJ, De Pascalis C, Boëda B, Dingli F, Loew D, Vassilopoulos S, Bershadsky A, Théry M, Etienne-Manneville S. Microtubules tune mechanosensitive cell responses. NATURE MATERIALS 2022; 21:366-377. [PMID: 34663953 DOI: 10.1038/s41563-021-01108-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/20/2021] [Indexed: 05/05/2023]
Abstract
Mechanotransduction is a process by which cells sense the mechanical properties of their surrounding environment and adapt accordingly to perform cellular functions such as adhesion, migration and differentiation. Integrin-mediated focal adhesions are major sites of mechanotransduction and their connection with the actomyosin network is crucial for mechanosensing as well as for the generation and transmission of forces onto the substrate. Despite having emerged as major regulators of cell adhesion and migration, the contribution of microtubules to mechanotransduction still remains elusive. Here, we show that talin- and actomyosin-dependent mechanosensing of substrate rigidity controls microtubule acetylation (a tubulin post-translational modification) by promoting the recruitment of α-tubulin acetyltransferase 1 (αTAT1) to focal adhesions. Microtubule acetylation tunes the mechanosensitivity of focal adhesions and Yes-associated protein (YAP) translocation. Microtubule acetylation, in turn, promotes the release of the guanine nucleotide exchange factor GEF-H1 from microtubules to activate RhoA, actomyosin contractility and traction forces. Our results reveal a fundamental crosstalk between microtubules and actin in mechanotransduction that contributes to mechanosensitive cell adhesion and migration.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Descartes, Paris, France
| | - Benoit Vianay
- Paris University, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Vanessa Roca
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Aaron J Farrugia
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Chiara De Pascalis
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Florent Dingli
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | - Damarys Loew
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | | | - Alexander Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Manuel Théry
- Paris University, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
112
|
Glon D, Vilmen G, Perdiz D, Hernandez E, Beauclair G, Quignon F, Berlioz-Torrent C, Maréchal V, Poüs C, Lussignol M, Esclatine A. Essential role of hyperacetylated microtubules in innate immunity escape orchestrated by the EBV-encoded BHRF1 protein. PLoS Pathog 2022; 18:e1010371. [PMID: 35275978 PMCID: PMC8942261 DOI: 10.1371/journal.ppat.1010371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Innate immunity constitutes the first line of defense against viruses, in which mitochondria play an important role in the induction of the interferon (IFN) response. BHRF1, a multifunctional viral protein expressed during Epstein-Barr virus reactivation, modulates mitochondrial dynamics and disrupts the IFN signaling pathway. Mitochondria are mobile organelles that move through the cytoplasm thanks to the cytoskeleton and in particular the microtubule (MT) network. MTs undergo various post-translational modifications, among them tubulin acetylation. In this study, we demonstrated that BHRF1 induces MT hyperacetylation to escape innate immunity. Indeed, the expression of BHRF1 induces the clustering of shortened mitochondria next to the nucleus. This "mito-aggresome" is organized around the centrosome and its formation is MT-dependent. We also observed that the α-tubulin acetyltransferase ATAT1 interacts with BHRF1. Using ATAT1 knockdown or a non-acetylatable α-tubulin mutant, we demonstrated that this hyperacetylation is necessary for the mito-aggresome formation. Similar results were observed during EBV reactivation. We investigated the mechanism leading to the clustering of mitochondria, and we identified dyneins as motors that are required for mitochondrial clustering. Finally, we demonstrated that BHRF1 needs MT hyperacetylation to block the induction of the IFN response. Moreover, the loss of MT hyperacetylation blocks the localization of autophagosomes close to the mito-aggresome, impeding BHRF1 to initiate mitophagy, which is essential to inhibiting the signaling pathway. Therefore, our results reveal the role of the MT network, and its acetylation level, in the induction of a pro-viral mitophagy.
Collapse
Affiliation(s)
- Damien Glon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Géraldine Vilmen
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- CRSA, Centre de Recherche Saint-Antoine, UMR-S 938, INSERM, Sorbonne Université, Paris, France
| | - Daniel Perdiz
- INSERM UMR-S 1193, Université Paris-Saclay, Châtenay-Malabry, France
| | - Eva Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Guillaume Beauclair
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Frédérique Quignon
- Sorbonne Université, CNRS UMR 144, Institut Curie Centre de Recherche, Paris, France
| | | | - Vincent Maréchal
- CRSA, Centre de Recherche Saint-Antoine, UMR-S 938, INSERM, Sorbonne Université, Paris, France
| | - Christian Poüs
- INSERM UMR-S 1193, Université Paris-Saclay, Châtenay-Malabry, France
- Biochimie-Hormonologie, APHP, Hôpitaux Universitaires Paris-Saclay, Site Antoine Béclère, Clamart, France
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
113
|
Seetharaman S, Vianay B, Roca V, Farrugia AJ, De Pascalis C, Boëda B, Dingli F, Loew D, Vassilopoulos S, Bershadsky A, Théry M, Etienne-Manneville S. Microtubules tune mechanosensitive cell responses. NATURE MATERIALS 2022; 21:366-377. [PMID: 34663953 DOI: 10.1101/2020.07.22.205203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/20/2021] [Indexed: 05/24/2023]
Abstract
Mechanotransduction is a process by which cells sense the mechanical properties of their surrounding environment and adapt accordingly to perform cellular functions such as adhesion, migration and differentiation. Integrin-mediated focal adhesions are major sites of mechanotransduction and their connection with the actomyosin network is crucial for mechanosensing as well as for the generation and transmission of forces onto the substrate. Despite having emerged as major regulators of cell adhesion and migration, the contribution of microtubules to mechanotransduction still remains elusive. Here, we show that talin- and actomyosin-dependent mechanosensing of substrate rigidity controls microtubule acetylation (a tubulin post-translational modification) by promoting the recruitment of α-tubulin acetyltransferase 1 (αTAT1) to focal adhesions. Microtubule acetylation tunes the mechanosensitivity of focal adhesions and Yes-associated protein (YAP) translocation. Microtubule acetylation, in turn, promotes the release of the guanine nucleotide exchange factor GEF-H1 from microtubules to activate RhoA, actomyosin contractility and traction forces. Our results reveal a fundamental crosstalk between microtubules and actin in mechanotransduction that contributes to mechanosensitive cell adhesion and migration.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Descartes, Paris, France
| | - Benoit Vianay
- Paris University, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Vanessa Roca
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Aaron J Farrugia
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Chiara De Pascalis
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Florent Dingli
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | - Damarys Loew
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | | | - Alexander Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Manuel Théry
- Paris University, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
114
|
Shape multistability in flexible tubular crystals through interactions of mobile dislocations. Proc Natl Acad Sci U S A 2022; 119:2115423119. [PMID: 35110407 PMCID: PMC8833160 DOI: 10.1073/pnas.2115423119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2021] [Indexed: 12/03/2022] Open
Abstract
Crystalline sheets rolled up into cylinders occur in diverse biological and synthetic systems, including carbon nanotubes, biofilaments of the cellular cytoskeleton, and packings of colloidal particles. In this work, we show, computationally, that such tubular crystals can be programmed with reconfigurable shapes, due to motions of defects that interrupt the periodicity of the crystalline lattice. By identifying and exploiting stable patterns of these defects, we cause tubular crystals to relax into desired target geometries, a design principle that could guide the creation of versatile colloidal analogues to nanotubes. Our results suggest routes to tunable and switchable material properties in ordered, soft materials on deformable surfaces. We study avenues to shape multistability and shape morphing in flexible crystalline membranes of cylindrical topology, enabled by glide mobility of dislocations. Using computational modeling, we obtain states of mechanical equilibrium presenting a wide variety of tubular crystal deformation geometries, due to an interplay of effective defect interactions with out-of-tangent-plane deformations that reorient the tube axis. Importantly, this interplay often stabilizes defect configurations quite distinct from those predicted for a two-dimensional crystal confined to the surface of a rigid cylinder. We find that relative and absolute stability of competing states depend strongly on control parameters such as bending rigidity, applied stress, and spontaneous curvature. Using stable dislocation pair arrangements as building blocks, we demonstrate that targeted macroscopic three-dimensional conformations of thin crystalline tubes can be programmed by imposing certain sparse patterns of defects. Our findings reveal a broad design space for controllable and reconfigurable colloidal tube geometries, with potential relevance also to architected carbon nanotubes and microtubules.
Collapse
|
115
|
Protic I, Golic I, Aleksic M, Vidakovic S, Korac B, Korac A. Presence of acetylated α-tubulin in human sperm nuclei: A contributor to sperm heterogeneity. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
116
|
Microtubule regulation: Transcending the tenet of K40 acetylation. Curr Biol 2022; 32:R126-R128. [DOI: 10.1016/j.cub.2021.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
117
|
Nanoarchitecture of the ventral disc of Giardia intestinalis as revealed by high-resolution scanning electron microscopy and helium ion microscopy. Histochem Cell Biol 2022; 157:251-265. [DOI: 10.1007/s00418-021-02060-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
|
118
|
Lv Z, Ding Y, Cao W, Wang S, Gao K. Role of RHO family interacting cell polarization regulators (RIPORs) in health and disease: Recent advances and prospects. Int J Biol Sci 2022; 18:800-808. [PMID: 35002526 PMCID: PMC8741841 DOI: 10.7150/ijbs.65457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
The RHO GTPase family has been suggested to play critical roles in cell growth, migration, and polarization. Regulators and effectors of RHO GTPases have been extensively explored in recent years. However, little attention has been given to RHO family interacting cell polarization regulators (RIPORs), a recently discovered protein family of RHO regulators. RIPOR proteins, namely, RIPOR1-3, bind directly to RHO proteins (A, B and C) via a RHO-binding motif and exert suppressive effects on RHO activity, thereby negatively influencing RHO-regulated cellular functions. In addition, RIPORs are phosphorylated by upstream protein kinases under chemokine stimulation, and this phosphorylation affects not only their subcellular localization but also their interaction with RHO proteins, altering the activation of RHO downstream targets and ultimately impacting cell polarity and migration. In this review, we provide an overview of recent studies on the function of RIPOR proteins in regulating RHO-dependent directional movement in immune responses and other pathophysiological functions.
Collapse
Affiliation(s)
- Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Ding
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenxin Cao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuyun Wang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
119
|
Wang Y, Pan ZN, Xing CH, Zhang HL, Sun SC. Nivalenol affects spindle formation and organelle functions during mouse oocyte maturation. Toxicol Appl Pharmacol 2022; 436:115882. [PMID: 35016910 DOI: 10.1016/j.taap.2022.115882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 12/29/2022]
Abstract
Oocyte maturation is essential for fertilization and early embryo development, and proper organelle functions guarantee this process to maintain high-quality oocytes. The type B trichothecene nivalenol (NIV) is a mycotoxin produced by Fusarium oxysporum and is commonly found in contaminated food. NIV intake affect growth, the immune system, and the female reproductive system. Here, we investigated NIV toxicity on mouse oocyte quality. Transcriptome analysis results showed that NIV exposure altered the expression of multiple genes involved in spindle formation and organelle function in mouse oocytes, indicating its toxicity on mouse oocyte maturation. Further analysis indicated that NIV exposure disrupted spindle structure and chromosome alignment, possibly through tubulin acetylation. NIV exposure induced aberrant mitochondria distribution and reduced mitochondria number, mitochondria membrane potential (MMP), and ATP levels. In addition, NIV caused the abnormal distribution of the Golgi apparatus and altered the expression of the vesicle trafficking protein Rab11. ER distribution was also disturbed under NIV exposure, indicating the effects of NIV on protein modification and transport in oocytes. Thus, our results demonstrated that NIV exposure affected spindle structure and organelles function in mouse oocytes.
Collapse
Affiliation(s)
- Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Hua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
120
|
Pathophysiology of neurodegenerative diseases: An interplay among axonal transport failure, oxidative stress, and inflammation? Semin Immunol 2022; 59:101628. [PMID: 35779975 PMCID: PMC9807734 DOI: 10.1016/j.smim.2022.101628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Neurodegenerative diseases (NDs) are heterogeneous neurological disorders characterized by a progressive loss of selected neuronal populations. A significant risk factor for most NDs is aging. Considering the constant increase in life expectancy, NDs represent a global public health burden. Axonal transport (AT) is a central cellular process underlying the generation and maintenance of neuronal architecture and connectivity. Deficits in AT appear to be a common thread for most, if not all, NDs. Neuroinflammation has been notoriously difficult to define in relation to NDs. Inflammation is a complex multifactorial process in the CNS, which varies depending on the disease stage. Several lines of evidence suggest that AT defect, axonopathy and neuroinflammation are tightly interlaced. However, whether these impairments play a causative role in NDs or are merely a downstream effect of neuronal degeneration remains unsettled. We still lack reliable information on the temporal relationship between these pathogenic mechanisms, although several findings suggest that they may occur early during ND pathophysiology. This article will review the latest evidence emerging on whether the interplay between AT perturbations and some aspects of CNS inflammation can participate in ND etiology, analyze their potential as therapeutic targets, and the urge to identify early surrogate biomarkers.
Collapse
|
121
|
The Important Role of Ion Transport System in Cervical Cancer. Int J Mol Sci 2021; 23:ijms23010333. [PMID: 35008759 PMCID: PMC8745646 DOI: 10.3390/ijms23010333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cervical cancer is a significant gynecological cancer and causes cancer-related deaths worldwide. Human papillomavirus (HPV) is implicated in the etiology of cervical malignancy. However, much evidence indicates that HPV infection is a necessary but not sufficient cause in cervical carcinogenesis. Therefore, the cellular pathophysiology of cervical cancer is worthy of study. This review summarizes the recent findings concerning the ion transport processes involved in cell volume regulation and intracellular Ca2+ homeostasis of epithelial cells and how these transport systems are themselves regulated by the tumor microenvironment. For cell volume regulation, we focused on the volume-sensitive Cl− channels and K+-Cl− cotransporter (KCC) family, important regulators for ionic and osmotic homeostasis of epithelial cells. Regarding intracellular Ca2+ homeostasis, the Ca2+ store sensor STIM molecules and plasma membrane Ca2+ channel Orai proteins, the predominant Ca2+ entry mechanism in epithelial cells, are discussed. Furthermore, we evaluate the potential of these membrane ion transport systems as diagnostic biomarkers and pharmacological interventions and highlight the challenges.
Collapse
|
122
|
Palma-Barqueros V, Bury L, Kunishima S, Lozano ML, Rodríguez-Alen A, Revilla N, Bohdan N, Padilla J, Fernández-Pérez MP, de la Morena-Barrio ME, Marín-Quiles A, Benito R, López-Fernández MF, Marcellini S, Zamora-Cánovas A, Vicente V, Martínez C, Gresele P, Bastida JM, Rivera J. Expanding the genetic spectrum of TUBB1-related thrombocytopenia. Blood Adv 2021; 5:5453-5467. [PMID: 34516618 PMCID: PMC8714720 DOI: 10.1182/bloodadvances.2020004057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/20/2021] [Indexed: 11/20/2022] Open
Abstract
β1-Tubulin plays a major role in proplatelet formation and platelet shape maintenance, and pathogenic variants in TUBB1 lead to thrombocytopenia and platelet anisocytosis (TUBB1-RT). To date, the reported number of pedigrees with TUBB1-RT and of rare TUBB1 variants with experimental demonstration of pathogenicity is limited. Here, we report 9 unrelated families presenting with thrombocytopenia carrying 6 β1-tubulin variants, p.Cys12LeufsTer12, p.Thr107Pro, p.Gln423*, p.Arg359Trp, p.Gly109Glu, and p.Gly269Asp, the last of which novel. Segregation studies showed incomplete penetrance of these variants for platelet traits. Indeed, most carriers showed macrothrombocytopenia, some only increased platelet size, and a minority had no abnormalities. Moreover, only homozygous carriers of the p.Gly109Glu variant displayed macrothrombocytopenia, highlighting the importance of allele burden in the phenotypic expression of TUBB1-RT. The p.Arg359Trp, p.Gly269Asp, and p.Gly109Glu variants deranged β1-tubulin incorporation into the microtubular marginal ring in platelets but had a negligible effect on platelet activation, secretion, or spreading, suggesting that β1-tubulin is dispensable for these processes. Transfection of TUBB1 missense variants in CHO cells altered β1-tubulin incorporation into the microtubular network. In addition, TUBB1 variants markedly impaired proplatelet formation from peripheral blood CD34+ cell-derived megakaryocytes. Our study, using in vitro modeling, molecular characterization, and clinical investigations provides a deeper insight into the pathogenicity of rare TUBB1 variants. These novel data expand the genetic spectrum of TUBB1-RT and highlight a remarkable heterogeneity in its clinical presentation, indicating that allelic burden or combination with other genetic or environmental factors modulate the phenotypic impact of rare TUBB1 variants.
Collapse
Affiliation(s)
- Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Loredana Bury
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Shinji Kunishima
- Department of Medical Technology, Gifu University of Medical Science, Seki, Japan
| | - María Luisa Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Augustín Rodríguez-Alen
- Servicio de Hematología y Hemoterapia, Hospital Virgen de la Salud, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Nuria Revilla
- Servicio de Hematología, Hospital Universitario Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Natalia Bohdan
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - José Padilla
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - María P. Fernández-Pérez
- Servicio de Hematología, Hospital Universitario Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Ana Marín-Quiles
- Instituto de Investigación Biomédica de Salamanca, Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Universidad de Salamanca-Consejo Superior de Investigaciones Científicas
| | - Rocío Benito
- Instituto de Investigación Biomédica de Salamanca, Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Universidad de Salamanca-Consejo Superior de Investigaciones Científicas
| | | | | | - Ana Zamora-Cánovas
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Constantino Martínez
- Servicio de Hematología, Hospital Universitario Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Paolo Gresele
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - José M. Bastida
- Departamento de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| |
Collapse
|
123
|
Kuzmić M, Linares GC, Fialová JL, Iv F, Salaün D, Llewellyn A, Gomes M, Belhabib M, Liu Y, Asano K, Rodrigues M, Isnardon D, Tachibana T, Koenderink GH, Badache A, Mavrakis M, Verdier-Pinard P. Septin-microtubule association via a motif unique to the isoform 1 of septin 9 tunes stress fibers. J Cell Sci 2021; 135:273936. [PMID: 34854883 DOI: 10.1242/jcs.258850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022] Open
Abstract
Septins, a family of GTP-binding proteins assembling into higher order structures, interface with the membrane, actin filaments and microtubules, which positions them as important regulators of cytoarchitecture. Septin 9 (SEPT9), which is frequently overexpressed in tumors and mutated in hereditary neuralgic amyotrophy (HNA), mediates the binding of septins to microtubules, but the molecular determinants of this interaction remained uncertain. We demonstrate that a short MAP-like motif unique to SEPT9 isoform 1 (SEPT9_i1) drives septin octamer-microtubule interaction in cells and in vitro reconstitutions. Septin-microtubule association requires polymerizable septin octamers harboring SEPT9_i1. Although outside of the MAP-like motif, HNA mutations abrogates this association, identifying a putative regulatory domain. Removal of this domain from SEPT9_i1 sequesters septins on microtubules, promotes microtubule stability and alters actomyosin fiber distribution and tension. Thus, we identify key molecular determinants and potential regulatory roles of septin-microtubule interaction, paving the way to deciphering the mechanisms underlying septin-associated pathologies.
Collapse
Affiliation(s)
- Mira Kuzmić
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| | - Gerard Castro Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jindřiška Leischner Fialová
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - François Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Danièle Salaün
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| | - Alex Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Maxime Gomes
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Mayssa Belhabib
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Yuxiang Liu
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Keisuke Asano
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Magda Rodrigues
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| | - Daniel Isnardon
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan.,Cell Engineering Corporation, Osaka, Japan
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| |
Collapse
|
124
|
Rayevsky A, Ozheredov DS, Samofalova D, Ozheredov SP, Karpov PA, Blume YB. The Role of Posttranslational Acetylation in the Association of Autophagy Protein ATG8 with Microtubules in Plant Cells. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721060128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
125
|
Wu S, Frank I, Derby N, Martinelli E, Cheng CY. HIV-1 Establishes a Sanctuary Site in the Testis by Permeating the BTB Through Changes in Cytoskeletal Organization. Endocrinology 2021; 162:6338140. [PMID: 34343260 PMCID: PMC8407494 DOI: 10.1210/endocr/bqab156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Studies suggest that HIV-1 invades the testis through initial permeation of the blood-testis barrier (BTB). The selectivity of the BTB to antiretroviral drugs makes this site a sanctuary for the virus. Little is known about how HIV-1 crosses the BTB and invades the testis. Herein, we used 2 approaches to examine the underlying mechanism(s) by which HIV-1 permeates the BTB and gains entry into the seminiferous epithelium. First, we examined if recombinant Tat protein was capable of perturbing the BTB and making the barrier leaky, using the primary rat Sertoli cell in vitro model that mimics the BTB in vivo. Second, we used HIV-1-infected Sup-T1 cells to investigate the activity of HIV-1 infection on cocultured Sertoli cells. Using both approaches, we found that the Sertoli cell tight junction permeability barrier was considerably perturbed and that HIV-1 effectively permeates the BTB by inducing actin-, microtubule-, vimentin-, and septin-based cytoskeletal changes in Sertoli cells. These studies suggest that HIV-1 directly perturbs BTB function, potentially through the activity of the Tat protein.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Ines Frank
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Nina Derby
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
126
|
Tang Q, Liu M, Liu Y, Hwang RD, Zhang T, Wang J. NDST3 deacetylates α-tubulin and suppresses V-ATPase assembly and lysosomal acidification. EMBO J 2021; 40:e107204. [PMID: 34435379 PMCID: PMC8488563 DOI: 10.15252/embj.2020107204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Lysosomes are key organelles maintaining cellular homeostasis in health and disease. Here, we report the identification of N‐deacetylase and N‐sulfotransferase 3 (NDST3) as a potent regulator of lysosomal functions through an unbiased genetic screen. NDST3 constitutes a new member of the histone deacetylase (HDAC) family and catalyzes the deacetylation of α‐tubulin. Loss of NDST3 promotes assembly of the V‐ATPase holoenzyme on the lysosomal membrane and thereby increases the acidification of the organelle. NDST3 is downregulated in tissues and cells from patients carrying the C9orf72 hexanucleotide repeat expansion linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Deficiency in C9orf72 decreases the level of NDST3, and downregulation of NDST3 exacerbates the proteotoxicity of poly‐dipeptides generated from the C9orf72 hexanucleotide repeats. These results demonstrate a previously unknown regulatory mechanism through which microtubule acetylation regulates lysosomal activities and suggest that NDST3 could be targeted to modulate microtubule and lysosomal functions in relevant diseases.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mingming Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ran-Der Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
127
|
Atypical laminin spots and pull-generated microtubule-actin projections mediate Drosophila wing adhesion. Cell Rep 2021; 36:109667. [PMID: 34496252 DOI: 10.1016/j.celrep.2021.109667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
During Drosophila metamorphosis, dorsal and ventral wing surfaces adhere, separate, and reappose in a paradoxical process involving cell-matrix adhesion, matrix production and degradation, and long cellular projections. The identity of the intervening matrix, the logic behind the adhesion-reapposition cycle, and the role of projections are unknown. We find that laminin matrix spots devoid of other main basement membrane components mediate wing adhesion. Through live imaging, we show that long microtubule-actin cables grow from those adhesion spots because of hydrostatic pressure that pushes wing surfaces apart. Formation of cables resistant to pressure requires spectraplakin, Patronin, septins, and Sdb, a SAXO1/2 microtubule stabilizer expressed under control of wing intervein-selector SRF. Silkworms and dead-leaf butterflies display similar dorso-ventral projections and expression of Sdb in intervein SRF-like patterns. Our study supports the morphogenetic importance of atypical basement-membrane-related matrices and dissects matrix-cytoskeleton coordination in a process of great evolutionary significance.
Collapse
|
128
|
Mohan N, Qiang L, Morfini G, Baas PW. Therapeutic Strategies for Mutant SPAST-Based Hereditary Spastic Paraplegia. Brain Sci 2021; 11:brainsci11081081. [PMID: 34439700 PMCID: PMC8394973 DOI: 10.3390/brainsci11081081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Mutations of the SPAST gene that encodes the microtubule-severing enzyme called spastin are the chief cause of Hereditary Spastic Paraplegia. Growing evidence indicates that pathogenic mutations functionally compromise the spastin protein and endow it with toxic gain-of-function properties. With each of these two factors potentially relevant to disease etiology, the present article discusses possible therapeutic strategies that may ameliorate symptoms in patients suffering from SPAST-based Hereditary Spastic Paraplegia, which is usually termed SPG4-HSP.
Collapse
Affiliation(s)
- Neha Mohan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19422, USA; (N.M.); (L.Q.)
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19422, USA; (N.M.); (L.Q.)
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Peter W. Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19422, USA; (N.M.); (L.Q.)
- Correspondence: ; Tel.: +1-215-991-8289; Fax: +1-215-843-9082
| |
Collapse
|
129
|
Collins C, Kim SK, Ventrella R, Carruzzo HM, Wortman JC, Han H, Suva EE, Mitchell JW, Yu CC, Mitchell BJ. Tubulin acetylation promotes penetrative capacity of cells undergoing radial intercalation. Cell Rep 2021; 36:109556. [PMID: 34407402 PMCID: PMC8383821 DOI: 10.1016/j.celrep.2021.109556] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/14/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Post-translational modification of tubulin provides differential functions to microtubule networks. Here, we address the role of tubulin acetylation on the penetrative capacity of cells undergoing radial intercalation, which is the process by which cells move apically, insert between outer cells, and join an epithelium. There are opposing forces that regulate intercalation, namely, the restrictive forces of the epithelial barrier versus the penetrative forces of the intercalating cell. Positively and negatively modulating tubulin acetylation in intercalating cells alters the developmental timing such that cells with more acetylation penetrate faster. We find that intercalating cells preferentially penetrate higher-order vertices rather than the more prevalent tricellular vertices. Differential timing in the ability of cells to penetrate different vertices reveals that lower-order vertices represent more restrictive sites of insertion. We shift the accessibility of intercalating cells toward more restrictive junctions by increasing tubulin acetylation, and we provide a geometric-based mathematical model that describes our results.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Sun K Kim
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Rosa Ventrella
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Herve M Carruzzo
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
| | - Juliana C Wortman
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
| | - Hyebin Han
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Evelyn E Suva
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Jennifer W Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Clare C Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
| | - Brian J Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
130
|
Nihongaki Y, Matsubayashi HT, Inoue T. A molecular trap inside microtubules probes luminal access by soluble proteins. Nat Chem Biol 2021; 17:888-895. [PMID: 33941924 PMCID: PMC8319117 DOI: 10.1038/s41589-021-00791-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
The uniquely hollow structure of microtubules (MTs) confers characteristic mechanical and biological properties. Although most regulatory processes take place at the outer surface, molecular events inside MTs, such as α-tubulin acetylation, also play a critical role. However, how regulatory proteins reach the site of action remains obscure. To assess luminal accessibility, we first identified luminally positioned residues of β-tubulin that can be fused to a protein of interest. We then developed a chemically inducible technique with which cytosolic proteins can be rapidly trapped at the lumen of intact MTs in cells. A luminal trapping assay revealed that soluble proteins of moderate size can enter the lumen via diffusion through openings at the MT ends and sides. Additionally, proteins forming a complex with tubulins can be incorporated to the lumen through the plus ends. Our approach may not only illuminate this understudied territory, but may also help understand its roles in MT-mediated functions.
Collapse
Affiliation(s)
- Yuta Nihongaki
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,To whom correspondence should be addressed. ,
| | - Hideaki T. Matsubayashi
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,To whom correspondence should be addressed. ,
| |
Collapse
|
131
|
Peoples JN, Ghazal N, Duong DM, Hardin KR, Manning JR, Seyfried NT, Faundez V, Kwong JQ. Loss of the mitochondrial phosphate carrier SLC25A3 induces remodeling of the cardiac mitochondrial protein acylome. Am J Physiol Cell Physiol 2021; 321:C519-C534. [PMID: 34319827 DOI: 10.1152/ajpcell.00156.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are recognized as signaling organelles because, under stress, mitochondria can trigger various signaling pathways to coordinate the cell's response. The specific pathway(s) engaged by mitochondria in response to mitochondrial energy defects in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. Mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased post-translational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel crosstalk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the energy production machinery can have an expanded impact on global mitochondrial function.
Collapse
Affiliation(s)
- Jessica N Peoples
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Nasab Ghazal
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R Hardin
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Janet R Manning
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer Q Kwong
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
132
|
Park JK, Shon S, Yoo HJ, Suh DH, Bae D, Shin J, Jun JH, Ha N, Song H, Choi YI, Pap T, Song YW. Inhibition of histone deacetylase 6 suppresses inflammatory responses and invasiveness of fibroblast-like-synoviocytes in inflammatory arthritis. Arthritis Res Ther 2021; 23:177. [PMID: 34225810 PMCID: PMC8256575 DOI: 10.1186/s13075-021-02561-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Abstract
Background To investigate the effects of inhibiting histone deacetylase (HDAC) 6 on inflammatory responses and tissue-destructive functions of fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA). Methods FLS from RA patients were activated with interleukin (IL)-1β in the presence of increasing concentrations of M808, a novel specific HDAC6 inhibitor. Production of ILs, chemokines, and metalloproteinases (MMPs) was measured in ELISAs. Acetylation of tubulin and expression of ICAM-1 and VCAM-1 were assessed by Western blotting. Wound healing and adhesion assays were performed. Cytoskeletal organization was visualized by immunofluorescence. Finally, the impact of HDAC6 inhibition on the severity of arthritis and joint histology was examined in a murine model of adjuvant-induced arthritis (AIA). Results HDAC6 was selectively inhibited by M808. The HDAC6 inhibitor suppressed the production of MMP-1, MMP-3, IL-6, CCL2, CXCL8, and CXCL10 by RA-FLS in response to IL-1β. Increased acetylation of tubulin was associated with decreased migration of RA-FLS. Inhibiting HDAC6 induced cytoskeletal reorganization in RA-FLS by suppressing the formation of invadopodia following activation with IL-1β. In addition, M808 tended to decrease the expression of ICAM-1 and VCAM-1. In the AIA arthritis model, M808 improved the clinical arthritis score in a dose-dependent manner. Also, HDAC6 inhibition was associated with less severe synovial inflammation and joint destruction. Conclusion Inhibiting HDAC6 dampens the inflammatory and destructive activity of RA-FLS and reduces the severity of arthritis. Thus, targeting HDAC6 has therapeutic potential.
Collapse
Affiliation(s)
- Jin Kyun Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sehui Shon
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Hyun Jung Yoo
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Dong-Hyeon Suh
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Daekwon Bae
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Jieun Shin
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Jae Hyun Jun
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Nina Ha
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Hyeseung Song
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Young Il Choi
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Thomas Pap
- Division of Mol Medicine of Musculoskeletal Tissue, University Munster, Munster, Germany
| | - Yeong Wook Song
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea. .,Medical Research Center, Institute of Human-Environment Interface Biology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
133
|
Morcillo P, Cordero H, Ijomone OM, Ayodele A, Bornhorst J, Gunther L, Macaluso FP, Bowman AB, Aschner M. Defective Mitochondrial Dynamics Underlie Manganese-Induced Neurotoxicity. Mol Neurobiol 2021; 58:3270-3289. [PMID: 33666854 PMCID: PMC9009155 DOI: 10.1007/s12035-021-02341-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Perturbations in mitochondrial dynamics have been observed in most neurodegenerative diseases. Here, we focus on manganese (Mn)-induced Parkinsonism-like neurodegeneration, a disorder associated with the preferential of Mn in the basal ganglia where the mitochondria are considered an early target. Despite the extensive characterization of the clinical presentation of manganism, the mechanism by which Mn mediated mitochondrial toxicity is unclear. In this study we hypothesized whether Mn exposure alters mitochondrial activity, including axonal transport of mitochondria and mitochondrial dynamics, morphology, and network. Using primary neuron cultures exposed to 100 μM Mn (which is considered the threshold of Mn toxicity in vitro) and intraperitoneal injections of MnCl2 (25mg/kg) in rat, we observed that Mn increased mitochondrial fission mediated by phosphorylation of dynamin-related protein-1 at serine 616 (p-s616-DRP1) and decreased mitochondrial fusion proteins (MFN1 and MFN2) leading to mitochondrial fragmentation, defects in mitochondrial respiratory capacity, and mitochondrial ultrastructural damage in vivo and in vitro. Furthermore, Mn exposure impaired mitochondrial trafficking by decreasing dynactin (DCTN1) and kinesin-1 (KIF5B) motor proteins and increasing destabilization of the cytoskeleton at protein and gene levels. In addition, mitochondrial communication may also be altered by Mn exposure, increasing the length of nanotunnels to reach out distal mitochondria. These findings revealed an unrecognized role of Mn in dysregulation of mitochondrial dynamics providing a potential explanation of early hallmarks of the disorder, as well as a possible common pathway with neurological disorders arising upon chronic Mn exposure.
Collapse
Affiliation(s)
- Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Hector Cordero
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Omamuyovwi M Ijomone
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Akinyemi Ayodele
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Leslie Gunther
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
134
|
Lv J, Li S, Liu Y, Sun Z, Wang D, You Z, Jiang C, Sheng Q, Nie Z. The acetylation modification regulates the stability of Bm30K-15 protein and its mechanism in silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21823. [PMID: 34075635 DOI: 10.1002/arch.21823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/02/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The 30 K proteins are the major silkworm hemolymph proteins and are involved in a variety of physiological processes, such as nutrient and energy storage, embryogenesis, immune response, and inhibition of apoptosis. The Bm30K-15 protein is one of the 30 K proteins and is abundant in the hemolymph of fifth instar silkworm larva. We previously found that the Bm30K-15 protein can be acetylated. In the present study, we found that acetylation can improve the protein stability of Bm30K-15. Further exploration confirmed that the increase in protein stability by acetylation was caused by competition between acetylation and ubiquitination. In summary, these findings aim to provide insight into the effect of acetylation modification on the protein level and stability of the Bm30K-15 and the possible molecular mechanism of its existence in silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Jiao Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shouliang Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yue Liu
- Zhejiang Institute of Economics and Trade, Hangzhou, China
| | - Zihan Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
135
|
Łysyganicz PK, Pooranachandran N, Liu X, Adamson KI, Zielonka K, Elworthy S, van Eeden FJ, Grierson AJ, Malicki JJ. Loss of Deacetylation Enzymes Hdac6 and Sirt2 Promotes Acetylation of Cytoplasmic Tubulin, but Suppresses Axonemal Acetylation in Zebrafish Cilia. Front Cell Dev Biol 2021; 9:676214. [PMID: 34268305 PMCID: PMC8276265 DOI: 10.3389/fcell.2021.676214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/13/2021] [Indexed: 01/26/2023] Open
Abstract
Cilia are evolutionarily highly conserved organelles with important functions in many organs. The extracellular component of the cilium protruding from the plasma membrane comprises an axoneme composed of microtubule doublets, arranged in a 9 + 0 conformation in primary cilia or 9 + 2 in motile cilia. These microtubules facilitate transport of intraflagellar cargoes along the axoneme. They also provide structural stability to the cilium, which may play an important role in sensory cilia, where signals are received from the movement of extracellular fluid. Post-translational modification of microtubules in cilia is a well-studied phenomenon, and acetylation on lysine 40 (K40) of alpha tubulin is prominent in cilia. It is believed that this modification contributes to the stabilization of cilia. Two classes of enzymes, histone acetyltransferases and histone deacetylases, mediate regulation of tubulin acetylation. Here we use a genetic approach, immunocytochemistry and behavioral tests to investigate the function of tubulin deacetylases in cilia in a zebrafish model. By mutating three histone deacetylase genes (Sirt2, Hdac6, and Hdac10), we identify an unforeseen role for Hdac6 and Sirt2 in cilia. As expected, mutation of these genes leads to increased acetylation of cytoplasmic tubulin, however, surprisingly it caused decreased tubulin acetylation in cilia in the developing eye, ear, brain and kidney. Cilia in the ear and eye showed elevated levels of mono-glycylated tubulin suggesting a compensatory mechanism. These changes did not affect the length or morphology of cilia, however, functional defects in balance was observed, suggesting that the level of tubulin acetylation may affect function of the cilium.
Collapse
Affiliation(s)
- Paweł K Łysyganicz
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Xinming Liu
- The School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Kathryn I Adamson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Zielonka
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Stone Elworthy
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Fredericus J van Eeden
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J Grierson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Jarema J Malicki
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
136
|
LMBD1 protein participates in cell mitosis by regulating microtubule assembly. Biochem J 2021; 478:2321-2337. [PMID: 34076705 DOI: 10.1042/bcj20210070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022]
Abstract
LMBD1 was previously demonstrated to regulate the endocytosis of insulin receptor on the cell surface and to mediate the export of cobalamin from the lysosomes to the cytosol, but little is known about its function in mitosis. In this study, interactome analysis data indicate that LMBD1 is involved in cytoskeleton regulation. Both immunoprecipitation and GST pulldown assays demonstrated the association of LMBD1 with tubulin. Immunofluorescence staining also showed the colocalization of LMBD1 with microtubule in both interphase and mitotic cells. LMBD1 specifically accelerates microtubule assembly dynamics in vitro and antagonizes the microtubule-disruptive effect of vinblastine. In addition, LMBRD1-knockdown impairs mitotic spindle formation, inhibits tubulin polymerization, and diminishes the mitosis-associated tubulin acetylation. The reduced acetylation can be reversed by ectopic expression of LMBD1 protein. These results suggest that LMBD1 protein stabilizes microtubule intermediates. Furthermore, embryonic fibroblasts derived from Lmbrd1 heterozygous knockout mice showed abnormality in microtubule formation, mitosis, and cell growth. Taken together, LMBD1 plays a pivotal role in regulating microtubule assembly that is essential for the process of cell mitosis.
Collapse
|
137
|
Naik A, Decock J. Targeting of lactate dehydrogenase C dysregulates the cell cycle and sensitizes breast cancer cells to DNA damage response targeted therapy. Mol Oncol 2021; 16:885-903. [PMID: 34050611 PMCID: PMC8847988 DOI: 10.1002/1878-0261.13024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
The cancer testis antigen (CTA) lactate dehydrogenase C (LDHC) is a promising anticancer target with tumor-specific expression and immunogenicity. Interrogation of breast cancer patient cohorts from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) indicate that upregulation of LDHC expression correlates with unfavorable prognosis. Although the role of LDHC is well characterized in spermatocytes, its role in tumors remains largely unknown. We investigated whether LDHC is involved in regulating genomic stability and whether it could be targeted to affect tumor cellular fitness. Silencing LDHC in four breast cancer cell lines significantly increased the presence of giant cells, nuclear aberrations, DNA damage, and apoptosis. LDHC-silenced cells demonstrated aberrant cell cycle progression with differential expression of cell cycle checkpoint and DNA damage response regulators. In addition, LDHC silencing-induced microtubule destabilization, culminating in increased mitotic catastrophe and reduced long-term survival. Notably, the clonogenicity of LDHC-silenced cells was further reduced by treatment with the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib and with the DNA-damaging drug cisplatin. This study supports the therapeutic potential of targeting LDHC to mitigate cancer cell survival and improve sensitivity to agents that cause DNA damage or inhibit its repair.
Collapse
Affiliation(s)
- Adviti Naik
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
138
|
Ouyang C, Li J, Zheng X, Mu J, Torres G, Wang Q, Zou MH, Xie Z. Deletion of Ulk1 inhibits neointima formation by enhancing KAT2A/GCN5-mediated acetylation of TUBA/α-tubulin in vivo. Autophagy 2021; 17:4305-4322. [PMID: 33985412 DOI: 10.1080/15548627.2021.1911018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ULK1 (unc-51 like autophagy activating kinase) has a central role in initiating macroautophagy/autophagy, a process that contributes to atherosclerosis and neointima hyperplasia, or excessive tissue growth that leads to vessel dysfunction. However, the role of ULK1 in neointima formation remains unclear. We aimed to determine how Ulk1 deletion affected neointima formation and to investigate the underlying mechanisms. We measured autophagy activity, vascular smooth muscle cell (VSMC) migration and neointima hyperplasia in cultured VSMCs and ligation-injured mouse carotid arteries from male wild-type (WT, C57BL/6 J) and VSMC-specific ulk1 knockout (ulk1 KO) mice. Carotid artery ligation in WT mice increased ULK1 protein expression, and concurrently increased autophagic flux and neointima formation. Treating human aortic smooth muscle cells (HASMCs) with PDGF (platelet derived growth factor) increased ULK1 expression, activated autophagy, and promoted cell migration. Further, smooth muscle cell-specific deletion of Ulk1 suppressed autophagy, inhibited VSMC migration, and impeded neointima hyperplasia. Mechanistically, Ulk1 deletion inhibited autophagic degradation of histone acetyltransferase protein KAT2A/GCN5 (K[lysine] acetyltransferase 2A), resulting in accumulation of KAT2A that directly acetylated TUBA/α-tubulin and subsequently increased protein levels of acetylated TUBA. The acetylation of TUBA increased microtubule stability and inhibited VSMC directional migration and neointima formation. Finally, local transfection of Kat2a siRNA decreased TUBA acetylation and prevented the attenuation of vascular injury-induced neointima formation in ulk1 KO mice. These findings suggest that Ulk1 deletion inhibits neointima formation by reducing autophagic degradation of KAT2A and increasing TUBA acetylation in VSMCs.Abbreviations: ACTA2/α-SMA: actin, alpha 2, smooth muscle, aorta; ACTB: actin beta; ATAT1: alpha tubulin acetyltransferase 1; ATG: autophagy related; BECN1: beclin 1; BP: blood pressure; CAL: carotid artery ligation; CQ: chloroquine diphosphate; EC: endothelial cells; EEL: external elastic layer; FBS: fetal bovine serum; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; HASMCs: human aortic smooth muscle cells; HAT1: histone acetyltransferase 1; HDAC: histone deacetylase; IEL: inner elastic layer; IP: immunoprecipitation; KAT2A/GCN5: K(lysine) acetyltransferase 2A; KAT8/hMOF: lysine acetyltransferase 8; MAP1LC3: microtubule associated protein 1 light chain 3; MYH11: myosin heavy chain 11; PBS: phosphate-buffered saline; PDGF: platelet derived growth factor; PECAM1/CD31: platelet and endothelial cell adhesion molecule 1; RAC3: Rac family small GTPase 3; SIRT2: sirtuin 2; SPP1/OPN: secreted phosphoprotein 1; SQSTM1/p62: sequestosome 1; TAGLN/SM22: transgelin; TUBA: tubulin alpha; ULK1: unc-51 like autophagy activating kinase; VSMC: vascular smooth muscle cell; VVG: Verhoeff Van Gieson; WT: wild type.
Collapse
Affiliation(s)
- Changhan Ouyang
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Jian Li
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Xiaoxu Zheng
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Jing Mu
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Gloria Torres
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Qilong Wang
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Ming-Hui Zou
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Zhonglin Xie
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| |
Collapse
|
139
|
Ross D, Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol 2021; 41:101950. [PMID: 33774477 PMCID: PMC8027776 DOI: 10.1016/j.redox.2021.101950] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
In this review, we summarize the multiple functions of NQO1, its established roles in redox processes and potential roles in redox control that are currently emerging. NQO1 has attracted interest due to its roles in cell defense and marked inducibility during cellular stress. Exogenous substrates for NQO1 include many xenobiotic quinones. Since NQO1 is highly expressed in many solid tumors, including via upregulation of Nrf2, the design of compounds activated by NQO1 and NQO1-targeted drug delivery have been active areas of research. Endogenous substrates have also been proposed and of relevance to redox stress are ubiquinone and vitamin E quinone, components of the plasma membrane redox system. Established roles for NQO1 include a superoxide reductase activity, NAD+ generation, interaction with proteins and their stabilization against proteasomal degradation, binding and regulation of mRNA translation and binding to microtubules including the mitotic spindles. We also summarize potential roles for NQO1 in regulation of glucose and insulin metabolism with relevance to diabetes and the metabolic syndrome, in Alzheimer's disease and in aging. The conformation and molecular interactions of NQO1 can be modulated by changes in the pyridine nucleotide redox balance suggesting that NQO1 may function as a redox-dependent molecular switch.
Collapse
Affiliation(s)
- David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
140
|
Cappelletti G, Calogero AM, Rolando C. Microtubule acetylation: A reading key to neural physiology and degeneration. Neurosci Lett 2021; 755:135900. [PMID: 33878428 DOI: 10.1016/j.neulet.2021.135900] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023]
Abstract
Neurons are the perfect example of cells where microtubules are essential to achieve an extraordinary degree of morphological and functional complexity. Different tubulin isoforms and associated post-translational modifications are the basis to establish the diversity in biochemical and biophysical properties of microtubules including their stability and the control of intracellular transport. Acetylation is one of the key tubulin modifications and it can influence important structural, mechanical and biological traits of the microtubule network. Here, we present the emerging evidence for the essential role of microtubule acetylation in the control of neuronal and glial function in healthy and degenerative conditions. In particular, we discuss the pathogenic role of tubulin acetylation in neurodegenerative disorders and focus on Parkinson's disease. We also provide a critical analysis about the possibility to target tubulin acetylation as a novel therapeutic intervention for neuroprotective strategies.
Collapse
Affiliation(s)
- Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy; Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy.
| | | | - Chiara Rolando
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
141
|
Nonredundant roles of DIAPHs in primary ciliogenesis. J Biol Chem 2021; 296:100680. [PMID: 33872598 PMCID: PMC8122175 DOI: 10.1016/j.jbc.2021.100680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Primary cilia are hubs for several signaling pathways, and disruption in cilia function and formation leads to a range of diseases collectively known as ciliopathies. Both ciliogenesis and cilia maintenance depend on vesicle trafficking along a network of microtubules and actin filaments toward the basal body. The DIAPH (Diaphanous-related) family of formins promote both actin polymerization and microtubule (MT) stability. Recently, we showed that the formin DIAPH1 is involved in ciliogenesis. However, the role of other DIAPH family members in ciliogenesis had not been investigated. Here we show that depletion of either DIAPH2 or DIAPH3 also disrupted ciliogenesis and cilia length. DIAPH3 depletion also reduced trafficking within cilia. To specifically examine the role of DIAPH3 at the base, we used fused full-length DIAPH3 to centrin, which targeted DIAPH3 to the basal body, causing increased trafficking to the ciliary base, an increase in cilia length, and formation of bulbs at the tips of cilia. Additionally, we confirmed that the microtubule-stabilizing properties of DIAPH3 are important for its cilia length functions and trafficking. These results indicate the importance of DIAPH proteins in regulating cilia maintenance. Moreover, defects in ciliogenesis caused by DIAPH depletion could only be rescued by expression of the specific family member depleted, indicating nonredundant roles for these proteins.
Collapse
|
142
|
Waites C, Qu X, Bartolini F. The synaptic life of microtubules. Curr Opin Neurobiol 2021; 69:113-123. [PMID: 33873059 DOI: 10.1016/j.conb.2021.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
In neurons, control of microtubule dynamics is required for multiple homeostatic and regulated activities. Over the past few decades, a great deal has been learned about the role of the microtubule cytoskeleton in axonal and dendritic transport, with a broad impact on neuronal health and disease. However, significantly less attention has been paid to the importance of microtubule dynamics in directly regulating synaptic function. Here, we review emerging literature demonstrating that microtubules enter synapses and control central aspects of synaptic activity, including neurotransmitter release and synaptic plasticity. The pleiotropic effects caused by a dysfunctional synaptic microtubule cytoskeleton may thus represent a key point of vulnerability for neurons and a primary driver of neurological disease.
Collapse
Affiliation(s)
- Clarissa Waites
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Xiaoyi Qu
- Department of Pathology & Cell Biology, Columbia University Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Medical Center, 630 W. 168th Street, New York, NY 10032, USA.
| |
Collapse
|
143
|
Bertels Z, Singh H, Dripps I, Siegersma K, Tipton AF, Witkowski WD, Sheets Z, Shah P, Conway C, Mangutov E, Ao M, Petukhova V, Karumudi B, Petukhov PA, Baca SM, Rasenick MM, Pradhan AA. Neuronal complexity is attenuated in preclinical models of migraine and restored by HDAC6 inhibition. eLife 2021; 10:e63076. [PMID: 33856345 PMCID: PMC8147088 DOI: 10.7554/elife.63076] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Migraine is the sixth most prevalent disease worldwide but the mechanisms that underlie migraine chronicity are poorly understood. Cytoskeletal flexibility is fundamental to neuronal-plasticity and is dependent on dynamic microtubules. Histone-deacetylase-6 (HDAC6) decreases microtubule dynamics by deacetylating its primary substrate, α-tubulin. We use validated mouse models of migraine to show that HDAC6-inhibition is a promising migraine treatment and reveal an undiscovered cytoarchitectural basis for migraine chronicity. The human migraine trigger, nitroglycerin, produced chronic migraine-associated pain and decreased neurite growth in headache-processing regions, which were reversed by HDAC6 inhibition. Cortical spreading depression (CSD), a physiological correlate of migraine aura, also decreased cortical neurite growth, while HDAC6-inhibitor restored neuronal complexity and decreased CSD. Importantly, a calcitonin gene-related peptide receptor antagonist also restored blunted neuronal complexity induced by nitroglycerin. Our results demonstrate that disruptions in neuronal cytoarchitecture are a feature of chronic migraine, and effective migraine therapies might include agents that restore microtubule/neuronal plasticity.
Collapse
Affiliation(s)
- Zachariah Bertels
- Department of Psychiatry, University of Illinois at ChicagoChicagoUnited States
| | - Harinder Singh
- Department of Physiology and Biophysics, University of Illinois at ChicagoChicagoUnited States
| | - Isaac Dripps
- Department of Psychiatry, University of Illinois at ChicagoChicagoUnited States
| | - Kendra Siegersma
- Department of Psychiatry, University of Illinois at ChicagoChicagoUnited States
| | - Alycia F Tipton
- Department of Psychiatry, University of Illinois at ChicagoChicagoUnited States
| | - Wiktor D Witkowski
- Department of Psychiatry, University of Illinois at ChicagoChicagoUnited States
| | - Zoie Sheets
- Department of Psychiatry, University of Illinois at ChicagoChicagoUnited States
| | - Pal Shah
- Department of Psychiatry, University of Illinois at ChicagoChicagoUnited States
| | - Catherine Conway
- Department of Psychiatry, University of Illinois at ChicagoChicagoUnited States
| | - Elizaveta Mangutov
- Department of Psychiatry, University of Illinois at ChicagoChicagoUnited States
| | - Mei Ao
- Department of Physiology and Biophysics, University of Illinois at ChicagoChicagoUnited States
| | - Valentina Petukhova
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at ChicagoChicagoUnited States
| | - Bhargava Karumudi
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at ChicagoChicagoUnited States
| | - Pavel A Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at ChicagoChicagoUnited States
| | - Serapio M Baca
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Neurology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Mark M Rasenick
- Department of Psychiatry, University of Illinois at ChicagoChicagoUnited States
- Department of Physiology and Biophysics, University of Illinois at ChicagoChicagoUnited States
- Jesse Brown VAMCChicagoUnited States
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at ChicagoChicagoUnited States
| |
Collapse
|
144
|
Karki M, Jangid RK, Anish R, Seervai RNH, Bertocchio JP, Hotta T, Msaouel P, Jung SY, Grimm SL, Coarfa C, Weissman BE, Ohi R, Verhey KJ, Hodges HC, Burggren W, Dere R, Park IY, Prasad BVV, Rathmell WK, Walker CL, Tripathi DN. A cytoskeletal function for PBRM1 reading methylated microtubules. SCIENCE ADVANCES 2021; 7:eabf2866. [PMID: 33811077 PMCID: PMC11059954 DOI: 10.1126/sciadv.abf2866] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Epigenetic effectors "read" marks "written" on chromatin to regulate function and fidelity of the genome. Here, we show that this coordinated read-write activity of the epigenetic machinery extends to the cytoskeleton, with PBRM1 in the PBAF chromatin remodeling complex reading microtubule methyl marks written by the SETD2 histone methyltransferase. PBRM1 binds SETD2 methyl marks via BAH domains, recruiting PBAF components to the mitotic spindle. This read-write activity was required for normal mitosis: Loss of SETD2 methylation or pathogenic BAH domain mutations disrupt PBRM1 microtubule binding and PBAF recruitment and cause genomic instability. These data reveal PBRM1 functions beyond chromatin remodeling with domains that allow it to integrate chromatin and cytoskeletal activity via its acetyl-binding BD and methyl-binding BAH domains, respectively. Conserved coordinated activity of the epigenetic machinery on the cytoskeleton opens a previously unknown window into how chromatin remodeler defects can drive disease via both epigenetic and cytoskeletal dysfunction.
Collapse
Affiliation(s)
- Menuka Karki
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rahul K Jangid
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ramakrishnan Anish
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Riyad N H Seervai
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Philippe Bertocchio
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genitourinary Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pavlos Msaouel
- Department of Genitourinary Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandra L Grimm
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - H Courtney Hodges
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - In Young Park
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - W Kimryn Rathmell
- Vanderbilt-Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Cheryl L Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Durga N Tripathi
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
145
|
Cho E, Rowan-Carroll A, Williams A, Corton JC, Li HH, Fornace AJ, Hobbs CA, Yauk CL. Development and validation of the TGx-HDACi transcriptomic biomarker to detect histone deacetylase inhibitors in human TK6 cells. Arch Toxicol 2021; 95:1631-1645. [PMID: 33770205 DOI: 10.1007/s00204-021-03014-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Transcriptomic biomarkers can be used to inform molecular initiating and key events involved in a toxicant's mode of action. To address the limited approaches available for identifying epigenotoxicants, we developed and assessed a transcriptomic biomarker of histone deacetylase inhibition (HDACi). First, we assembled a set of ten prototypical HDACi and ten non-HDACi reference compounds. Concentration-response experiments were performed for each chemical to collect TK6 human lymphoblastoid cell samples after 4 h of exposure and to assess cell viability following a 20-h recovery period in fresh media. One concentration was selected for each chemical for whole transcriptome profiling and transcriptomic signature derivation, based on cell viability at the 24-h time point and on maximal induction of HDACi-response genes (RGL1, NEU1, GPR183) or cellular stress-response genes (ATF3, CDKN1A, GADD45A) analyzed by TaqMan qPCR assays after 4 h of exposure. Whole transcriptomes were profiled after 4 h exposures by Templated Oligo-Sequencing (TempO-Seq). By applying the nearest shrunken centroid (NSC) method to the whole transcriptome profiles of the reference compounds, we derived an 81-gene toxicogenomic (TGx) signature, referred to as TGx-HDACi, that classified all 20 reference compounds correctly using NSC classification and the Running Fisher test. An additional 4 HDACi and 7 non-HDACi were profiled and analyzed using TGx-HDACi to further assess classification performance; the biomarker accurately classified all 11 compounds, including 3 non-HDACi epigenotoxicants, suggesting a promising specificity toward HDACi. The availability of TGx-HDACi increases the diversity of tools that can facilitate mode of action analysis of toxicants using gene expression profiling.
Collapse
Affiliation(s)
- Eunnara Cho
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - J Christopher Corton
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC, USA
| | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Cheryl A Hobbs
- Integrated Laboratory Systems, LLC, Research Triangle Park, NC, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
146
|
Hansen JN, Rassmann S, Stüven B, Jurisch-Yaksi N, Wachten D. CiliaQ: a simple, open-source software for automated quantification of ciliary morphology and fluorescence in 2D, 3D, and 4D images. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:18. [PMID: 33683488 PMCID: PMC7940315 DOI: 10.1140/epje/s10189-021-00031-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/01/2021] [Indexed: 05/16/2023]
Abstract
Cilia are hair-like membrane protrusions that emanate from the surface of most vertebrate cells and are classified into motile and primary cilia. Motile cilia move fluid flow or propel cells, while also fulfill sensory functions. Primary cilia are immotile and act as a cellular antenna, translating environmental cues into cellular responses. Ciliary dysfunction leads to severe diseases, commonly termed ciliopathies. The molecular details underlying ciliopathies and ciliary function are, however, not well understood. Since cilia are small subcellular compartments, imaging-based approaches have been used to study them. However, tools to comprehensively analyze images are lacking. Automatic analysis approaches require commercial software and are limited to 2D analysis and only a few parameters. The widely used manual analysis approaches are time consuming, user-biased, and difficult to compare. Here, we present CiliaQ, a package of open-source, freely available, and easy-to-use ImageJ plugins. CiliaQ allows high-throughput analysis of 2D and 3D, static or time-lapse images from fluorescence microscopy of cilia in cell culture or tissues, and outputs a comprehensive list of parameters for ciliary morphology, length, bending, orientation, and fluorescence intensity, making it broadly applicable. We envision CiliaQ as a resource and platform for reproducible and comprehensive analysis of ciliary function in health and disease.
Collapse
Affiliation(s)
- Jan Niklas Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| | - Sebastian Rassmann
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Birthe Stüven
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, The Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| |
Collapse
|
147
|
Wang M, Du Y, Gao S, Wang Z, Qu P, Gao Y, Wang J, Liu Z, Zhang J, Zhang Y, Qing S, Wang Y. Sperm-borne miR-202 targets SEPT7 and regulates first cleavage of bovine embryos via cytoskeletal remodeling. Development 2021; 148:dev.189670. [PMID: 33472846 DOI: 10.1242/dev.189670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 01/08/2021] [Indexed: 01/28/2023]
Abstract
In mammals, sperm-borne regulators can be transferred to oocytes during fertilization and have different effects on the formation of pronuclei, the first cleavage of zygotes, the development of preimplantation embryos and even the metabolism of individuals after birth. The regulatory role of sperm microRNAs (miRNAs) in the development of bovine preimplantation embryos has not been reported in detail. By constructing and screening miRNA expression libraries, we found that miR-202 was highly enriched in bovine sperm. As a target gene of miR-202, co-injection of SEPT7 siRNA can partially reverse the accelerated first cleavage of bovine embryos caused by miR-202 inhibitor. In addition, both a miR-202 mimic and SEPT7 siRNA delayed the first cleavage of somatic cell nuclear transfer (SCNT) embryos, suggesting that miR-202-SEPT7 mediates the delay of first cleavage of bovine embryos. By further exploring the relationship between miR-202/SEPT7, HDAC6 and acetylated α-tubulin during embryonic development, we investigated how sperm-borne miR-202 regulates the first cleavage process of bovine embryos by SEPT7 and demonstrate the potential of sperm-borne miRNAs to improve the efficiency of SCNT.
Collapse
Affiliation(s)
- Mengyun Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China.,School of Life Science and Technology, Harbin Institute of Technology, Science Park of Harbin Institute of Technology, Harbin 150000, China
| | - Yue Du
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Song Gao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Zheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Pengxiang Qu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Yang Gao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Jingyi Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Zhengqi Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Jingcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
148
|
Perez T, Bergès R, Maccario H, Oddoux S, Honoré S. Low concentrations of vorinostat decrease EB1 expression in GBM cells and affect microtubule dynamics, cell survival and migration. Oncotarget 2021; 12:304-315. [PMID: 33659042 PMCID: PMC7899546 DOI: 10.18632/oncotarget.27892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiform (GBM) is the most frequent primitive brain tumor with a high recurrence and mortality. Histone deacetylase inhibitors (HDACi) have evoked great interest because they are able to change transcriptomic profiles to promote tumor cell death but also induce side effects due to the lack of selectivity. We show in this paper new anticancer properties and mechanisms of action of low concentrations of vorinostat on various GBM cells which acts by affecting microtubule cytoskeleton in a non-histone 3 (H3) manner. Indeed, vorinostat induces tubulin acetylation and detyrosination, affects EB stabilizing cap on microtubule plus ends and suppresses microtubule dynamic instability. We previously identified EB1 overexpression as a marker of bad prognostic in GBM. Interestingly, we show for the first time to our knowledge, a strong decrease of EB1 expression in GBM cells by a drug. Altogether, our results suggest that low dose vorinostat, which is more selective for HDAC6 inhibition, could therefore represent an interesting therapeutic option for GBM especially in patients with EB1 overexpressing tumor with lower expected side effects. A validation of our hypothesis is needed during future clinical trials with this drug in GBM.
Collapse
Affiliation(s)
- Thomas Perez
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France.,APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Raphaël Bergès
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Hélène Maccario
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Sarah Oddoux
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Stéphane Honoré
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France.,APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| |
Collapse
|
149
|
Expression of α-Tubulin Acetyltransferase 1 and Tubulin Acetylation as Selective Forces in Cell Competition. Cells 2021; 10:cells10020390. [PMID: 33672816 PMCID: PMC7918103 DOI: 10.3390/cells10020390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022] Open
Abstract
The wound healing response of fibroblasts critically depends on the primary cilium, a sensory organelle protruding into the environment and comprising a stable axonemal structure. A characteristic marker for primary cilia is acetylation of axonemal tubulin. Although formation of primary cilia is under cell cycle control, the environmental cues affecting ciliation are not fully understood. Our purpose was, therefore, to study the impact of culture conditions on cilia formation in NIH3T3 fibroblasts. We quantified ciliation in different NIH3T3 sub-cell lines and culture conditions by immunodetection of primary cilia and counting. Quantitative Western blotting, qRT-PCR, and proliferation assays completed our investigation. We observed large differences between NIH3T3 sub-cell lines in their ability to generate acetylated primary cilia that correlated with cytoplasmic tubulin acetylation. We found no increased activity of the major tubulin deacetylase, HDAC6, but instead reduced expression of the α-tubulin acetyltransferase 1 (Atat1) as being causative. Our observations demonstrate that cells with reduced expression of Atat1 and tubulin acetylation proliferate faster, eventually displacing all other cells in the population. Expression of Atat1 and tubulin acetylation are therefore selective forces in cell competition.
Collapse
|
150
|
Hall NA, Hehnly H. A centriole's subdistal appendages: contributions to cell division, ciliogenesis and differentiation. Open Biol 2021; 11:200399. [PMID: 33561384 PMCID: PMC8061701 DOI: 10.1098/rsob.200399] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The centrosome is a highly conserved structure composed of two centrioles surrounded by pericentriolar material. The mother, and inherently older, centriole has distal and subdistal appendages, whereas the daughter centriole is devoid of these appendage structures. Both appendages have been primarily linked to functions in cilia formation. However, subdistal appendages present with a variety of potential functions that include spindle placement, chromosome alignment, the final stage of cell division (abscission) and potentially cell differentiation. Subdistal appendages are particularly interesting in that they do not always display a conserved ninefold symmetry in appendage organization on the mother centriole across eukaryotic species, unlike distal appendages. In this review, we aim to differentiate both the morphology and role of the distal and subdistal appendages, with a particular focus on subdistal appendages.
Collapse
Affiliation(s)
- Nicole A Hall
- Department of Biology, Syracuse University, Syracuse NY, USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse NY, USA
| |
Collapse
|