101
|
Maggi E, Veneziani I, Moretta L, Cosmi L, Annunziato F. Group 2 Innate Lymphoid Cells: A Double-Edged Sword in Cancer? Cancers (Basel) 2020; 12:cancers12113452. [PMID: 33233582 PMCID: PMC7699723 DOI: 10.3390/cancers12113452] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Group 2 Innate Lymphoid Cells (ILC2s) belong to the family of helper ILCs which provide host defense against infectious agents, participate in inflammatory responses and mediate lymphoid organogenesis and tissue repair, mainly at the skin and mucosal level. Based on their transcriptional, phenotypic and functional profile, ILC2s mirror the features of the adaptive CD4+ Th2 cell subset, both contributing to the so-called type 2 immune response. Similar to other ILCs, ILC2s are rapidly activated by signals deriving from tissue and/or other tissue-resident immune cells. The biologic activity of ILCs needs to be tightly regulated in order to prevent them from contributing to severe inflammation and damage in several organs. Indeed, ILC2s display both enhancing and regulatory roles in several pathophysiological conditions, including tumors. In this review, we summarize the actual knowledge about ILC2s ability to induce or impair a protective immune response, their pro- or antitumor activity in murine models, human (children and adults) pathologies and the potential strategies to improve cancer immunotherapy by exploiting the features of ILC2s.
Collapse
Affiliation(s)
- Enrico Maggi
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
- Correspondence: ; Tel.: +39-06-6859-3617
| | - Irene Veneziani
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
| | - Lorenzo Moretta
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.C.); (F.A.)
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.C.); (F.A.)
| |
Collapse
|
102
|
Quinnell SP, Leifer BS, Nestor ST, Tan K, Sheehy DF, Ceo L, Doyle SK, Koehler AN, Vegas AJ. A Small-Molecule Inhibitor to the Cytokine Interleukin-4. ACS Chem Biol 2020; 15:2649-2654. [PMID: 32902255 DOI: 10.1021/acschembio.0c00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interleukin-4 (IL-4) is a multifunctional cytokine and an important regulator of inflammation. When deregulated, IL-4 activity is associated with asthma, allergic inflammation, and multiple types of cancer. While antibody-based inhibitors targeting the soluble cytokine have been evaluated clinically, they failed to achieve their end points in trials. Small-molecule inhibitors are an attractive alternative, but identifying effective chemotypes that inhibit the protein-protein interactions between cytokines and their receptors remains an active area of research. As a result, no small-molecule inhibitors to the soluble IL-4 cytokine have yet been reported. Here, we describe the first IL-4 small-molecule inhibitor identified and characterized through a combination of binding-based approaches and cell-based activity assays. The compound features a nicotinonitrile scaffold with micromolar affinity and potency for the cytokine and disrupts type II IL-4 signaling in cells. Small-molecule inhibitors of these important cell-signaling proteins have implications for numerous immune-related disorders and inform future drug discovery and design efforts for these challenging protein targets.
Collapse
Affiliation(s)
- Sean P. Quinnell
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Becky S. Leifer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen T. Nestor
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Kelly Tan
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Daniel F. Sheehy
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Luke Ceo
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Shelby K. Doyle
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Angela N. Koehler
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| | - Arturo J. Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
103
|
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77:3129-3159. [PMID: 32072238 PMCID: PMC11104832 DOI: 10.1007/s00018-020-03479-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Protection of normal tissues against toxic effects of ionizing radiation is a critical issue in clinical and environmental radiobiology. Investigations in recent decades have suggested potential targets that are involved in the protection against radiation-induced damages to normal tissues and can be proposed for mitigation of radiation injury. Emerging evidences have been shown to be in contrast to an old dogma in radiation biology; a major amount of reactive oxygen species (ROS) production and cell toxicity occur during some hours to years after exposure to ionizing radiation. This can be attributed to upregulation of inflammatory and fibrosis mediators, epigenetic changes and disruption of the normal metabolism of oxygen. In the current review, we explain the cellular and molecular changes following exposure of normal tissues to ionizing radiation. Furthermore, we review potential targets that can be proposed for protection and mitigation of radiation toxicity.
Collapse
Affiliation(s)
- Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
- Misan Radiotherapy Center, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
104
|
Kahremany S, Hofmann L, Gruzman A, Cohen G. Advances in Understanding the Initial Steps of Pruritoceptive Itch: How the Itch Hits the Switch. Int J Mol Sci 2020; 21:ijms21144883. [PMID: 32664385 PMCID: PMC7402353 DOI: 10.3390/ijms21144883] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pruritoceptive (dermal) itch was long considered an accompanying symptom of diseases, a side effect of drug applications, or a temporary sensation induced by invading pruritogens, as produced by the stinging nettle. Due to extensive research in recent years, it was possible to provide detailed insights into the mechanism of itch mediation and modulation. Hence, it became apparent that pruritus is a complex symptom or disease in itself, which requires particular attention to improve patients’ health. Here, we summarize recent findings in pruritoceptive itch, including how this sensation is triggered and modulated by diverse endogenous and exogenous pruritogens and their receptors. A differentiation between mediating pruritogen and modulating pruritogen seems to be of great advantage to understand and decipher the molecular mechanism of itch perception. Only a comprehensive view on itch sensation will provide a solid basis for targeting this long-neglected adverse sensation accompanying numerous diseases and many drug side effects. Finally, we identify critical aspects of itch perception that require future investigation.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Correspondence:
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Ben-Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel
| |
Collapse
|
105
|
Kisin ER, Yanamala N, Rodin D, Menas A, Farcas M, Russo M, Guppi S, Khaliullin TO, Iavicoli I, Harper M, Star A, Kagan VE, Shvedova AA. Enhanced morphological transformation of human lung epithelial cells by continuous exposure to cellulose nanocrystals. CHEMOSPHERE 2020; 250:126170. [PMID: 32114335 PMCID: PMC7750788 DOI: 10.1016/j.chemosphere.2020.126170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 05/06/2023]
Abstract
Cellulose nanocrystals (CNC), also known as nanowhiskers, have recently gained much attention due to their biodegradable nature, advantageous chemical and mechanical properties, economic value and renewability thus making them attractive for a wide range of applications. However, before these materials can be considered for potential uses, investigation of their toxicity is prudent. Although CNC exposures are associated with pulmonary inflammation and damage as well as oxidative stress responses and genotoxicity in vivo, studies evaluating cell transformation or tumorigenic potential of CNC's were not previously conducted. In this study, we aimed to assess the neoplastic-like transformation potential of two forms of CNC derived from wood (powder and gel) in human pulmonary epithelial cells (BEAS-2B) in comparison to fibrous tremolite (TF), known to induce lung cancer. Short-term exposure to CNC or TF induced intracellular ROS increase and DNA damage while long-term exposure resulted in neoplastic-like transformation demonstrated by increased cell proliferation, anchorage-independent growth, migration and invasion. The increased proliferative responses were also in-agreement with observed levels of pro-inflammatory cytokines. Based on the hierarchical clustering analysis (HCA) of the inflammatory cytokine responses, CNC powder was segregated from the control and CNC-gel samples. This suggests that CNC may have the ability to influence neoplastic-like transformation events in pulmonary epithelial cells and that such effects are dependent on the type/form of CNC. Further studies focusing on determining and understanding molecular mechanisms underlying potential CNC cell transformation events and their likelihood to induce tumorigenic effects in vivo are highly warranted.
Collapse
Affiliation(s)
- E R Kisin
- EAB, HELD, NIOSH, CDC, Morgantown, WV, USA
| | - N Yanamala
- EAB, HELD, NIOSH, CDC, Morgantown, WV, USA
| | - D Rodin
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, Israel
| | - A Menas
- EAB, HELD, NIOSH, CDC, Morgantown, WV, USA
| | - M Farcas
- EAB, HELD, NIOSH, CDC, Morgantown, WV, USA
| | - M Russo
- EAB, HELD, NIOSH, CDC, Morgantown, WV, USA; Institute of Public Health, Section of Occupational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - S Guppi
- EAB, HELD, NIOSH, CDC, Morgantown, WV, USA
| | - T O Khaliullin
- EAB, HELD, NIOSH, CDC, Morgantown, WV, USA; Department of Physiology & Pharmacology, WVU, Morgantown, WV, USA
| | - I Iavicoli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - M Harper
- Zefon International, Ocala, FL, USA
| | - A Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - V E Kagan
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russian Federation
| | - A A Shvedova
- EAB, HELD, NIOSH, CDC, Morgantown, WV, USA; Department of Physiology & Pharmacology, WVU, Morgantown, WV, USA.
| |
Collapse
|
106
|
Awaji M, Saxena S, Wu L, Prajapati DR, Purohit A, Varney ML, Kumar S, Rachagani S, Ly QP, Jain M, Batra SK, Singh RK. CXCR2 signaling promotes secretory cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. FASEB J 2020; 34:9405-9418. [PMID: 32453916 PMCID: PMC7501205 DOI: 10.1096/fj.201902990r] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most challenging malignancies. Desmoplasia and tumor-supporting inflammation are hallmarks of PDAC. The tumor microenvironment contributes significantly to tumor progression and spread. Cancer-associated fibroblasts (CAFs) facilitate therapy resistance and metastasis. Recent reports emphasized the concurrence of multiple subtypes of CAFs with diverse roles, fibrogenic, and secretory. C-X-C motif chemokine receptor 2 (CXCR2) is a chemokine receptor known for its role during inflammation and its adverse role in PDAC. Oncogenic Kras upregulates CXCR2 and its ligands and, thus, contribute to tumor proliferation and immunosuppression. CXCR2 deletion in a PDAC syngeneic mouse model produced increased fibrosis revealing a potential undescribed role of CXCR2 in CAFs. In this study, we demonstrate that the oncogenic Kras-CXCR2 axis regulates the CAFs function in PDAC and contributes to CAFs heterogeneity. We observed that oncogenic Kras and CXCR2 signaling alter CAFs, producing a secretory CAF phenotype with low fibrogenic features; and increased secretion of pro-tumor cytokines and CXCR2 ligands, utilizing the NF-κB activity. Finally, using syngeneic mouse models, we demonstrate that oncogenic Kras is associated with secretory CAFs and that CXCR2 inhibition promotes activation of fibrotic cells (myofibroblasts) and impact tumors in a mutation-dependent manner.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Mice
- Mice, Knockout
- Mutation
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Signal Transduction
- Tumor Cells, Cultured
- Tumor Microenvironment
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Mohammad Awaji
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha NE 68198-5900
- Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia 31444
| | - Sugandha Saxena
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha NE 68198-5900
| | - Lingyun Wu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha NE 68198-5900
| | - Dipakkumar R. Prajapati
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha NE 68198-5900
| | - Abhilasha Purohit
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha NE 68198-5900
| | - Michelle L. Varney
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha NE 68198-5900
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE 68198-5870
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE 68198-5870
| | - Quan P. Ly
- Department of Surgical Oncology, University of Nebraska Medical Center, Omaha NE 68198-6880
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE 68198-5870
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE 68198-5870
| | - Rakesh K. Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha NE 68198-5900
| |
Collapse
|
107
|
Chavda V, Patel V, Yadav D, Shah J, Patel S, Jin JO. Therapeutics and Research Related to Glioblastoma: Advancements and Future Targets. Curr Drug Metab 2020; 21:186-198. [DOI: 10.2174/1389200221666200408083950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 11/28/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Abstract
Glioblastoma, the most common primary brain tumor, has been recognized as one of the most lethal and
fatal human tumors. It has a dismal prognosis, and survival after diagnosis is less than 15 months. Surgery and radiotherapy
are the only available treatment options at present. However, numerous approaches have been made to upgrade
in vivo and in vitro models with the primary goal of assessing abnormal molecular pathways that would be
suitable targets for novel therapeutic approaches. Novel drugs, delivery systems, and immunotherapy strategies to
establish new multimodal therapies that target the molecular pathways involved in tumor initiation and progression in
glioblastoma are being studied. The goal of this review was to describe the pathophysiology, neurodegeneration
mechanisms, signaling pathways, and future therapeutic targets associated with glioblastomas. The key features have
been detailed to provide an up-to-date summary of the advancement required in current diagnosis and therapeutics
for glioblastoma. The role of nanoparticulate system graphene quantum dots as suitable therapy for glioblastoma has
also been discussed.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Vimal Patel
- Department of Pharmaceutics, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, Korea
| | - Jigar Shah
- Department of Pharmaceutics, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, Korea
| |
Collapse
|
108
|
Fereidouni M, Ferns GA, Bahrami A. Current status and perspectives regarding the association between allergic disorders and cancer. IUBMB Life 2020; 72:1322-1339. [PMID: 32458542 DOI: 10.1002/iub.2285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022]
Abstract
While activation of immune system may lead to a lower risk of some diseases, it has been shown that a history of atopic allergic disorders such as asthma, hay fever, eczema, and food allergies could be related to several types of cancer. However, the evidence is not entirely conclusive. Two proposals suggest a possible mechanism for the association between allergic disorders and cancers: immune surveillance and the antigenic stimulation. The association of allergy and cancer may vary by cancer site and the type of exposure. The aim of current review was to summarize the current knowledge of the association between allergic diseases and the risk of cancers with particular emphasis on case-controls and cohort studies to estimate the cancer risk associated with allergy.
Collapse
Affiliation(s)
- Mohammad Fereidouni
- Department of Immunology, Medical school Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
109
|
Kim SD, Baik JS, Lee JH, Mun SW, Yi JM, Park MT. The malignancy of liver cancer cells is increased by IL-4/ERK/AKT signaling axis activity triggered by irradiated endothelial cells. JOURNAL OF RADIATION RESEARCH 2020; 61:376-387. [PMID: 32100006 PMCID: PMC7299255 DOI: 10.1093/jrr/rraa002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 05/08/2023]
Abstract
The malignant traits involved in tumor relapse, metastasis and the expansion of cancer stem-like cells are acquired via the epithelial-mesenchymal transition (EMT) process in the tumor microenvironment. In addition, the tumor microenvironment strongly supports the survival and growth of malignant tumor cells and further contributes to the reduced efficacy of anticancer therapy. Ionizing radiation can influence the tumor microenvironment, because it alters the biological functions of endothelial cells composing tumor vascular systems. However, to date, studies on the pivotal role of these endothelial cells in mediating the malignancy of cancer cells in the irradiated tumor microenvironment are rare. We previously evaluated the effects of irradiated endothelial cells on the malignant traits of human liver cancer cells and reported that endothelial cells irradiated with 2 Gy reinforce the malignant properties of these cancer cells. In this study, we investigated the signaling mechanisms underlying these events. We revealed that the increased expression level of IL-4 in endothelial cells irradiated with 2 Gy eventually led to enhanced migration and invasion of cancer cells and further expansion of cancer stem-like cells. In addition, this increased level of IL-4 activated the ERK and AKT signaling pathways to reinforce these events in cancer cells. Taken together, our data indicate that ionizing radiation may indirectly modulate malignancy by affecting endothelial cells in the tumor microenvironment. Importantly, these indirect effects on malignancy are thought to offer valuable clues or targets for overcoming the tumor recurrence after radiotherapy.
Collapse
Affiliation(s)
- Sung Dae Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Ji Sue Baik
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Jae-Hye Lee
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Seo-Won Mun
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Moon-Taek Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
- Corresponding author. Dongnam Institute of Radiological & Medical Sciences (DIRAMS), 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan 46033, Republic of Korea. Tel: +82-51-720-5141; Fax: +82-51-720-5929;
| |
Collapse
|
110
|
A Novel Role of Interleukin 13 Receptor alpha2 in Perineural Invasion and its Association with Poor Prognosis of Patients with Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12051294. [PMID: 32443847 PMCID: PMC7281570 DOI: 10.3390/cancers12051294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 01/06/2023] Open
Abstract
Perineural invasion (PNI) is one of the major pathological characteristics of pancreatic ductal adeno-carcinoma (PDAC), which is mediated by invading cancer cells into nerve cells. Herein, we identify the overexpression of Interleukin-13 Receptor alpha2 (IL-13Rα2) in the PNI from 236 PDAC samples by studying its expression at the protein levels by immunohistochemistry (IHC) and the RNA level by in situ hybridization (ISH). We observe that ≥75% samples overexpressed IL-13Rα2 by IHC and ISH in grade 2 and 3 tumors, while ≥64% stage II and III tumors overexpressed IL-13Rα2 (≥2+). Interestingly, ≥36 % peripancreatic neural plexus (PL) and ≥70% nerve endings (Ne) among PNI in PDAC samples showed higher levels of IL-13Rα2 (≥2+). IL-13Rα2 +ve PL and Ne subjects survived significantly less than IL-13Rα2 –ve subjects, suggesting that IL-13Rα2 may have a unique role as a biomarker of PNI-aggressiveness. Importantly, IL-13Rα2 may be a therapeutic target for intervention, which might not only prolong patient survival but also help alleviate pain attributed to perineural invasion. Our study uncovers a novel role of IL-13Rα2 in PNI as a key factor of the disease severity, thus revealing a therapeutically targetable option for PDAC and to facilitate PNI-associated pain management.
Collapse
|
111
|
Devalaraja S, To TKJ, Folkert IW, Natesan R, Alam MZ, Li M, Tada Y, Budagyan K, Dang MT, Zhai L, Lobel GP, Ciotti GE, Eisinger-Mathason TSK, Asangani IA, Weber K, Simon MC, Haldar M. Tumor-Derived Retinoic Acid Regulates Intratumoral Monocyte Differentiation to Promote Immune Suppression. Cell 2020; 180:1098-1114.e16. [PMID: 32169218 PMCID: PMC7194250 DOI: 10.1016/j.cell.2020.02.042] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/13/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
The immunosuppressive tumor microenvironment (TME) is a major barrier to immunotherapy. Within solid tumors, why monocytes preferentially differentiate into immunosuppressive tumor-associated macrophages (TAMs) rather than immunostimulatory dendritic cells (DCs) remains unclear. Using multiple murine sarcoma models, we find that the TME induces tumor cells to produce retinoic acid (RA), which polarizes intratumoral monocyte differentiation toward TAMs and away from DCs via suppression of DC-promoting transcription factor Irf4. Genetic inhibition of RA production in tumor cells or pharmacologic inhibition of RA signaling within TME increases stimulatory monocyte-derived cells, enhances T cell-dependent anti-tumor immunity, and synergizes with immune checkpoint blockade. Furthermore, an RA-responsive gene signature in human monocytes correlates with an immunosuppressive TME in multiple human tumors. RA has been considered as an anti-cancer agent, whereas our work demonstrates its tumorigenic capability via myeloid-mediated immune suppression and provides proof of concept for targeting this pathway for tumor immunotherapy.
Collapse
Affiliation(s)
- Samir Devalaraja
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tsun Ki Jerrick To
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian W Folkert
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramakrishnan Natesan
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Minghong Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Yuma Tada
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Konstantin Budagyan
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Mai T Dang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Li Zhai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Graham P Lobel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabrielle E Ciotti
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - T S Karin Eisinger-Mathason
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irfan A Asangani
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristy Weber
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
112
|
Mbanefo EC, Fu CL, Ho CP, Le L, Ishida K, Hammam O, Hsieh MH. Interleukin-4 Signaling Plays a Major Role in Urogenital Schistosomiasis-Associated Bladder Pathogenesis. Infect Immun 2020; 88:e00669-19. [PMID: 31843965 PMCID: PMC7035943 DOI: 10.1128/iai.00669-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/26/2019] [Indexed: 11/20/2022] Open
Abstract
Interleukin-4 (IL-4) is crucial in many helminth infections, but its role in urogenital schistosomiasis, infection with Schistosoma haematobium worms, remains poorly understood due to a historical lack of animal models. The bladder pathology of urogenital schistosomiasis is caused by immune responses to eggs deposited in the bladder wall. A range of pathology occurs, including urothelial hyperplasia and cancer, but associated mechanisms and links to IL-4 are largely unknown. We modeled urogenital schistosomiasis by injecting the bladder walls of IL-4 receptor-alpha knockout (Il4ra-/- ) and wild-type mice with S. haematobium eggs. Readouts included bladder histology and ex vivo assessments of urothelial proliferation, cell cycle, and ploidy status. We also quantified the effects of exogenous IL-4 on urothelial cell proliferation in vitro, including cell cycle status and phosphorylation patterns of major downstream regulators in the IL-4 signaling pathway. There was a significant decrease in the intensity of granulomatous responses to bladder-wall-injected S. haematobium eggs in Il4ra-/- versus wild-type mice. S. haematobium egg injection triggered significant urothelial proliferation, including evidence of urothelial hyper-diploidy and cell cycle skewing in wild-type but not Il4ra-/- mice. Urothelial exposure to IL-4 in vitro led to cell cycle polarization and increased phosphorylation of AKT. Our results show that IL-4 signaling is required for key pathogenic features of urogenital schistosomiasis and that particular aspects of this signaling pathway may exert these effects directly on the urothelium. These findings point to potential mechanisms by which urogenital schistosomiasis promotes bladder carcinogenesis.
Collapse
Affiliation(s)
- Evaristus C Mbanefo
- Division of Urology, Children's National Medical Center, Washington, DC, USA
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
| | - Chi-Ling Fu
- Stanford University School of Medicine, Stanford, California, USA
| | - Christina P Ho
- Division of Urology, Children's National Medical Center, Washington, DC, USA
| | - Loc Le
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kenji Ishida
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
| | | | - Michael H Hsieh
- Division of Urology, Children's National Medical Center, Washington, DC, USA
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
- Department of Urology, The George Washington University, Washington, DC, USA
| |
Collapse
|
113
|
Penke LR, Ouchi H, Speth JM, Lugogo N, Huang YJ, Huang SK, Peters-Golden M. Transcriptional regulation of the IL-13Rα2 gene in human lung fibroblasts. Sci Rep 2020; 10:1083. [PMID: 31974428 PMCID: PMC6978327 DOI: 10.1038/s41598-020-57972-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023] Open
Abstract
Interleukin (IL)-13 is a type 2 cytokine with important roles in allergic diseases, asthma, and tissue fibrosis. Its receptor (R) α1 is primarily responsible for the biological actions of this cytokine, while Rα2 possesses a decoy function which can block IL-13 signaling. Although the expression of Rα2 is known to be subject to modulation, information about its transcriptional regulation is limited. In this study, we sought to expand the understanding of transcriptional control of Rα2 in lung fibroblasts. We confirmed previous reports that IL-13 elicited modest induction of Rα2 in normal adult human lung fibroblasts, but found that prostaglandin E2 (PGE2) and fibroblast growth factor 2 (FGF-2) -mediators known to influence fibroblast activation in tissue fibrosis but not previously investigated in this regard - led to a much greater magnitude of Rα2 induction. Although both PGE2 (via protein kinase A) and FGF-2 (via protein kinase B, also known as AKT) depended on activation of cAMP-responsive element-binding protein (CREB) for induction of Rα2 expression, they nevertheless demonstrated synergy in doing so, likely attributable to their differential utilization of distinct transcriptional start sites on the Rα2 promoter. Our data identify CREB activation via PGE2 and FGF-2 as a previously unrecognized molecular controller of Rα2 gene induction and provide potential new insights into strategies for therapeutic manipulation of this endogenous brake on IL-13 signaling.
Collapse
Affiliation(s)
- Loka R Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hideyasu Ouchi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer M Speth
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Njira Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
114
|
Plotnikova MA, Klotchenko SA, Kiselev AA, Gorshkov AN, Shurygina APS, Vasilyev KA, Uciechowska-Kaczmarzyk U, Samsonov SA, Kovalenko AL, Vasin AV. Meglumine acridone acetate, the ionic salt of CMA and N-methylglucamine, induces apoptosis in human PBMCs via the mitochondrial pathway. Sci Rep 2019; 9:18240. [PMID: 31796757 PMCID: PMC6890692 DOI: 10.1038/s41598-019-54208-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023] Open
Abstract
Meglumine acridone acetate (MA) is used in Russia for the treatment of influenza and other acute respiratory viral infections. It was assumed, until recently, that its antiviral effect was associated with its potential ability to induce type I interferon. Advanced studies, however, have shown the failure of 10-carboxymethyl-9-acridanone (CMA) to activate human STING. As such, MA's antiviral properties are still undergoing clarification. To gain insight into MA's mechanisms of action, we carried out RNA-sequencing analysis of global transcriptomes in MA-treated (MA+) human peripheral blood mononuclear cells (PBMCs). In response to treatment, approximately 1,223 genes were found to be differentially expressed, among which 464 and 759 were identified as either up- or down-regulated, respectively. To clarify the cellular and molecular processes taking place in MA+ cells, we performed a functional analysis of those genes. We have shown that evident MA subcellular localizations are: at the nuclear envelope; inside the nucleus; and diffusely in perinuclear cytoplasm. Postulating that MA may be a nuclear receptor agonist, we carried out docking simulations with PPARα and RORα ligand binding domains including prediction and molecular dynamics-based analysis of potential MA binding poses. Finally, we confirmed that MA treatment enhanced nuclear apoptosis in human PBMCs. The research presented here, in our view, indicates that: (i) MA activity is mediated by nuclear receptors; (ii) MA is a possible PPARα and/or RORα agonist; (iii) MA has an immunosuppressive effect; and (iv) MA induces apoptosis through the mitochondrial signaling pathway.
Collapse
Affiliation(s)
| | | | - Artem A Kiselev
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Andrey N Gorshkov
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | | | - Kirill A Vasilyev
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | | | | | - Alexey L Kovalenko
- Institute of Toxicology, Federal Medical-Biological Agency of Russia, St. Petersburg, Russia
| | - Andrey V Vasin
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
- Institute of Biomedical Systems and Botechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Saint Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| |
Collapse
|
115
|
Ercolano G, Falquet M, Vanoni G, Trabanelli S, Jandus C. ILC2s: New Actors in Tumor Immunity. Front Immunol 2019; 10:2801. [PMID: 31849977 PMCID: PMC6902088 DOI: 10.3389/fimmu.2019.02801] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Innate lymphoid cells (ILCs) represent the most recently identified family of innate lymphocytes that act as first responders, maintaining tissue homeostasis and protecting epithelial barriers. In the last few years, group 2 ILCs (ILC2s) have emerged as key regulators in several immunological processes such as asthma and allergy. Whilst ILC2s are currently being evaluated as novel targets for immunotherapy in these diseases, their involvement in tumor immunity has only recently begun to be deciphered. Here, we provide a comprehensive overview of the pleiotropic roles of ILC2s in different tumor settings. Furthermore, we discuss how different therapeutic approaches targeting ILC2s could improve the efficacy of current tumor immunotherapies.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Maryline Falquet
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Giulia Vanoni
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Sara Trabanelli
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
116
|
Wang J, Lu L, Luo Z, Li W, Lu Y, Tang Q, Pu J. miR-383 inhibits cell growth and promotes cell apoptosis in hepatocellular carcinoma by targeting IL-17 via STAT3 signaling pathway. Biomed Pharmacother 2019; 120:109551. [DOI: 10.1016/j.biopha.2019.109551] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/28/2022] Open
|
117
|
Valverde A, ben Hassine A, Serafín V, Muñoz‐San Martín C, Pedrero M, Garranzo‐Asensio M, Gamella M, Raouafi N, Barderas R, Yáñez‐Sedeño P, Campuzano S, Pingarrón JM. Dual Amperometric Immunosensor for Improving Cancer Metastasis Detection by the Simultaneous Determination of Extracellular and Soluble Circulating Fraction of Emerging Metastatic Biomarkers. ELECTROANAL 2019. [DOI: 10.1002/elan.201900506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alejandro Valverde
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - Amira ben Hassine
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
- University of Tunis El ManarTunis Faculty of Science, Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry 2092 Tunis El Manar Tunisia
| | - Verónica Serafín
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - Cristina Muñoz‐San Martín
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - María Pedrero
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | | | - Maria Gamella
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - Noureddine Raouafi
- University of Tunis El ManarTunis Faculty of Science, Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry 2092 Tunis El Manar Tunisia
| | - Rodrigo Barderas
- UFIECInstitute of Health Carlos III. E-28220 Majadahonda, Madrid Spain
| | - Paloma Yáñez‐Sedeño
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - Susana Campuzano
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - José M. Pingarrón
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| |
Collapse
|
118
|
Ho U, Luff J, James A, Lee CS, Quek H, Lai HC, Apte S, Lim YC, Lavin MF, Roberts TL. SMG1 heterozygosity exacerbates haematopoietic cancer development in Atm null mice by increasing persistent DNA damage and oxidative stress. J Cell Mol Med 2019; 23:8151-8160. [PMID: 31565865 PMCID: PMC6850945 DOI: 10.1111/jcmm.14685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
Abstract
Suppressor of morphogenesis in genitalia 1 (SMG1) and ataxia telangiectasia mutated (ATM) are members of the PI3‐kinase like–kinase (PIKK) family of proteins. ATM is a well‐established tumour suppressor. Loss of one or both alleles of ATM results in an increased risk of cancer development, particularly haematopoietic cancer and breast cancer in both humans and mouse models. In mice, total loss of SMG1 is embryonic lethal and loss of a single allele results in an increased rate of cancer development, particularly haematopoietic cancers and lung cancer. In this study, we generated mice deficient in Atm and lacking one allele of Smg1, Atm−/−Smg1gt/+ mice. These mice developed cancers more rapidly than either of the parental genotypes, and all cancers were haematopoietic in origin. The combined loss of Smg1 and Atm resulted in a higher level of basal DNA damage and oxidative stress in tissues than loss of either gene alone. Furthermore, Atm−/−Smg1gt/+ mice displayed increased cytokine levels in haematopoietic tissues compared with wild‐type animals indicating the development of low‐level inflammation and a pro‐tumour microenvironment. Overall, our data demonstrated that combined loss of Atm expression and decreased Smg1 expression increases haematopoietic cancer development.
Collapse
Affiliation(s)
- Uda Ho
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Qld, Australia
| | - John Luff
- UQCCR, University of Queensland, Brisbane, Qld, Australia
| | - Alexander James
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia
| | - Cheok Soon Lee
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,South West Sydney Clinical School, UNSW Sydney, Liverpool, NSW, Australia.,Department of Anatomical Pathology, Molecular Pathology Laboratory, Liverpool Hospital, Liverpool, NSW, Australia
| | - Hazel Quek
- UQCCR, University of Queensland, Brisbane, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Hui-Chi Lai
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,South West Sydney Clinical School, UNSW Sydney, Liverpool, NSW, Australia
| | - Simon Apte
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia.,Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Martin F Lavin
- UQCCR, University of Queensland, Brisbane, Qld, Australia
| | - Tara L Roberts
- UQCCR, University of Queensland, Brisbane, Qld, Australia.,The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,South West Sydney Clinical School, UNSW Sydney, Liverpool, NSW, Australia
| |
Collapse
|
119
|
Kang MA, Lee J, Ha SH, Lee CM, Kim KM, Jang KY, Park SH. Interleukin4Rα (IL4Rα) and IL13Rα1 Are Associated with the Progress of Renal Cell Carcinoma through Janus Kinase 2 (JAK2)/Forkhead Box O3 (FOXO3) Pathways. Cancers (Basel) 2019; 11:cancers11091394. [PMID: 31540495 PMCID: PMC6770213 DOI: 10.3390/cancers11091394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022] Open
Abstract
Specific kinds of interleukin (IL) receptors are known to mediate lymphocyte proliferation and survival. However, recent reports have suggested that the high expression of IL4Rα and IL13Rα1 in tumor tissue might be associated with tumorigenesis in several kinds of tumor. We found that a significant association between mRNA level of IL4Rα or IL13Rα1 and the poor prognosis of renal cell carcinoma (RCC) from the public database (http://www.oncolnc.org/). Then, we evaluated the clinicopathological significance of the immunohistochemical expression of IL4Rα and IL13Rα1 in 199 clear cell RCC (CCRCC) patients. The individual and co-expression patterns of IL4Rα and IL13Rα1 were significantly associated with cancer-specific survival (CSS) and relapse-free survival (RFS) in univariate analysis. Multivariate analysis indicated IL4Rα-positivity and co-expression of IL4Rα and IL13Rα1 as the independent indicators of shorter CSS and RFS of CCRCC patients. For the in vitro evaluation of the oncogenic role of IL4Rα and IL13Rα1 in RCC, we knock-downed IL4Rα or IL13Rα1 and observed that the cell proliferation rate was decreased, and the apoptosis rate was increased in A498 and ACHN cells. Furthermore, we examined the possible role of Janus kinase 2 (JAK2), well-known down-stream tyrosine kinase under the heterodimeric receptor complex of IL4Rα and IL13Rα1. Interestingly, JAK2 interacted with Forkhead box O3 (FOXO3) to cause tyrosine-phosphorylation of FOXO3. Silencing IL4Rα or JAK2 in A498 and ACHN cells reduced the interaction between JAK2 and FOXO3. Moreover, pharmacological inhibition of JAK2 induced the nuclear localization of FOXO3, leading to increase apoptosis and decrease cell proliferation rate in A498 and ACHN cells. Taken together, these results suggest that IL4Rα and IL13Rα1 might be involved in the progression of RCC through JAK2/FOXO3 pathway, and their expression might be used as the novel prognostic factor and therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Mi-Ae Kang
- Department of Biological Science, Gachon University, Seongnam 13120, Korea.
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea.
| | - Sang Hoon Ha
- Division of Biotechnology, Chonbuk National University, Iksan 54596, Korea.
| | - Chang Min Lee
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea.
| | - Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju 54896, Korea.
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju 54896, Korea.
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea.
| |
Collapse
|
120
|
Wang K, Zhou W, Meng P, Wang P, Zhou C, Yao Y, Wu S, Wang Y, Zhao J, Zou D, Jin G. Immune-related somatic mutation genes are enriched in PDACs with diabetes. Transl Oncol 2019; 12:1147-1154. [PMID: 31203147 PMCID: PMC6581966 DOI: 10.1016/j.tranon.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022] Open
Abstract
The bidirectional interaction between pancreatic cancer (PanCa) and diabetes has been confirmed by epidemiological studies, but until now, the underlying molecular mechanisms for this connection is not fully understood yet. Here, we analyzed the clinical and genomic data of 26 pancreatic ductal adenocarcinoma (PDAC) patients without diabetes, and six diabetic PDAC patients, whose tumors underwent targeted next-generation sequencing (551 cancer-related genes included). Ingenuity Pathway Analysis (IPA) was performed to investigate genetic alterations and biological consequences associated with PDACs with or without diabetes. We identified 345 somatic mutations of 153 genes in test cohort and a positive association between diabetes duration and somatic mutation burden. KRAS, TP53, and SMAD4 were the top3 commonly mutated genes at a similar frequency compared to the Cancer Genome Atlas (TCGA) data. Several novel but infrequent mutations in other genes (MDC1, PRB2, and PRB4) were also found. Besides, 13 mutated genes (PIK3CD, SNCAIP, IRF4, HLA-A, NOTCH4, PIM1, ETV6, B2M, CD70, PRDM14, TGFBR1, FLT1, and PARP2) were uniquely found in the diabetic group, mainly involved in immune-related pathways. Further targeted sequencing of these genes in an independent validation cohort (n = 50) revealed significant enrichment in the diabetic group (n = 18, P = 2.6964E-08). Long-standing diabetes (≥3-year duration) may induce increasing somatic mutations with time, facilitating tumor initiation. Gene mutants associated with immune-related pathways could be used to distinguish the diabetic PDAC patients from the non-diabetic cases and allow more selective treatment.
Collapse
Affiliation(s)
- Kaixuan Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Wei Zhou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Peng Meng
- Biotecan Pharmaceuticals Co., Ltd, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China
| | - Peng Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chunhua Zhou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yao Yao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shouxin Wu
- Biotecan Pharmaceuticals Co., Ltd, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China
| | - Yu Wang
- Biotecan Pharmaceuticals Co., Ltd, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China
| | - Jiangman Zhao
- Biotecan Pharmaceuticals Co., Ltd, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China
| | - Duowu Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Jin
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
121
|
Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells. Cent Eur J Immunol 2019; 44:190-200. [PMID: 31530989 PMCID: PMC6745546 DOI: 10.5114/ceji.2018.76273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Cytokines are signalling proteins generated in most part by immune cells that have critical functions in cellular lifespan. Here we present recent data on three selected anti-inflammatory cytokines: interleukin (IL)-10, IL-4 and transforming growth factor β (TGF-β). IL-10 inhibits the synthesis of major pro-inflammatory cytokines, chemokines, and mediates anti-inflammatory reactions. IL-4 is a multifunctional cytokine which plays a crucial role in the regulation of immune responses and is involved in processes associated with development and differentiation of lymphocytes and regulation of T cell survival. Transforming TGF-β, which in normal cells or pre-cancerous cells, promotes proliferation arrest which represses tumour growth. In this review, we focus on the influence of IL-10, IL-4 and TGF-β on various types of cancer as well as potential of these selected cytokines to serve as new biomarkers which can support effective therapies for cancer patients. This article is presented based on a review of the newest research results.
Collapse
|
122
|
Serafín V, Valverde A, Garranzo-Asensio M, Barderas R, Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Simultaneous amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 by using grafted screen-printed electrodes and a composite prepared from quantum dots and carbon nanotubes for signal amplification. Mikrochim Acta 2019; 186:411. [DOI: 10.1007/s00604-019-3531-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
|
123
|
Suzuki A, Puri S, Leland P, Puri A, Moudgil T, Fox BA, Puri RK, Joshi BH. Subcellular compartmentalization of PKM2 identifies anti-PKM2 therapy response in vitro and in vivo mouse model of human non-small-cell lung cancer. PLoS One 2019; 14:e0217131. [PMID: 31120964 PMCID: PMC6532891 DOI: 10.1371/journal.pone.0217131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 05/06/2019] [Indexed: 01/09/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) is an alternatively spliced variant, which mediates the conversion of glucose to lactate in cancer cells under normoxic conditions, known as the Warburg effect. Previously, we demonstrated that PKM2 is one of 97 genes that are overexpressed in non-small-cell lung cancer (NSCLC) cell lines. Herein, we demonstrate a novel role of subcellular PKM2 expression as a biomarker of therapeutic response after targeting this gene by shRNA or small molecule inhibitor (SMI) of PKM2 enzyme activity in vitro and in vivo. We examined two established lung cancer cell lines, nine patients derived NSCLC and three normal lung fibroblast cell lines for PKM2 mRNA, protein and enzyme activity by RT-qPCR, immunocytochemistry (ICC), and Western blot analysis. All eleven NSCLC cell lines showed upregulated PKM2 enzymatic activity and protein expression mainly in their cytoplasm. Targeting PKM2 by shRNA or SMI, NSCLC cells showed significantly reduced mRNA, enzyme activity, cell viability, and colony formation, which also downregulated cytosolic PKM2 and upregulated nuclear enzyme activities. Normal lung fibroblast cell lines did not express PKM2, which served as negative controls. PKM2 targeting by SMI slowed tumor growth while gene-silencing significantly reduced growth of human NSCLC xenografts. Tumor sections from responding mice showed >70% reduction in cytoplasmic PKM2 with low or undetectable nuclear staining by immunohistochemistry (IHC). In sharp contrast, non-responding tumors showed a >38% increase in PKM2 nuclear staining with low or undetectable cytoplasmic staining. In conclusion, these results confirmed PKM2 as a target for cancer therapy and an unique function of subcellular PKM2, which may characterize therapeutic response to anti-PKM2 therapy in NSCLC.
Collapse
Affiliation(s)
- Akiko Suzuki
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Sachin Puri
- Molecular & Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
| | - Pamela Leland
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Ankit Puri
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Tarsem Moudgil
- Molecular & Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
| | - Bernard A. Fox
- Molecular & Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, OHSU, Portland, Oregon, United States of America
| | - Raj K. Puri
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Bharat H. Joshi
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
124
|
Bruchard M, Ghiringhelli F. Deciphering the Roles of Innate Lymphoid Cells in Cancer. Front Immunol 2019; 10:656. [PMID: 31024531 PMCID: PMC6462996 DOI: 10.3389/fimmu.2019.00656] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
Cancer is a complex disease and the role played by innate lymphoid cells (ILCs) in cancer development has begun to be uncovered over recent years. We aim to provide an exhaustive summary of the knowledge acquired on the role of ILCs in cancer. ILCs are classified into 3 different categories, ILC1s, ILC2s, and ILC3s, each encompassing specific and unique functions. ILC1s exhibit NK cells characteristics and can exert anti-tumor functions, but surprisingly their IFNγ production is not associated with a better immune response. In response to TGF-β or IL-12, ILC1s were shown to exert pro-tumor functions and to favor tumor growth. ILC2s role in cancer immune response is dependent on cytokine context. The production of IL-13 by ILC2s is associated with a negative outcome in cancer. ILC2s can also produce IL-5, leading to eosinophil activation and an increased anti-tumor immune response in lung cancer. ILC3s produce IL-22, which could promote tumor growth. In contrast, ILC3s recognize tumor cells and facilitate leukocyte tumor entry, increasing anti-tumor immunity. In some contexts, ILC3s were found at the edge of tertiary lymphoid structures, associated with a good prognostic. We are at the dawn of our understanding of ILCs role in cancer. This review aims to thoroughly analyze existing data and to provide a comprehensive overview of our present knowledge on the impact of ILCs in cancer.
Collapse
Affiliation(s)
- Melanie Bruchard
- INSERM UMR1231, Dijon, France.,University of Burgundy and Franche-Comté, Dijon, France
| | - Francois Ghiringhelli
- INSERM UMR1231, Dijon, France.,University of Burgundy and Franche-Comté, Dijon, France
| |
Collapse
|
125
|
Lin Y, Yuan Q, Qian F, Qin C, Cao Q, Wang M, Chu H, Zhang Z. Polymorphism rs4787951 in IL-4R contributes to the increased risk of renal cell carcinoma in a Chinese population. Gene 2019; 685:242-247. [PMID: 30472377 DOI: 10.1016/j.gene.2018.11.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Interleukins are important molecules involved in tumor formation. In this study, the association between renal cell carcinoma (RCC) risk and single nucleotide polymorphisms (SNPs) on IL-4/IL-13/IL-4R was assessed. METHODS We recruited 620/623 cases/controls and conducted a case-control study. Five tagSNPs (i.e., IL-4R rs8832, IL-4R rs4787951, IL-13 rs1881457, IL-13 rs2066960 and IL-13 rs2069744) were selected. Odds ratios (ORs) with their 95% confidence intervals (CIs) were obtained to appraise the association between SNPs and RCC susceptibility. Luciferase report assay and EMSA were conducted to investigate whether SNPs could affect binding affinity of transcription factors to target genes. RESULTS IL-4R rs4787951T>C was significantly associated with RCC susceptibility. Individuals carrying CC genotypes had a significant increment in RCC risk compared with TT genotype carriers (adjusted OR = 1.57, 95% CI = 1.07-2.28, P = 0.020). By stratified analyses, more pronounced association was found in the female, diabetic or without smoking, drinking and hypertension group. Besides, SNP rs4787951 could influence the binding affinity of IL-4R to transcription factors. Sequence surrounding allele T was prone to bind transcription factor NFATc. CONCLUSIONS This study revealed that IL-4R rs4787951T>C was associated with susceptibility of RCC and could be a predictive biomarker for RCC risk.
Collapse
Affiliation(s)
- Yadi Lin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China; Center for Disease Prevention and Control of Gusu District, Suzhou, China
| | - Qi Yuan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fangze Qian
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
126
|
Interleukin-13 receptor α2 is a novel marker and potential therapeutic target for human melanoma. Sci Rep 2019; 9:1281. [PMID: 30718742 PMCID: PMC6362032 DOI: 10.1038/s41598-019-39018-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022] Open
Abstract
Malignant melanoma is one of the untreatable cancers in which conventional therapeutic strategies, including chemotherapy, are hardly effective. Therefore, identification of novel therapeutic targets involved in melanoma progression is urgently needed for developing effective therapeutic methods. Overexpression of interleukin-13 receptor α2 (IL13Rα2) is observed in several cancer types including glioma and pancreatic cancer. Although IL13Rα2 is implicated in the progression of various types of cancer, its expression and roles in the malignant melanoma have not yet been elucidated. In the present study, we showed that IL13Rα2 was expressed in approximately 7.5% melanoma patients. While IL13Rα2 expression in human melanoma cells decreased their proliferation in vitro, it promoted in vivo tumour growth and angiogenesis in melanoma xenograft mouse model. We also found that the expression of amphiregulin, a member of the epidermal growth factor (EGF) family, was correlated with IL13Rα2 expression in cultured melanoma cells, xenograft tumour tissues and melanoma clinical samples. Furthermore, expression of amphiregulin promoted tumour growth, implicating causal relationship between the expression of IL13Rα2 and amphiregulin. These results suggest that IL13Rα2 enhances tumorigenicity by inducing angiogenesis in malignant melanoma, and serves as a potential therapeutic target of malignant melanoma.
Collapse
|
127
|
Warner K, Ohashi PS. ILC regulation of T cell responses in inflammatory diseases and cancer. Semin Immunol 2019; 41:101284. [DOI: 10.1016/j.smim.2019.101284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 01/04/2023]
|
128
|
Sowa P, Misiolek M, Zielinski M, Mazur B, Adamczyk-Sowa M. Novel interleukin-33 and its soluble ST2 receptor as potential serum biomarkers in parotid gland tumors. Exp Biol Med (Maywood) 2019; 243:762-769. [PMID: 29763370 DOI: 10.1177/1535370218774539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An increasing number of patients with parotid gland tumors have been observed in recent years. The relationship between the immune system and tumor formation is thoroughly investigated. However, newly discovered molecules offer a new insight into the pathophysiology of malignancies. It would be ideal to find an easily determinable biomarker of tumor existence, its malignant potential or a biomarker suggesting the probability of disease recurrence. Our study is the first to examine serum concentrations of IL-33 and its sST2 receptor in patients with various types of parotid gland tumors. Serum IL33, sST2, IL-4 and IL-10 concentrations were determined in patients with benign and malignant parotid gland tumors (pleomorphic adenoma, Warthin's tumor, myoepithelioma and acinic cell carcinoma). We observed for the first time that serum IL-33 level was significantly elevated in patients with various types of parotid gland tumors and sST2 levels were significantly higher in pleomorphic adenoma and acinic cell carcinoma patients compared to the controls. Our results demonstrate for the first time that serum IL-33 and its sST2 receptor may be important factors in the pathology of parotid gland tumors. Although our results are promising, further investigations are required to detect if serum concentrations of those molecules may be a biomarker in parotid gland tumors. Impact statement Parotid gland tumors seem to be an increasingly important medical challenge, mostly due to a noticeable increase in the incidence. It would be crucial to find an easily determinable biomarker of tumor existence, its recurrence or malignant potential. We observed for the first time that serum IL-33 level was significantly elevated in patients with various types of parotid gland tumors and its sST2 receptor levels were significantly higher in pleomorphic adenoma and acinic cell carcinoma patients compared to the controls. We believe that our study helps to understand the biology of the tumors and a potential role of a relatively newly identified cytokine IL-33 in the pathophysiology of the parotid gland tumors.
Collapse
Affiliation(s)
- Pawel Sowa
- 1 Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia in Katowice, Zabrze 41-800, Poland
| | - Maciej Misiolek
- 1 Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia in Katowice, Zabrze 41-800, Poland
| | - Maciej Zielinski
- 1 Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia in Katowice, Zabrze 41-800, Poland
| | - Bogdan Mazur
- 2 Department of Microbiology and Immunology in Zabrze, Medical University of Silesia in Katowice, Zabrze 41-808, Poland
| | - Monika Adamczyk-Sowa
- 3 Department of Neurology in Zabrze, Medical University of Silesia in Katowice, Zabrze 41-800, Poland
| |
Collapse
|
129
|
Safari E, Ghorghanlu S, Ahmadi‐khiavi H, Mehranfar S, Rezaei R, Motallebnezhad M. Myeloid‐derived suppressor cells and tumor: Current knowledge and future perspectives. J Cell Physiol 2018; 234:9966-9981. [DOI: 10.1002/jcp.27923] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Elahe Safari
- Department of Immunology Faculty of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Sajjad Ghorghanlu
- Ischemic Disorders Research Center, Golestan University of Medical Sciences Gorgan Iran
| | | | - Sahar Mehranfar
- Department of Genetics and Immunology Faculty of Medicine, Urmia University of Medical Sciences Urmia Iran
- Cellular and Molecular Research Center, Urmia University of Medical Sciences Urmia Iran
| | - Ramazan Rezaei
- Department of Immunology School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Morteza Motallebnezhad
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Immunology Research Center, Iran University of Medical Sciences Tehran Iran
- Student Research Committee, Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
130
|
Shamoun L, Skarstedt M, Andersson RE, Wågsäter D, Dimberg J. Association study on IL-4, IL-4Rα and IL-13 genetic polymorphisms in Swedish patients with colorectal cancer. Clin Chim Acta 2018; 487:101-106. [DOI: 10.1016/j.cca.2018.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/13/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
|
131
|
Lee YS, Lee CH, Bae JT, Nam KT, Moon DB, Hwang OK, Choi JS, Kim TH, Jun HO, Jung YS, Hwang DY, Han SB, Yoon DY, Hong JT. Inhibition of skin carcinogenesis by suppression of NF-κB dependent ITGAV and TIMP-1 expression in IL-32γ overexpressed condition. J Exp Clin Cancer Res 2018; 37:293. [PMID: 30486830 PMCID: PMC6263970 DOI: 10.1186/s13046-018-0943-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Interleukin-32 (IL-32) has been associated with various diseases. Previous studies have shown that IL-32 inhibited the development of several tumors. However, the role of IL-32γ, an isotype of IL-32, in skin carcinogenesis remains unknown. METHODS We compared 7,12-Dimethylbenz[a]anthracene/12-O-Tetradecanoylphorbol-13-acetate (DMBA/TPA)-induced skin carcinogenesis in wild type (WT) and IL-32γ-overexpressing mice to evaluate the role of IL-32γ. We also analyzed cancer stemness and NF-κB signaling in skin cancer cell lines with or without IL-32γ expression by western blotting, quantitative real-time PCR and immunohistochemistry analysis. RESULTS Carcinogen-induced tumor incidence in IL-32γ mice was significantly reduced in comparison to that in WT mice. Infiltration of inflammatory cells and the expression levels of pro-inflammatory mediators were decreased in the skin tumor tissues of IL-32γ mice compared with WT mice. Using a genome-wide association study analysis, we found that IL-32 was associated with integrin αV (ITGAV) and tissue inhibitor of metalloproteinase-1 (TIMP-1), which are critical factor for skin carcinogenesis. Reduced expression of ITGAV and TIMP-1 were identified in DMBA/TPA-induced skin tissues of IL-32γ mice compared to that in WT mice. NF-κB activity was also reduced in DMBA/TPA-induced skin tissues of IL-32γ mice. IL-32γ decreased cancer cell sphere formation and expression of stem cell markers, and increased chemotherapy-induced cancer cell death. IL-32γ also downregulated expression of ITGAV and TIMP-1, accompanied with the inhibition of NF-κB activity. In addition, IL-32γ expression with NF-κB inhibitor treatment further reduced skin inflammation, epidermal hyperplasia, and cancer cell sphere formation and downregulated expression levels of ITGAV and TIMP-1. CONCLUSIONS These findings indicated that IL-32γ suppressed skin carcinogenesis through the inhibition of both stemness and the inflammatory tumor microenvironment by the downregulation of TIMP-1 and ITGAV via inactivation of NF-κB signaling.
Collapse
Affiliation(s)
- Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Chung Hee Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
- Hanbul Co, Ltd. R&D center, 634 Eon Ju-Ro, Gangnam-gu, Seoul, Republic of Korea
| | - Jun Tae Bae
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Kyung Tak Nam
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Dae Bong Moon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Ok Kyung Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Jeong Soon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Tae Hoon Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Hyoung Ok Jun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Young Suk Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Dae Yeon Hwang
- Department of Biomaterial Science, Pusan National University, Miryang, Kyungnam 50463 Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| |
Collapse
|
132
|
Tokura Y, Phadungsaksawasdi P, Ito T. Atopic dermatitis as Th2 disease revisited. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2018. [DOI: 10.1002/cia2.12033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yoshiki Tokura
- Department of DermatologyHamamatsu University School of Medicine Hamamatsu Japan
| | | | - Taisuke Ito
- Department of DermatologyHamamatsu University School of Medicine Hamamatsu Japan
| |
Collapse
|
133
|
An IL13Rα2 peptide exhibits therapeutic activity against metastatic colorectal cancer. Br J Cancer 2018; 119:940-949. [PMID: 30318506 PMCID: PMC6203792 DOI: 10.1038/s41416-018-0259-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/07/2018] [Accepted: 08/16/2018] [Indexed: 12/28/2022] Open
Abstract
Background Interleukin 13 receptor α2 (IL13Rα2) is overexpressed in metastatic colorectal cancer. Here, we have developed novel strategies to block IL-13 binding to IL13Rα2 in order to reduce metastatic spread. Methods Synthetic IL13Rα2 D1 peptide (GSETWKTIITKN) was tested for the inhibition of IL-13 binding to IL13Rα2 using ELISA and different cellular assays. Peptide blocking effects on different cell signalling mediators were determined by western blot. An enantiomer version of the peptide (D-D1) was prepared to avoid proteolytic digestion. Nude mice were used for tumour growth and survival analysis after treatment with IL13Rα2 peptides. Results IL13Rα2 D1 peptide inhibited migration, invasion, and proliferation in metastatic colorectal and glioblastoma cancer cells treated with IL-13. Residues 82K, 83T, 85I and 86T were essential for blocking IL-13. IL13Rα2 peptide abolished ligand-mediated receptor internalisation and degradation, and substantially decreased IL-13 signalling capacity through IL13Rα2 to activate the FAK, PI3K/AKT and Src pathways as well as MT1-MMP expression. In addition, D1 significantly inhibited IL-13-mediated STAT6 activation through IL13Rα1. Nude mice treated with the enantiomer D-D1 peptide showed a remarkable survival increase. Conclusions We propose that the D-D1 peptide from IL13Rα2 represents a promising therapeutic agent to inhibit metastatic progression in colorectal cancer and, likely, other solid tumours.
Collapse
|
134
|
Potential Risks Related to Modulating Interleukin-13 and Interleukin-4 Signalling: A Systematic Review. Drug Saf 2018; 41:489-509. [PMID: 29411337 PMCID: PMC5938313 DOI: 10.1007/s40264-017-0636-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction Interleukin-13 and interleukin-4 are type-II cytokines signalling through the shared type II interleukin-4 receptor. As a result of their structural similarity, interleukin-13 and interleukin-4 have overlapping functions in the mediation of type-II-driven diseases and are, therefore, promising targets of biologic drugs currently in development for the treatment of such diseases, including asthma and atopic dermatitis. Objective This systematic review was conducted to assess preclinical evidence of potential safety concerns related to blockade of interleukin-13 alone or interleukin-13 and interleukin-4 in combination. Methods We specifically examined risks related to infection, malignancy and the cardiovascular system. We systematically searched the BIOSIS, MEDLINE and EMBASE databases to identify preclinical studies published between January 2006 and October 2016 that addressed the effects of interleukin-13/interleukin-4 blockade and modulation on the risk of infection, malignancy and cardiovascular events. To provide a clinical context, we also performed a search for clinical trials targeting the interleukin-13/interleukin-4 pathways. Relevant data from preclinical and clinical trials were abstracted and presented descriptively. Results Aside from expected evidence that inhibition of interleukin-13 and interleukin-4 impaired host responses to helminth infections, we did not identify other preclinical evidence suggesting safety risks relating to infection, malignancy or cardiovascular events. We found no evidence in clinical trials suggesting serious safety concerns, i.e. increased risk for infections, malignancy or cardiovascular events from therapeutic modulation of the interleukin-13 pathway alone or the combined interleukin-13/interleukin-4 pathways. Conclusions Although our findings are reassuring, long-term safety assessments of biologics that target the interleukin-13/interleukin-4 pathways currently in clinical development are needed. Electronic supplementary material The online version of this article (10.1007/s40264-017-0636-9) contains supplementary material, which is available to authorized users.
Collapse
|
135
|
Valverde A, Povedano E, Montiel VRV, Yáñez-Sedeño P, Garranzo-Asensio M, Barderas R, Campuzano S, Pingarrón JM. Electrochemical immunosensor for IL-13 Receptor α2 determination and discrimination of metastatic colon cancer cells. Biosens Bioelectron 2018; 117:766-772. [DOI: 10.1016/j.bios.2018.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 02/05/2023]
|
136
|
Ferastraoaru D, Rosenstreich D. IgE deficiency and prior diagnosis of malignancy: Results of the 2005-2006 National Health and Nutrition Examination Survey. Ann Allergy Asthma Immunol 2018; 121:613-618. [PMID: 30086407 DOI: 10.1016/j.anai.2018.07.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/10/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Data on patients from tertiary-level health care facilities suggest that IgE-deficient (IgE <2.5 kU/L) patients have high rates of prior malignant tumors. OBJECTIVE To investigate the association between IgE levels and diagnosis of malignancy in non-institution-associated patients using the 2005-2006 US National Health and Nutrition Examination Survey (NHANES) cohort. METHODS All individuals with available IgE levels and known prior diagnosis of malignancy were divided into 4 groups: IgE deficient (IgE, <2.5 kU/L), normal IgE levels (2.5-100 kU/L), high IgE levels (100-1,000 kU/L), and very high IgE levels (≥1,000 kU/L). Rates of malignancy were compared among groups. RESULTS Of 4,488 individuals with data on IgE levels and malignancy status, 7.4% had a prior diagnosis of cancer. The rate of prior malignancy was significantly higher in the IgE-deficient group (12.6%) compared with individuals with high (6.7%, P = .04) and very high IgE levels (5.3%, P = 0.04). In the IgE-deficient group, only 3 patients had a diagnosis of malignancy within 3 years of IgE measurement. A mean (SD) of 10.3 (9.6) years elapsed between the time of malignancy diagnosis and IgE collection time; therefore, active neoplasm or recent chemotherapy was less likely to explain the very low IgE levels. Types of malignancies in the IgE-deficiency group included breast cancer (n = 6), nonmelanoma or unknown skin cancer (n = 3), uterine cancer (n = 2), cervical cancer (n = 1), lung cancer (n = 1), prostate cancer (n = 1), and hematologic cancer (n = 1). CONCLUSION In this non-institution-based cohort, IgE deficiency was associated with a higher rate of prior diagnosis of malignancies compared with individuals with high or very high IgE levels. Prospective studies are essential to better evaluate the association between IgE levels and risk of cancer.
Collapse
Affiliation(s)
- Denisa Ferastraoaru
- Department of Internal Medicine/Allergy-Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York.
| | - David Rosenstreich
- Department of Internal Medicine/Allergy-Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| |
Collapse
|
137
|
Jiang P, Yue YX, Hong Y, Xie Y, Gao X, Gu CK, Hao HJ, Qin Y, Ding XJ, Song M, Li HF, Zhang X. IL-4Rα Polymorphism Is Associated With Myasthenia Gravis in Chinese Han Population. Front Neurol 2018; 9:529. [PMID: 30042722 PMCID: PMC6048264 DOI: 10.3389/fneur.2018.00529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin-4 (IL-4) is a potent growth and differentiation factor for B cells which play a vital role in the pathogenesis of myasthenia gravis (MG). IL-4 exerts its function by binding to three types of IL-4 receptor (IL-4R) complexes. IL-4Rα is the key component of the IL-4R complex. We hypothesize that polymorphism of IL-4Rα gene may be associated with the susceptibility and severity of MG. A Chinese cohort of 480 MG patients and 487 healthy controls were recruited. Polymorphisms of IL-4Rα gene were determined with SNPscan™ methods and compared between MG and control groups, as well as among MG subgroups. Rs2107356 and rs1805010 were found to be associated with adult thymoma associated MG, and rs1801275 was found to be associated with adult non-thymoma AChR-Ab positive MG. We did not found association between IL-4Rα polymorphism and the severity of MG. Genetic variations of IL-4Rα were found associated with the susceptibility of MG in Chinese Han population.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yao-Xian Yue
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Hong
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Yanchen Xie
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiang Gao
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuan-Kai Gu
- ICU, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong-Jun Hao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yue Qin
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-Jun Ding
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Min Song
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Hai-Feng Li
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Xu Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
138
|
Sheng J, Yang Y, Cui Y, He S, Wang L, Liu L, He Q, Lv T, Han W, Yu W, Hu S, Jin J. M2 macrophage-mediated interleukin-4 signalling induces myofibroblast phenotype during the progression of benign prostatic hyperplasia. Cell Death Dis 2018; 9:755. [PMID: 29988032 PMCID: PMC6037751 DOI: 10.1038/s41419-018-0744-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/24/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a progressive disease in elderly men, but potential factors accelerating its progression remain largely unknown. The aim of this study was to elucidate the factors affecting BPH progression by understanding the complex mechanisms causing early- progressed BPH, which progresses rapidly and requires surgical intervention before the age of 50. Three groups of human prostate tissue samples, from patients with early-progressed BPH, age-matched prostate and elderly BPH tissues, were collected (n = 25 each). We compared these tissues to determine the histologic features and molecular mechanisms underlying BPH progression. We found that early-progressed BPH samples were characterised by aberrant stromal hyper-proliferation, collagen deposition and increased M2 macrophage infiltration, compared to those from age-matched prostate and elderly BPH tissues. The M2 macrophage–fibroblast co-culture system demonstrated that the myofibroblast phenotypes were strongly induced only in fibroblasts from the early-progressed BPH samples, while the co-cultured M2 macrophages expressed high levels of pro-fibrotic cytokines, such as IL4 and TGFβ1. M2 macrophage-derived IL4, but not TGFβ1, selectively induced the myofibroblast phenotype through the JAK/STAT6, PI3K/AKT and MAPK/ERK signalling pathways in the early-progressed BPH prostate fibroblasts. Taken together, our results indicate that induction of the myofibroblast phenotype may lead to BPH progression through M2 macrophage-mediated IL4 signalling, and that IL4 may represent a potential therapeutic target, allowing the prevention of M2 macrophage activation and fibroblast-to-myofibroblast differentiation.
Collapse
Affiliation(s)
- Jindong Sheng
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Yang Yang
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Yun Cui
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China.,Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Shiming He
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Lu Wang
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Libo Liu
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Qun He
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Tianjing Lv
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Wenke Han
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Wei Yu
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Shuai Hu
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China.
| | - Jie Jin
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China.
| |
Collapse
|
139
|
Kwon HJ, Choi JE, Bae YK. Interleukin-13 receptor alpha 2 expression in tumor cells is associated with reduced disease-free survival in patients with luminal subtype invasive breast cancer. Tumour Biol 2018; 40:1010428318783657. [PMID: 29911489 DOI: 10.1177/1010428318783657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interleukin-13 receptor alpha 2 is one of the subunits of transmembrane receptor for interleukin-13. The aim of this study was to investigate the prognostic value of interleukin-13 receptor alpha 2 expression in invasive breast cancer. Interleukin-13 receptor alpha 2 expressions were assessed by immunohistochemistry in tissue microarrays of 1283 invasive breast cancer samples, and associations between these expressions and clinicopathological variables and clinical outcomes were investigated. Interleukin-13 receptor alpha 2 expression was observed in 138 (10.8%) samples, and found to be associated with positive estrogen receptor (p < 0.001) and progesterone receptor (p < 0.001) and with the luminal subtype (p < 0.001). No significant association was found between interleukin-13 receptor alpha 2 expression and other clinicopathological variables including age, tumor size, lymph node metastasis, histologic types, histologic grade, HER2 status, Ki-67 labeling index, or tumor-infiltrating lymphocytes levels. Patients with interleukin-13 receptor alpha 2 expression tended to have poorer disease-free survival, but the difference was not statistically significant (p = 0.069). Subgroup analysis showed luminal breast cancer patients positive for interleukin-13 receptor alpha 2 expression had significantly poorer disease-free survival (p = 0.018) than luminal breast cancer patients negative for interleukin-13 receptor alpha 2 expression. However, no association between interleukin-13 receptor alpha 2 expression and clinical outcome was observed in HER2-positive and triple-negative subgroups (p = 0.574 and p = 0.936, respectively). Multivariate analysis showed interleukin-13 receptor alpha 2 expression was an independent poor prognostic factor for luminal breast cancer (p = 0.03). This study shows interleukin-13 receptor alpha 2 expression could be a useful prognostic marker for selecting patients with luminal breast cancer likely to follow a clinically aggressive course despite receiving systemic therapy.
Collapse
Affiliation(s)
- Hee Jung Kwon
- 1 Department of Pathology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jung Eun Choi
- 2 Department of Surgery, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Young Kyung Bae
- 1 Department of Pathology, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
140
|
Dong C, Fu T, Ji J, Li Z, Gu Z. The role of interleukin-4 in rheumatic diseases. Clin Exp Pharmacol Physiol 2018; 45:747-754. [PMID: 29655253 DOI: 10.1111/1440-1681.12946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
Rheumatism is a group of diseases, most of which are autoimmune diseases, that violate joints, bones, muscles, blood vessels and related soft tissue. As is well known, cytokines play a role in the pathogenesis of several rheumatic diseases, such as rheumatoid arthritis, spondyloarthritides, and systemic lupus erythematosus. Recently, the role of interleukin-4 (IL-4), which may participate in the mechanism of rheumatism, have been discovered. It is reported that IL-4 takes part in the regulation of T cell activation, differentiation, proliferation, and survival of different T cell types. IL-4 also has an immunomodulatory effect on B cells, mast cells, macrophages, and many cell types. A review of the literature on functions of IL-4 in rheumatic diseases is presented.
Collapse
Affiliation(s)
- Chen Dong
- School of Nursing, Nantong University, Nantong, Jiangsu Province, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ting Fu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhenyu Li
- School of Nursing, Nantong University, Nantong, Jiangsu Province, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
141
|
Berlow NE, Svalina MN, Quist MJ, Settelmeyer TP, Zherebitskiy V, Kogiso M, Qi L, Du Y, Hawkins CE, Hulleman E, Li XN, Gultekin SH, Keller C. IL-13 receptors as possible therapeutic targets in diffuse intrinsic pontine glioma. PLoS One 2018; 13:e0193565. [PMID: 29621254 PMCID: PMC5886401 DOI: 10.1371/journal.pone.0193565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 02/14/2018] [Indexed: 11/19/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a universally fatal childhood cancer of the brain. Despite the introduction of conventional chemotherapy and radiotherapy, improvements in survival have been marginal and long-term survivorship is uncommon. Thus, new targets for therapeutics are critically needed. Early phase clinical trials exploring molecularly-targeted therapies against the epidermal growth factor receptor (EGFR) and novel immunotherapies targeting interleukin receptor-13α2 (IL-13Rα2) have demonstrated activity in this disease. To identify additional therapeutic markers for cell surface receptors, we performed exome sequencing (16 new samples, 22 previously published samples, total 38 with 26 matched normal DNA samples), RNA deep sequencing (17 new samples, 11 previously published samples, total 28 with 18 matched normal RNA samples), and immunohistochemistry (17 DIPG tissue samples) to examine the expression of the interleukin-4 (IL-4) signaling axis components (IL-4, interleukin 13 (IL-13), and their respective receptors IL-4Rα, IL-13Rα1, and IL-13Rα2). In addition, we correlated cytokine and receptor expression with expression of the oncogenes EGFR and c-MET. In DIPG tissues, transcript-level analysis found significant expression of IL-4, IL-13, and IL-13Rα1/2, with strong differential expression of IL-13Rα1/2 in tumor versus normal brain. At the protein level, immunohistochemical studies revealed high content of IL-4 and IL-13Rα1/2 but notably low expression of IL-13. Additionally, a strong positive correlation was observed between c-Met and IL-4Rα. The genomic and transcriptional landscape across all samples was also summarized. These data create a foundation for the design of potential new immunotherapies targeting IL-13 cell surface receptors in DIPG.
Collapse
Affiliation(s)
- Noah E. Berlow
- Children's Cancer Therapy Development Institute, Beaverton, OR, United States of America
| | - Matthew N. Svalina
- Children's Cancer Therapy Development Institute, Beaverton, OR, United States of America
| | - Michael J. Quist
- Children's Cancer Therapy Development Institute, Beaverton, OR, United States of America
| | - Teagan P. Settelmeyer
- Children's Cancer Therapy Development Institute, Beaverton, OR, United States of America
| | - Viktor Zherebitskiy
- Department of Pathology, Oregon Health & Science University, Portland, OR, United States of America
| | - Mari Kogiso
- Department of Pediatrics, Texas Children's Cancer Center, Houston, TX, United States of America
| | - Lin Qi
- Department of Pediatrics, Texas Children's Cancer Center, Houston, TX, United States of America
| | - Yuchen Du
- Department of Pediatrics, Texas Children's Cancer Center, Houston, TX, United States of America
| | - Cynthia E. Hawkins
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, CANADA
| | - Esther Hulleman
- Neuro-Oncology Research Group, Cancer Center Amsterdam, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands
| | - Xiao-Nan Li
- Department of Pediatrics, Texas Children's Cancer Center, Houston, TX, United States of America
| | - Sakir H. Gultekin
- Department of Pathology, Oregon Health & Science University, Portland, OR, United States of America
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, OR, United States of America
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States of America
- * E-mail:
| |
Collapse
|
142
|
Yoon H, Ko YH. LMP1+SLAMF1high cells are associated with drug resistance in Epstein-Barr virus-positive Farage cells. Oncotarget 2018; 8:24621-24634. [PMID: 28445949 PMCID: PMC5421874 DOI: 10.18632/oncotarget.15600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
How Epstein-Barr virus (EBV) affects the clinical outcome of EBV-positive diffuse large B-cell lymphoma (DLBCL) remains largely unknown. The viral oncogene LMP1 is at the crux of tumorigenesis and cell survival. Therefore, we examined the association between LMP1high cells drug resistance. We first assessed SLAMF1 as a surrogate marker for LMP1high cells. LMP1 and its target gene CCL22 were highly expressed in SLAMF1high Farage cells. These cells survived longer following treatment with a combination of cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP). Genes associated with interferon-alpha, allograft rejection, NF-κB and STAT3 were also overexpressed in the surviving Farage cells. Specifically, CHOP treatment increased IL10, LMP1 and pSTAT3 expression levels in a dose-dependent fashion. Addition of exogenous IL4 greatly increased the levels of LMP1 and pSTAT3, which rendered the Farage cells more resistant to CHOP by up-regulating the anti-apoptotic genes BCL-XL and MCL1. The Farage cells were sensitive to Velcade and STAT3, 5, and 6 inhibitors. Inhibition of NF-κB and STAT3, in combination with CHOP, decreased LMP1 levels and effectively induced cell death in the Farage cells. We suggest that LMP1high cells are responsible for the poor drug response of EBV+ DLBCL and that perturbation of the NF-κB and STAT signaling pathways increases toxicity in these cells.
Collapse
Affiliation(s)
- Heejei Yoon
- Clinical Research Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
143
|
Han M, Sun P, Li Y, Wu G, Nie J. Structural characterization of a polysaccharide from Sargassum henslowianum, and its immunomodulatory effect on gastric cancer rat. Int J Biol Macromol 2018; 108:1120-1127. [PMID: 29274428 DOI: 10.1016/j.ijbiomac.2017.12.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/26/2017] [Accepted: 12/19/2017] [Indexed: 01/17/2023]
Abstract
A complicated sulfated fucoidan, SHPPB2, was purified from Sargassum henslowianum by DEAE-cellulose 52 and Sephacryl S-300 column chromatography. Via chemical and spectral method, SHPPB2 was found to contain mannose, glucuronic acid, galactose, xylose, and fucose, in a ratio of 17.4: 13.5: 10.5: 16.8: 41.8, as well as 21.4% of sulfate. The methylation analysis demonstrated terminal, 3-, 4-, 2, 3-, and 3, 4- linked fucose, 2-, 2, 3-, 2, 4-, and 2, 4, 6- linked mannose, terminal, 4-, 6-, 2, 4-, 3, 4-, and 3, 6- linked galactose, terminal and 4- linked xylose, and 4- linked glucuronic acid. In addition, the sulfate groups were substituted on the C-2, C-3 or C-4 of 3- and 4- linked fucose, on the C-4 or C-6 of 2- linked mannose, and on C-2 or C-3 of 4- and 6- linked galactose. With the treatment of SHPPB2 in the N-methyl-N'-nitro-nitrosoguanidine (MNNG) induced gastric cancer rats, it was observed with an increased body weight, and improved immune organ indices. Furthermore, SHPPB2 could significantly promote splenocyte proliferation induced by ConA or LPS in gastric cancer rats, and improve anti-inflammatory cytokines (IL-2, IL-4, and IL-10) secretion, but reduce pro-inflammatory cytokines (IL-6 and TNF-α). Taken together, it suggested that SHPPB2 could improve immune function in gastric cancer rats. Thus, it could be explored as a potential immuno-therapy for gastric cancer treatment.
Collapse
Affiliation(s)
- Mingyang Han
- Department of General Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Peichun Sun
- Department of General Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Yuanyuan Li
- Department of Department of Reproductive Center, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Gang Wu
- Department of General Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Jiewei Nie
- Department of General Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
144
|
Leuci V, Casucci GM, Grignani G, Rotolo R, Rossotti U, Vigna E, Gammaitoni L, Mesiano G, Fiorino E, Donini C, Pisacane A, Ambrosio LD, Pignochino Y, Aglietta M, Bondanza A, Sangiolo D. CD44v6 as innovative sarcoma target for CAR-redirected CIK cells. Oncoimmunology 2018; 7:e1423167. [PMID: 29721373 PMCID: PMC5927525 DOI: 10.1080/2162402x.2017.1423167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Purpose of our study was to explore a new immunotherapy for high grade soft tissue sarcomas (STS) based on cytokine-induced killer cells (CIK) redirected with a chimeric antigen receptor (CAR) against the tumor-promoting antigen CD44v6. We aimed at generating bipotential killers, combining the CAR specificity with the intrinsic tumor-killing ability of CIK cells (CAR+.CIK). We set a patient-derived experimental platform. CAR+.CIK were generated by transduction of CIK precursors with a lentiviral vector encoding for anti-CD44v6-CAR. CAR+.CIK were characterized and assessed in vitro against multiple histotypes of patient-derived STS. The anti-sarcoma activity of CAR+.CIK was confirmed in a STS xenograft model. CD44v6 was expressed by 40% (11/27) of patient-derived STS. CAR+.CIK were efficiently expanded from patients (n = 12) and killed multiple histotypes of STS (including autologous targets, n = 4). The killing activity was significantly higher compared with unmodified CIK, especially at low effector/target (E/T) ratios: 98% vs 82% (E/T = 10:1) and 68% vs 26% (1:4), (p<0.0001). Specificity of tumor killing was confirmed by blocking with anti-CD44v6 antibody. CAR+.CIK produced higher amounts of IL6 and IFN-γ compared to control CIK. CAR+.CIK were highly active in mice bearing subcutaneous STS xenografts, with significant delay of tumor growth (p<0.0001) without toxicities. We report first evidence of CAR+.CIK's activity against high grade STS and propose CD44v6 as an innovative target in this setting. CIK are a valuable platform for the translation of CAR-based strategies to challenging field of solid tumors. Our findings support the exploration of CAR+.CIK in clinical trials against high grade STS.
Collapse
Affiliation(s)
- V Leuci
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - G M Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Hospital Scientific Institute, Milano, Italy
| | - G Grignani
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - R Rotolo
- Department of Oncology, University of Torino, Torino, Italy
| | - U Rossotti
- Department of Oncology, University of Torino, Torino, Italy
| | - E Vigna
- Department of Oncology, University of Torino, Torino, Italy.,Laboratory of Gene Transfer, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - L Gammaitoni
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - G Mesiano
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - E Fiorino
- Department of Oncology, University of Torino, Torino, Italy
| | - C Donini
- Department of Oncology, University of Torino, Torino, Italy
| | - A Pisacane
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, (TO), Italy
| | - L D Ambrosio
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - Y Pignochino
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - M Aglietta
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - A Bondanza
- Innovative Immunotherapies Unit, IRCCS San Raffaele Hospital Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - D Sangiolo
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| |
Collapse
|
145
|
Targeting luteinizing hormone-releasing hormone: A potential therapeutics to treat gynecological and other cancers. J Control Release 2018; 269:277-301. [DOI: 10.1016/j.jconrel.2016.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/05/2023]
|
146
|
Wang T, Johansson P, Abós B, Holt A, Tafalla C, Jiang Y, Wang A, Xu Q, Qi Z, Huang W, Costa MM, Diaz-Rosales P, Holland JW, Secombes CJ. First in-depth analysis of the novel Th2-type cytokines in salmonid fish reveals distinct patterns of expression and modulation but overlapping bioactivities. Oncotarget 2017; 7:10917-46. [PMID: 26870894 PMCID: PMC4905449 DOI: 10.18632/oncotarget.7295] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
IL-4 and IL-13 are closely related canonical type-2 cytokines in mammals and have overlapping bioactivities via shared receptors. They are frequently activated together as part of the same immune response and are the signature cytokines produced by T-helper (Th)2 cells and type-2 innate lymphoid cells (ILC2), mediating immunity against extracellular pathogens. Little is known about the origin of type-2 responses, and whether they were an essential component of the early adaptive immune system that gave a fitness advantage by limiting collateral damage caused by metazoan parasites. Two evolutionary related type-2 cytokines, IL-4/13A and IL-4/13B, have been identified recently in several teleost fish that likely arose by duplication of an ancestral IL-4/13 gene as a consequence of a whole genome duplication event that occurred at the base of this lineage. However, studies of their comparative expression levels are largely missing and bioactivity analysis has been limited to IL-4/13A in zebrafish. Through interrogation of the recently released salmonid genomes, species in which an additional whole genome duplication event has occurred, four genomic IL-4/13 loci have been identified leading to the cloning of three active genes, IL-4/13A, IL-4/13B1 and IL-4/13B2, in both rainbow trout and Atlantic salmon. Comparative expression analysis by real-time PCR in rainbow trout revealed that the IL-4/13A expression is broad and high constitutively but less responsive to pathogen-associated molecular patterns (PAMPs) and pathogen challenge. In contrast, the expression of IL-4/13B1 and IL-4/13B2 is low constitutively but is highly induced by viral haemorrhagic septicaemia virus (VHSH) infection and during proliferative kidney disease (PKD) in vivo, and by formalin-killed bacteria, PAMPs, the T cell mitogen PHA, and the T-cell cytokines IL-2 and IL-21 in vitro. Moreover, bioactive recombinant cytokines of both IL-4/13A and B were produced and found to have shared but also distinct bioactivities. Both cytokines rapidly induce the gene expression of antimicrobial peptides and acute phase proteins, providing an effector mechanism of fish type-2 cytokines in immunity. They are anti-inflammatory via up-regulation of IL-10 and down-regulation of IL-1β and IFN-γ. They modulate the expression of cellular markers of T cells, macrophages and B cells, the receptors of IFN-γ, the IL-6 cytokine family and their own potential receptors, suggesting multiple target cells and important roles of fish type-2 cytokines in the piscine cytokine network. Furthermore both cytokines increased the number of IgM secreting B cells but had no effects on the proliferation of IgM+ B cells in vitro. Taken as a whole, fish IL-4/13A may provide a basal level of type-2 immunity whilst IL-4/13B, when activated, provides an enhanced type-2 immunity, which may have an important role in specific cell-mediated immunity. To our knowledge this is the first in-depth analysis of the expression, modulation and bioactivities of type-2 cytokines in the same fish species, and in any early vertebrate. It contributes to a broader understanding of the evolution of type-2 immunity in vertebrates, and establishes a framework for further studies and manipulation of type-2 cytokines in fish.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Petronella Johansson
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Beatriz Abós
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
| | - Amy Holt
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
| | - Youshen Jiang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK.,College of Fishery and Life Science, Shanghai Ocean University, Shanghai, China
| | - Alex Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Qiaoqing Xu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK.,School of Animal Science, Yangtze University, Jingzhou, Hubei Province, China
| | - Zhitao Qi
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK.,Central Laboratory of Biology, Chemical and Biological Engineering College, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Wenshu Huang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK.,Fisheries College, Jimei University, Xiamen, Fujian Province, China
| | - Maria M Costa
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK.,Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| | - Patricia Diaz-Rosales
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
147
|
Han J, Puri RK. Analysis of the cancer genome atlas (TCGA) database identifies an inverse relationship between interleukin-13 receptor α1 and α2 gene expression and poor prognosis and drug resistance in subjects with glioblastoma multiforme. J Neurooncol 2017; 136:463-474. [PMID: 29168083 PMCID: PMC5805806 DOI: 10.1007/s11060-017-2680-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/11/2017] [Indexed: 01/29/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. A variety of targeted agents are being tested in the clinic including cancer vaccines, immunotoxins, antibodies and T cell immunotherapy for GBM. We have previously reported that IL-13 receptor subunits α1 and α2 of IL-13R complex are overexpressed in GBM. We are investigating the significance of IL-13Rα1 and α2 expression in GBM tumors. In order to elucidate a possible relationship between IL-13Rα1 and α2 expression with severity and prognoses of subjects with GBM, we analyzed gene expression (by microarray) and clinical data available at the public The Cancer Genome Atlas (TCGA) database (Currently known as Global Data Commons). More than 40% of GBM samples were highly positive for IL-13Rα2 mRNA (Log2 ≥ 2) while only less than 16% samples were highly positive for IL-13Rα1 mRNA. Subjects with high IL-13Rα1 and α2 mRNA expressing tumors were associated with a significantly lower survival rate irrespective of their treatment compared to subjects with IL-13Rα1 and α2 mRNA negative tumors. We further observed that IL-13Rα2 gene expression is associated with GBM resistance to temozolomide (TMZ) chemotherapy. The expression of IL-13Rα2 gene did not seem to correlate with the expression of genes for other chains involved in the formation of IL-13R complex (IL-13Rα1 or IL-4Rα) in GBM. However, a positive correlation was observed between IL-4Rα and IL-13Rα1 gene expression. The microarray data of IL-13Rα2 gene expression was verified by RNA-Seq data. In depth analysis of TCGA data revealed that immunosuppressive genes (such as FMOD, CCL2, OSM, etc.) were highly expressed in IL-13Rα2 positive tumors, but not in IL-13Rα2 negative tumors. These results indicate a direct correlation between high level of IL-13R mRNA expression and poor patient prognosis and that immunosuppressive genes associated with IL-13Rα2 may play a role in tumor progression. These findings have important implications in understanding the role of IL-13R in the pathogenesis of GBM and potentially other cancers.
Collapse
Affiliation(s)
- Jing Han
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, WO Bldg. 71, Rm 5342, CBER/FDA, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Raj K Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, WO Bldg. 71, Rm 5342, CBER/FDA, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA.
| |
Collapse
|
148
|
Kim JW, Shin MS, Kang Y, Kang I, Petrylak DP. Immune Analysis of Radium-223 in Patients With Metastatic Prostate Cancer. Clin Genitourin Cancer 2017; 16:e469-e476. [PMID: 29137877 DOI: 10.1016/j.clgc.2017.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/08/2017] [Accepted: 10/14/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Radium223 (Ra223) delivers high-energy radiation to osteoblastic metastasis of prostate cancer, resulting in irreparable double-stranded DNA damage. The effects of Ra223 on CD8+ T cell subsets in patients with prostate cancer is unknown. PATIENTS AND METHODS Fifteen men with metastatic prostate cancer with clinical indication for Ra223 without any autoimmune or immune deficiency conditions were enrolled. Patients received a course of Ra223 50 kBq/kg. Concurrent use of prednisone ≤ 10 mg a day was allowed. Peripheral blood samples were collected before and 3 to 4 weeks after the first dose of Ra223 50 kBq/kg. Peripheral blood mononuclear cells were purified and analyzed for the phenotypic and functional characteristics of CD8+ T cells using flow cytometry. RESULTS One Ra223 treatment did not result in significant change in the overall frequencies of CD8+ T cells and their subsets including naive, central memory, and effect memory cells. However, the mean frequency of programmed cell death protein 1-expressing EM CD8+ T cells decreased after 1 Ra223 treatment from 20.6% to 14.6% (P = .020), whereas no significant change was observed in the frequencies of CD27-, CD28-, or CTLA4-expressing T cells. One Ra223 treatment was not associated with any significant change in the frequencies of CD8+ T cells producing IFN-γ, TNF-α, and IL-13. CONCLUSION One Ra223 treatment is associated with a decreased mean frequency of programmed cell death protein 1-expressing effect memory CD8+ T cell without affecting other immune checkpoint molecules or cytokine production. Further investigations are warranted to elucidate the immunologic and clinical significance of our observations and its long-term effects after multiple treatments.
Collapse
Affiliation(s)
- Joseph W Kim
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT; Prostate and Urological Cancers Program, Yale Comprehensive Cancer Center, New Haven, CT.
| | - Min Sun Shin
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Youna Kang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Insoo Kang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Daniel P Petrylak
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT; Prostate and Urological Cancers Program, Yale Comprehensive Cancer Center, New Haven, CT
| |
Collapse
|
149
|
Yan Y, Gao R, Trinh TLP, Grant MB. Immunodeficiency in Pancreatic Adenocarcinoma with Diabetes Revealed by Comparative Genomics. Clin Cancer Res 2017; 23:6363-6373. [PMID: 28684632 PMCID: PMC6022738 DOI: 10.1158/1078-0432.ccr-17-0250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/22/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023]
Abstract
Purpose: Pancreatic adenocarcinomas (PAAD) often are not diagnosed until their late stages, leaving no effective treatments. Currently, immunotherapy provides a promising treatment option against this malignancy. However, a set of immunotherapy agents benefit patients with many types of cancer, but not PAAD. Sharing the origin in the same organ, diabetes and PAAD tend to occur concurrently. We aimed to identify the impact of diabetes on immunotherapy of PAAD by conducting a comparative genomics analysis.Experimental Design: We analyzed level 3 PAAD genomics data (RNAseq, miRNAseq, DNA methylation, somatic copy number, and somatic mutation) from The Cancer Genome Atlas (TCGA) and Firehose. The differential molecular profiles in PAAD with/out diabetes were performed by the differential gene expression, pathway analysis, epigenetic regulation, somatic copy-number alteration, and somatic gene mutation.Results: Differential gene expression analysis revealed a strong enrichment of immunogenic signature genes in diabetic individuals, including PD-1 and CTLA4, that were currently targetable for immunotherapy. Pathway analysis further implied that diabetic individuals were defective in immune modulation genes. Somatic copy-number aberration (SCNA) analysis showed a higher frequency of amplification and deletion occurred in the cohort without diabetes. Integrative analysis revealed strong association between differential gene expression, and epigenetic regulations, however, seemed not affected by SCNAs. Importantly, our somatic mutation analysis showed that the occurrence of diabetes in PAAD was associated with a large set of gene mutations encoding genes participating in immune modulation.Conclusions: Our analysis reveals the impact of diabetes on immunodeficiency in PAAD patients and provides novel insights into new therapeutic opportunities. Clin Cancer Res; 23(20); 6363-73. ©2017 AACR.
Collapse
Affiliation(s)
- Yuanqing Yan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ruli Gao
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Thao L P Trinh
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Maria B Grant
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
150
|
Sequeida A, Maisey K, Imarai M. Interleukin 4/13 receptors: An overview of genes, expression and functional role in teleost fish. Cytokine Growth Factor Rev 2017; 38:66-72. [PMID: 28988781 DOI: 10.1016/j.cytogfr.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
In superior vertebrates, Interleukin 4 (IL-4) and Interleukin 13 (IL-13) play key and diverse roles to support immune responses acting on cell surface receptors. When stimulated, receptors activate intracellular signalling cascades switching cell phenotypes according to stimuli. In teleost fish, Interleukin 4/13 (IL-4/13) is the ancestral family cytokine related to both IL-4 and IL-13. Every private and common receptor subunit for IL-4/13 have in fish at least two paralogues and, as in mammals, soluble forms are also part of the receptor system. Reports for findings of fish IL-4/13 receptors have covered comparative analysis, transcriptomic profiles and to a lesser extent, functional analysis regarding ligand-receptor interactions and their biological effects. This review addresses available information from fish IL-4/13 receptors and discusses overall implications on teleost immunity, summarized gene induction strategies and pathogen-induced gene modulation, which may be useful tools to enhance immune response. Additionally, we present novel coding sequences for Atlantic salmon (Salmo salar) common gamma chain receptor (γC), Interleukin 13 receptor alpha 1A chain (IL-13Rα1A) and Interleukin 13 receptor alpha 1B chain (IL-13Rα1B).
Collapse
Affiliation(s)
- A Sequeida
- Laboratory of Immunology, Center for Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363 Santiago, Chile
| | - K Maisey
- Laboratory of Immunology, Center for Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363 Santiago, Chile; Laboratory of Comparative Immunology, Center for Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile,Av. Bernardo O'Higgins, 3363 Santiago, Chile
| | - M Imarai
- Laboratory of Immunology, Center for Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363 Santiago, Chile.
| |
Collapse
|