101
|
Miller CL, Muthupalani S, Shen Z, Drees F, Ge Z, Feng Y, Chen X, Gong G, Nagar KK, Wang TC, Gertler FB, Fox JG. Lamellipodin-Deficient Mice: A Model of Rectal Carcinoma. PLoS One 2016; 11:e0152940. [PMID: 27045955 PMCID: PMC4821566 DOI: 10.1371/journal.pone.0152940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/20/2016] [Indexed: 01/27/2023] Open
Abstract
During a survey of clinical rectal prolapse (RP) cases in the mouse population at MIT animal research facilities, a high incidence of RP in the lamellipodin knock-out strain, C57BL/6-Raph1tm1Fbg (Lpd-/-) was documented. Upon further investigation, the Lpd-/- colony was found to be infected with multiple endemic enterohepatic Helicobacter species (EHS). Lpd-/- mice, a transgenic mouse strain produced at MIT, have not previously shown a distinct immune phenotype and are not highly susceptible to other opportunistic infections. Predominantly male Lpd-/- mice with RP exhibited lesions consistent with invasive rectal carcinoma concomitant to clinically evident RP. Multiple inflammatory cytokines, CD11b+Gr1+ myeloid-derived suppressor cell (MDSC) populations, and epithelial cells positive for a DNA damage biomarker, H2AX, were elevated in affected tissue, supporting their role in the neoplastic process. An evaluation of Lpd-/- mice with RP compared to EHS-infected, but clinically normal (CN) Lpd-/- animals indicated that all of these mice exhibit some degree of lower bowel inflammation; however, mice with prolapses had significantly higher degree of focal lesions at the colo-rectal junction. When Helicobacter spp. infections were eliminated in Lpd-/- mice by embryo transfer rederivation, the disease phenotype was abrogated, implicating EHS as a contributing factor in the development of rectal carcinoma. Here we describe lesions in Lpd-/- male mice consistent with a focal inflammation-induced neoplastic transformation and propose this strain as a mouse model of rectal carcinoma.
Collapse
Affiliation(s)
- Cassandra L. Miller
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Frauke Drees
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Xiaowei Chen
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, United States of America
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Karan K. Nagar
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, United States of America
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, United States of America
| | - Frank B. Gertler
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
102
|
Carmona G, Perera U, Gillett C, Naba A, Law AL, Sharma VP, Wang J, Wyckoff J, Balsamo M, Mosis F, De Piano M, Monypenny J, Woodman N, McConnell RE, Mouneimne G, Van Hemelrijck M, Cao Y, Condeelis J, Hynes RO, Gertler FB, Krause M. Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE. Oncogene 2016; 35:5155-69. [PMID: 26996666 PMCID: PMC5031503 DOI: 10.1038/onc.2016.47] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 01/20/2016] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
Abstract
Cancer invasion is a hallmark of metastasis. The mesenchymal mode of cancer cell invasion is mediated by elongated membrane protrusions driven by the assembly of branched F-actin networks. How deregulation of actin regulators promotes cancer cell invasion is still enigmatic. We report that increased expression and membrane localization of the actin regulator Lamellipodin correlate with reduced metastasis-free survival and poor prognosis in breast cancer patients. In agreement, we find that Lamellipodin depletion reduced lung metastasis in an orthotopic mouse breast cancer model. Invasive 3D cancer cell migration as well as invadopodia formation and matrix degradation was impaired upon Lamellipodin depletion. Mechanistically, we show that Lamellipodin promotes invasive 3D cancer cell migration via both actin-elongating Ena/VASP proteins and the Scar/WAVE complex, which stimulates actin branching. In contrast, Lamellipodin interaction with Scar/WAVE but not with Ena/VASP is required for random 2D cell migration. We identified a phosphorylation-dependent mechanism that regulates selective recruitment of these effectors to Lamellipodin: Abl-mediated Lamellipodin phosphorylation promotes its association with both Scar/WAVE and Ena/VASP, whereas Src-dependent phosphorylation enhances binding to Scar/WAVE but not to Ena/VASP. Through these selective, regulated interactions Lamellipodin mediates directional sensing of epidermal growth factor (EGF) gradients and invasive 3D migration of breast cancer cells. Our findings imply that increased Lamellipodin levels enhance Ena/VASP and Scar/WAVE activities at the plasma membrane to promote 3D invasion and metastasis.
Collapse
Affiliation(s)
- G Carmona
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - U Perera
- King's College London, Randall Division of Cell and Molecular Biophysics, London, UK
| | - C Gillett
- King's College London, Research Oncology, Division of Cancer Studies, Faculty of Life Sciences and Medicine, London, UK
| | - A Naba
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A-L Law
- King's College London, Randall Division of Cell and Molecular Biophysics, London, UK
| | - V P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - J Wyckoff
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - M Balsamo
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - F Mosis
- King's College London, Randall Division of Cell and Molecular Biophysics, London, UK
| | - M De Piano
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, London, UK
| | - J Monypenny
- King's College London, Randall Division of Cell and Molecular Biophysics, London, UK.,King's College London, Research Oncology, Division of Cancer Studies, Faculty of Life Sciences and Medicine, London, UK.,King's College London, Division of Cancer Studies, Richard Dimbleby Department of Cancer Research, London, UK
| | - N Woodman
- King's College London, Research Oncology, Division of Cancer Studies, Faculty of Life Sciences and Medicine, London, UK
| | - R E McConnell
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - G Mouneimne
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - M Van Hemelrijck
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, London, UK
| | - Y Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - J Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - R O Hynes
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - F B Gertler
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - M Krause
- King's College London, Randall Division of Cell and Molecular Biophysics, London, UK
| |
Collapse
|
103
|
Menon S, Gupton SL. Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:183-245. [PMID: 26940519 PMCID: PMC4809367 DOI: 10.1016/bs.ircmb.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural connectivity requires proper polarization of neurons, guidance to appropriate target locations, and establishment of synaptic connections. From when neurons are born to when they finally reach their synaptic partners, neurons undergo constant rearrangment of the cytoskeleton to achieve appropriate shape and polarity. Of particular importance to neuronal guidance to target locations is the growth cone at the tip of the axon. Growth-cone steering is also dictated by the underlying cytoskeleton. All these changes require spatiotemporal control of the cytoskeletal machinery. This review summarizes the proteins that are involved in modulating the actin and microtubule cytoskeleton during the various stages of neuronal development.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America; Neuroscience Center and Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.
| |
Collapse
|
104
|
Gorai S, Paul D, Haloi N, Borah R, Santra MK, Manna D. Mechanistic insights into the phosphatidylinositol binding properties of the pleckstrin homology domain of lamellipodin. MOLECULAR BIOSYSTEMS 2016; 12:747-57. [DOI: 10.1039/c5mb00731c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lpd-PH domain strongly interacts with PI(3,4)P2containing liposome without any membrane penetration.
Collapse
Affiliation(s)
- Sukhamoy Gorai
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | | | - Nandan Haloi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Rituparna Borah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | | | - Debasis Manna
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| |
Collapse
|
105
|
Pillich H, Puri M, Chakraborty T. ActA of Listeria monocytogenes and Its Manifold Activities as an Important Listerial Virulence Factor. Curr Top Microbiol Immunol 2016; 399:113-132. [PMID: 27726006 DOI: 10.1007/82_2016_30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is a ubiquitously occurring gram-positive bacterium in the environment that causes listeriosis, one of the deadliest foodborne infections known today. It is a versatile facultative intracellular pathogen capable of growth within the host's cytosolic compartment. Following entry into the host cell, L. monocytogenes escapes from vacuolar compartments to the cytosol, where the bacterium begins a remarkable journey within the host cytoplasm, culminating in bacterial spread from cell to cell, to deeper tissues and organs. This dissemination process depends on the ability of the bacterium to harness central components of the host cell actin cytoskeleton using the surface bound bacterial factor ActA (actin assembly inducing protein). Hence ActA plays a major role in listerial virulence, and its absence renders bacteria intracellularly immotile and essentially non-infectious. As the bacterium, moving by building a network of filamentous actin behind itself that is often referred to as its actin tail, encounters cell-cell contacts it forms double-vacuolar protrusions that allow it to enter the neighboring cell where the cycle then continues. Recent studies have now implicated ActA in other stages of the life cycle of L. monocytogenes. These include extracellular properties of aggregation and biofilm formation to mediate colonization of the gut lumen, promotion and enhancement of bacterial host cell entry, evasion of autophagy, vacuolar exit, as well as nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) activation. These novel properties provide a new view of ActA and help explain its role as an essential virulence factor of L. monocytogenes.
Collapse
Affiliation(s)
- Helena Pillich
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Madhu Puri
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
106
|
Li H, Wu X, Hou S, Malek M, Kielkowska A, Noh E, Makondo KJ, Du Q, Wilkins JA, Johnston JB, Gibson SB, Lin F, Marshall AJ. Phosphatidylinositol-3,4-Bisphosphate and Its Binding Protein Lamellipodin Regulate Chemotaxis of Malignant B Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2015; 196:586-95. [DOI: 10.4049/jimmunol.1500630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023]
|
107
|
Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily. MEMBRANES 2015; 5:646-63. [PMID: 26512702 PMCID: PMC4704004 DOI: 10.3390/membranes5040646] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022]
Abstract
The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.
Collapse
|
108
|
Newsome TP, Marzook NB. Viruses that ride on the coat-tails of actin nucleation. Semin Cell Dev Biol 2015; 46:155-63. [PMID: 26459972 DOI: 10.1016/j.semcdb.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 01/07/2023]
Abstract
Actin nucleation drives a diversity of critical cellular processes and the motility of a select group of viral pathogens. Vaccinia virus and baculovirus, Autographa californica multiple nucleopolyhedrovirus, recruit and activate the cellular actin nucleator, the Arp2/3 complex, at the surface of virus particles thereby instigating highly localized actin nucleation. The extension of these filaments provides a mechanical force that bestows the ability to navigate the intracellular environment and promote their infectious cycles. This review outlines the viral and cellular proteins that initiate and regulate the signalling networks leading to viral modification of the actin cytoskeleton and summarizes recent insights into the role of actin-based virus transport.
Collapse
Affiliation(s)
- Timothy P Newsome
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - N Bishara Marzook
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
109
|
Lagarrigue F, Vikas Anekal P, Lee HS, Bachir AI, Ablack JN, Horwitz AF, Ginsberg MH. A RIAM/lamellipodin-talin-integrin complex forms the tip of sticky fingers that guide cell migration. Nat Commun 2015; 6:8492. [PMID: 26419705 PMCID: PMC4589889 DOI: 10.1038/ncomms9492] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/26/2015] [Indexed: 01/10/2023] Open
Abstract
The leading edge of migrating cells contains rapidly translocating activated integrins associated with growing actin filaments that form 'sticky fingers' to sense extracellular matrix and guide cell migration. Here we utilized indirect bimolecular fluorescence complementation to visualize a molecular complex containing a Mig-10/RIAM/lamellipodin (MRL) protein (Rap1-GTP-interacting adaptor molecule (RIAM) or lamellipodin), talin and activated integrins in living cells. This complex localizes at the tips of growing actin filaments in lamellipodial and filopodial protrusions, thus corresponding to the tips of the 'sticky fingers.' Formation of the complex requires talin to form a bridge between the MRL protein and the integrins. Moreover, disruption of the MRL protein-integrin-talin (MIT) complex markedly impairs cell protrusion. These data reveal the molecular basis of the formation of 'sticky fingers' at the leading edge of migrating cells and show that an MIT complex drives these protrusions.
Collapse
Affiliation(s)
- Frederic Lagarrigue
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Praju Vikas Anekal
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Ho-Sup Lee
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Alexia I Bachir
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jailal N Ablack
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Alan F Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
110
|
Viaud J, Mansour R, Antkowiak A, Mujalli A, Valet C, Chicanne G, Xuereb JM, Terrisse AD, Séverin S, Gratacap MP, Gaits-Iacovoni F, Payrastre B. Phosphoinositides: Important lipids in the coordination of cell dynamics. Biochimie 2015; 125:250-8. [PMID: 26391221 DOI: 10.1016/j.biochi.2015.09.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/02/2015] [Indexed: 01/21/2023]
Abstract
By interacting specifically with proteins, phosphoinositides organize the spatiotemporal formation of protein complexes involved in the control of intracellular signaling, vesicular trafficking and cytoskeleton dynamics. A set of specific kinases and phosphatases ensures the production, degradation and inter-conversion of phosphoinositides to achieve a high level of precision in the regulation of cellular dynamics coordinated by these lipids. The direct involvement of these enzymes in cancer, genetic or infectious diseases, and the recent arrival of inhibitors targeting specific phosphoinositide kinases in clinic, emphasize the importance of these lipids and their metabolism in the biomedical field.
Collapse
Affiliation(s)
- Julien Viaud
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France.
| | - Rana Mansour
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Adrien Antkowiak
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Abdulrahman Mujalli
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Colin Valet
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Gaëtan Chicanne
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Jean-Marie Xuereb
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Anne-Dominique Terrisse
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Sonia Séverin
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Marie-Pierre Gratacap
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Frédérique Gaits-Iacovoni
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Bernard Payrastre
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France; Centre Hospitalier Universitaire de Toulouse, Laboratoire d'Hématologie, 31059 Toulouse Cedex 03, France.
| |
Collapse
|
111
|
Lee SY, Gertler FB, Goldberg MB. Vasodilator-stimulated phosphoprotein restricts cell-to-cell spread of Shigella flexneri at the cell periphery. MICROBIOLOGY-SGM 2015; 161:2149-60. [PMID: 26358985 DOI: 10.1099/mic.0.000173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Shigella spp. are intracellular bacterial pathogens that cause diarrhoeal disease in humans. Shigella utilize the host actin cytoskeleton to enter cells, move through the cytoplasm of cells and pass into adjacent cells. Ena/VASP family proteins are highly conserved proteins that participate in actin-dependent dynamic cellular processes. We tested whether Ena/VASP family members VASP (vasodilator-stimulated phosphoprotein), Mena (mammalian-enabled) or EVL (Ena-VASP-like) contribute to Shigella flexneri spread through cell monolayers. VASP and EVL restricted cell-to-cell spread without significantly altering actin-based motility, whereas Mena had no effect on these processes. Phosphorylation of VASP on Ser153, Ser235 and Thr274 regulated its subcellular distribution and function. VASP derivatives that lack the Ena/VASP homology 1 (EVH1) domain or contain a phosphoablative mutation of Ser153 were defective in restricting S. flexneri spread, indicating that the EVH1 domain and phosphorylation on Ser153 are required for this process. The EVH1 domain and Ser153 of VASP were required for VASP localization to focal adhesions, and localization of VASP to focal adhesions and/or the leading edge was required for restriction of spread. The contribution of the EVH1 domain was from both the donor and the recipient cell, whereas the contribution of Ser153 phosphorylation was only from the donor cell. Thus, unlike host proteins characterized in Shigella pathogenesis that promote bacterial spread, VASP and EVL function to limit it. The ability of VASP and EVL to limit spread highlights the critical role of focal adhesion complexes and/or the leading edge in bacterial passage between cells.
Collapse
Affiliation(s)
- Soo Young Lee
- 1Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Frank B Gertler
- 2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcia B Goldberg
- 1Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA 3Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
112
|
Hughes SK, Oudin MJ, Tadros J, Neil J, Del Rosario A, Joughin BA, Ritsma L, Wyckoff J, Vasile E, Eddy R, Philippar U, Lussiez A, Condeelis JS, van Rheenen J, White F, Lauffenburger DA, Gertler FB. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena. Mol Biol Cell 2015; 26:3867-78. [PMID: 26337385 PMCID: PMC4626070 DOI: 10.1091/mbc.e15-06-0442] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
The actin-binding protein Mena regulates RTK signaling after growth factor stimulation in tumor cells by a novel mechanism. The alternatively spliced MenaINV isoform disrupts this attenuation to drive sensitivity to growth factors, resistance to targeted inhibitors, and ultimately tumor invasion and metastasis. During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express MenaINV, which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5′ inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When MenaINV is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor–induced signaling. Disruption of this attenuation by MenaINV sensitizes tumor cells to low–growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes.
Collapse
Affiliation(s)
- Shannon K Hughes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Madeleine J Oudin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jenny Tadros
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jason Neil
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Amanda Del Rosario
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Laila Ritsma
- Cancer Genomics Netherlands-Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CX Utrecht, Netherlands
| | - Jeff Wyckoff
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Eliza Vasile
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Robert Eddy
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Ulrike Philippar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alisha Lussiez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Jacco van Rheenen
- Cancer Genomics Netherlands-Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CX Utrecht, Netherlands
| | - Forest White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Douglas A Lauffenburger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Frank B Gertler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
113
|
Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling. Cell Signal 2015; 27:1789-98. [DOI: 10.1016/j.cellsig.2015.05.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/16/2015] [Accepted: 05/20/2015] [Indexed: 01/22/2023]
|
114
|
Hansen SD, Mullins RD. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments. eLife 2015; 4:e06585. [PMID: 26295568 PMCID: PMC4543927 DOI: 10.7554/elife.06585] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022] Open
Abstract
Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly.
Collapse
Affiliation(s)
- Scott D Hansen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, United States
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, United States
| |
Collapse
|
115
|
Abstract
Ena/VASP tetramer composition was analysed and mixed oligomerization of Mena with EVL was found to be unfavourable, while other paralogue combinations formed without apparent bias. The tetramerization domain of Ena/VASP proteins is responsible for their selective tetramer formation. The members of the actin regulatory family of Ena/VASP proteins form stable tetramers. The vertebrate members of the Ena/VASP family, VASP, Mena and EVL, have many overlapping properties and expression patterns, but functional and regulatory differences between paralogues have been observed. The formation of mixed oligomers may serve a regulatory role to refine Ena/VASP activity. While it has been assumed that family members can form mixed oligomers, this possibility has not been investigated systematically. Using cells expressing controlled combinations of VASP, Mena and EVL, we evaluated the composition of Ena/VASP oligomers and found that VASP forms oligomers without apparent bias with itself, Mena or EVL. However, Mena and EVL showed only weak hetero-oligomerization, suggesting specificity in the association of Ena/VASP family members. Co-expression of VASP increased the ability of Mena and EVL to form mixed oligomers. Additionally, we found that the tetramerization domain (TD) at the C-termini of Ena/VASP proteins conferred the observed selectivity. Finally, we demonstrate that replacement of the TD with a synthetic tetramerizing coiled coil sequence supports homo-oligomerization and normal VASP subcellular localization.
Collapse
|
116
|
Lamellipodin Is Important for Cell-to-Cell Spread and Actin-Based Motility in Listeria monocytogenes. Infect Immun 2015; 83:3740-8. [PMID: 26169271 PMCID: PMC4534642 DOI: 10.1128/iai.00193-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/05/2015] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen capable of invading a broad range of cell types and replicating within the host cell cytoplasm. This paper describes the colocalization of host cell lamellipodin (Lpd) with intracellular L. monocytogenes detectable 6 h postinfection of epithelial cells. The association was mediated via interactions between both the peckstrin homology (PH) domain in Lpd and phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P2] on the bacterial surface and by interactions between the C-terminal EVH1 (Ena/VASP [vasodilator-stimulated phosphoprotein] homology domain 1) binding domains of Lpd and the host VASP (vasodilator-stimulated phosphoprotein) recruited to the bacterial cell surface by the listerial ActA protein. Depletion of Lpd by short interfering RNA (siRNA) resulted in reduced plaque size and number, indicating a role for Lpd in cell-to-cell spread. In contrast, overexpression of Lpd resulted in an increase in the number of L. monocytogenes-containing protrusions (listeriopods). Manipulation of the levels of Lpd within the cell also affected the intracellular velocity of L. monocytogenes, with a reduction in Lpd corresponding to an increase in intracellular velocity. These data, together with the observation that Lpd accumulated at the interface between the bacteria and the developing actin tail at the initiation of actin-based movement, indicate a possible role for Lpd in the actin-based movement and the cell-to-cell spread of L. monocytogenes.
Collapse
|
117
|
Tsujita K, Itoh T. Phosphoinositides in the regulation of actin cortex and cell migration. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:824-31. [DOI: 10.1016/j.bbalip.2014.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/08/2014] [Accepted: 10/22/2014] [Indexed: 10/25/2022]
|
118
|
Bakos J, Bacova Z, Grant SG, Castejon AM, Ostatnikova D. Are Molecules Involved in Neuritogenesis and Axon Guidance Related to Autism Pathogenesis? Neuromolecular Med 2015; 17:297-304. [PMID: 25989848 DOI: 10.1007/s12017-015-8357-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/08/2015] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder is a heterogeneous disease, and numerous alterations of gene expression come into play to attempt to explain potential molecular and pathophysiological causes. Abnormalities of brain development and connectivity associated with alterations in cytoskeletal rearrangement, neuritogenesis and elongation of axons and dendrites might represent or contribute to the structural basis of autism pathology. Slit/Robo signaling regulates cytoskeletal remodeling related to axonal and dendritic branching. Components of its signaling pathway (ABL and Cdc42) are suspected to be molecular bases of alterations of normal development. The present review describes the most important mechanisms underlying neuritogenesis, axon pathfinding and the role of GTPases in neurite outgrowth, with special emphasis on alterations associated with autism spectrum disorders. On the basis of analysis of publicly available microarray data, potential biomarkers of autism are discussed.
Collapse
Affiliation(s)
- Jan Bakos
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, Bratislava, Slovakia,
| | | | | | | | | |
Collapse
|
119
|
Hayashi S, Takeichi M. Emerging roles of protocadherins: from self-avoidance to enhancement of motility. J Cell Sci 2015; 128:1455-64. [PMID: 25749861 DOI: 10.1242/jcs.166306] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protocadherins are a group of transmembrane proteins belonging to the cadherin superfamily that are subgrouped into 'clustered' and 'non-clustered' protocadherins. Although cadherin superfamily members are known to regulate various forms of cell-cell interactions, including cell-cell adhesion, the functions of protocadherins have long been elusive. Recent studies are, however, uncovering their unique roles. The clustered protocadherins regulate neuronal survival, as well as dendrite self-avoidance. Combinatorial expression of clustered protocadherin isoforms creates a great diversity of adhesive specificity for cells, and this process is likely to underlie the dendritic self-avoidance. Non-clustered protocadherins promote cell motility rather than the stabilization of cell adhesion, unlike the classic cadherins, and mediate dynamic cellular processes, such as growth cone migration. Protocadherin dysfunction in humans is implicated in neurological disorders, such as epilepsy and mental retardation. This Commentary provides an overview of recent findings regarding protocadherin functions, as well as a discussion of the molecular basis underlying these functions.
Collapse
Affiliation(s)
- Shuichi Hayashi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
120
|
Valenzuela-Iglesias A, Sharma VP, Beaty BT, Ding Z, Gutierrez-Millan LE, Roy P, Condeelis JS, Bravo-Cordero JJ. Profilin1 regulates invadopodium maturation in human breast cancer cells. Eur J Cell Biol 2015; 94:78-89. [PMID: 25613364 PMCID: PMC4322761 DOI: 10.1016/j.ejcb.2014.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 01/23/2023] Open
Abstract
Invadopodia are actin-driven membrane protrusions that show oscillatory assembly and disassembly causing matrix degradation to support invasion and dissemination of cancer cells in vitro and in vivo. Profilin1, an actin and phosphoinositide binding protein, is downregulated in several adenocarcinomas and it is been shown that its depletion enhances invasiveness and motility of breast cancer cells by increasing PI(3,4)P2 levels at the leading edge. In this study, we show for the first time that depletion of profilin1 leads to an increase in the number of mature invadopodia and these assemble and disassemble more rapidly than in control cells. Previous work by Sharma et al. (2013a), has shown that the binding of the protein Tks5 with PI(3,4)P2 confers stability to the invadopodium precursor causing it to mature into a degradation-competent structure. We found that loss of profilin1 expression increases the levels of PI(3,4)P2 at the invadopodium and as a result, enhances recruitment of the interacting adaptor Tks5. The increased PI(3,4)P2-Tks5 interaction accelerates the rate of invadopodium anchorage, maturation, and turnover. Our results indicate that profilin1 acts as a molecular regulator of the levels of PI(3,4)P2 and Tks5 recruitment in invadopodia to control the invasion efficiency of invadopodia.
Collapse
Affiliation(s)
- A Valenzuela-Iglesias
- Department of Scientific and Technological Research DICTUS, University of Sonora, Hermosillo, Mexico.
| | - V P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States
| | - B T Beaty
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States
| | - Z Ding
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - L E Gutierrez-Millan
- Department of Scientific and Technological Research DICTUS, University of Sonora, Hermosillo, Mexico
| | - P Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - J S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States.
| | - J J Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States.
| |
Collapse
|
121
|
Ben-Chetrit N, Chetrit D, Russell R, Körner C, Mancini M, Abdul-Hai A, Itkin T, Carvalho S, Cohen-Dvashi H, Koestler WJ, Shukla K, Lindzen M, Kedmi M, Lauriola M, Shulman Z, Barr H, Seger D, Ferraro DA, Pareja F, Gil-Henn H, Lapidot T, Alon R, Milanezi F, Symons M, Ben-Hamo R, Efroni S, Schmitt F, Wiemann S, Caldas C, Ehrlich M, Yarden Y. Synaptojanin 2 is a druggable mediator of metastasis and the gene is overexpressed and amplified in breast cancer. Sci Signal 2015; 8:ra7. [PMID: 25605973 DOI: 10.1126/scisignal.2005537] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amplified HER2, which encodes a member of the epidermal growth factor receptor (EGFR) family, is a target of effective therapies against breast cancer. In search for similarly targetable genomic aberrations, we identified copy number gains in SYNJ2, which encodes the 5'-inositol lipid phosphatase synaptojanin 2, as well as overexpression in a small fraction of human breast tumors. Copy gain and overexpression correlated with shorter patient survival and a low abundance of the tumor suppressor microRNA miR-31. SYNJ2 promoted cell migration and invasion in culture and lung metastasis of breast tumor xenografts in mice. Knocking down SYNJ2 impaired the endocytic recycling of EGFR and the formation of cellular lamellipodia and invadopodia. Screening compound libraries identified SYNJ2-specific inhibitors that prevented cell migration but did not affect the related neural protein SYNJ1, suggesting that SYNJ2 is a potentially druggable target to block cancer cell migration.
Collapse
Affiliation(s)
- Nir Ben-Chetrit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Chetrit
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roslin Russell
- Department of Oncology and Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Maicol Mancini
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Tomer Itkin
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Silvia Carvalho
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Cohen-Dvashi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Wolfgang J Koestler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kirti Shukla
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merav Kedmi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mattia Lauriola
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Haim Barr
- INCPM, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dalia Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniela A Ferraro
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Fresia Pareja
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hava Gil-Henn
- Faculty of Medicine, Bar-Ilan University, Safed 13115, Israel
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Marc Symons
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Rotem Ben-Hamo
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan 52900, Israel
| | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan 52900, Israel
| | | | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
122
|
Boucrot E, Ferreira APA, Almeida-Souza L, Debard S, Vallis Y, Howard G, Bertot L, Sauvonnet N, McMahon HT. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 2014; 517:460-5. [PMID: 25517094 DOI: 10.1038/nature14067] [Citation(s) in RCA: 393] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/17/2014] [Indexed: 01/08/2023]
Abstract
Endocytosis is required for internalization of micronutrients and turnover of membrane components. Endophilin has been assigned as a component of clathrin-mediated endocytosis. Here we show in mammalian cells that endophilin marks and controls a fast-acting tubulovesicular endocytic pathway that is independent of AP2 and clathrin, activated upon ligand binding to cargo receptors, inhibited by inhibitors of dynamin, Rac, phosphatidylinositol-3-OH kinase, PAK1 and actin polymerization, and activated upon Cdc42 inhibition. This pathway is prominent at the leading edges of cells where phosphatidylinositol-3,4-bisphosphate-produced by the dephosphorylation of phosphatidylinositol-3,4,5-triphosphate by SHIP1 and SHIP2-recruits lamellipodin, which in turn engages endophilin. This pathway mediates the ligand-triggered uptake of several G-protein-coupled receptors such as α2a- and β1-adrenergic, dopaminergic D3 and D4 receptors and muscarinic acetylcholine receptor 4, the receptor tyrosine kinases EGFR, HGFR, VEGFR, PDGFR, NGFR and IGF1R, as well as interleukin-2 receptor. We call this new endocytic route fast endophilin-mediated endocytosis (FEME).
Collapse
Affiliation(s)
- Emmanuel Boucrot
- 1] MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK [2] Institute of Structural and Molecular Biology, University College London &Birkbeck College, London WC1E 6BT, UK
| | - Antonio P A Ferreira
- Institute of Structural and Molecular Biology, University College London &Birkbeck College, London WC1E 6BT, UK
| | | | - Sylvain Debard
- 1] Institute of Structural and Molecular Biology, University College London &Birkbeck College, London WC1E 6BT, UK [2] Department of Biology, Ecole Normale Supérieure de Cachan, 94235 Cachan, France
| | - Yvonne Vallis
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Gillian Howard
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Laetitia Bertot
- Institut Pasteur, Unité de Pathogenie Moleculaire Microbienne, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Nathalie Sauvonnet
- Institut Pasteur, Unité de Pathogenie Moleculaire Microbienne, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Harvey T McMahon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
123
|
Structural and mechanistic insights into the recruitment of talin by RIAM in integrin signaling. Structure 2014; 22:1810-1820. [PMID: 25465129 DOI: 10.1016/j.str.2014.09.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/22/2022]
Abstract
Plasma membrane (PM)-bound GTPase Rap1 recruits the Rap1-interacting-adaptor-molecule (RIAM), which in turn recruits talin to bind and activate integrins. However, it is unclear how RIAM recruits talin and why its close homolog lamellipodin does not. Here, we report that, although RIAM possesses two talin-binding sites (TBS1 and TBS2), only TBS1 is capable of recruiting cytoplasmic talin to the PM, and the R8 domain is the strongest binding site in talin. Crystal structure of an R7R8:TBS1 complex reveals an unexpected kink in the TBS1 helix that is not shared in the homologous region of lamellipodin. This kinked helix conformation is required for the colocalization of RIAM and talin at the PM and proper activation of integrin. Our findings provide the structural and mechanistic insight into talin recruitment by RIAM that underlies integrin activation and explain the differential functions of the otherwise highly homologous RIAM and lamellipodin in integrin signaling.
Collapse
|
124
|
Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol 2014; 15:577-90. [PMID: 25145849 DOI: 10.1038/nrm3861] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane protrusions at the leading edge of cells, known as lamellipodia, drive cell migration in many normal and pathological situations. Lamellipodial protrusion is powered by actin polymerization, which is mediated by the actin-related protein 2/3 (ARP2/3)-induced nucleation of branched actin networks and the elongation of actin filaments. Recently, advances have been made in our understanding of positive and negative ARP2/3 regulators (such as the SCAR/WAVE (SCAR/WASP family verprolin-homologous protein) complex and Arpin, respectively) and of proteins that control actin branch stability (such as glial maturation factor (GMF)) or actin filament elongation (such as ENA/VASP proteins) in lamellipodium dynamics and cell migration. This Review highlights how the balance between actin filament branching and elongation, and between the positive and negative feedback loops that regulate these activities, determines lamellipodial persistence. Importantly, directional persistence, which results from lamellipodial persistence, emerges as a critical factor in steering cell migration.
Collapse
|
125
|
Chen XJ, Squarr AJ, Stephan R, Chen B, Higgins TE, Barry DJ, Martin MC, Rosen MK, Bogdan S, Way M. Ena/VASP proteins cooperate with the WAVE complex to regulate the actin cytoskeleton. Dev Cell 2014; 30:569-84. [PMID: 25203209 PMCID: PMC4165403 DOI: 10.1016/j.devcel.2014.08.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 07/21/2014] [Accepted: 08/01/2014] [Indexed: 01/25/2023]
Abstract
Ena/VASP proteins and the WAVE regulatory complex (WRC) regulate cell motility by virtue of their ability to independently promote actin polymerization. We demonstrate that Ena/VASP and the WRC control actin polymerization in a cooperative manner through the interaction of the Ena/VASP EVH1 domain with an extended proline rich motif in Abi. This interaction increases cell migration and enables VASP to cooperatively enhance WRC stimulation of Arp2/3 complex-mediated actin assembly in vitro in the presence of Rac. Loss of this interaction in Drosophila macrophages results in defects in lamellipodia formation, cell spreading, and redistribution of Ena to the tips of filopodia-like extensions. Rescue experiments of abi mutants also reveals a physiological requirement for the Abi:Ena interaction in photoreceptor axon targeting and oogenesis. Our data demonstrate that the activities of Ena/VASP and the WRC are intimately linked to ensure optimal control of actin polymerization during cell migration and development.
Collapse
Affiliation(s)
- Xing Judy Chen
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Anna Julia Squarr
- Institute of Neurobiology, University of Muenster, Badestrasse 9, 48149 Muenster, Germany
| | - Raiko Stephan
- Institute of Neurobiology, University of Muenster, Badestrasse 9, 48149 Muenster, Germany
| | - Baoyu Chen
- Howard Hughes Medical Institute and Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Theresa E Higgins
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - David J Barry
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Morag C Martin
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Michael K Rosen
- Howard Hughes Medical Institute and Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sven Bogdan
- Institute of Neurobiology, University of Muenster, Badestrasse 9, 48149 Muenster, Germany.
| | - Michael Way
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
126
|
Hayashi S, Inoue Y, Kiyonari H, Abe T, Misaki K, Moriguchi H, Tanaka Y, Takeichi M. Protocadherin-17 mediates collective axon extension by recruiting actin regulator complexes to interaxonal contacts. Dev Cell 2014; 30:673-87. [PMID: 25199687 DOI: 10.1016/j.devcel.2014.07.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 06/07/2014] [Accepted: 07/16/2014] [Indexed: 11/17/2022]
Abstract
In the process of neuronal wiring, axons derived from the same functional group typically extend together, resulting in fascicle formation. How these axons communicate with one another remains largely unknown. Here, we show that protocadherin-17 (Pcdh17) supports this group extension by recruiting actin polymerization regulators to interaxonal contact sites. Pcdh17 is expressed by a subset of amygdala neurons, and it accumulates at axon-axon boundaries because of homophilic binding. Pcdh17 knockout in mice suppressed the extension of these axons. Ectopically expressed Pcdh17 altered the pattern of axon extension. In in-vitro cultures, wild-type growth cones normally migrate along other axons, whereas Pcdh17 null growth cones do not. Pcdh17 recruits the WAVE complex, Lamellipodin, and Ena/VASP to cell-cell contacts, converting these sites into motile structures. We propose that, through these mechanisms, Pcdh17 maintains the migration of growth cones that are in contact with other axons, thereby supporting their collective extension.
Collapse
Affiliation(s)
- Shuichi Hayashi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yoko Inoue
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kazuyo Misaki
- Laboratory for Electron Microscope, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroyuki Moriguchi
- Laboratory for Integrated Biodevice, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yo Tanaka
- Laboratory for Integrated Biodevice, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
127
|
Nowotarski SH, McKeon N, Moser RJ, Peifer M. The actin regulators Enabled and Diaphanous direct distinct protrusive behaviors in different tissues during Drosophila development. Mol Biol Cell 2014; 25:3147-65. [PMID: 25143400 PMCID: PMC4196866 DOI: 10.1091/mbc.e14-05-0951] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Actin-based protrusions are important for signaling and migration during development and homeostasis. Gain- and loss-of-function and quantitative approaches are used to define differential roles for the actin elongation factors Diaphanous and Enabled in regulating distinct protrusive behaviors in different tissues during Drosophila morphogenesis. Actin-based protrusions are important for signaling and migration during development and homeostasis. Defining how different tissues in vivo craft diverse protrusive behaviors using the same genomic toolkit of actin regulators is a current challenge. The actin elongation factors Diaphanous and Enabled both promote barbed-end actin polymerization and can stimulate filopodia in cultured cells. However, redundancy in mammals and Diaphanous’ role in cytokinesis limited analysis of whether and how they regulate protrusions during development. We used two tissues driving Drosophila dorsal closure—migratory leading-edge (LE) and nonmigratory amnioserosal (AS) cells—as models to define how cells shape distinct protrusions during morphogenesis. We found that nonmigratory AS cells produce filopodia that are morphologically and dynamically distinct from those of LE cells. We hypothesized that differing Enabled and/or Diaphanous activity drives these differences. Combining gain- and loss-of-function with quantitative approaches revealed that Diaphanous and Enabled each regulate filopodial behavior in vivo and defined a quantitative “fingerprint”—the protrusive profile—which our data suggest is characteristic of each actin regulator. Our data suggest that LE protrusiveness is primarily Enabled driven, whereas Diaphanous plays the primary role in the AS, and reveal each has roles in dorsal closure, but its robustness ensures timely completion in their absence.
Collapse
Affiliation(s)
- Stephanie H Nowotarski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natalie McKeon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rachel J Moser
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
128
|
Wang L, Shen W, Lei S, Matus D, Sherwood D, Wang Z. MIG-10 (Lamellipodin) stabilizes invading cell adhesion to basement membrane and is a negative transcriptional target of EGL-43 in C. elegans. Biochem Biophys Res Commun 2014; 452:328-33. [PMID: 25148942 DOI: 10.1016/j.bbrc.2014.08.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 11/28/2022]
Abstract
Cell invasion through basement membrane (BM) occurs in many physiological and pathological contexts. MIG-10, the Caenorhabditis elegans Lamellipodin (Lpd), regulates diverse biological processes. Its function and regulation in cell invasive behavior remain unclear. Using anchor cell (AC) invasion in C. elegans as an in vivo invasion model, we have previously found that mig-10's activity is largely outside of UNC-6 (netrin) signaling, a chemical cue directing AC invasion. We have shown that MIG-10 is a target of the transcription factor FOS-1A and facilitates BM breaching. Combining genetics and imaging analyses, we report that MIG-10 synergizes with UNC-6 to promote AC attachment to the BM, revealing a functional role for MIG-10 in stabilizing AC-BM adhesion. MIG-10 is also required for F-actin accumulation in the absence of UNC-6. Further, we identify mig-10 as a transcriptional target negatively regulated by EGL-43A (C. elegans Evi-1 proto-oncogene), a transcription factor positively controlled by FOS-1A. The revelation of this negative regulation unmasks an incoherent feedforward circuit existing among fos-1, egl-43 and mig-10. Moreover, our study suggests the functional importance of the negative regulation on mig-10 expression by showing that excessive MIG-10 impairs AC invasion. Thus, we provide new insight into MIG-10's function and its complex transcriptional regulation during cell invasive behavior.
Collapse
Affiliation(s)
- Lin Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wanqing Shen
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shijun Lei
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - David Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - David Sherwood
- Department of Biology, Duke University, 124 Science Drive, Box 90388, Durham, NC 27708, USA
| | - Zheng Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| |
Collapse
|
129
|
Barzik M, McClain LM, Gupton SL, Gertler FB. Ena/VASP regulates mDia2-initiated filopodial length, dynamics, and function. Mol Biol Cell 2014; 25:2604-19. [PMID: 24989797 PMCID: PMC4148250 DOI: 10.1091/mbc.e14-02-0712] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Filopodia are long plasma membrane extensions involved in the formation of adhesive, contractile, and protrusive actin-based structures in spreading and migrating cells. Whether filopodia formed by different molecular mechanisms equally support these cellular functions is unresolved. We used Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP)-deficient MV(D7) fibroblasts, which are also devoid of endogenous mDia2, as a model system to investigate how these different actin regulatory proteins affect filopodia morphology and dynamics independently of one another. Filopodia initiated by either Ena/VASP or mDia2 contained similar molecular inventory but differed significantly in parameters such as number, length, F-actin organization, lifetime, and protrusive persistence. Moreover, in the absence of Ena/VASP, filopodia generated by mDia2 did not support initiation of integrin-dependent signaling cascades required for adhesion and subsequent lamellipodial extension, thereby causing a defect in early cell spreading. Coexpression of VASP with constitutively active mDia2(M/A) rescued these early adhesion defects. We conclude that Ena/VASP and mDia2 support the formation of filopodia with significantly distinct properties and that Ena/VASP regulates mDia2-initiated filopodial morphology, dynamics, and function.
Collapse
Affiliation(s)
- Melanie Barzik
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Leslie M McClain
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
130
|
Bae YH, Mui KL, Hsu BY, Liu SL, Cretu A, Razinia Z, Xu T, Puré E, Assoian RK. A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci Signal 2014; 7:ra57. [PMID: 24939893 PMCID: PMC4345117 DOI: 10.1126/scisignal.2004838] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue and extracellular matrix (ECM) stiffness is transduced into intracellular stiffness, signaling, and changes in cellular behavior. Integrins and several of their associated focal adhesion proteins have been implicated in sensing ECM stiffness. We investigated how an initial sensing event is translated into intracellular stiffness and a biologically interpretable signal. We found that a pathway consisting of focal adhesion kinase (FAK), the adaptor protein p130Cas (Cas), and the guanosine triphosphatase Rac selectively transduced ECM stiffness into stable intracellular stiffness, increased the abundance of the cell cycle protein cyclin D1, and promoted S-phase entry. Rac-dependent intracellular stiffening involved its binding partner lamellipodin, a protein that transmits Rac signals to the cytoskeleton during cell migration. Our findings establish that mechanotransduction by a FAK-Cas-Rac-lamellipodin signaling module converts the external information encoded by ECM stiffness into stable intracellular stiffness and mechanosensitive cell cycling. Thus, lamellipodin is important not only in controlling cellular migration but also for regulating the cell cycle in response to mechanical signals.
Collapse
Affiliation(s)
- Yong Ho Bae
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Keeley L Mui
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bernadette Y Hsu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shu-Lin Liu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Cretu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ziba Razinia
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tina Xu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen Puré
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard K Assoian
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
131
|
Greenwood AI, Kwon J, Nicholson LK. Isomerase-catalyzed binding of interleukin-1 receptor-associated kinase 1 to the EVH1 domain of vasodilator-stimulated phosphoprotein. Biochemistry 2014; 53:3593-607. [PMID: 24857403 DOI: 10.1021/bi500031e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Interleukin-1 receptor-associated kinase 1 (IRAK1) is a crucial signaling kinase in the immune system, involved in Toll-like receptor signaling. Vasodilator-stimulated phosphoprotein (VASP) is a central player in cell migration that regulates actin polymerization and connects signaling events to cytoskeletal remodeling. A VASP–IRAK1 interaction is thought to be important in controlling macrophage migration in response to protein kinase C-ε activation. We show that the monomeric VASP EVH1 domain directly binds to the 168WPPPP172 motif in the IRAK1 undefined domain (IRAK1-UD) with moderate affinity (KDApp = 203 ± 3 μM). We further show that this motif adopts distinct cis and trans isomers for the Trp168–Pro169 peptide bond with nearly equal populations, and that binding to the VASP EVH1 domain is specific for the trans isomer, coupling binding to isomerization. Nuclear magnetic resonance line shape analysis and tryptophan fluorescence experiments reveal the complete kinetics and thermodynamics of the binding reaction, showing diffusion-limited binding to the trans isomer followed by slow, isomerization-dependent binding. We further demonstrate that the peptidyl-prolyl isomerase cyclophilin A (CypA) catalyzes isomerization of the Trp168–Pro169 peptide bond and accelerates binding of the IRAK1-UD to the VASP EVH1 domain. We propose that binding of IRAK1 to tetrameric VASP is regulated by avidity through the assembly of IRAK1 onto receptor-anchored signaling complexes and that an isomerase such as CypA may modulate IRAK1 signaling in vivo. These studies demonstrate a direct interaction between IRAK1 and VASP and suggest a potential mechanism for how this interaction might be regulated by both assembly of IRAK1 onto an activated signaling complex and PPIase enzymes.
Collapse
Affiliation(s)
- Alexander I Greenwood
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853, United States
| | | | | |
Collapse
|
132
|
Koch N, Kobler O, Thomas U, Qualmann B, Kessels MM. Terminal axonal arborization and synaptic bouton formation critically rely on abp1 and the arp2/3 complex. PLoS One 2014; 9:e97692. [PMID: 24841972 PMCID: PMC4026379 DOI: 10.1371/journal.pone.0097692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/23/2014] [Indexed: 01/12/2023] Open
Abstract
Neuronal network formation depends on properly timed and localized generation of presynaptic as well as postsynaptic structures. Although of utmost importance for understanding development and plasticity of the nervous system and neurodegenerative diseases, the molecular mechanisms that ensure the fine-control needed for coordinated establishment of pre- and postsynapses are still largely unknown. We show that the F-actin-binding protein Abp1 is prominently expressed in the Drosophila nervous system and reveal that Abp1 is an important regulator in shaping glutamatergic neuromuscular junctions (NMJs) of flies. STED microscopy shows that Abp1 accumulations can be found in close proximity of synaptic vesicles and at the cell cortex in nerve terminals. Abp1 knock-out larvae have locomotion defects and underdeveloped NMJs that are characterized by a reduced number of both type Ib synaptic boutons and branches of motornerve terminals. Abp1 is able to indirectly trigger Arp2/3 complex-mediated actin nucleation and interacts with both WASP and Scar. Consistently, Arp2 and Arp3 loss-of-function also resulted in impairments of bouton formation and arborization at NMJs, i.e. fully phenocopied abp1 knock-out. Interestingly, neuron- and muscle-specific rescue experiments revealed that synaptic bouton formation critically depends on presynaptic Abp1, whereas the NMJ branching defects can be compensated for by restoring Abp1 functions at either side. In line with this presynaptic importance of Abp1, also presynaptic Arp2 and Arp3 are crucial for the formation of type Ib synaptic boutons. Interestingly, presynaptic Abp1 functions in NMJ formation were fully dependent on the Arp2/3 complex, as revealed by suppression of Abp1-induced synaptic bouton formation and branching of axon terminals upon presynaptic Arp2 RNAi. These data reveal that Abp1 and Arp2/3 complex-mediated actin cytoskeletal dynamics drive both synaptic bouton formation and NMJ branching. Our data furthermore shed light on an intense bidirectional functional crosstalk between pre- and postsynapses during the development of synaptic contacts.
Collapse
Affiliation(s)
- Nicole Koch
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
- Research Group Membrane Trafficking and Cytoskeleton, Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Oliver Kobler
- Research Group Functional Genetics of the Synapse, Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ulrich Thomas
- Research Group Functional Genetics of the Synapse, Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- * E-mail: (UT); (BQ); (MMK)
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (UT); (BQ); (MMK)
| | - Michael M. Kessels
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
- Research Group Membrane Trafficking and Cytoskeleton, Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- * E-mail: (UT); (BQ); (MMK)
| |
Collapse
|
133
|
Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges. Proc Natl Acad Sci U S A 2014; 111:E1970-9. [PMID: 24778263 DOI: 10.1073/pnas.1313738111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there.
Collapse
|
134
|
Transcriptional analysis of apoptotic cerebellar granule neurons following rescue by gastric inhibitory polypeptide. Int J Mol Sci 2014; 15:5596-622. [PMID: 24694544 PMCID: PMC4013584 DOI: 10.3390/ijms15045596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022] Open
Abstract
Apoptosis triggered by exogenous or endogenous stimuli is a crucial phenomenon to determine the fate of neurons, both in physiological and in pathological conditions. Our previous study established that gastric inhibitory polypeptide (Gip) is a neurotrophic factor capable of preventing apoptosis of cerebellar granule neurons (CGNs), during its pre-commitment phase. In the present study, we conducted whole-genome expression profiling to obtain a comprehensive view of the transcriptional program underlying the rescue effect of Gip in CGNs. By using DNA microarray technology, we identified 65 genes, we named survival related genes, whose expression is significantly de-regulated following Gip treatment. The expression levels of six transcripts were confirmed by real-time quantitative polymerase chain reaction. The proteins encoded by the survival related genes are functionally grouped in the following categories: signal transduction, transcription, cell cycle, chromatin remodeling, cell death, antioxidant activity, ubiquitination, metabolism and cytoskeletal organization. Our data outline that Gip supports CGNs rescue via a molecular framework, orchestrated by a wide spectrum of gene actors, which propagate survival signals and support neuronal viability.
Collapse
|
135
|
Kreis P, Leondaritis G, Lieberam I, Eickholt BJ. Subcellular targeting and dynamic regulation of PTEN: implications for neuronal cells and neurological disorders. Front Mol Neurosci 2014; 7:23. [PMID: 24744697 PMCID: PMC3978343 DOI: 10.3389/fnmol.2014.00023] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/12/2014] [Indexed: 01/13/2023] Open
Abstract
PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5)P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum (ER), the mitochondria, or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein–protein interactions, or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i) recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii) current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease.
Collapse
Affiliation(s)
- Patricia Kreis
- MRC Centre for Developmental Neurobiology, King's College London London, UK
| | - George Leondaritis
- MRC Centre for Developmental Neurobiology, King's College London London, UK ; Institute of Biochemistry, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Ivo Lieberam
- MRC Centre for Developmental Neurobiology, King's College London London, UK
| | - Britta J Eickholt
- MRC Centre for Developmental Neurobiology, King's College London London, UK ; Institute of Biochemistry, Charité - Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
136
|
Engel U, Zhan Y, Long JB, Boyle SN, Ballif BA, Dorey K, Gygi SP, Koleske AJ, Vanvactor D. Abelson phosphorylation of CLASP2 modulates its association with microtubules and actin. Cytoskeleton (Hoboken) 2014; 71:195-209. [PMID: 24520051 PMCID: PMC4054870 DOI: 10.1002/cm.21164] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 12/21/2013] [Accepted: 12/30/2013] [Indexed: 11/20/2022]
Abstract
The Abelson (Abl) non-receptor tyrosine kinase regulates the cytoskeleton during multiple stages of neural development, from neurulation, to the articulation of axons and dendrites, to synapse formation and maintenance. We previously showed that Abl is genetically linked to the microtubule (MT) plus end tracking protein (+TIP) CLASP in Drosophila. Here we show in vertebrate cells that Abl binds to CLASP and phosphorylates it in response to serum or PDGF stimulation. In vitro, Abl phosphorylates CLASP with a Km of 1.89 µM, indicating that CLASP is a bona fide substrate. Abl-phosphorylated tyrosine residues that we detect in CLASP by mass spectrometry lie within previously mapped F-actin and MT plus end interaction domains. Using purified proteins, we find that Abl phosphorylation modulates direct binding between purified CLASP2 with both MTs and actin. Consistent with these observations, Abl-induced phosphorylation of CLASP2 modulates its localization as well as the distribution of F-actin structures in spinal cord growth cones. Our data suggest that the functional relationship between Abl and CLASP2 is conserved and provides a means to control the CLASP2 association with the cytoskeleton. © 2014 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ulrike Engel
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts; Nikon Imaging Center, the University of Heidelberg, Bioquant, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin. Proc Natl Acad Sci U S A 2014; 111:4121-6. [PMID: 24591594 DOI: 10.1073/pnas.1322093111] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Filopodia are exploratory finger-like projections composed of multiple long, straight, parallel-bundled actin filaments that protrude from the leading edge of migrating cells. Drosophila melanogaster Enabled (Ena) is a member of the Ena/vasodilator-stimulated phosphoprotein protein family, which facilitates the assembly of filopodial actin filaments that are bundled by Fascin. However, the mechanism by which Ena and Fascin promote the assembly of uniformly thick F-actin bundles that are capable of producing coordinated protrusive forces without buckling is not well understood. We used multicolor evanescent wave fluorescence microscopy imaging to follow individual Ena molecules on both single and Fascin-bundled F-actin in vitro. Individual Ena tetramers increase the elongation rate approximately two- to threefold and inhibit capping protein by remaining processively associated with the barbed end for an average of ∼10 s in solution, for ∼60 s when immobilized on a surface, and for ∼110 s when multiple Ena tetramers are clustered on a surface. Ena also can gather and simultaneously elongate multiple barbed ends. Collectively, these properties could facilitate the recruitment of Fascin and initiate filopodia formation. Remarkably, we found that Ena's actin-assembly properties are tunable on Fascin-bundled filaments, facilitating the formation of filopodia-like F-actin networks without tapered barbed ends. Ena-associated trailing barbed ends in Fascin-bundled actin filaments have approximately twofold more frequent and approximately fivefold longer processive runs, allowing them to catch up with leading barbed ends efficiently. Therefore, Fascin and Ena cooperate to extend and maintain robust filopodia of uniform thickness with aligned barbed ends by a unique mechanistic cycle.
Collapse
|
138
|
Yamaguchi S, Kurokawa T, Taira I, Aoki N, Sakata S, Okamura Y, Homma KJ. Potential role of voltage-sensing phosphatases in regulation of cell structure through the production of PI(3,4)P2. J Cell Physiol 2014; 229:422-33. [PMID: 24038012 DOI: 10.1002/jcp.24463] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/21/2013] [Indexed: 11/06/2022]
Abstract
Voltage-sensing phosphatase, VSP, consists of the transmembrane domain, operating as the voltage sensor, and the cytoplasmic domain with phosphoinositide-phosphatase activities. The voltage sensor tightly couples with the cytoplasmic phosphatase and membrane depolarization induces dephosphorylation of several species of phosphoinositides. VSP gene is conserved from urochordate to human. There are some diversities among VSP ortholog proteins; range of voltage of voltage sensor motions as well as substrate selectivity. In contrast with recent understandings of biophysical mechanisms of VSPs, little is known about its physiological roles. Here we report that chick ortholog of VSP (designated as Gg-VSP) induces morphological feature of cell process outgrowths with round cell body in DF-1 fibroblasts upon its forced expression. Expression of the voltage sensor mutant, Gg-VSPR153Q with shifted voltage dependence to a lower voltage led to more frequent changes of cell morphology than the wild-type protein. Coexpression of PTEN that dephosphorylates PI(3,4)P2 suppressed this effect by Gg-VSP, indicating that the increase of PI(3,4)P2 leads to changes of cell shape. In addition, visualization of PI(3,4)P2 with the fluorescent protein fused with the TAPP1-derived pleckstrin homology (PH) domain suggested that Gg-VSP influenced the distribution of PI(3,4)P2 . These findings raise a possibility that one of the VSP's functions could be to regulate cell morphology through voltage-sensitive tuning of phosphoinositide profile.
Collapse
Affiliation(s)
- Shinji Yamaguchi
- Faculty of Pharmaceutical Sciences, Department of Life and Health Sciences, Teikyo University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
139
|
Liu L, Wu CF. Distinct effects of Abelson kinase mutations on myocytes and neurons in dissociated Drosophila embryonic cultures: mimicking of high temperature. PLoS One 2014; 9:e86438. [PMID: 24466097 PMCID: PMC3897706 DOI: 10.1371/journal.pone.0086438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/07/2013] [Indexed: 11/18/2022] Open
Abstract
Abelson tyrosine kinase (Abl) is known to regulate axon guidance, muscle development, and cell-cell interaction in vivo. The Drosophila primary culture system offers advantages in exploring the cellular mechanisms mediated by Abl with utilizing various experimental manipulations. Here we demonstrate that single-embryo cultures exhibit stage-dependent characteristics of cellular differentiation and developmental progression in neurons and myocytes, as well as nerve-muscle contacts. In particular, muscle development critically depends on the stage of dissociated embryos. In wild-type (WT) cultures derived from embryos before stage 12, muscle cells remained within cell clusters and were rarely detected. Interestingly, abundant myocytes were spotted in Abl mutant cultures, exhibiting enhanced myocyte movement and fusion, as well as neuron-muscle contacts even in cultures dissociated from younger, stage 10 embryos. Notably, Abl myocytes frequently displayed well-expanded lamellipodia. Conversely, Abl neurons were characterized with fewer large veil-like lamellipodia, but instead had increased numbers of filopodia and darker nodes along neurites. These distinct phenotypes were equally evident in both homo- and hetero-zygous cultures (Abl/Abl vs. Abl/+) of different alleles (Abl1 and Abl4) indicating dominant mutational effects. Strikingly, in WT cultures derived from stage 10 embryos, high temperature (HT) incubation promoted muscle migration and fusion, partially mimicking the advanced muscle development typical of Abl cultures. However, HT enhanced neuronal growth with increased numbers of enlarged lamellipodia, distinct from the characteristic Abl neuronal morphology. Intriguingly, HT incubation also promoted Abl lamellipodia expansion, with a much greater effect on nerve cells than muscle. Our results suggest that Abl is an essential regulator for myocyte and neuron development and that high-temperature incubation partially mimics the faster muscle development typical of Abl cultures. Despite the extensive alterations by Abl mutations, we observed myocyte fusion events and nerve-muscle contact formation between WT and Abl cells in mixed WT and Abl cultures derived from labeled embryos.
Collapse
Affiliation(s)
- Lijuan Liu
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| | - Chun-Fang Wu
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
140
|
Lorente G, Syriani E, Morales M. Actin filaments at the leading edge of cancer cells are characterized by a high mobile fraction and turnover regulation by profilin I. PLoS One 2014; 9:e85817. [PMID: 24465723 PMCID: PMC3895011 DOI: 10.1371/journal.pone.0085817] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
Cellular motility is the basis for cancer cell invasion and metastasis. In the case of breast cancer, the most common type of cancer among women, metastasis represents the most devastating stage of the disease. The central role of cellular motility in cancer development emphasizes the importance of understanding the specific mechanisms involved in this process. In this context, tumor development and metastasis would be the consequence of a loss or defect of the mechanisms that control cytoskeletal remodeling. Profilin I belongs to a family of small actin binding proteins that are thought to assist in actin filament elongation at the leading edge of migrating cells. Traditionally, Profilin I has been considered to be an essential control element for actin polymerization and cell migration. Expression of Profilin I is down-regulated in breast and various other cancer cells. In MDA-MB-231 cells, a breast cancer cell line, further inhibition of Profilin I expression promotes hypermotility and metastatic spread, a finding that contrasts with the proposed role of Profilin in enhancing polymerization. In this report, we have taken advantage of the fluorescence recovery after photobleaching (FRAP) of GFP-actin to quantify and compare actin dynamics at the leading edge level in both cancer and non-cancer cell models. Our results suggest that (i) a high level of actin dynamics (i.e., a large mobile fraction of actin filaments and a fast turnover) is a common characteristic of some cancer cells; (ii) actin polymerization shows a high degree of independence from the presence of extracellular growth factors; and (iii) our results also corroborate the role of Profilin I in regulating actin polymerization, as raising the intracellular levels of Profilin I decreased the mobile fraction ratio of actin filaments and slowed their polymerization rate; furthermore, increased Profilin levels also led to reduced individual cell velocity and directionality.
Collapse
Affiliation(s)
- Gisela Lorente
- Neurophysiology Laboratory, Deptartment of Physiological Sciences I, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Emilio Syriani
- Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, CIBIR Piqueras 98, Logroño, La Rioja, Spain
| | - Miguel Morales
- Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, CIBIR Piqueras 98, Logroño, La Rioja, Spain
- * E-mail:
| |
Collapse
|
141
|
Kulkarni G, Xu Z, Mohamed AM, Li H, Tang X, Limerick G, Wadsworth WG. Experimental evidence for UNC-6 (netrin) axon guidance by stochastic fluctuations of intracellular UNC-40 (DCC) outgrowth activity. Biol Open 2013; 2:1300-12. [PMID: 24337114 PMCID: PMC3863414 DOI: 10.1242/bio.20136346] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How the direction of axon guidance is determined is not understood. In Caenorhabditis elegans the UNC-40 (DCC) receptor mediates a response to the UNC-6 (netrin) guidance cue that directs HSN axon development. UNC-40 becomes asymmetrically localized within the HSN neuron to the site of axon outgrowth. Here we provide experimental evidence that the direction of guidance can be explained by the stochastic fluctuations of UNC-40 asymmetric outgrowth activity. We find that the UNC-5 (UNC5) receptor and the cytoskeletal binding protein UNC-53 (NAV2) regulate the induction of UNC-40 localization by UNC-6. If UNC-40 localization is induced without UNC-6 by using an unc-53 mutation, the direction of UNC-40 localization undergoes random fluctuations. Random walk models describe the path made by a succession of randomly directed movement. This model was experimentally tested using mutations that affect Wnt/PCP signaling. These mutations inhibit UNC-40 localization in the anterior and posterior directions. As the axon forms in Wnt/PCP mutants, the direction of UNC-40 localization randomly fluctuates; it can localize in either the anterior, posterior, or ventral direction. Consistent with a biased random walk, over time the axon will develop ventrally in response to UNC-6, even though at a discrete time UNC-40 localization and outgrowth can be observed anterior or posterior. Also, axon formation is slower in the mutants than in wild-type animals. This is also consistent with a random walk since this model predicts that the mean square displacement (msd) will increase only linearly with time, whereas the msd increases quadratically with time for straight-line motion.
Collapse
Affiliation(s)
- Gauri Kulkarni
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Zhang H, Chang YC, Brennan ML, Wu J. The structure of Rap1 in complex with RIAM reveals specificity determinants and recruitment mechanism. J Mol Cell Biol 2013; 6:128-39. [PMID: 24287201 DOI: 10.1093/jmcb/mjt044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The small GTPase Rap1 induces integrin activation via an inside-out signaling pathway mediated by the Rap1-interacting adaptor molecule (RIAM). Blocking this pathway may suppress tumor metastasis and other diseases that are related to hyperactive integrins. However, the molecular basis for the specific recognition of RIAM by Rap1 remains largely unknown. Herein we present the crystal structure of an active, GTP-bound GTPase domain of Rap1 in complex with the Ras association (RA)-pleckstrin homology (PH) structural module of RIAM at 1.65 Å. The structure reveals that the recognition of RIAM by Rap1 is governed by side-chain interactions. Several side chains are critical in determining specificity of this recognition, particularly the Lys31 residue in Rap1 that is oppositely charged compared with the Glu31/Asp31 residue in other Ras GTPases. Lys31 forms a salt bridge with RIAM residue Glu212, making it the key specificity determinant of the interaction. We also show that disruption of these interactions results in reduction of Rap1:RIAM association, leading to a loss of co-clustering and cell adhesion. Our findings elucidate the molecular mechanism by which RIAM mediates Rap1-induced integrin activation. The crystal structure also offers new insight into the structural basis for the specific recruitment of RA-PH module-containing effector proteins by their small GTPase partners.
Collapse
Affiliation(s)
- Hao Zhang
- Developmental Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
143
|
Law AL, Vehlow A, Kotini M, Dodgson L, Soong D, Theveneau E, Bodo C, Taylor E, Navarro C, Perera U, Michael M, Dunn GA, Bennett D, Mayor R, Krause M. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. J Cell Biol 2013; 203:673-89. [PMID: 24247431 PMCID: PMC3840943 DOI: 10.1083/jcb.201304051] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022] Open
Abstract
Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd's Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo.
Collapse
Affiliation(s)
- Ah-Lai Law
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Anne Vehlow
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Maria Kotini
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Lauren Dodgson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Daniel Soong
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Cristian Bodo
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Eleanor Taylor
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Christel Navarro
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Upamali Perera
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Magdalene Michael
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Graham A. Dunn
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Daimark Bennett
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Matthias Krause
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| |
Collapse
|
144
|
Short B. Lamellipodin branches out. J Biophys Biochem Cytol 2013. [PMCID: PMC3840931 DOI: 10.1083/jcb.2034if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lamellipodin functions as an essential, general regulator of cell migration via the Scar/WAVE complex.
Collapse
|
145
|
Kapus A, Janmey P. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations. Compr Physiol 2013; 3:1231-81. [PMID: 23897686 DOI: 10.1002/cphy.c120015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions.
Collapse
Affiliation(s)
- András Kapus
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
146
|
CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. EMBO J 2013; 32:2735-50. [PMID: 24076653 DOI: 10.1038/emboj.2013.208] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/30/2013] [Indexed: 12/21/2022] Open
Abstract
Filopodia explore the environment, sensing soluble and mechanical cues during directional motility and tissue morphogenesis. How filopodia are initiated and spatially restricted to specific sites on the plasma membrane is still unclear. Here, we show that the membrane deforming and curvature sensing IRSp53 (Insulin Receptor Substrate of 53 kDa) protein slows down actin filament barbed end growth. This inhibition is relieved by CDC42 and counteracted by VASP, which also binds to IRSp53. The VASP:IRSp53 interaction is regulated by activated CDC42 and promotes high-density clustering of VASP, which is required for processive actin filament elongation. The interaction also mediates VASP recruitment to liposomes. In cells, IRSp53 and VASP accumulate at discrete foci at the leading edge, where filopodia are initiated. Genetic removal of IRSp53 impairs the formation of VASP foci, filopodia and chemotactic motility, while IRSp53 null mice display defective wound healing. Thus, IRSp53 dampens barbed end growth. CDC42 activation inhibits this activity and promotes IRSp53-dependent recruitment and clustering of VASP to drive actin assembly. These events result in spatial restriction of VASP filament elongation for initiation of filopodia during cell migration, invasion, and tissue repair.
Collapse
|
147
|
Vehlow A, Soong D, Vizcay-Barrena G, Bodo C, Law AL, Perera U, Krause M. Endophilin, Lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis. EMBO J 2013; 32:2722-34. [PMID: 24076656 PMCID: PMC3801443 DOI: 10.1038/emboj.2013.212] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 08/30/2013] [Indexed: 11/09/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays an essential role during development and diseases including cancer. Lamellipodin (Lpd) is known to control lamellipodia protrusion by regulating actin filament elongation via Ena/VASP proteins. However, it is unknown whether this mechanism supports endocytosis of the EGFR. Here, we have identified a novel role for Lpd and Mena in clathrin-mediated endocytosis (CME) of the EGFR. We have discovered that endogenous Lpd is in a complex with the EGFR and Lpd and Mena knockdown impairs EGFR endocytosis. Conversely, overexpressing Lpd substantially increases the EGFR uptake in an F-actin-dependent manner, suggesting that F-actin polymerization is limiting for EGFR uptake. Furthermore, we found that Lpd directly interacts with endophilin, a BAR domain containing protein implicated in vesicle fission. We identified a role for endophilin in EGFR endocytosis, which is mediated by Lpd. Consistently, Lpd localizes to clathrin-coated pits (CCPs) just before vesicle scission and regulates vesicle scission. Our findings suggest a novel mechanism in which Lpd mediates EGFR endocytosis via Mena downstream of endophilin. Cooperation between a BAR domain protein and a regulator of actin filament elongation during lamellipodia protrusion reveals actin cytoskeleton roles in endocytic vesicle scission in mammalian cells.
Collapse
Affiliation(s)
- Anne Vehlow
- King's College London, Randall Division of Cell and Molecular Biophysics, London, UK
| | | | | | | | | | | | | |
Collapse
|
148
|
Amplification and deletion of the RAPH1 gene in breast cancer patients. Mol Biol Rep 2013; 40:6613-7. [PMID: 24057252 DOI: 10.1007/s11033-013-2774-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Lamellipodin protein (Lpd), encoded by the RAPH1 gene, modulates the assembly of actin cytoskeleton through its binding to the Ena/VASPs proteins, and acts in cellular motility and lamelipodial protrusion. The region where RAPH1 gene is located (2q33) is deleted in various types of cancer and the gene expression changes in tumors when compared to normal tissues. Amplifications and deletions of the RAPH1 gene were investigated in breast carcinoma samples, in order to determine the possible relationship of the gene with breast cancer tumorigenesis and lymph node metastasis. RAPH1 gene alterations were determined by relative quantification, standard curve method using Real-time PCR technique in samples of tumor and peripheral blood from 52 patients. Regression and correlation analyses were conducted using gene alterations and clinicopathological data. All samples analyzed were altered, with 63.5 % deletion cases and 36.5 % amplification cases. The logistic regression and correlation analysis with clinicopathological data did not show significant results. The results suggest that although the RAPH1 gene was deleted or amplified in all samples, the Lpd does not seem to play a major role in tumorigenesis of mammary carcinomas and probably other proteins, also involved in the process of cellular motility and metastasis, are acting more effectively for or against the migration of breast tumor cells.
Collapse
|
149
|
Qamra R, Hubbard SR. Structural basis for the interaction of the adaptor protein grb14 with activated ras. PLoS One 2013; 8:e72473. [PMID: 23967305 PMCID: PMC3742580 DOI: 10.1371/journal.pone.0072473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/16/2013] [Indexed: 12/31/2022] Open
Abstract
Grb14, a member of the Grb7-10-14 family of cytoplasmic adaptor proteins, is a tissue-specific negative regulator of insulin signaling. Grb7-10-14 contain several signaling modules, including a Ras-associating (RA) domain, a pleckstrin-homology (PH) domain, a family-specific BPS (between PH and SH2) region, and a C-terminal Src-homology-2 (SH2) domain. We showed previously that the RA and PH domains, along with the BPS region and SH2 domain, are necessary for downregulation of insulin signaling. Here, we report the crystal structure at 2.4-Å resolution of the Grb14 RA and PH domains in complex with GTP-loaded H-Ras (G12V). The structure reveals that the Grb14 RA and PH domains form an integrated structural unit capable of binding simultaneously to small GTPases and phosphoinositide lipids. The overall mode of binding of the Grb14 RA domain to activated H-Ras is similar to that of the RA domains of RalGDS and Raf1 but with important distinctions. The integrated RA-PH structural unit in Grb7-10-14 is also found in a second adaptor family that includes Rap1-interacting adaptor molecule (RIAM) and lamellipodin, proteins involved in actin-cytoskeleton rearrangement. The structure of Grb14 RA-PH in complex with H-Ras represents the first detailed molecular characterization of tandem RA-PH domains bound to a small GTPase and provides insights into the molecular basis for specificity.
Collapse
Affiliation(s)
- Rohini Qamra
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Stevan R. Hubbard
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
150
|
Profilin-1 downregulation has contrasting effects on early vs late steps of breast cancer metastasis. Oncogene 2013; 33:2065-74. [PMID: 23686314 DOI: 10.1038/onc.2013.166] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/19/2013] [Accepted: 04/10/2013] [Indexed: 12/23/2022]
Abstract
Profilin1 (Pfn1), a ubiquitously expressed actin-binding protein, has an indispensable role in migration and proliferation of normal cells. Seemingly contrary to its essential cellular functions, Pfn1's expression is downregulated in breast cancer, the significance of which is unclear. In this study, expression profiling of Pfn1 in human breast cancer specimens correlates lower Pfn1 expression levels with propensity to metastasize. Xenograft experiments further establish a causal relationship between loss of Pfn1 expression and increased dissemination of breast cancer cells (BCCs) from the primary mammary tumor. BCCs exhibit a hyperinvasive phenotype (marked by matrix metalloproteinase-9 upregulation, faster invasion through collagen matrix) and acquire increased proficiency to transmigrate through endothelial barrier (an obligatory step for vascular dissemination) when Pfn1 expression is suppressed. In Pfn1-deficient cells, hyperinvasiveness involves a phosphatidylinositol 3-kinase-PI(3,4)P2 signaling axis while augmented transendothelial migration occurs in a vascular endothelial growth factor-dependent manner. Contrasting these dissemination promoting activities, loss of Pfn1, however, dramatically inhibits metastatic outgrowth of disseminated BCCs, suggesting that Pfn1 has a key role in the metastatic colonization process. In summary, this study shows that Pfn1 has a dichotomous role in early vs late steps of breast cancer metastasis.
Collapse
|