101
|
Zhang S, Wang N, Gong S, Gao S. The patterns of trophic transfer of microplastic ingestion by fish in the artificial reef area and adjacent waters of Haizhou Bay. MARINE POLLUTION BULLETIN 2022; 177:113565. [PMID: 35314394 DOI: 10.1016/j.marpolbul.2022.113565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Plastic pollution has become a threat to the global marine environment. Many studies have shown that marine organisms are at risk of plastic ingestion, but there is still a lack of relevant research in the artificial reef area and adjacent waters of Haizhou Bay, located in the western Yellow Sea. The study of MPs will provide useful information for MPs pollution in the artificial reef food webs, as well as the understanding of MPs trophic transfer by reef fish. In this study, we quantified plastic ingestion by marine fish in artificial reef areas and adjacent waters (Natural area, NA; Aquaculture area, AA; Estuary area, EA; Artificial reefs area, AR and Comprehensive effective area, CEA) and analysed the related possible influencing factors. Of the 146 fish samples examined, 100% of fish ingested plastics, and 98.9% of these particles were microplastics (MPs) (<5 mm), with 3.00 ± 2.63 pieces/fish. The main types and colours of MPs were fibre (95.9%) and blue (84%). The MP quantity of AR and AA were significantly higher than that of CEA (P < 0.05) and there is no significant difference among other habitats. The MP ingestion by pelagic fishes was significantly lower than that of demersal fishes (P < 0.05). MP ingestion by omnivores was significantly higher than that by carnivores and planktivores (P < 0.05). The body length (body weight) of four species (Larimichthys polyactis: 17.7-16.7 cm (16.01-59.41 g); Collichthys lucidus: 8.1-14.3 cm (19.65-56.92 g); Tridentiger barbatus: 5.9-9.2 cm (3.37-19.1 g); Cynoglossus joyneri: 10.1-18.7 cm (5-45 g)) had no significant correlation with MP ingestion (P > 0.05). Our results showed that MPs in this region are ubiquitous (i.e., the MP ingestion rate was as high as 100%). We infer that there is a transfer mechanism in MPs from pelagic to benthic fish in this area, and there is weak biomagnification with the trophic transfer of the food chain (TMF = 1.62). However, more practical studies still need to verify whether MPs are actually transferred to humans through trophic transfer from the marine food web.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China
| | - Nuo Wang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Siming Gong
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Shike Gao
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
102
|
Buss N, Sander B, Hua J. Effects of Polyester Microplastic Fiber Contamination on Amphibian-Trematode Interactions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:869-879. [PMID: 33683732 DOI: 10.1002/etc.5035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Microplastic contamination poses a global threat to aquatic organisms, yet we know little as to how microplastics may indirectly affect organismal health via their influence on species-species interactions (e.g., host-parasite interactions). This is problematic because microplastic-mediated alterations to host-parasite dynamics could negatively impact individual- population-level health of hosts. Using a larval amphibian (host) and free-living trematode (parasite) model, we asked whether 1) polyester microplastic fibers influence parasite survival; 2) whether polyester microplastic fiber ingestion by amphibians alters amphibian susceptibility to infection; and 3) whether simultaneous exposure of amphibians and trematodes to polyester microplastic fibers influences infection outcomes. Polyester microplastic fibers did not alter trematode survival, nor did their ingestion by amphibians increase amphibian susceptibility to infection. However, when amphibians and trematodes were exposed simultaneously to the fibers, the infection success of the parasite was reduced. Lastly, we conducted a field survey for microfiber contamination across multiple ponds and found microfibers across each of the sampled ponds. Overall, our results contribute to the limited knowledge surrounding the ecological consequences of microplastic contamination. Environ Toxicol Chem 2022;41:869-879. © 2021 SETAC.
Collapse
Affiliation(s)
- Nicholas Buss
- Biological Sciences Department, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Brianna Sander
- Biological Sciences Department, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Jessica Hua
- Biological Sciences Department, Binghamton University, State University of New York, Binghamton, New York, USA
| |
Collapse
|
103
|
Li M, Chen Q, Ma C, Gao Z, Yu H, Xu L, Shi H. Effects of microplastics and food particles on organic pollutants bioaccumulation in equi-fugacity and above-fugacity scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152548. [PMID: 34952063 DOI: 10.1016/j.scitotenv.2021.152548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs), as emerging contaminants, sorb organic pollutants from the environment or leach out additives, thereby altering the fate of co-existing pollutants to organisms. We chose equi-fugacity and above-fugacity concentrations of polychlorinated biphenyls (PCBs) as background contamination and plastic additive concentrations, respectively, to investigate the effects of MPs on PCB bioaccumulation; we compared the effects of MPs with those of food-borne particles (FBPs). Co-exposure to MPs and FBPs at both the equi-fugacity and above-fugacity PCB concentrations had no obvious toxic effects (ROS generation and cyp1a expression) on zebrafish. When the zebrafish were exposed to the equi-fugacity PCB concentrations, the PCB concentrations reached 177.7-400.5 ng/g after a 7-d uptake; the presence of MPs did not significantly enhance PCB bioaccumulation. The remaining PCB concentrations in the fish after a 4-d depuration were 58.4-125.1 ng/g; the effects of MPs were the same as those during the uptake period. However, at the above-fugacity PCB concentrations, the MPs markedly increased the PCB bioaccumulation (by 1.8-fold) to 712.9 ng/g. This is because at above-fugacity concentrations, PCBs on MPs migrate to organisms as there were high fugacity gradients. The FBPs enhanced PCB bioaccumulation in zebrafish more effectively than the MPs, even after depuration. In the presence of FBPs, PCB bioaccumulation increased by 2.8- and 4.2- fold after uptake in the equi-fugacity and above-fugacity scenarios, respectively, both of which were significantly higher than that observed for the MPs. This is probably because FBPs are easily assimilated by fish, making the associated PCBs more bioavailable. Finally, during the co-existence of MPs and FBPs, MPs facilitate the depuration of PCBs accumulated via FBP vectors; conversely, FBPs did not affect PCB accumulation via MP vectors. Thus, this study elucidated the effects of MPs and FBPs on the bioaccumulation of pollutants at equi-fugacity or above-fugacity concentrations in aquatic environments.
Collapse
Affiliation(s)
- Mingyuan Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Zhuo Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Hairui Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology for Agro-Products of CAAS, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China.
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
104
|
Liu X, Yang H, Yan X, Xu S, Fan Y, Xu H, Ma Y, Hou W, Javed R, Zhang Y. Co-exposure of polystyrene microplastics and iron aggravates cognitive decline in aging mice via ferroptosis induction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113342. [PMID: 35228028 DOI: 10.1016/j.ecoenv.2022.113342] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The objective of this study was to investigate the effects of co-exposure of iron and microplastics (MPs) on the cognitive function of aged humans and animals. It was already known that individual iron or MPs exposure can initiate potential neurotoxicity. However, the combined effect of MPs and iron remained to be elucidated. In this study, the toxicity of iron, MPs, co-treatment of MPs & iron, and the underlying mechanisms were evaluated in vivo. Our findings suggest that 5 µm MPs could enter the aging mice brain and accumulate in cortex and hippocampus. In addition, MPs and iron have a good binding ability, therefore, co-exposure of MPs & iron cause significant iron overload and cognitive deficits as compared to control and individual treatments of iron and MPs. Moreover, the lipid peroxidation and inflammation, which are involved in ferroptosis, get significantly elevated by co-exposure of iron and MPs. Taken together, our results provide compelling evidence that co-exposure of iron and MPs could aggravate the cognitive impairment via disturbing brain iron homeostasis and inducing ferroptosis in cognitive-related brain areas, what's more, the results warn that MPs may act as vectors of pollutants (mostly heavy metals) increasing the health burden on body.
Collapse
Affiliation(s)
- Xiu Liu
- The First Clinical College, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Hekai Yang
- The First Clinical College, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Xinzhu Yan
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Shuangfeng Xu
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Yonggang Fan
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, China
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, 1066 Xueyuan Road, Shenzhen 518055, China
| | - Yue Ma
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, China
| | - Weijian Hou
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Rabia Javed
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Yanhui Zhang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China.
| |
Collapse
|
105
|
Rangasamy B, Malafaia G, Maheswaran R. Evaluation of antioxidant response and Na +-K +-ATPase activity in zebrafish exposed to polyethylene microplastics: Shedding light on a physiological adaptation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127789. [PMID: 34801306 DOI: 10.1016/j.jhazmat.2021.127789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of microplastics has already been demonstrated in different animal models, our knowledge about the response of freshwater fish to this pollutant is still limited. Thus, we aimed to evaluate the impact of exposure of zebrafish adults (Danio rerio) to environmentally relevant concentrations of polyethylene microplastics (PE-MPs) (5 and 50 µg/L) and at different times of exposure (10 and 20 days). Initially, scanning electron microscope image illustrated size and format of the particle and FTIR analysis confirmed the presence of PE-MPs in the gastrointestinal tract of fish (at both concentrations tested). Subsequently, an alteration of oxidative and antioxidant responses was evaluated in the liver and brain. The results showed that catalase (CAT) activity, in liver, was significantly decreased, as was glutathione S-transferases (GSTs) activity (on the 10th experimental day). However, after 20 days of exposure, we observed a concentration-dependent increase in GST activity in liver of the animals exposed to PE-MPs. Furthermore, the lipid peroxidation (LPO) level was significantly increased by exposure to MPs, especially in the brain, after 20 days of exposure. The increase in Na+-K+-ATPase activity in the animals' gills was correlated with the increased production of malondialdehyde (MDA), which suggests the existence of a compensatory mechanism in which the high activity of this enzyme would be necessary to regulate the loss of ions caused by the increase in the processes of LPO, which has never been previously demonstrated. Thus, our study sheds light on a new physiological adaptation to deal with the oxidative effects of PE-MPs, in addition to supporting the future use of the assessment of Na+/K+-ATPase activity as a biomarker of the toxicity of these pollutants.
Collapse
Affiliation(s)
- Basuvannan Rangasamy
- Entomology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu 636 011, India
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil. Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Graduate Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology and Natural Resources Conservation, Uberlândia, MG, Brazil
| | - Rajan Maheswaran
- Entomology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu 636 011, India.
| |
Collapse
|
106
|
Kaur K, Reddy S, Barathe P, Oak U, Shriram V, Kharat SS, Govarthanan M, Kumar V. Microplastic-associated pathogens and antimicrobial resistance in environment. CHEMOSPHERE 2022; 291:133005. [PMID: 34813845 DOI: 10.1016/j.chemosphere.2021.133005] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous use of microplastics and their release into the environment especially the water bodies by anthropogenic/industrial activities are the major resources for microplastic contamination. The widespread and often injudicious use of antimicrobial drugs or antibiotics in various sectors including human health and hygiene, agriculture, animal husbandry and food industries are leading to the release of antibiotics into the wastewater/sewage and other water bodies, particularly in urban setups and thus leads to the antimicrobial resistance (AMR) in the microbes. Microplastics are emerging as the hubs as well as effective carriers of these microbial pathogens beside their AMR-genes (ARGs) in marine, freshwater, sewage/wastewater, and urban river ecosystems. These drug resistant bacteria interact with microplastics forming synthetic plastispheres, the ideal niche for biofilm formations which in turn facilitates the transfer of ARGs via horizontal gene transfer and further escalates the occurrence and levels of AMR. Microplastic-associated AMR is an emerging threat for human health and healthcare besides being a challenge for the research community for effective management/address of this menace. In this review, we encompass the increasing prevalence of microplastics in environment, emphasizing mainly on water environments, how they act as centers and vectors of microbial pathogens with their associated bacterial assemblage compositions and ultimately lead to AMR. It further discusses the mechanistic insights on how microplastics act as hosts of biofilms (creating the plastisphere). We have also presented the modern toolbox used for microplastic-biofilm analyses. A review on potential strategies for addressing microplastic-associated AMR is given with recent success stories, challenges and future prospects.
Collapse
Affiliation(s)
- Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India
| | - Sagar Reddy
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Akurdi, Pune, 411016, Maharashtra, India
| | - Pramod Barathe
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India
| | - Uttara Oak
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Akurdi, Pune, 411016, Maharashtra, India
| | - Sanjay S Kharat
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu, 41566, South Korea.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India.
| |
Collapse
|
107
|
Zaheer J, Kim H, Ko IO, Jo EK, Choi EJ, Lee HJ, Shim I, Woo HJ, Choi J, Kim GH, Kim JS. Pre/post-natal exposure to microplastic as a potential risk factor for autism spectrum disorder. ENVIRONMENT INTERNATIONAL 2022; 161:107121. [PMID: 35134716 DOI: 10.1016/j.envint.2022.107121] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
In common with the increase in environmental pollution in the past 10 years, there has also been a recent increase in the prevalence of autism spectrum disorder (ASD). In this regard, we hypothesized that exposure to microplastics is a potential risk factor for ASD. To evaluate the validity of this hypothesis, we initially examined the accumulation of polyethylene (PE) in the brains of mice and then assessed the behavioral effects using mouse models at different life stages, namely, prenatal, post-weaning, puberty, and adult models. Based on typical behavioral assessments of autistic traits in the model mice, we established that ASD-like traits were induced in mice after PE feeding. In addition, we examined the induction of ASD-like traits in response to microplastic exposure using positron emission tomography, magnetic resonance spectroscopy, quantitative real-time polymerase chain reaction, microarray, and microbiome analysis. We believe these findings provide evidence in microplastics as a potential risk factor for ASD.
Collapse
Affiliation(s)
- Javeria Zaheer
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Republic of Korea
| | - Hyeongi Kim
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea; Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - In Ok Ko
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Eun-Kyeong Jo
- School of Health & Environmental Science, College of Health Science, Korea University Seoul 02841, Republic of Korea
| | - Eui-Ju Choi
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Hyun-Jeong Woo
- Department of Biomedical Engineering, School of Integrative Engineering, College of ICT Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jonghoon Choi
- Department of Biomedical Engineering, School of Integrative Engineering, College of ICT Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gun-Ha Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jin Su Kim
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Republic of Korea.
| |
Collapse
|
108
|
Marana MH, Poulsen R, Thormar EA, Clausen CG, Thit A, Mathiessen H, Jaafar R, Korbut R, Hansen AMB, Hansen M, Limborg MT, Syberg K, von Gersdorff Jørgensen L. Plastic nanoparticles cause mild inflammation, disrupt metabolic pathways, change the gut microbiota and affect reproduction in zebrafish: A full generation multi-omics study. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127705. [PMID: 34802818 DOI: 10.1016/j.jhazmat.2021.127705] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Plastic pollution has become a major concern on a global scale. The plastic is broken down into minuscule particles, which have an impact on the biosystems, however long-term impacts through an entire generation is largely unknown. Here, we present the first whole generation study exposing fish to a 500 nm polystyrene plastic particle at environmentally relevant concentrations. Short- and long-term adverse effects were investigated in the zebrafish model organism using a holistic multi-omics approach. The particles accumulated in the yolk sac of young larvae and short-term biological impacts included immune-relevant gene regulation related to inflammation and tolerance as well as disruption of metabolic processes, such as the fatty acid and lipid pathways. The long-term effects comprised gene regulations pointing towards skin and/or gill inflammation, dysbiosis of the gut microbiota, a tendency towards decreased condition factor in adult males as well as a lowered reproductive capability. From this study, it can be concluded that exposures to plastic nanoparticles have an impact on population as well as ecosystem level in fish and likely also in other vertebrates.
Collapse
Affiliation(s)
- Moonika Haahr Marana
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Rikke Poulsen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Eiríkur Andri Thormar
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Cecilie Grønlund Clausen
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Amalie Thit
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Heidi Mathiessen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Rzgar Jaafar
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Rozalia Korbut
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Anna Magdalene Brun Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Martin Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Morten Tønsberg Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Kristian Syberg
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark.
| |
Collapse
|
109
|
Rozman U, Kalčíková G. Seeking for a perfect (non-spherical) microplastic particle - The most comprehensive review on microplastic laboratory research. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127529. [PMID: 34736190 DOI: 10.1016/j.jhazmat.2021.127529] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
In recent decades, much attention has been paid to microplastic pollution, and research on microplastics has begun to grow exponentially. However, microplastics research still suffers from the lack of standardized protocols and methods for investigation of microplastics under laboratory conditions. Therefore, in this review, we summarize and critically discuss the results of 715 laboratory studies published on microplastics in the last five years to provide recommendations for future laboratory research. Analysis of the data revealed that the majority of microplastic particles used in laboratory studies are manufactured spheres of polystyrene ranging in size from 1 to 50 µm, that half of the studies did not characterize the particles used, and that a minority of studies used aged particles, investigated leaching of chemicals from microplastics, or used natural particles as a control. There is a large discrepancy between microplastics used in laboratory research and those found in the environment, and many laboratory studies suffer from a lack of environmental relevance and provide incomplete information on the microplastics used. We have summarized and discussed these issues and provided recommendations for future laboratory research on microplastics focusing on (i) microplastic selection, (ii) microplastic characterization, and (iii) test design of laboratory research on microplastics.
Collapse
Affiliation(s)
- Ula Rozman
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
110
|
Tongo I, Erhunmwunse NO. Effects of ingestion of polyethylene microplastics on survival rate, opercular respiration rate and swimming performance of African catfish (Clarias gariepinus). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127237. [PMID: 34844355 DOI: 10.1016/j.jhazmat.2021.127237] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The study evaluated the impact of ingestion of microplastics on accumulation, survival, opercular respiratory rate (ORR), and swimming performance of Clarias gariepinus, the African freshwater catfish exposed to polyethylene microplastics. Juveniles were exposed for 4 days to 50-500 µm low-density polyethylene (LDPE) microplastics at four different concentrations (0.5, 1.0, 1.5, and 2.0 g/L). After 4 days of exposure, the concentration of microplastics in the gastrointestinal tract (GIT) of the fish increased with increasing concentrations of microplastics. Mean weights of microplastics in the GIT of the fish ranged from 0.0025 ± 0.001 g to 0.054 ± 0.01 g, suggesting that the fish were unable to detect and avoid ingesting the microplastics. No mortality was observed in all the treatment concentrations except in the highest concentration (2 g/L) where 10% mortality was observed. The results showed that ORR increased in a concentration and time-dependent manner. Compared with the control group, the swimming speed, travel distance and movement patterns of the fish exposed to microplastics were significantly reduced (p < 0.05). Therefore, this study helps understand the environmental impact of microplastics on C. gariepinus in freshwater environments.
Collapse
Affiliation(s)
- Isioma Tongo
- Laboratory for Ecotoxicology and Environmental Forensics, University of Benin, PMB 1154 Benin City, Nigeria.
| | | |
Collapse
|
111
|
Swank A, Blevins K, Bourne A, Ward J. Do microplastics impair male dominance interactions in fish? A test of the vector hypothesis. Ecol Evol 2022; 12:e8620. [PMID: 35222975 PMCID: PMC8848457 DOI: 10.1002/ece3.8620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022] Open
Abstract
Microplastics (MPs) are widespread in aquatic environments and have become a critical environmental issue in recent years due to their adverse impacts on the physiology, reproduction, and survival of aquatic animals. Exposure to MPs also has the potential to induce sub-lethal behavioral changes that can affect individual fitness, but these effects are understudied. Many plastic additives introduced during the manufacture of MPs are known endocrine-disrupting chemicals (EDCs) that mimic the action of natural hormones, alter sexual and competitive behavior, and impair reproductive success in fish. In addition, EDCs and other aquatic contaminants may adhere to MPs in the environment, the latter of which may serve as transport vectors for these compounds (i.e., the vector hypothesis). In this study, we staged territorial contests between control males, and males exposed to virgin MP particles or to MPs previously immersed in one of two environmentally relevant concentrations of 17-alpha ethinyl estradiol (EE2; 5 ng/L and 25 ng/L) to evaluate the independent and synergistic effects of exposure to MPs and a common environmental estrogen on male-male aggression and competitive territory acquisition in a freshwater fish, Pimephales promelas. Short-term (30 days) dietary exposure to MPs did not impair the ability of males to successfully compete for and obtain a breeding territory. Overall levels of aggression in control and exposed males were also similar across trial series. These results help to fill a critical knowledge gap regarding the direct and indirect (vector-borne) effects of MPs on the reproductive behavior of aquatic vertebrates in freshwater systems.
Collapse
Affiliation(s)
- Ally Swank
- Department of BiologyBall State UniversityMuncieIndianaUSA
- Present address:
Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | | | - Abby Bourne
- Department of BiologyBall State UniversityMuncieIndianaUSA
| | - Jessica Ward
- Department of BiologyBall State UniversityMuncieIndianaUSA
| |
Collapse
|
112
|
Toxicity Study and Quantitative Evaluation of Polyethylene Microplastics in ICR Mice. Polymers (Basel) 2022; 14:polym14030402. [PMID: 35160391 PMCID: PMC8839995 DOI: 10.3390/polym14030402] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
The production, use, and waste of plastics increased worldwide, which resulted in environmental pollution and a growing public health problem. In particular, microplastics have the potential to accumulate in humans and mammals through the food chain. However, the toxicity of microplastics is not well understood. In this study, we investigated the toxicity of 10–50 μm polyethylene microplastics following single- and 28-day repeated oral administration (three different doses of microplastics of 500, 1000, and 2000 mg/kg/day) in ICR mice. For the investigation, we administered the microplastics orally for single- and 28-day repeated. Then, the histological and clinical pathology evaluations of the rodents were performed to evaluation of the toxicity test, and Raman spectroscopy was used to directly confirm the presence of polyethylene microplastics. In the single oral dose toxicity experiments, there were no changes in body weight and necropsy of the microplastics-treated group compared with that of controls. However, a histopathological evaluation revealed that inflammation from foreign bodies was evident in the lung tissue from the 28-day repeated oral dose toxicity group. Moreover, polyethylene microplastics were detected in the lung, stomach, duodenum, ileum, and serum by Raman spectroscopy. Our results corroborated the findings of lung inflammation after repeated oral administration of polyethylene microplastics. This study provides evidence of microplastic-induced toxicity following repeated exposure to mice.
Collapse
|
113
|
Santana LMBM, Rodrigues ACM, Campos D, Kaczerewska O, Figueiredo J, Silva S, Sousa I, Maia F, Tedim J, Abessa DMS, Pousão-Ferreira P, Candeias-Mendes A, Soares F, Castanho S, Soares AMVM, Rocha RJM, Gravato C, Patrício Silva AL, Martins R. Can the toxicity of polyethylene microplastics and engineered nanoclays on flatfish (Solea senegalensis) be influenced by the presence of each other? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150188. [PMID: 34798736 DOI: 10.1016/j.scitotenv.2021.150188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Microplastics and nanomaterials are applied in a myriad of commercial and industrial applications. When leaked to natural environments, such small particles might threaten living organisms' health, particularly when considering their potential combination that remains poorly investigated. This study investigated the physiological and biochemical effects of polyethylene (PE; 64-125 μm in size, 0.1, 1.0, and 10.0 mg·L-1) single and combined with an engineered nanomaterial applied in antifouling coatings, the copper-aluminium layered double hydroxides (Cu-Al LDH; 0.33, 1.0, and 3.33 mg·L-1) in the flatfish Solea senegalensis larvae (8 dph) after 3 h exposure, in a full factorial design. Particles ingestion, histopathology, and biochemical biomarkers were assessed. Fish larvae presented <1 PE particles in their gut, independently of their concentration in the medium. The histological health index showed minimal pathological alterations at PE combined exposure, with a higher value observed at 1 mg LDH·L-1 × 0.1 mg PE·L-1. Gut deformity and increased antioxidant defences (catalase), neurotransmission (acetylcholinesterase), and aerobic energy production (electron transport system) were observed at PE ≥ 1.0 mg·L-1. No oxidative damage (lipid peroxidation) or alterations in the detoxification capacity (glutathione-S-transferase) was observed on single and combined exposures. PE, combined or not with Cu-Al LDH, does not seem to compromise larvae's homeostasis considering levels reported so far in the marine and aquaculture environments. However, harsh effects are expected with MP contamination rise, as projections suggest.
Collapse
Affiliation(s)
- Lígia M B M Santana
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), 11330-900 São Vicente, SP, Brazil
| | - Andreia C M Rodrigues
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Campos
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olga Kaczerewska
- CICECO-Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Figueiredo
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sara Silva
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Sousa
- CICECO-Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Frederico Maia
- Smallmatek-Small Materials and Technologies, Lda., Rua Canhas, 3810-075 Aveiro, Portugal
| | - João Tedim
- CICECO-Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Denis M S Abessa
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), 11330-900 São Vicente, SP, Brazil
| | - Pedro Pousão-Ferreira
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Ana Candeias-Mendes
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Florbela Soares
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Sara Castanho
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Amadeu M V M Soares
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui J M Rocha
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Gravato
- Faculty of Sciences and CESAM, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ana L Patrício Silva
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Roberto Martins
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
114
|
Pei X, Heng X, Chu W. Polystyrene nano/microplastics induce microbiota dysbiosis, oxidative damage, and innate immune disruption in zebrafish. Microb Pathog 2022; 163:105387. [PMID: 34990781 DOI: 10.1016/j.micpath.2021.105387] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
The toxicity of polystyrene nano/microplastics with diameter sizes of 50um and 100 nm and concentrations of 100 and 1000 μg/mL on gut microbiota, antioxidant activity and innate immune response in zebrafish was investigated. After exposure to polystyrene plastics particle, the pathological morphological changes of intestine and gills were observed, and the injury severity was related to the concentration and particle size of plastics. Significant changes in the richness and diversity of gut microbiota were observed after polystyrene plastics-exposed in zebrafish. The plastics-treated groups exhibited more substantial oxidative stress than the control group. In addition, the mRNA expression level of most pro- and anti-inflammatory factors, including IL-8, NF-κb, and IL-10, increased while the mRNA expression of TNF-α, a pro-inflammatory factor, decreased. Our results suggest that polystyrene nano/microplastics may represent a potential threat to the gut microbiota, oxidative status, and innate immunity. These results indicated that polystyrene nano/microplastics exerted size and concentration-dependent toxicity on zebrafish. The findings provide new evidence for the toxicity of polystyrene plastics on zebrafish.
Collapse
Affiliation(s)
- Xin Pei
- Department of Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xing Heng
- Department of Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Weihua Chu
- Department of Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
115
|
Busch M, Kämpfer AAM, Schins RPF. An inverted in vitro triple culture model of the healthy and inflamed intestine: Adverse effects of polyethylene particles. CHEMOSPHERE 2021; 284:131345. [PMID: 34216924 DOI: 10.1016/j.chemosphere.2021.131345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
As environmental pollution with plastic waste is increasing, numerous reports show the contamination of natural habitats, food and drinking water with plastic particles in the micro- and nanometer range. Since oral exposure to these particles is virtually unavoidable, health concerns towards the general population have been expressed and risk assessment regarding ingested plastic particles is of great interest. To study the intestinal effects of polymeric particles with a density of <1 g/cm³ in vitro, we spatially inverted a triple culture transwell model of the healthy and inflamed intestine (Caco-2/HT29-MTX-E12/THP-1), which allows contact between buoyant particles and cells. We validated the inverted model against the original model using the enterotoxic, non-steroidal anti-inflammatory drug diclofenac and subsequently assessed the cytotoxic and pro-inflammatory effects of polyethylene (PE) microparticles. The results show that the inverted model exhibits the same distinct features as the original model in terms of barrier development and inflammatory parameters. Treatment with 2 mM diclofenac causes severe cytotoxicity, DNA damage and complete barrier disruption in both models. PE particles induced cytotoxicity and pro-inflammatory effects in the inverted model, which would have remained undetected in conventional in vitro approaches, as no effect was observed in non-inverted control cultures.
Collapse
Affiliation(s)
- Mathias Busch
- IUF - Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany.
| |
Collapse
|
116
|
Hoseini SM, Sinha R, Fazel A, Khosraviani K, Hosseinpour Delavar F, Arghideh M, Sedaghat M, Paolucci M, Hoseinifar SH, Van Doan H. Histopathological damage and stress- and immune-related genes' expression in the intestine of common carp, Cyprinus carpio exposed to copper and polyvinyl chloride microparticle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:181-190. [PMID: 34762360 DOI: 10.1002/jez.2555] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
The present study aimed at assessing the singular and combined effects of water copper and polyvinyl chloride microplastic (MPVC) on intestinal copper accumulation, histopathological damage, and stress-/immune-related genes' expression in common carp, Cyprinus carpio. Four groups of fish were maintained in triplicate: control (kept in clean water), Cu (exposed to 0.25 mg/L of copper), MPVC (exposed to 0.5 mg/L of MPVC), and Cu-MPVC (exposed to 0.25 mg/L of copper + 0.5 mg/L of MPVC). After 14-day exposure, the fish of Cu and Cu-MPVC treatments exhibited significantly higher intestinal copper contents, compared to the fish of control and MPVC treatments. In this regard, the Cu-MPVC fish had significantly higher copper content than the Cu fish. Exposure to copper and/or MPVC significantly upregulated the intestinal heat shock protein 70 (hsp70), cytochrome P450 family 1 subfamily A member 1 (cyp1a1), lysozyme (lys), defensin (def), mucin 2 (muc2), and mucin 5 (muc5) expression. The highest expression of hsp70, cyp1a1, lys, and def was related to Cu-MPVC treatment; whereas, the highest expression of muc2 and muc5 was observed in Cu and MPVC treatments. Exposure to copper and/or MPVC induced intestinal damage, which Cu-MPVC fish exhibited the highest severity. The present study revealed that exposure to copper and/or MPVC causes intestinal histopathological damage and upregulation in stress- and immune-related genes' expression. The most serious effects were observed in Cu-MPVC treatment that might be due to additive effects of copper and MPVC and/or higher copper accumulation in this treatment.
Collapse
Affiliation(s)
- Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan, Iran
| | - Reshma Sinha
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Abdolazim Fazel
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan, Iran
| | - Kaveh Khosraviani
- Department of Fisheries Science, College of Marine Science, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Hosseinpour Delavar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Arghideh
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohsen Sedaghat
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of AgricultureFaculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.,Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
117
|
Capanni F, Greco S, Tomasi N, Giulianini PG, Manfrin C. Orally administered nano-polystyrene caused vitellogenin alteration and oxidative stress in the red swamp crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:147984. [PMID: 34118657 DOI: 10.1016/j.scitotenv.2021.147984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Nanoplastics (≤100 nm) represent the smallest fraction of plastic litter and may result in the aquatic environment as degradation products of larger plastic material. To date, few studies focused on the interactions of micro- and nanoplastics with freshwater Decapoda. The red swamp crayfish (Procambarus clarkii, Girard, 1852) is an invasive species able to tolerate highly perturbed environments. As a benthic opportunistic feeder, this species may be susceptible to plastic ingestion. In this study, adult P. clarkii, at intermolt stage, were exposed to 100 μg of 100 nm carboxylated polystyrene nanoparticles (PS NPs) through diet in a 72 h acute toxicity test. An integrated approach was conceived to assess the biological effects of PS NPs, by analyzing both transcriptomic and physiological responses. Total hemocyte counts, basal and total phenoloxidase activities, glycemia and total protein concentration were investigated in crayfish hemolymph at 0 h, 24 h, 48 h and 72 h from PS NPs administration to evaluate general stress response over time. Differentially expressed genes (DEGs) in the hemocytes and hepatopancreas were analyzed to ascertain the response of crayfish to PS NP challenge after 72 h. At a physiological level, crayfish were able to compensate for the induced stress, not exceeding generic stress thresholds. The RNA-Sequencing analysis revealed the altered expression of few genes involved in immune response, oxidative stress, gene transcription and translation, protein degradation, lipid metabolism, oxygen demand, and reproduction after PS NPs exposure. This study suggests that a low concentration of PS NPs may induce mild stress in crayfish, and sheds light on molecular pathways possibly involved in nanoplastic toxicity.
Collapse
Affiliation(s)
- Francesca Capanni
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Samuele Greco
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Noemi Tomasi
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Piero G Giulianini
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Chiara Manfrin
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| |
Collapse
|
118
|
Shang Y, Wang S, Jin Y, Xue W, Zhong Y, Wang H, An J, Li H. Polystyrene nanoparticles induced neurodevelopmental toxicity in Caenorhabditis elegans through regulation of dpy-5 and rol-6. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112523. [PMID: 34273852 DOI: 10.1016/j.ecoenv.2021.112523] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 05/21/2023]
Abstract
Micro- and nano- polystyrene particles have been widely detected in environment, posing potential threats to human health. This study was designed to evaluate the neurodevelopmental toxicity of polystyrene nanoparticles (NPs) in Caenorhabditis elegans (C. elegans), to screen crucial genes and investigate the underlying mechanism. In wild-type C. elegans, polystyrene NPs (diameter 50 nm) could concentration-dependently induce significant inhibition in body length, survival rate, head thrashes, and body bending, accompanying with increase of reactive oxygen species (ROS) production, lipofuscin accumulation, and apoptosis and decrease of dopamine (DA) contents. Moreover, pink-1 mutant was demonstrated to alleviate the locomotion disorders and oxidative damage induced by polystyrene NPs, indicating involvement of pink-1 in the polystyrene NPs-induced neurotoxicity. RNA sequencing results revealed 89 up-regulated and 56 down-regulated differently expressed genes (DEGs) response to polystyrene NPs (100 μg/L) exposure. Gene Ontology (GO) enrichment analysis revealed that predominant enriched DEGs were correlated with biological function of cuticle development and molting cycle. Furthermore, mutant strains test showed that the neurodevelopmental toxicity and oxidative stress responses induced by 50 nm polystyrene NPs were regulated by dpy-5 and rol-6. In general, polystyrene NPs induced obvious neurodevelopmental toxicity in C. elegans through oxidative damage and dopamine reduction. Crucial genes dpy-5 and rol-6 might participate in polystyrene NPs-induced neurodevelopmental toxicity through regulation on synthesis and deposition of cuticle collagen.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Siyan Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yingying Jin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wanlei Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Complex Air Pollution, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
119
|
Cao Y, Zhao M, Ma X, Song Y, Zuo S, Li H, Deng W. A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147620. [PMID: 34029813 DOI: 10.1016/j.scitotenv.2021.147620] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 05/22/2023]
Abstract
Although individual toxicity of microplastics (MPs) to organism has been widely studied, limited knowledge is available on the interactions between heavy metals and MPs, as well as potential biological impacts from their combinations. The interaction between MPs and heavy metals may alter their environmental behaviors, bioavailability and potential toxicity, leading to ecological risks. In this paper, an overview of different sources of heavy metals on MPs is provided. Then the recent achievements in adsorption isotherms, adsorption kinetics and interaction mechanism between MPs and heavy metals are discussed. Besides, the factors that influence the adsorption of heavy metals on MPs such as polymer properties, chemical properties of heavy metals, and other environmental factors are also considered. Furthermore, potential combined toxic effects from MPs and heavy metals on organisms and human health are further summarized.
Collapse
Affiliation(s)
- Yanxiao Cao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| | - Mengjie Zhao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Xianying Ma
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yongwei Song
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Shihan Zuo
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Wenzhuo Deng
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| |
Collapse
|
120
|
Muhammad A, Zhou X, He J, Zhang N, Shen X, Sun C, Yan B, Shao Y. Toxic effects of acute exposure to polystyrene microplastics and nanoplastics on the model insect, silkworm Bombyx mori. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117255. [PMID: 33964560 DOI: 10.1016/j.envpol.2021.117255] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 05/06/2023]
Abstract
Microplastics and nanoplastics (MPs and NPs, respectively) are major contaminants of environmental concern due to their potentially detrimental effects on aquatic and terrestrial ecosystems. However, little is known about their potential toxicity in terrestrial organisms. Here, we used the model insect silkworm (Bombyx mori) to evaluate the potential hazardous effects of acute exposure (72 h) to polystyrene (PS) MPs and NPs at physiological, molecular, and biochemical levels as well as their impact on pathogen infection. Our results revealed no significant changes in larval body mass or survival. Nevertheless, exposure led to significant alterations in the expression of immunity-related genes (Cecropin A, Lysozyme, SOD, and GST) and antioxidant-mediated protective response (SOD, GST, and CAT enzymes) which differed in the PS-MP and PS-NP groups. Interestingly, PS-MPs induced a stronger immune response (higher expressions of Lysozyme, SOD, and GST genes along with increased activities of SOD, GST, and CAT enzymes) while the PS-NP response was more that of an inhibitory nature (decreased SOD activity and expression). As a result, upon infection with the natural pathogen Serratia marcescens Bm1, the PS-MP-exposed individuals survived the infection better whereas, PS-NP-exposed individuals exhibited significantly higher mortality. Thus, we infer that PS-MPs/NPs present ecological toxicity, which is closely related to their size, and that their exposure may render the organisms vulnerable or confer resistance to pathogen infections and ecotoxicants. Given the suitability of silkworm as a model organism, this study may promote its application for further investigation of the mechanism of adverse outcome pathways and in studies on bio-nano interactions.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
121
|
Chenet T, Mancia A, Bono G, Falsone F, Scannella D, Vaccaro C, Baldi A, Catani M, Cavazzini A, Pasti L. Plastic ingestion by Atlantic horse mackerel (Trachurus trachurus) from central Mediterranean Sea: A potential cause for endocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117449. [PMID: 34098369 DOI: 10.1016/j.envpol.2021.117449] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Plastics in the oceans can break up into smaller size and shape resembling prey or particles selected for ingestion by marine organisms. Plastic polymers may contain chemical additives and contaminants, including known endocrine disruptors that may be harmful for the marine organisms, in turn posing potential risks to marine ecosystems, biodiversity and food availability. This study assesses the presence of plastics in the contents of the gastrointestinal tract (GIT) of a commercial fish species, the Atlantic horse mackerel, Trachurus trachurus, sampled from two different fishing areas of central Mediterranean Sea. Adverse effect of plastics occurrence on T. Trachurus health were also assessed quantifying the liver expression of vitellogenin (VTG), a biomarker for endocrine disruption. A total of 92 specimens were collected and morphometric indices were analysed. A subgroup was examined for microplastics (MP < 1 mm) and macroplastics (MaP >1 cm) accumulation in the GIT and for VTG expression. Results indicated that specimens from the two locations are different in size and maturity but the ingestion of plastic is widespread, with microplastics (fragments and filaments) abundantly present in nearly all samples while macroplastics were found in the larger specimens, collected in one of the two locations. Spectroscopic analysis revealed that the most abundant polymers in MP fragments were polystyrene, polyethylene and polypropylene, whereas MP filaments were identified mainly as nylon 6, acrylic and polyester. MaP were composed mainly of weathered polyethylene or polypropylene. The expression of VTG was observed in the liver of 60% of all male specimens from both locations. The results of this study represent a first evidence that the ingestion of plastic pollution may alter endocrine system function in adult fish T. Trachurus and warrants further research.
Collapse
Affiliation(s)
- Tatiana Chenet
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Annalaura Mancia
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Via Vaccara 61, 91026, Mazara del Vallo, TP, Italy
| | - Fabio Falsone
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Via Vaccara 61, 91026, Mazara del Vallo, TP, Italy
| | - Danilo Scannella
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Via Vaccara 61, 91026, Mazara del Vallo, TP, Italy
| | - Carmela Vaccaro
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44122, Ferrara, Italy
| | - Andrea Baldi
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Martina Catani
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Luisa Pasti
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
122
|
Marczynski M, Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. BIOPHYSICS REVIEWS 2021; 2:031302. [PMID: 38505633 PMCID: PMC10903497 DOI: 10.1063/5.0054075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 03/21/2024]
Abstract
A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.
Collapse
|
123
|
Muñiz-González AB, Silva CJM, Patricio Silva AL, Campos D, Pestana JLT, Martínez-Guitarte JL. Suborganismal responses of the aquatic midge Chironomus riparius to polyethylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146981. [PMID: 34088153 DOI: 10.1016/j.scitotenv.2021.146981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Freshwater riverbeds are a major repository of microplastics (MPs) from inland activities. Benthic macroinvertebrates that live in close contact with sediments seem to ingest a considerable amount of such plastic particles. The effects of MPs on life-history traits are relatively well-known, but the suborganismal mechanisms underlying such effects remain unclear. This study addressed the potential effects of low-density polyethylene (LDPE) MPs on Chironomus riparius larvae at cellular and molecular levels. Fourth instar C. riparius larvae were exposed to 0.025 and 2.5 g/kg LDPE of dry sediment (sizes: <32 and 32-45 μm; with irregular shape) under laboratory conditions for 48 h. These short-term exposures to environmental concentrations of LDPE MPs induced changes in the energy reserves (mostly by decreasing carbohydrates and increasing lipids), increased antioxidant and detoxification responses (tGSH, CAT, and GST), and induced increases in the activity of AChE (related to neurotransmission). In addition, at the gene level, exposure to MPs modified mRNA levels of InR, Dis, EcR, Dronc, Met (endocrine system), Def (immune system), PARP, ATM, NLK, and Decay (DNA repair), generating important alterations in the C. riparius development and response to unfavorable situations. This study provides new evidence of the effects of LDPE MPs at the suborganismal level, filling the gap in knowledge regarding the mechanisms underlying the toxicity of MPs and spotlighting gene expression analyses as early indicators of MP toxicity in C. riparius which were confirmed by Integrated biomarker response analyses highlighting the gene expression as sensible and useful endpoints for LPDE pollution in freshwaters. These results, coupled with previous investigations on responses at the organismal level, emphasizes the potential adverse effects of LDPE MPs on C. riparius, which may compromise freshwater benthic communities, considering its ecological role within these habitats.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Toxicology and Biology Group, Mathematical and Fluid Physics, Department, Sciences Faculty, UNED, Madrid, Spain.
| | - Carlos J M Silva
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana L Patricio Silva
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diana Campos
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - José-Luis Martínez-Guitarte
- Environmental Toxicology and Biology Group, Mathematical and Fluid Physics, Department, Sciences Faculty, UNED, Madrid, Spain
| |
Collapse
|
124
|
Elizalde-Velázquez GA, Gómez-Oliván LM. Microplastics in aquatic environments: A review on occurrence, distribution, toxic effects, and implications for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146551. [PMID: 33773347 DOI: 10.1016/j.scitotenv.2021.146551] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are fragments, fibers, granules, flakes and spheres with a diameter or length of less than 5 mm. These may eventually end up in the aquatic environment by the progressive breakdown of larger plastics or via domestic and industrial sewage spillage. In order to better understand the current knowledge in this field, we carried out and extensive literature research to retrieve articles mainly focusing on the occurrence and distribution of MPs in aquatic matrix as well as their impacts on aquatic organisms and human derived cells. Once in the environment, MPs may be transported via wind and water movement, affecting their spatial distribution. Furthermore, density may also affect the buoyancy and vertical distribution of these pollutants. Consequently, MPs are ubiquitously distributed in fresh- and marine- water systems, posing a real threat to aquatic organisms. Furthermore, trophic transfer and biomagnification processes represent a viable route for the input of MPs to humans. This paper focuses on (1) Outline the occurrence of MPs in worldwide aquatic ecosystems; (2) Investigate the factors affecting the abundance and distribution of MPs in aquatic ecosystems; (3) Provide an in-depth discussion about the harmful effects that MPs poses to aquatic organisms; (4) Summarizes the possible mechanisms by which MPs may induce toxic effects on humans.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
125
|
Thomas PJ, Perono G, Tommasi F, Pagano G, Oral R, Burić P, Kovačić I, Toscanesi M, Trifuoggi M, Lyons DM. Resolving the effects of environmental micro- and nanoplastics exposure in biota: A knowledge gap analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146534. [PMID: 34030291 DOI: 10.1016/j.scitotenv.2021.146534] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 05/25/2023]
Abstract
The pervasive spread of microplastics (MPs) and nanoplastics (NPs) has raised significant concerns on their toxicity in both aquatic and terrestrial environments. These polymer-based materials have implications for plants, wildlife and human health, threatening food chain integrity and ultimate ecosystem resilience. An extensive - and growing - body of literature is available on MP- and NP-associated effects, including in a number of aquatic biota, with as yet limited reports in terrestrial environments. Effects range from no detectable, or very low level, biological effects to more severe outcomes such as (but not limited to) increased mortality rates, altered immune and inflammatory responses, oxidative stress, genetic damage and dysmetabolic changes. A well-established exposure route to MPs and NPs involves ingestion with subsequent incorporation into tissues. MP and NP exposures have also been found to lead to genetic damage, including effects related to mitotic anomalies, or to transmissible damage from sperm cells to their offspring, especially in echinoderms. Effects on the proteome, transcriptome and metabolome warrant ad hoc investigations as these integrated "omics" workflows could provide greater insight into molecular pathways of effect. Given their different physical structures, chemical identity and presumably different modes of action, exposure to different types of MPs and NPs may result in different biological effects in biota, thus comparative investigations of different MPs and NPs are required to ascertain the respective effects. Furthermore, research on MP and NP should also consider their ability to act as vectors for other toxicants, and possible outcomes of exposure may even include effects at the community level, thus requiring investigations in mesocosm models.
Collapse
Affiliation(s)
- Philippe J Thomas
- Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Genevieve Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Franca Tommasi
- "Aldo Moro" Bari University, Department of Biology, I-70125 Bari, Italy
| | | | - Rahime Oral
- Ege University, Faculty of Fisheries, TR-35100 Bornova, İzmir, Turkey
| | - Petra Burić
- Juraj Dobrila University of Pula, HR-52100 Pula, Croatia
| | - Ines Kovačić
- Juraj Dobrila University of Pula, HR-52100 Pula, Croatia
| | | | | | - Daniel M Lyons
- Center for Marine Research, Ruđer Bošković Institute, HR-52210 Rovinj, Croatia.
| |
Collapse
|
126
|
Azevedo-Santos VM, Brito MFG, Manoel PS, Perroca JF, Rodrigues-Filho JL, Paschoal LRP, Gonçalves GRL, Wolf MR, Blettler MCM, Andrade MC, Nobile AB, Lima FP, Ruocco AMC, Silva CV, Perbiche-Neves G, Portinho JL, Giarrizzo T, Arcifa MS, Pelicice FM. Plastic pollution: A focus on freshwater biodiversity. AMBIO 2021; 50:1313-1324. [PMID: 33543362 PMCID: PMC8116388 DOI: 10.1007/s13280-020-01496-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/29/2020] [Accepted: 12/28/2020] [Indexed: 05/23/2023]
Abstract
Plastics are dominant pollutants in freshwater ecosystems worldwide. Scientific studies that investigated the interaction between plastics and freshwater biodiversity are incipient, especially if compared to the marine realm. In this review, we provide a brief overview of plastic pollution in freshwater ecosystems around the world. We found evidence of plastic ingestion by 206 freshwater species, from invertebrates to mammals, in natural or semi-natural ecosystems. In addition, we reported other consequences of synthetic polymers in freshwater ecosystems-including, for instance, the entanglement of animals of different groups (e.g., birds). The problem of plastic pollution is complex and will need coordinated actions, such as recycling programs, correct disposal, stringent legislation, regular inspection, replacement of synthetic polymers with other materials, and ecological restoration. Current information indicates that the situation in freshwater ecosystems may be as detrimental as the pollution found in the ocean, although highly underappreciated.
Collapse
Affiliation(s)
| | - Marcelo F G Brito
- Programa de Pós-Graduação Em Ecologia E Conservação, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Pedro S Manoel
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Júlia F Perroca
- Laboratório de Biologia de Camarões Marinhos E de Água Doce (LABCAM), Universidade Estadual Paulista "Júlio de Mesquita Filho", Bauru, SP, Brazil
- Laboratório de Ecologia, Universidade Do Estado de Santa Catarina, Laguna, SC, Brazil
| | - Jorge Luiz Rodrigues-Filho
- Laboratório de Ecologia, Universidade Do Estado de Santa Catarina, Laguna, SC, Brazil
- Programa de Pós-Graduação Em Planejamento Territorial e Desenvolvimento Socioambiental, Universidade Do Estado de Santa Catarina, Laguna, SC, Brazil
| | - Lucas R P Paschoal
- Faculdade de Tecnologia Nilo de Stéfani (FATEC), Jaboticabal, SP, Brazil
| | | | - Milena R Wolf
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | | | - Marcelo C Andrade
- Núcleo de Ecologia Aquática E Pesca da Amazônia and Laboratório de Biologia Pesqueira E Manejo Dos Recursos Aquáticos, Grupo de Ecologia Aquática, Universidade Federal Do Pará, 2651 Avenida Perimetral, Belém, PA, Brazil
| | - André B Nobile
- Ictiológica Consultoria Ambiental ME/LTDA, Botucatu, SP, Brazil
| | - Felipe P Lima
- Ictiológica Consultoria Ambiental ME/LTDA, Botucatu, SP, Brazil
| | - Ana M C Ruocco
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | | | - Gilmar Perbiche-Neves
- Laboratório de Plâncton, Departamento de Hidrobiologia, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Jorge L Portinho
- Departamento de Ecologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Tommaso Giarrizzo
- Núcleo de Ecologia Aquática E Pesca da Amazônia and Laboratório de Biologia Pesqueira E Manejo Dos Recursos Aquáticos, Grupo de Ecologia Aquática, Universidade Federal Do Pará, 2651 Avenida Perimetral, Belém, PA, Brazil
| | - Marlene S Arcifa
- Departamento de Biologia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando M Pelicice
- Núcleo de Estudos Ambientais, Universidade Federal Do Tocantins, Porto Nacional, TO, Brazil
| |
Collapse
|
127
|
Wang Z, Fan L, Wang J, Zhou J, Ye Q, Zhang L, Xu G, Zou J. Impacts of microplastics on three different juvenile shrimps: Investigating the organism response distinction. ENVIRONMENTAL RESEARCH 2021; 198:110466. [PMID: 33189744 DOI: 10.1016/j.envres.2020.110466] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The effects of microplastics (MPs) on aquaculture animals have raised increasing concern, but studies on MPs contamination in cultured shrimp are still limited. Therefore, the responses of three widely farmed shrimp species to MPs, including Penaeus monodon (P. monodon), Marsupenaeus japonicas (M. japonicus) and Litopenaeus vannamei (L. vannamei), were investigated in this study. The results showed that the mortality of P. monodon, M. japonicus and L. vannamei were 47%, 53% and 20% respectively after 48 h of 300 mg/L MPs exposure. After 48 h of 100 mg/L MPs exposure, for P. monodon, the MPs content in water and excreta were significantly different from that in M. japonicus and L. vannamei. For genes expressions, the expression of catalase (Cat) was significantly increased and the expression of apoptosis protein (IAP) was inhibited in these three shrimps, but only the expression of Lysozyme (Lys) was increased in L. vannamei after MPs exposure. After 48 h of depuration, the Cat and IAP expression of P. monodon and M. japonicus was significant decreased while the IAP and Lys expression of L. vannamei still maintained at a high level. The results suggested that the metabolic rate of MPs in P. monodon was significantly higher than that in M. japonicus and L. vannamei. The tolerance of L. vannamei to MPs was higher than that of P. monodon and M. japonicas and their different responses in anti-microbial gene might be one of the reasons for the difference of their mortality. This study provides the first report comparing the organism response distinction in cultured shrimp and enriching to the understanding of the impact of MPs on ecosystem.
Collapse
Affiliation(s)
- Zhenlu Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lanfen Fan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiang Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiao Ye
- College of Life Sciences, Huizhou University, Huizhou, 516007, Guangdong, China
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
128
|
Wang Z, Fan L, Wang J, Xie S, Zhang C, Zhou J, Zhang L, Xu G, Zou J. Insight into the immune and microbial response of the white-leg shrimp Litopenaeus vannamei to microplastics. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105377. [PMID: 34087762 DOI: 10.1016/j.marenvres.2021.105377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are a new type of environmental pollutant. To investigate the response of shrimp and their microflora to MPs, Litopenaeus vannamei (L. vannamei) was exposed to different concentrations of MPs (0, 50, 500, and 5000 μg/L, i.e., C, L, M and H groups) for 48 h. The survival rate, intake of MPs, immune-related gene expression and microbial response under MP exposure were detected. The results showed that the survival rate in the H group was significantly lower than those in the C, L and M groups, while the relative expression levels of proPO, TLR and ALF in the M and H groups were significantly higher than those in the C and L groups. For the microbial response, microbial community richness in the L group was significantly decreased, while community richness and diversity in the H group were significantly increased compared with those in the C group. The relative abundances of 3, 4 and 11 taxa were significantly changed after MP treatment at the phylum, class and genus levels, respectively. The results suggested that short-term exposure to low concentrations of MPs did not cause immune defense responses or death but affected the balance of bacterial composition in shrimp. Exposure to high concentrations of MPs can induce immune responses and microbial changes and can even cause death in shrimp. These findings increase our understanding of MP impacts on aquatic organisms.
Collapse
Affiliation(s)
- Zhenlu Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lanfen Fan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Chaonan Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiang Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
129
|
Micro and Nano Plastics Distribution in Fish as Model Organisms: Histopathology, Blood Response and Bioaccumulation in Different Organs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135768] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micro- and nano-plastic (MP/NP) pollution represents a threat not only to marine organisms and ecosystems, but also a danger for humans. The effects of these small particles resulting from the fragmentation of waste of various types have been well documented in mammals, although the consequences of acute and chronic exposure are not fully known yet. In this review, we summarize the recent results related to effects of MPs/NPs in different species of fish, both saltwater and freshwater, including zebrafish, used as model organisms for the evaluation of human health risk posed by MNPs. The expectation is that discoveries made in the model will provide insight regarding the risks of plastic particle toxicity to human health, with a focus on the effect of long-term exposure at different levels of biological complexity in various tissues and organs, including the brain. The current scientific evidence shows that plastic particle toxicity depends not only on factors such as particle size, concentration, exposure time, shape, and polymer type, but also on co-factors, which make the issue extremely complex. We describe and discuss the possible entry pathways of these particles into the fish body, as well as their uptake mechanisms and bioaccumulation in different organs and the role of blood response (hematochemical and hematological parameters) as biomarkers of micro- and nano-plastic water pollution.
Collapse
|
130
|
Wei XF, Bohlén M, Lindblad C, Hedenqvist M, Hakonen A. Microplastics generated from a biodegradable plastic in freshwater and seawater. WATER RESEARCH 2021; 198:117123. [PMID: 33865028 DOI: 10.1016/j.watres.2021.117123] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Biodegradable polymers have been regarded as a promising solution to tackle the pollutions caused by the wide use of conventional polymers. However, during the biodegradation process, the material fragmentation leads to microplastics. In this work, the formation of microplastics from biodegradable poly (butylene adipate-co-terephthalate) (PBAT) in different aquatic environments was investigated and compared with the common non-biodegradable low-density polyethylene (LDPE). The results showed that a much larger quantity of plastic fragments/particles were formed in all aquatic environments from PBAT than from LDPE. In addition, UV-A pretreatment, simulating the exposure to sunlight, increased the rate of PBAT microplastic formation significantly. The size distribution and shapes of the formed microplastics were systematically studied, along with changes in the polymer physicochemical properties such as molecular weight, thermal stability, crystallinity, and mechanical properties, to reveal the formation process of microplastics. This study shows that the microplastic risk from biodegradable polymers is high and needs to be further evaluated with regards to longer timeframes, the biological fate of intermediate products, and final products in freshwater, estuarine and seawater natural habitats. Especially, considering that these microplastics may have good biodegradability in warmer 20 - 25° water but will most likely be highly persistent in the world's cold deep seas.
Collapse
Affiliation(s)
- Xin-Feng Wei
- Department of Polymers and Composites, RISE Research Institutes of Sweden, SE-501 15 Borås, Sweden; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Martin Bohlén
- Department of Polymers and Composites, RISE Research Institutes of Sweden, SE-501 15 Borås, Sweden
| | - Catrin Lindblad
- Department of Polymers and Composites, RISE Research Institutes of Sweden, SE-501 15 Borås, Sweden
| | - Mikael Hedenqvist
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Aron Hakonen
- Department of Chemistry, Biomaterials and Textiles, RISE Research Institutes of Sweden, SE-501 15 Borås, Sweden.
| |
Collapse
|
131
|
Santos D, Luzio A, Matos C, Bellas J, Monteiro SM, Félix L. Microplastics alone or co-exposed with copper induce neurotoxicity and behavioral alterations on zebrafish larvae after a subchronic exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105814. [PMID: 33933832 DOI: 10.1016/j.aquatox.2021.105814] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs, <5 mm) have been frequently detected in aquatic ecosystems, representing both health and ecological concerns. However data about the combined effects of MPs and other contaminants is still limited. This study aimed to evaluate the impact of MPs and the heavy metal copper (Cu) on zebrafish (Danio rerio) larvae development and behavior. Zebrafish embryos were subchronically exposed to MPs (2 mg/L), two sub-lethal concentrations of Cu (60 and 125 µg/L) and binary mixtures of MPs and Cu using the same concentrations, from 2-h post fertilization until 14 days post fertilization. Lethal and sub-lethal responses (mortality, hatching, body length) were evaluated during the embryogenesis period, and locomotor, avoidance, anxiety and shoaling behaviors, and acetylcholinesterase (AChE) activity were measured at 14 dpf. The results showed that survival of larvae was reduced in groups exposed to MPs, Cu and Cu+MPs. Regarding the behavioral patterns, the higher Cu concentration and mixtures decreased significantly the mean speed, the total distance traveled and the absolute turn angle, demonstrating an adverse effect on swimming competence of zebrafish larvae. Exposure to MPs and Cu, alone or combined, also affected avoidance behavior of zebrafish, with larvae not reacting to the aversive stimulus. There was a significant inhibition of AChE activity in larvae exposed to all experimental groups, compared to the control group. Moreover, a higher inhibition of AChE was noticed in larvae exposed to MPs and both Cu+MPs groups, comparatively to the Cu alone groups. Our findings demonstrate the adverse effects of MPs, alone or co-exposed with Cu, on fish early life stages behavior. This study highlights that MPs and heavy metals may have significant impacts on fish population fitness by disrupting locomotor and avoidance behaviors.
Collapse
Affiliation(s)
- Dércia Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados 5000-801, Vila Real, Portugal.
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados 5000-801, Vila Real, Portugal
| | - Carlos Matos
- Chemistry Department, University of Trás-os-Montes and Alto Douro, Quinta de Prados 5000-801, Vila Real, Portugal
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados 5000-801, Vila Real, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados 5000-801, Vila Real, Portugal; Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto, Rua Alfredo Allen, n° 208, 4200-135 Porto, Portugal
| |
Collapse
|
132
|
Estrela FN, Guimarães ATB, Araújo APDC, Silva FG, Luz TMD, Silva AM, Pereira PS, Malafaia G. Toxicity of polystyrene nanoplastics and zinc oxide to mice. CHEMOSPHERE 2021; 271:129476. [PMID: 33434826 DOI: 10.1016/j.chemosphere.2020.129476] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 05/04/2023]
Abstract
The toxicity of zinc oxide (ZnO NPs) and polystyrene nanoplastics (PS NaPs) has been tested in different animal models; however, knowledge about their impact on mice remains incipient. The aim of the current study is to evaluate the effects of these nanomaterials on Swiss mice after their individual exposure to a binary combination of them. The goal was to investigate whether short exposure (three days) to an environmentally relevant dose (14.6 ng/kg, i.p.) of these pollutants would have neurotoxic, biochemical and genotoxic effects on the modelss. Data in the current study have shown that the individual exposure of these animals has led to cognitive impairment based on the object recognition test, although the exposure experiment did not cause locomotor and anxiogenic or anxiolitic-like behavioral changes in them. This outcome was associated with increased nitric oxide levels, thiobarbituric acid reactive species, reduction in acetylcholinesterase activity and with the accumulation of nanomaterials in their brains. Results recorded for the assessed parameters did not differ between the control group and the groups exposed to the binary combination of pollutants. However, both the individual and the combined exposures caused erythrocyte DNA damages associated with hypercholesterolemic and hypertriglyceridemic conditions due to the presence of nanomaterials. Based on the results, the toxicological potential of ZnO NPs and PS NaPs in the models was confirmed and it encouraged further in-depth investigations about factors explaining the lack of additive or synergistic effect caused by the combined exposure to the assessed pollutants.
Collapse
Affiliation(s)
- Fernanda Neves Estrela
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Abraão Tiago Batista Guimarães
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | | | - Fabiano Guimarães Silva
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Thiarlen Marinho da Luz
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Urutaí, Brazil
| | - Abner Marcelino Silva
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Urutaí, Brazil
| | - Paulo Sergio Pereira
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Guilherme Malafaia
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil; Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano - Campus Urutaí, Urutaí, Brazil.
| |
Collapse
|
133
|
Chen KJ, Chen MC, Chen TH. Plastic ingestion by fish in the coastal waters of the Hengchun Peninsula, Taiwan: Associated with human activity but no evidence of biomagnification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112056. [PMID: 33610942 DOI: 10.1016/j.ecoenv.2021.112056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/24/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Plastic pollution has become a global threat to the marine environment. Many studies have indicated that marine creatures are at risk of plastic ingestion, but relevant studies are still lacking in Taiwan. In this study, we quantified plastic debris ingestion by marine fish in the coastal waters of the Hengchun Peninsula, including the Kenting National park, located in southern Taiwan. We also investigated possible biotic and abiotic factors associated with the quantity of ingested plastic by fish. In the 117 fish samples we examined, 94.87% of them had ingested plastic debris, and all of the observed debris was microplastics (<5 mm). The average number of ingested microplastics was 5.6 ± 5.1 pieces per fish (ranged 0-32 pieces per fish). The major type and color of microplastics were fiber (96%) and blue (43%), respectively. The quantity of ingested microplastics was not significantly different between the reef and pelagic fish. However, reef fish from the more populated west and south coast ingested more microplastics than that from the east coast, suggesting that microplastic ingestion by fish is related to human activity. Regarding biotic factors, the size, trophic level, and taxonomic family of the fish were not significantly associated with the number of ingested microplastics. Our results, the first investigation of microplastic ingestion in marine fish of Taiwan, show a high prevalence of microplastic ingestion but no biomagnification of microplastics in the fish. More research is much needed to better characterize the biological and ecological impacts of plastic debris on fish.
Collapse
Affiliation(s)
- Kuan-Ju Chen
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan
| | - Mei-Chi Chen
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
| | - Te-Hao Chen
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
| |
Collapse
|
134
|
Chen Y, Wu Q, Wang J, Song Y. RETRACTED: Visible-light-induced photocatalytic mitigation of ibuprofen using magnetic black TiO 2-x/CaFe 2O 4 decorated on diatomaceous earth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142960. [PMID: 33109374 DOI: 10.1016/j.scitotenv.2020.142960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editors-in-Chief. Jun Wang and Youtao Song are listed as authors on the manuscript but have informed the journal that this occurred without their consent or knowledge of the submission and the email addresses provided were fake. Jun Wang and Youtao Song do not support the scientific conclusions of the article. Qiong Wu and Yan Chen furthermore note significant scientific errors with the article (including the wrong deconvolution method used for analysis of the XPS data, misuse of some characterization images and inability to reproduce some of the photodegradation data). One of the conditions of submission of a paper for publication is that all authors must be aware of and agree with its submission. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Yan Chen
- College of Environment, Liaoning University, Shenyang, PR China
| | - Qiong Wu
- College of Environment, Liaoning University, Shenyang, PR China
| | - Jun Wang
- College of Environment, Liaoning University, Shenyang, PR China; College of Chemistry, Liaoning University, Shenyang, PR China.
| | - Youtao Song
- College of Environment, Liaoning University, Shenyang, PR China.
| |
Collapse
|
135
|
Microplastics in Surface Waters and Sediments from Guangdong Coastal Areas, South China. SUSTAINABILITY 2021. [DOI: 10.3390/su13052691] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microplastic is an emerging global pollutant that have attracted a great deal of attention from researchers and the public. Guangdong Province has a large population and a relatively well-developed economy, but lacks a modern pollution control system. Guangdong has a long coastline with varying levels of pollution, and little research has been conducted on microplastics. Therefore, we investigated the level of microplastic pollution in coastal areas of Guangdong Province, and the abundance of microplastics in surface waters and sediments at 13 sampling sites. The abundance of microplastics in surface water and sediment samples ranged from 850 to 3500 items/L and 433.3 to 4166.3 items/kg, respectively. Fiber is the main type of microplastics in both surface water and sediment. The sampled microplastics were typically transparent. Raman results show that the surface water sample mainly includes rayon (38.2%), polyethylene terephthalate (16.4%), and ethylene/vinyl acetate copolymer (12.7%). This study used the pollution load index method to evaluate the pollution risk of microplastics along the coast of Guangdong, and provided the basis for the formulation of environmental policy.
Collapse
|
136
|
Wang T, Hu M, Xu G, Shi H, Leung JYS, Wang Y. Microplastic accumulation via trophic transfer: Can a predatory crab counter the adverse effects of microplastics by body defence? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142099. [PMID: 32911152 DOI: 10.1016/j.scitotenv.2020.142099] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 08/29/2020] [Indexed: 05/07/2023]
Abstract
Microplastics are considered detrimental to aquatic organisms due to their potential accumulation along food chains. Thus, it is puzzling why some of them appear unaffected by microplastics. Here, we assessed the contribution of water filtration and food consumption to microplastic accumulation in a predatory marine crab (Charybdis japonica) and examined the associated impacts of microplastics (particle size: 5 μm) following ingestion for one week. Results showed that water filtration and food consumption contributed similarly to the accumulation of microplastics, which were distributed among organs in this order: hepatopancreas > guts > gills > muscles. Yet, biomagnification (i.e. accumulation through consumption of microplastic-contaminated mussels) did not occur possibly due to egestion of microplastics. The crabs upregulated detoxification capacity (EROD) and antioxidant defence (GST) in response to the microplastics accumulated in their tissues. However, these defence mechanisms collapsed when the microplastic concentration in hepatopancreas exceeded ~3 mg g-1, leading to severe hepatic injury (elevated AST and ALT) and impaired neural activity (reduced AChE). Our results suggest that marine organisms have an innate capacity to counter the acute effects of microplastics, but there is a limit beyond which the defence mechanisms fail and hence physiological functions are impaired. As microplastic pollution will deteriorate in the future, the fitness and survival of marine organisms may be undermined by microplastics, affecting the stability and functioning of marine ecosystems.
Collapse
Affiliation(s)
- Ting Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guangen Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jonathan Y S Leung
- Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia 5005, Australia; Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
137
|
Wang G, Lu J, Li W, Ning J, Zhou L, Tong Y, Liu Z, Zhou H, Xiayihazi N. Seasonal variation and risk assessment of microplastics in surface water of the Manas River Basin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111477. [PMID: 33091771 DOI: 10.1016/j.ecoenv.2020.111477] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The ubiquity of microplastics in the environment has caused great influence to ecosystems and seriously threatened human health. To better understand the variation in microplastics in different seasons in an inland freshwater environment and determine the sources of microplastic pollution and its migration features, this study investigated the characteristics of microplastic pollution during dry (April) and wet (July) seasons in surface water of the Manas River Basin, China. The size, color, shape, area distribution and compound composition of microplastics were studied. Moreover, the risk of microplastic contamination was explored based on risk assessment models. The results demonstrated that the degree of pollution caused by microplastic abundance was minor in this study area. The average abundance of microplastics in April (17 ± 4 items/L) was higher than that in July (14 ± 2 items/L). The range in the abundance of microplastics in April and July were 22 ± 5-14 ± 3 items/L and 19 ± 2-10 ± 1 items/L, respectively. Highly hazardous polymers such as Polyvinyl chloride (PVC) and Polycarbonate (PC) have a significant impact on the results of the evaluation of the presence of microplastics. This study is an important reference for understanding the characteristics of the seasonal variation in microplastics in inland freshwater environments and has practical significance, as it will allow relevant agencies to accurately assess the pollution level of microplastics in different seasons. It is of practical significance to understand the sources and sinks of microplastics in inland freshwater environment.
Collapse
Affiliation(s)
- Gaoliang Wang
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jianjiang Lu
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Wanjie Li
- Environmental Monitoring Station of the First Division of Xinjiang Production and Construction Corps, Alaer 843300, China
| | - Jianying Ning
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832002, China
| | - Li Zhou
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yanbin Tong
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zilong Liu
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Hongjuan Zhou
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Nuerguli Xiayihazi
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
138
|
Du S, Zhu R, Cai Y, Xu N, Yap PS, Zhang Y, He Y, Zhang Y. Environmental fate and impacts of microplastics in aquatic ecosystems: a review. RSC Adv 2021; 11:15762-15784. [PMID: 35481192 PMCID: PMC9031200 DOI: 10.1039/d1ra00880c] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022] Open
Abstract
Wide usage of plastic products leads to the global occurrence of microplastics (MPs) in the aquatic environment. Due to the small size, they can be bio-ingested, which may cause certain health effects. The present review starts with summarizing the main sources of various types of MPs and their occurrences in the aquatic environment, as well as their transportation and degradation pathways. The analysis of migration of MPs in water environments shows that the ultimate fate of most MPs in water environments is cracked into small fragments and sinking into the bottom of the ocean. The advantages and disadvantages of existing methods for detection and analysis of MPs are summarized. In addition, based on recent researches, the present review discusses MPs as carriers of organic pollutants and microorganisms, and explores the specific effects of MPs on aquatic organisms in the case of single and combined pollutants. Finally, by analysing the causes and influencing factors of their trophic transfer, the impact of MPs on high-level trophic organisms is explored. The sources, fate and impacts of microplastics in aquatic ecosystems.![]()
Collapse
Affiliation(s)
- Sen Du
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| | - Rongwen Zhu
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| | - Yujie Cai
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| | - Ning Xu
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| | - Pow-Seng Yap
- Department of Civil Engineering
- Xi'an Jiaotong-Liverpool University
- Suzhou
- China
| | - Yunhai Zhang
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| | - Yide He
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| | - Yongjun Zhang
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| |
Collapse
|
139
|
Johannessen C, Shetranjiwalla S. Role of Structural Morphology of Commodity Polymers in Microplastics and Nanoplastics Formation: Fragmentation, Effects and Associated Toxicity in the Aquatic Environment. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 259:123-169. [PMID: 34652560 DOI: 10.1007/398_2021_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the continued growth in plastic production, its ubiquitous use and insufficient waste management and disposal, the increased levels of plastics in the environment have led to growing ecological concerns. The breakdown of these plastic macromolecules to smaller micro and nanosized particles and their detection in the aerial, aquatic, marine and terrestrial environments has been reviewed extensively, especially for thermoplastics. However, the formation of micro and nanoplastics has typically been explained as a physical abrasion process, largely overlooking the underlying chemical structure-morphology correlations to the degradation mechanisms of the plastics. This is particularly true for the common commodity thermosets. This review focuses on the degradation pathways for the most widely produced commodity thermoplastics and thermosets into microplastics (MP)s and nanoplastics (NP)s, as well as their behaviour and associated toxicity. Special emphasis is placed on NPs, which are associated with greater risks for toxicity compared to MPs, due to their higher surface area to volume ratios. This review also assesses the current state of standardized detection and quantification methods as well as comprehensive regulations for these fragments in the aquatic environment.
Collapse
|
140
|
Usman S, Abdull Razis AF, Shaari K, Amal MNA, Saad MZ, Mat Isa N, Nazarudin MF, Zulkifli SZ, Sutra J, Ibrahim MA. Microplastics Pollution as an Invisible Potential Threat to Food Safety and Security, Policy Challenges and the Way Forward. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9591. [PMID: 33371479 PMCID: PMC7767491 DOI: 10.3390/ijerph17249591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Technological advances, coupled with increasing demands by consumers, have led to a drastic increase in plastic production. After serving their purposes, these plastics reach our water bodies as their destination and become ingested by aquatic organisms. This ubiquitous phenomenon has exposed humans to microplastics mostly through the consumption of sea food. This has led the World Health Organization (WHO) to make an urgent call for the assessment of environmental pollution due to microplastics and its effect on human health. This review summarizes studies between 1999 and 2020 in relation to microplastics in aquatic ecosystems and human food products, their potential toxic effects as elicited in animal studies, and policies on their use and disposal. There is a paucity of information on the toxicity mechanisms of microplastics in animal studies, and despite their documented presence in food products, no policy has been in place so far, to monitor and regulates microplastics in commercial foods meant for human consumption. Although there are policies and regulations with respect to plastics, these are only in a few countries and in most instances are not fully implemented due to socioeconomic reasons, so they do not address the problem across the entire life cycle of plastics from production to disposal. More animal research to elucidate pathways and early biomarkers of microplastic toxicity that can easily be detected in humans is needed. This is to create awareness and influence policies that will address this neglected threat to food safety and security.
Collapse
Affiliation(s)
- Sunusi Usman
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.U.); (K.S.)
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.U.); (K.S.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.U.); (K.S.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Noor Azmai Amal
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (M.N.A.A.); (S.Z.Z.); (J.S.); (M.A.I.)
- Aquatic Animal Health and Therapeutics Laboratory (Aqua Health), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (M.Z.S.); (M.F.N.)
| | - Mohd Zamri Saad
- Aquatic Animal Health and Therapeutics Laboratory (Aqua Health), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (M.Z.S.); (M.F.N.)
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Laboratory of Vaccines and Biomolecules (VacBio), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Farhan Nazarudin
- Aquatic Animal Health and Therapeutics Laboratory (Aqua Health), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (M.Z.S.); (M.F.N.)
| | - Syaizwan Zahmir Zulkifli
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (M.N.A.A.); (S.Z.Z.); (J.S.); (M.A.I.)
| | - Jumria Sutra
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (M.N.A.A.); (S.Z.Z.); (J.S.); (M.A.I.)
| | - Musa Adamu Ibrahim
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (M.N.A.A.); (S.Z.Z.); (J.S.); (M.A.I.)
| |
Collapse
|
141
|
Ecotoxicoproteomic assessment of microplastics and plastic additives in aquatic organisms: A review. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100713. [DOI: 10.1016/j.cbd.2020.100713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/03/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
|
142
|
Zhang R, Wang M, Chen X, Yang C, Wu L. Combined toxicity of microplastics and cadmium on the zebrafish embryos (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140638. [PMID: 32679492 DOI: 10.1016/j.scitotenv.2020.140638] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
The effects of microplastics (MPs) on organisms have drawn a worldwide attention in the recent years. In this study, zebrafish embryos were employed to assess the combined effects of MPs and cadmium (Cd) on the aquatic organisms. Lethal and sublethal effects were recorded at 8, 24, 32, 48 and 96 hpe (hour post exposure, hpe). The exposure under a series concentration of MPs and/or an environmental level Cd has the negative impacts on survival and heart rate (HR). And there was a positive correlation between MPs concentration and lethal and sublethal toxicity under combined exposure. The physiological parameters showed that the mixture of two stressors had the antagonistic toxicity under low concentration of MPs (0.05, 0.1 mg/L) while the synergistic sublethal toxicity under high levels of MPs (1, 5, 10 mg/L) on zebrafish embryos. Both the scanning electron micrographs (SEM) and fluorescence microscope photos suggested an electrostatic interaction and weak physical forces generated between MPs and chorion membrane. It is inferred that the 10 μm MPs could induce the protective effect of chorion membrane and cause complex toxicities with Cd. But when it involved with other pollutants, the toxic effects and mechanism are still waiting to be figured out.
Collapse
Affiliation(s)
- Run Zhang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Meng Wang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaoping Chen
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Changming Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
143
|
Fu Z, Chen G, Wang W, Wang J. Microplastic pollution research methodologies, abundance, characteristics and risk assessments for aquatic biota in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115098. [PMID: 32629309 DOI: 10.1016/j.envpol.2020.115098] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 05/21/2023]
Abstract
The widespread presence of microplastics in global aquatic ecosystems has aroused growing concern about the potential impacts of microplastics on aquatic biota. In marine and freshwater environments, microplastics are distributed pervasively within water bodies from the upper water column to the bottom layer, making them available to a large variety of aquatic organisms that inhabit different locations. The ingestion of microplastic particles may cause harm to aquatic organisms. Although China's aquatic environments have been seriously polluted by microplastics, the impacts of microplastics on aquatic biota remain to be elucidated. This review summarizes the current state of knowledge about microplastic pollution in aquatic biota in China; specifically, the concentration and characteristics of microplastic particles in aquatic organisms from both seawater and freshwater environments are discussed. The results showed that various aquatic organisms in China have been found to consume microplastics. The average number of microplastic pieces discovered in biota ranged from 0.07 particles to 164 particles per individual in different organisms. The most frequently observed colors of microplastics detected in biota were blue and transparent, and the detected microplastics mainly consisted of fibers. In addition, the impacts of microplastics on aquatic organisms, including physical impacts, chemical impacts, the trophic transfer of microplastics and the potential risks to humans, were discussed. Finally, knowledge gaps were identified in order to guide future studies.
Collapse
Affiliation(s)
- Zhilu Fu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Protection and Utilization of Marine Resource, Guangxi University for Nationalities, Nanning, 530008, China
| | - Guanglong Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, 530007, China.
| |
Collapse
|
144
|
Parenti CC, Binelli A, Caccia S, Della Torre C, Magni S, Pirovano G, Casartelli M. Ingestion and effects of polystyrene nanoparticles in the silkworm Bombyx mori. CHEMOSPHERE 2020; 257:127203. [PMID: 32480083 DOI: 10.1016/j.chemosphere.2020.127203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Information on the occurrence and effects of nanoplastics in ecosystems worldwide currently represent one of the main challenges from the ecotoxicological point of view. This is particularly true for terrestrial environments, in which nanoplastics are released directly by human activities or derive from the fragmentation of larger plastic items incorrectly disposed. Since insects can represent a target for these emerging contaminants in land-based community, the aim of this study was the evaluation of ingestion of 0.5 μm polystyrene nanoplastics and their effects in silkworm (Bombyx mori) larvae, a useful and well-studied insect model. The ingestion of nanoplastics, the possible infiltration in the tissues and organ accumulation were checked by confocal microscopy, while we evaluated the effects due to the administered nanoplastics through a multi-tier approach based on insect development and behaviour assessment, as endpoints at organism level, and the measurements of some biochemical responses associated with the imbalance of the redox status (superoxide dismutase, catalase, glutathione s-transferase, reactive oxygen species evaluation, lipid peroxidation) to investigate the cellular and molecular effects. We observed the presence of microplastics in the intestinal lumen, but also inside the larvae, specifically into the midgut epithelium, the Malpighian tubules and in the haemocytes. The behavioural observations revealed a significant (p < 0.05) increase of erratic movements and chemotaxis defects, potentially reflecting negative indirect effects on B. mori survival and fitness, while neither effect on insect development nor redox status imbalance were measured, with the exception of the significant (p < 0.05) inhibition of superoxide dismutase activity.
Collapse
Affiliation(s)
- C C Parenti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - A Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| | - S Caccia
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055, Portici, Naples, Italy
| | - C Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - S Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - G Pirovano
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - M Casartelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
145
|
Liu S, Wu X, Gu W, Yu J, Wu B. Influence of the digestive process on intestinal toxicity of polystyrene microplastics as determined by in vitro Caco-2 models. CHEMOSPHERE 2020; 256:127204. [PMID: 32470746 DOI: 10.1016/j.chemosphere.2020.127204] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The digestive tract is an important target organ for microplastics (MPs). However, little is known about the effects of digestive treatment on the intestinal toxicity of MPs. In this study, an in vitro digestive process was applied to transform 100 nm and 5 μm polystyrene microplastics (PS-MPs). Intestinal toxicities of original PS-MPs and transformed PS-MPs (t-PS-MPs) were determined using an in vitro Caco-2 monolayer model. Results showed that the digestive process did not alter the chemical constitution of PS-MPs, but formed a corona on the surface of PS-MPs. The 100 nm PS-MPs showed higher intestinal toxicity than 5 μm PS-MPs. Digestive treatment relieved cytotoxicity and transport function disorder of the Caco-2 monolayer induced by the original PS-MPs. Moreover, the combined toxicities of PS-MPs and arsenic were also decreased by digestive treatment. However, the in vitro digestive process increased the proinflammatory effects of PS-MPs. The formation of a corona on the PS-MP surface, which lead to a change in size, Zeta potential, and adsorbed compounds, might induce the above influence of digestive treatment. Our study suggests that direct cytotoxicity assays of PS-MPs might misestimate their intestinal effects, which provide new lights to the toxicity evaluation of PS-MPs by oral exposure.
Collapse
Affiliation(s)
- Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaomei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Weiqing Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Jing Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
146
|
Ding J, Huang Y, Liu S, Zhang S, Zou H, Wang Z, Zhu W, Geng J. Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: Are larger plastic particles more harmless? JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122693. [PMID: 32353735 DOI: 10.1016/j.jhazmat.2020.122693] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 05/20/2023]
Abstract
Nanoplastics (NPs) and microplastics (MPs) are a heterogeneous class of pollutants with diverse sizes in aquatic environments. To evaluate the hazardous effects of N/MPs with different sizes, the accumulation, oxidative stress, cytochrome P450 (CYP) enzymes, neurotoxicity, and metabolomics changes were investigated in the red tilapia exposed to three sizes of polystyrene (PS) N/MPs (0.3, 5, and 70 - 90 μm). After 14-d exposures, the largest particles (70 - 90 μm) showed the highest accumulation levels in most cases. Exposures to PS-MPs (5 and 70 - 90 μm) caused a more severe oxidative stress in red tilapia than PS-NPs. The activity of CYP3A-related enzyme was obviously inhibited by PS-NPs, whereas the CYP enzymes in the liver may not be sensitive to MP exposures. In the brain, only 5 μm PS-MPs significantly inhibited the acetylcholinesterase activity. After exposures, the treatments with 0.3, 5, and 70 - 90 μm N/MPs resulted in 31, 40, and 23 significantly differentially expressed metabolites, respectively, in which the pathway of tyrosine metabolism was significantly affected by all the three PS-N/MP exposures. Overall, the PS particles within the μm size posed more severe stress to red tilapia. Our results suggest that the toxicity of N/MPs may not show a simply monotonic negative correlation with their sizes.
Collapse
Affiliation(s)
- Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi, 214122, China
| | - Yejing Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shujiao Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shanshan Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi, 214122, China.
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi, 214122, China
| | - Wenbin Zhu
- Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Wuxi, 214081, China.
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
147
|
Chen JC, Chen MY, Fang C, Zheng RH, Jiang YL, Zhang YS, Wang KJ, Bailey C, Segner H, Bo J. Microplastics negatively impact embryogenesis and modulate the immune response of the marine medaka Oryzias melastigma. MARINE POLLUTION BULLETIN 2020; 158:111349. [PMID: 32573451 DOI: 10.1016/j.marpolbul.2020.111349] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Microplastic (MP) pollution is an emerging contaminant in aquatic environments worldwide. Nonetheless, the developmental toxicity of MPs in the early life stages of fish and the mechanisms involved are not yet fully understood. The present study investigated the effects of different concentrations of polystyrene (PS) MPs on the early development of the marine model fish the medaka Oryzias melastigma. Our results showed that waterborne exposure to PS MPs significantly delayed the hatching time, altered the heartbeat and decreased the hatching rate of embryos. Furthermore, the genes involved in cardiac development, encoding for embryo-hatching enzymes, as well as inflammatory responses were significantly upregulated. The transcriptome results showed that mainly the pathways involved in metabolism, immune response, genetic information processing and diseases were significantly enriched. These results demonstrate that PS MPs negatively impact embryogenesis and the immune response of O. melastigma.
Collapse
Affiliation(s)
- Jin-Can Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, 361005 Xiamen, China
| | - Meng-Yun Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Rong-Hui Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Yu-Lu Jiang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, 361005 Xiamen, China
| | - Yu-Sheng Zhang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, 361005 Xiamen, China
| | - Christyn Bailey
- Fish Immunology and Pathology Laboratory, Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China.
| |
Collapse
|
148
|
Mak CW, Tsang YY, Leung MML, Fang JKH, Chan KM. Microplastics from effluents of sewage treatment works and stormwater discharging into the Victoria Harbor, Hong Kong. MARINE POLLUTION BULLETIN 2020; 157:111181. [PMID: 32658661 DOI: 10.1016/j.marpolbul.2020.111181] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Sewage treatment works and stormwater outfalls were identified as sources of microplastics in the Victoria Harbor, Hong Kong. Local treated sewage and stormwater effluents contained up to 10,816 pieces per m3 of microplastics, mainly polyethylene (PE) and polypropylene (PP), being discharged at an average rate of 3.5 mg per capita daily. Bioaccumulation of microplastics in marine fish collected from the vicinity of the effluent discharge outfalls was also studied. The temporal variations of microplastics in terms of abundance, shape and polymer type in fish were found consistent with those in the effluents and surface water. The abundance of microplastics was significantly higher in March 2017 (dry season). Microplastics in fish were predominantly in fiber form and identified as PE and PP. The observed temporal variations suggest uptake of microplastics by fish from the treated sewage and stormwater effluents.
Collapse
Affiliation(s)
- Chu Wa Mak
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - Yiu Yuen Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - Matthew Ming-Lok Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - James Kar-Hei Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Food Safety and Technology Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong.
| |
Collapse
|
149
|
Bhagat J, Zang L, Nishimura N, Shimada Y. Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138707. [PMID: 32361115 DOI: 10.1016/j.scitotenv.2020.138707] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 05/23/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have received global concern due to its widespread contamination, ingestion in aquatic organisms and the ability to cross the biological barrier. However, our understanding of its bioaccumulation, toxicity, and interaction with other environmental pollutants is limited. Zebrafish is increasingly used to study the bioaccumulation and toxicity of environmental contaminants because of their small size, ease of breed, short life cycle and inexpensive maintenance. The transparent nature of zebrafish embryo and larvae provides excellent experimental advantages over other model organisms in studying the localization of fluorescent-labeled MPs/NPs particles. Zebrafish outplays the traditional rodent models with the availability of transgenic lines, high-throughput sequencing and genetic similarities to humans. All these characteristics provide an unprecedented opportunity to investigate the toxicity of MPs/NPs and associated contaminants. This review summarizes the existing literature on MPs/NPs research in zebrafish and suggests a path forward for future research.
Collapse
Affiliation(s)
- Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan; Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
150
|
Klangnurak W, Chunniyom S. Screening for microplastics in marine fish of Thailand: the accumulation of microplastics in the gastrointestinal tract of different foraging preferences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27161-27168. [PMID: 32440872 DOI: 10.1007/s11356-020-09147-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Microplastics in marine organisms are nowadays considered a worldwide phenomenon. An action plan needs to establish to solve this marine pollutant. It requires multidisciplinary information, including the accumulation of data on microplastics in marine biota. The research of microplastic ingestion in the marine environment and organisms of Thailand is limited. As a result, this study was conducted to evaluate the accumulation of microplastics in marine fish from Thailand and to investigate whether the different foraging mechanisms of fish impact the occurrence of microplastics in their gastrointestinal tract. A total number of 361 demersal fish and 131 pelagic fish were investigated. The collected microplastics were counted according to their shape and color. Their polymer type was identified by FT-IR for the first time in fish from Thailand. Moreover, microplastics ingestion sorted by fish size was noted. The number of ingested microplastics in this study was relatively low compared to other locations. There was no significant difference in the number of microplastics ingested between demersal and pelagic fish (p = 0.132). Microplastic fibers were the dominant shape found in both demersal (82.76%) and pelagic fish (57.14%). The most common polymer type was polyamide in both demersal (55.17%) and pelagic fish (50.00%). The dominant microplastics color in both demersal and pelagic fish was red (31.03% and 28.57%, respectively). Microplastics ingestion along different fish sizes fluctuated. This study provides evidence to fill a gap of research relating to microplastic ingestion by fish from Thailand.
Collapse
Affiliation(s)
- Wanlada Klangnurak
- Department of Animal Production Technology and Fishery, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Suwaree Chunniyom
- Department of Animal Production Technology and Fishery, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|