101
|
Govindarajan R, Sparreboom A. Drug Transporters: Advances and Opportunities. Clin Pharmacol Ther 2016; 100:398-403. [PMID: 27718234 DOI: 10.1002/cpt.454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Drug transporter research conducted over the last several decades has led to a greatly advanced understanding of the mechanisms underlying the principles of drug absorption and disposition. Although many transporters remain poorly characterized, there is ample evidence that the drug transporter field will ultimately provide vital support to routine patient management, and will play a key role in the discovery, development, and evaluation of innovative, cutting-edge therapies.
Collapse
Affiliation(s)
- R Govindarajan
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - A Sparreboom
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
102
|
Wang X, Rao Z, Qin H, Zhang G, Ma Y, Jin Y, Han M, Shi A, Wang Y, Wu X. Effect of hesperidin on the pharmacokinetics of CPT-11 and its active metabolite SN-38 by regulating hepatic Mrp2 in rats. Biopharm Drug Dispos 2016; 37:421-432. [PMID: 27510985 DOI: 10.1002/bdd.2024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 12/26/2022]
Abstract
The usage of irinotecan hydrochloride (CPT-11) chemotherapy is hindered by its dose-limiting diarrhea which appears to be associated with the intestinal exposure to SN-38, the active metabolite of CPT-11. Hesperidin, a safe and natural food ingredient flavonoid, exhibits various biological properties. Accumulated evidence showed that the regulatory effect of hesperidin on the expression of Mrp2 in the liver may be one of the critical factors controlling the biliary excretion of SN-38. This study examined the effect of hesperidin on the pharmacokinetics of CPT-11 and SN-38 as well as the regulatory effect on the hepatic expression of Mrp2. Compared with the control group, the AUC5-t was increased to 115% of CPT-11 and 122% of SN-38; the CL was decreased to 87% for CPT-11; the tissue concentration was increased in the liver, kidney and colon; and the accumulated biliary excretion was significantly decreased to 77% for CPT-11 and 76% for SN-38 in hesperidin-treated rats. Furthermore, the expression of Mrp2 in the liver was significantly decreased to 37% in the hesperidin-treated rats compared with that of the control group. These results indicate that oral administration of hesperidin significantly increased the AUC5-t and reduced the clearance of CPT-11 and SN-38, possibly by decreasing the hepatic expression of Mrp2, and thus inhibiting the biliary excretion of CPT-11 and SN-38. The results from this present study suggest that hesperidin may reduce the exposure of CPT-11 and SN-38 in the intestine by reducing the amount of biliary excretion of CPT-11 and SN-38. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xingdong Wang
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- College of Pharmaceutical Sience, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhi Rao
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Hongyan Qin
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Guoqiang Zhang
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- College of Pharmaceutical Sience, Lanzhou University, Lanzhou, 730000, PR China
| | - Yanrong Ma
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Yongwen Jin
- College of Pharmaceutical Sience, Lanzhou University, Lanzhou, 730000, PR China
| | - Miao Han
- College of Pharmaceutical Sience, Lanzhou University, Lanzhou, 730000, PR China
| | - Axi Shi
- College of Pharmaceutical Sience, Lanzhou University, Lanzhou, 730000, PR China
| | - Yanping Wang
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Xinan Wu
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
103
|
Riccardi K, Li Z, Brown JA, Gorgoglione MF, Niosi M, Gosset J, Huard K, Erion DM, Di L. Determination of Unbound Partition Coefficient and in Vitro-in Vivo Extrapolation for SLC13A Transporter-Mediated Uptake. Drug Metab Dispos 2016; 44:1633-42. [PMID: 27417179 DOI: 10.1124/dmd.116.071837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/13/2016] [Indexed: 02/13/2025] Open
Abstract
Unbound partition coefficient (Kpuu) is important to an understanding of the asymmetric free drug distribution of a compound between cells and medium in vitro, as well as between tissue and plasma in vivo, especially for transporter-mediated processes. Kpuu was determined for a set of compounds from the SLC13A family that are inhibitors and substrates of transporters in hepatocytes and transporter-transfected cell lines. Enantioselectivity was observed, with (R)-enantiomers achieving much higher Kpuu (>4) than the (S)-enantiomers (<1) in human hepatocytes and SLC13A5-transfected human embryonic 293 cells. The intracellular free drug concentration correlated directly with in vitro pharmacological activity rather than the nominal concentration in the assay because of the high Kpuu mediated by SLC13A5 transporter uptake. Delivery of the diacid PF-06649298 directly or via hydrolysis of the ethyl ester prodrug PF-06757303 resulted in quite different Kpuu values in human hepatocytes (Kpuu of 3 for diacid versus 59 for prodrug), which was successfully modeled on the basis of passive diffusion, active uptake, and conversion rate from ester to diacid using a compartmental model. Kpuu values changed with drug concentrations; lower values were observed at higher concentrations possibly owing to a saturation of transporters. Michaelis-Menten constant (Km) of SLC13A5 was estimated to be 24 μM for PF-06649298 in human hepatocytes. In vitro Kpuu obtained from rat suspension hepatocytes supplemented with 4% fatty acid free bovine serum albumin showed good correlation with in vivo Kpuu of liver-to-plasma, illustrating the potential of this approach to predict in vivo Kpuu from in vitro systems.
Collapse
Affiliation(s)
- Keith Riccardi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Zhenhong Li
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Janice A Brown
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Matthew F Gorgoglione
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Mark Niosi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - James Gosset
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Kim Huard
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Derek M Erion
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| |
Collapse
|
104
|
Hsueh CH, Yoshida K, Zhao P, Meyer TW, Zhang L, Huang SM, Giacomini KM. Identification and Quantitative Assessment of Uremic Solutes as Inhibitors of Renal Organic Anion Transporters, OAT1 and OAT3. Mol Pharm 2016; 13:3130-40. [PMID: 27467266 DOI: 10.1021/acs.molpharmaceut.6b00332] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the characteristics of chronic kidney disease (CKD) is the accumulation of uremic solutes in the plasma. Less is known about the effects of uremic solutes on transporters that may play critical roles in pharmacokinetics. We evaluated the effect of 72 uremic solutes on organic anion transporter 1 and 3 (OAT1 and OAT3) using a fluorescent probe substrate, 6-carboxyfluorescein. A total of 12 and 13 solutes were identified as inhibitors of OAT1 and OAT3, respectively. Several of them inhibited OAT1 or OAT3 at clinically relevant concentrations and reduced the transport of other OAT1/3 substrates in vitro. Review of clinical studies showed that the active secretion of most drugs that are known substrates of OAT1/3 deteriorated faster than the renal filtration in CKD. Collectively, these data suggest that through inhibition of OAT1 and OAT3, uremic solutes contribute to the decline in renal drug clearance in patients with CKD.
Collapse
Affiliation(s)
- Chia-Hsiang Hsueh
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco , San Francisco, California 94158, United States.,Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation & Research, US Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Kenta Yoshida
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation & Research, US Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Ping Zhao
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation & Research, US Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Timothy W Meyer
- Division of Nephrology, School of Medicine, Stanford University , Stanford, California 94305, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation & Research, US Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation & Research, US Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco , San Francisco, California 94158, United States
| |
Collapse
|
105
|
Mandal A, Agrahari V, Khurana V, Pal D, Mitra AK. Transporter effects on cell permeability in drug delivery. Expert Opin Drug Deliv 2016; 14:385-401. [PMID: 27449574 DOI: 10.1080/17425247.2016.1214565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The role of drug transporters as one of the determinants of cellular drug permeability has become increasingly evident. Despite the lipophilicity of a drug molecule as rate-limiting factor for passive diffusion across biological membranes, carrier-mediated and active transport have gained attention over the years. A better understanding of the effects and roles of these influx transporters towards transmembrane permeability of a drug molecule need to be delineated for drug development and delivery. Areas covered: This review focuses on findings relative to role of transporters in drug absorption and bioavailability. Particularly the areas demanding further research have been emphasized. This review will also highlight various transporters expressed on vital organs and their effects on drug pharmacokinetics. Expert opinion: Significant efforts have been devoted to understand the role of transporters, their iterative interplay with metabolizing enzymes through molecular enzymology, binding and structure-activity relationship studies. A few assays such as parallel artificial membrane permeation assay (PAMPA) have been developed to analyze drug transport across phospholipid membranes. Although large web-accessible databases on tissue selective expression profiles at transcriptomic as well as proteomic are available, there is a need to collocate the scattered literature on the role of transporters in drug development and delivery.
Collapse
Affiliation(s)
- Abhirup Mandal
- a Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Vibhuti Agrahari
- a Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Varun Khurana
- b R&D , INSYS Therapeutics Inc , Chandler , AZ , USA
| | - Dhananjay Pal
- a Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Ashim K Mitra
- c UMKC School of Pharmacy, Division of Pharmaceutical Sciences , University of Missouri-Kansas City , Kansas City , MO , USA
| |
Collapse
|
106
|
Liu H, Sahi J. Role of Hepatic Drug Transporters in Drug Development. J Clin Pharmacol 2016; 56 Suppl 7:S11-22. [DOI: 10.1002/jcph.703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Houfu Liu
- Mechanistic Safety and Disposition, Platform Technology and Science; GlaxoSmithKline R&D; Shanghai China
| | - Jasminder Sahi
- Projects, Standards & Innovation; Asia Pacific DSAR, Sanofi; Shanghai China
| |
Collapse
|
107
|
Varma MV, El-Kattan AF. Transporter-Enzyme Interplay: Deconvoluting Effects of Hepatic Transporters and Enzymes on Drug Disposition Using Static and Dynamic Mechanistic Models. J Clin Pharmacol 2016; 56 Suppl 7:S99-S109. [DOI: 10.1002/jcph.695] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Manthena V. Varma
- Pharmacokinetics; Dynamics and Metabolism; Worldwide Research and Development; Pfizer Inc; Groton CT USA
| | - Ayman F. El-Kattan
- Pharmacokinetics; Dynamics and Metabolism; Worldwide Research and Development; Pfizer Inc; Cambridge MA USA
| |
Collapse
|
108
|
Chevtchik NV, Fedecostante M, Jansen J, Mihajlovic M, Wilmer M, Rüth M, Masereeuw R, Stamatialis D. Upscaling of a living membrane for bioartificial kidney device. Eur J Pharmacol 2016; 790:28-35. [PMID: 27395800 DOI: 10.1016/j.ejphar.2016.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 12/01/2022]
Abstract
The limited removal of metabolic waste products in dialyzed kidney patients leads to high morbidity and mortality. One powerful solution for a more complete removal of those metabolites might be offered by a bioartificial kidney device (BAK), which contains a hybrid "living membrane" with functional proximal tubule epithelial cells (PTEC). These cells are supported by an artificial functionalized hollow fiber membrane (HFM) and are able to actively remove the waste products. In our earlier studies, conditionally immortalized human PTEC (ciPTEC) showed to express functional organic cationic transporter 2 (OCT2) when seeded on small size flat or hollow fiber polyethersulfone (PES) membranes. Here, an upscaled "living membrane" is presented. We developed and assessed the functionality of modules containing three commercially available MicroPES HFM supporting ciPTEC. The HFM were optimally coated with L-Dopa and collagen IV to support a uniform and tight monolayer formation of matured ciPTEC under static culturing conditions. Both abundant expression of zonula occludens-1 (ZO-1) protein and limited diffusion of FITC-inulin confirm a clear barrier function of the monolayer. Furthermore, the uptake of 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+), a fluorescent OCT2 substrate, was studied in absence and presence of known OCT inhibitors, such as cimetidine and a cationic uremic solutes mixture. The ASP+ uptake by the living upscaled membrane was decreased by 60% in the presence of either inhibitor, proving the active function of OCT2. In conclusion, this study presents a successful upscaling of a living membrane with active organic cation transport as a support for BAK device.
Collapse
Affiliation(s)
- Natalia Vladimirovna Chevtchik
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Michele Fedecostante
- Department of Pharmaceutical Sciences, UIPS Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jitske Jansen
- Department of Pharmaceutical Sciences, UIPS Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Milos Mihajlovic
- Department of Pharmaceutical Sciences, UIPS Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martijn Wilmer
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Marieke Rüth
- eXcorLab GmbH, Industrie Center Obernburg, Obernburg, Germany
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, UIPS Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
109
|
Louisa M, Suyatna FD, Wanandi SI, Asih PBS, Syafruddin D. Differential expression of several drug transporter genes in HepG2 and Huh-7 cell lines. Adv Biomed Res 2016; 5:104. [PMID: 27376043 PMCID: PMC4918209 DOI: 10.4103/2277-9175.183664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/27/2013] [Indexed: 01/18/2023] Open
Abstract
Background: Cell culture techniques have many advantages for investigation of drug transport to target organ like liver. HepG2 and Huh-7 are two cell lines available from hepatoma that can be used as a model for hepatic drug transport. The present study is aimed to analyze the expression level of several drug transporter genes in two hepatoma cell lines, HepG2 and Huh-7 and their response to inhibitors. Materials and Methods: This is an in vitro study using HepG2 and Huh-7 cells. The expression level of the following drug transporter genes was quantified: P-glycoprotein/multidrug resistance protein 1, Organic Anionic Transporter Protein 1B1 (OATP1B1) and Organic Cationic Transporter-1 (OCT1). Ribonucleic acid was extracted from the cells using Tripure isolation reagent, then gene expression level of the transporters is quantified using Applied Biosystems quantitative reverse transcriptase polymerase chain reaction. Verapamil (P-glycoprotein inhibitor), nelfinavir (OATP1B1 inhibitor), quinidine (OCT1 inhibitor) were used to differentiate the inhibitory properties of these agents to the transporter expressions in HepG2 and Huh-7 cells. Results: Huh-7 shows a higher level of P-glycoprotein, OATP1B1 and OCT1 expressions compared with those of HepG2. Verapamil reduces the expressions of P-glycoprotein in HepG2 and Huh-7; nelfinavir reduces the expression of OATP1B1 in HepG2 and Huh-7; while quinidine reduces the OCT1 gene expressions in HepG2, but not in Huh-7 cells. Conclusion: This study indicates that HepG2 might be a more suitable in vitro model than Huh-7 to study drug transport in hepatocytes involving drug transporters.
Collapse
Affiliation(s)
- Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Frans D Suyatna
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Puji Budi Setia Asih
- Department of Molecular Biology, Malaria and Vector Resistance Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Din Syafruddin
- Department of Molecular Biology, Malaria and Vector Resistance Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
110
|
Functional characterization of ABCB4 mutations found in progressive familial intrahepatic cholestasis type 3. Sci Rep 2016; 6:26872. [PMID: 27256251 PMCID: PMC4891722 DOI: 10.1038/srep26872] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance 3 (MDR3), encoded by the ATP-binding cassette, subfamily B, member 4 gene (ABCB4), localizes to the canalicular membrane of hepatocytes and translocates phosphatidylcholine from the inner leaflet to the outer leaflet of the canalicular membrane. Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare hepatic disease caused by genetic mutations of ABCB4. In this study, we characterized 8 ABCB4 mutations found in PFIC3 patients, using in vitro molecular assays. First, we examined the transport activity of each mutant by measuring its ATPase activity using paclitaxel or phosphatidylcholine. Then, the pathogenic mechanisms by which these mutations affect MDR3 were examined through immunoblotting, cell surface biotinylation, and immunofluorescence. As a result, three ABCB4 mutants showed significantly reduced transport activity. Among these mutants, one mutation A364V, located in intracellular domains, markedly decreased MDR3 expression on the plasma membrane, while the others did not affect the expression. The expression of MDR3 on the plasma membrane and transport activity of A364V was rescued by a pharmacological chaperone, cyclosporin A. Our study provides the molecular mechanisms of ABCB4 mutations and may contribute to the understanding of PFIC3 pathogenesis and the development of a mutation-specific targeted treatment for PFIC3.
Collapse
|
111
|
Berninger JP, LaLone CA, Villeneuve DL, Ankley GT. Prioritization of pharmaceuticals for potential environmental hazard through leveraging a large-scale mammalian pharmacological dataset. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1007-20. [PMID: 25772004 DOI: 10.1002/etc.2965] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/01/2014] [Accepted: 03/02/2015] [Indexed: 05/11/2023]
Abstract
The potential for pharmaceuticals in the environment to cause adverse ecological effects is of increasing concern. Given the thousands of active pharmaceutical ingredients (APIs) that can enter the aquatic environment through human and/or animal (e.g., livestock) waste, a current challenge in aquatic toxicology is identifying those that pose the greatest risk. Because empirical toxicity information for aquatic species is generally lacking for pharmaceuticals, an important data source for prioritization is that generated during the mammalian drug development process. Applying concepts of species read-across, mammalian pharmacokinetic data were used to systematically prioritize APIs by estimating their potential to cause adverse biological consequences to aquatic organisms, using fish as an example. Mammalian absorption, distribution, metabolism, and excretion (ADME) data (e.g., peak plasma concentration, apparent volume of distribution, clearance rate, and half-life) were collected and curated, creating the Mammalian Pharmacokinetic Prioritization For Aquatic Species Targeting (MaPPFAST) database representing 1070 APIs. From these data, a probabilistic model and scoring system were developed and evaluated. Individual APIs and therapeutic classes were ranked based on clearly defined read-across assumptions for translating mammalian-derived ADME parameters to estimate potential hazard in fish (i.e., greatest predicted hazard associated with lowest mammalian peak plasma concentrations, total clearance and highest volume of distribution, half-life). It is anticipated that the MaPPFAST database and the associated API prioritization approach will help guide research and/or inform ecological risk assessment.
Collapse
Affiliation(s)
- Jason P Berninger
- National Research Council, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Carlie A LaLone
- Water Resources Center, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Daniel L Villeneuve
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Gerald T Ankley
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| |
Collapse
|
112
|
Burt T, Yoshida K, Lappin G, Vuong L, John C, de Wildt SN, Sugiyama Y, Rowland M. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development. Clin Transl Sci 2016; 9:74-88. [PMID: 26918865 PMCID: PMC5351314 DOI: 10.1111/cts.12390] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- T Burt
- Principal, Burt Consultancy, Durham, NC, 27705, USA
| | - K Yoshida
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.,Oak Ridge Institution for Science and Education (ORISE) Fellow
| | - G Lappin
- Visiting Professor of Pharmacology School of Pharmacy University of Lincoln, Joseph Banks Laboratories, Lincoln, LN6 7DL, UK
| | - L Vuong
- Principal, LTV Consulting, Davis, CA, USA.,Clinical Advisor at BioCore, Seoul, South Korea
| | - C John
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - S N de Wildt
- Intensive Care and Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Y Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - M Rowland
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, M13 9PT, UK.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, USA
| |
Collapse
|
113
|
Fung KL, Kapoor K, Pixley JN, Talbert DJ, Kwit ADT, Ambudkar SV, Gottesman MM. Using the BacMam Baculovirus System to Study Expression and Function of Recombinant Efflux Drug Transporters in Polarized Epithelial Cell Monolayers. Drug Metab Dispos 2016; 44:180-8. [PMID: 26622052 PMCID: PMC4727116 DOI: 10.1124/dmd.115.066506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/23/2015] [Indexed: 12/25/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes several membrane-bound proteins that are critical to drug pharmacokinetics and disposition. Pharmacologic evaluation of these proteins in vitro remains a challenge. In this study, human ABC transporters were expressed in polarized epithelial cell monolayers transduced using the BacMam baculovirus gene transfer system. The purpose of the study was to evaluate the efficacy of BacMam baculovirus to transduce cells grown in monolayers. In a porcine kidney cell line, LLC-PK1 cells, baculoviral transduction is successful only via the apical side of a polarized monolayer. We observed that recombinant ABC transporters were expressed on the cell surface with post-translational modification. Furthermore, sodium butyrate played a critical role in recombinant protein expression, and preincubation in the presence of tunicamycin or thapsigargin enhanced protein expression. Cells overexpressing human P-glycoprotein (P-gp) showed vectorial basolateral-to-apical transport of [(3)H]-paclitaxel, which could be reversed by the inhibitor tariquidar. Similarly, coexpression of human P-gp and ABCG2 in LLC-PK1 cells resulted in higher transport of mitoxantrone, which is a substrate for both transporters, than in either P-gp- or ABCG2-expressing cells alone. Taken together, our results indicate that a high level of expression of efflux transporters in a polarized cell monolayer is technically feasible with the BacMam baculovirus system.
Collapse
Affiliation(s)
- King Leung Fung
- Laboratory of Cell Biology, National Institutes of Health, National Cancer Institute, Bethesda, Maryland
| | - Khyati Kapoor
- Laboratory of Cell Biology, National Institutes of Health, National Cancer Institute, Bethesda, Maryland
| | - Jessica N Pixley
- Laboratory of Cell Biology, National Institutes of Health, National Cancer Institute, Bethesda, Maryland
| | - Darrell J Talbert
- Laboratory of Cell Biology, National Institutes of Health, National Cancer Institute, Bethesda, Maryland
| | - Alexandra D T Kwit
- Laboratory of Cell Biology, National Institutes of Health, National Cancer Institute, Bethesda, Maryland
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, National Institutes of Health, National Cancer Institute, Bethesda, Maryland
| | - Michael M Gottesman
- Laboratory of Cell Biology, National Institutes of Health, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
114
|
Tsai D, Jamal JA, Davis JS, Lipman J, Roberts JA. Interethnic differences in pharmacokinetics of antibacterials. Clin Pharmacokinet 2015; 54:243-60. [PMID: 25385446 DOI: 10.1007/s40262-014-0209-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Optimal antibacterial dosing is imperative for maximising clinical outcome. Many factors can contribute to changes in the pharmacokinetics of antibacterials to the extent where dose adjustment may be needed. In acute illness, substantial changes in important pharmacokinetic parameters such as volume of distribution and clearance can occur for certain antibacterials. The possibility of interethnic pharmacokinetic differences can further complicate attempts to design an appropriate dosing regimen. Factors of ethnicity, such as genetics, body size and fat distribution, contribute to differences in absorption, distribution, metabolism and elimination of drugs. Despite extensive previous work on the altered pharmacokinetics of antibacterials in some patient groups such as the critically ill, knowledge of interethnic pharmacokinetic differences for antibacterials is limited. OBJECTIVES This systematic review aims to describe any pharmacokinetic differences in antibacterials between different ethnic groups, and discuss their probable mechanisms as well as any clinical implications. METHODS We performed a structured literature review to identify and describe available data of the interethnic differences in the pharmacokinetics of antibacterials. RESULTS We found 50 articles that met our inclusion criteria and only six of these compared antibacterial pharmacokinetics between different ethnicities within the same study. Overall, there was limited evidence available. We found that interethnic pharmacokinetic differences are negligible for carbapenems, most β-lactams, aminoglycosides, glycopeptides, most fluoroquinolones, linezolid and daptomycin, whereas significant difference is likely for ciprofloxacin, macrolides, clindamycin, tinidazole and some cephalosporins. In general, subjects of Asian ethnicity achieve drug exposures up to two to threefold greater than Caucasian counterparts for these antibacterials. This difference is caused by a comparatively lower volume of distribution and/or drug clearance. CONCLUSION Interethnic pharmacokinetic differences of antibacterials are likely; however, the clinical relevance of these differences is unknown and warrants further research.
Collapse
Affiliation(s)
- Danny Tsai
- Burns, Trauma and Critical Care Research Centre, School of Medicine, The University of Queensland, Level 3, Ned Hanlon Building, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD, 4029, Australia
| | | | | | | | | |
Collapse
|
115
|
Chen W, Fu L, Chen X. Improving cell-based therapies by nanomodification. J Control Release 2015; 219:560-575. [PMID: 26423238 DOI: 10.1016/j.jconrel.2015.09.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/14/2023]
Abstract
Cell-based therapies are emerging as a promising approach for various diseases. Their therapeutic efficacy depends on rational control and regulation of the functions and behaviors of cells during their treatments. Different from conventional regulatory strategy by chemical adjuvants or genetic engineering, which is restricted by limited synergistic regulatory efficiency or uncertain safety problems, a novel approach based on nanoscale artificial materials can be applied to modify living cells to endow them with novel functions and unique properties. Inspired by natural "nano shell" and "nano compass" structures, cell nanomodification can be developed through both external and internal pathways. In this review, some novel cell surface engineering and intracellular nanoconjugation strategies are summarized. Their potential applications are also discussed, including cell protection, cell labeling, targeted delivery and in situ regulation. It is believed that these novel cell-material complexes can have great potentials for biomedical applications.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States.
| |
Collapse
|
116
|
T'jollyn H, Snoeys J, Vermeulen A, Michelet R, Cuyckens F, Mannens G, Van Peer A, Annaert P, Allegaert K, Van Bocxlaer J, Boussery K. Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation. AAPS JOURNAL 2015. [PMID: 26209290 DOI: 10.1208/s12248-015-9803-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This paper focuses on the retrospective evaluation of physiologically based pharmacokinetic (PBPK) techniques used to mechanistically predict clearance throughout pediatric life. An intravenous tramadol retrograde PBPK model was set up in Simcyp® using adult clearance values, qualified for CYP2D6, CYP3A4, CYP2B6, and renal contributions. Subsequently, the model was evaluated for mechanistic prediction of total, CYP2D6-related, and renal clearance predictions in very early life. In two in vitro pediatric human liver microsomal (HLM) batches (1 and 3 months), O-desmethyltramadol and N-desmethyltramadol formation rates were compared with CYP2D6 and CYP3A4 activity, respectively. O-desmethyltramadol formation was mediated only by CYP2D6, while N-desmethyltramadol was mediated in part by CYP3A4. Additionally, the clearance maturation of the PBPK model predictions was compared to two in vivo maturation models (Hill and exponential) based on plasma concentration data, and to clearance estimations from a WinNonlin® fit of plasma concentration and urinary excretion data. Maturation of renal and CYP2D6 clearance is captured well in the PBPK model predictions, but total tramadol clearance is underpredicted. The most pronounced underprediction of total and CYP2D6-mediated clearance was observed in the age range of 2-13 years. In conclusion, the PBPK technique showed to be a powerful mechanistic tool capable of predicting maturation of CYP2D6 and renal tramadol clearance in early infancy, although some underprediction occurs between 2 and 13 years for total and CYP2D6-mediated tramadol clearance.
Collapse
Affiliation(s)
- Huybrecht T'jollyn
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium.
| | - Jan Snoeys
- Janssen Research & Development, Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - An Vermeulen
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Robin Michelet
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Filip Cuyckens
- Janssen Research & Development, Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Geert Mannens
- Janssen Research & Development, Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Achiel Van Peer
- Janssen Research & Development, Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Pieter Annaert
- Drug Delivery & Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Herestraat, 49-box 921, B-3000, Leuven, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven and Neonatal Intensive Care Unit, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Jan Van Bocxlaer
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Koen Boussery
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| |
Collapse
|
117
|
Abstract
INTRODUCTION Organic cation transporters OCT1, OCT2 and OCT3 expressed in the small intestine, liver, brain and other organs play important roles in absorption, excretion and distribution of cationic drugs. Drug-drug interactions at OCTs may change pharmacokinetics, pharmacodynamics and drug toxicity. Knowledge about physiological and biomedical functions of OCTs and the molecular mechanisms of transport and inhibition is required to anticipate drug-drug interactions and their potential biomedical impact. AREAS COVERED Current knowledge about structure, polyspecific cation binding and transport of OCTs is summarized. Tissue distributions of OCT1-3 and their presumed physiological roles in the small intestine, liver, kidney and brain are reported, and drugs that are transported by human OCT1-3 are listed. The impact of human OCTs for pharmacokinetics and pharmacodynamics of the antidiabetic metformin and antineoplastic platinum derivatives are discussed. In addition, interactions of drugs that are transported by OCTs observed in the kidney and liver are reported. Procedures to test novel drugs for drug-drug interactions at OCTs in vitro and in clinical studies are recommended. EXPERT OPINION When performing in vitro testing for drug-drug interactions, it must be considered that one inhibitory drug may inhibit different transported drugs with different affinities. After positive in vitro testing for drug-drug interaction, clinical tests are obligatory.
Collapse
Affiliation(s)
- Hermann Koepsell
- a University Würzburg, Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics , Botanik 1, Julius-von-Sachs-Platz 2, Würzburg 97082, Germany
| |
Collapse
|
118
|
Khurana V, Minocha M, Pal D, Mitra AK. Inhibition of OATP-1B1 and OATP-1B3 by tyrosine kinase inhibitors. ACTA ACUST UNITED AC 2015; 29:249-59. [PMID: 24807167 DOI: 10.1515/dmdi-2014-0014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/01/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND The potential of tyrosine kinase inhibitors (TKIs) interacting with other therapeutics through hepatic uptake transporter inhibition has not been fully delineated in drug-drug interactions (DDIs). This study was designed to estimate the half-maximal inhibitory concentration (IC50) values of five small-molecule TKIs (pazopanib, nilotinib, vandetanib, canertinib and erlotinib) interacting with organic anion-transporting polypeptides (OATPs): OATP-1B1 and -1B3. METHODS The IC50 values of TKIs and rifampicin (positive control) were determined by concentration-dependent inhibition of TKIs on cellular accumulation of radiolabeled probe substrates [3H]estrone sulfate and [3H]cholecystokinin octapeptide. Chinese hamster ovary cells transfected with humanized OATP-1B1 and OATP-1B3 transporter proteins, respectively, were utilized to carry out these studies. RESULTS Pazopanib and nilotinib show inhibitory activity on OATP-1B1 transporter protein. IC50 values for rifampicin, pazopanib and nilotinib were 10.46±1.15, 3.89±1.21 and 2.78±1.13 μM, respectively, for OATP-1B1 transporter. Vandetanib, canertinib and erlotinib did not exhibit any inhibitory potency toward OATP-1B1 transporter protein. Only vandetanib expressed inhibitory potential toward OATP-1B3 transporter protein out of the five selected TKIs. IC50 values for rifampicin and vandetanib for OATP-1B3 transporter inhibition were 3.67±1.20 and 18.13±1.21 μM, respectively. No significant inhibition in the presence of increasing concentrations of pazopanib, nilotinib, canertinib and erlotinib were observed for OATP-1B3 transporter. CONCLUSIONS Because selected TKIs are inhibitors of OATP-1B1 and -1B3 expressed in hepatic tissue, these compounds can be regarded as molecular targets for transporter-mediated DDIs. These findings provide the basis for further preclinical and clinical studies investigating the transporter-based DDI potential of TKIs.
Collapse
|
119
|
Predicting Clearance Mechanism in Drug Discovery: Extended Clearance Classification System (ECCS). Pharm Res 2015; 32:3785-802. [DOI: 10.1007/s11095-015-1749-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/29/2015] [Indexed: 12/15/2022]
|
120
|
Varma MVS, Lin J, Bi YA, Kimoto E, Rodrigues AD. Quantitative Rationalization of Gemfibrozil Drug Interactions: Consideration of Transporters-Enzyme Interplay and the Role of Circulating Metabolite Gemfibrozil 1-O-β-Glucuronide. Drug Metab Dispos 2015; 43:1108-18. [PMID: 25941268 DOI: 10.1124/dmd.115.064303] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/04/2015] [Indexed: 01/06/2023] Open
Abstract
Gemfibrozil has been suggested as a sensitive cytochrome P450 2C8 (CYP2C8) inhibitor for clinical investigation by the U.S. Food and Drug Administration and the European Medicines Agency. However, gemfibrozil drug-drug interactions (DDIs) are complex; its major circulating metabolite, gemfibrozil 1-O-β-glucuronide (Gem-Glu), exhibits time-dependent inhibition of CYP2C8, and both parent and metabolite also behave as moderate inhibitors of organic anion transporting polypeptide 1B1 (OATP1B1) in vitro. Additionally, parent and metabolite also inhibit renal transport mediated by OAT3. Here, in vitro inhibition data for gemfibrozil and Gem-Glu were used to assess their impact on the pharmacokinetics of several victim drugs (including rosiglitazone, pioglitazone, cerivastatin, and repaglinide) by employing both static mechanistic and dynamic physiologically based pharmacokinetic (PBPK) models. Of the 48 cases evaluated using the static models, about 75% and 98% of the DDIs were predicted within 1.5- and 2-fold of the observed values, respectively, when incorporating the interaction potential of both gemfibrozil and its 1-O-β-glucuronide. Moreover, the PBPK model was able to recover the plasma profiles of rosiglitazone, pioglitazone, cerivastatin, and repaglinide under control and gemfibrozil treatment conditions. Analyses suggest that Gem-Glu is the major contributor to the DDIs, and its exposure needed to bring about complete inactivation of CYP2C8 is only a fraction of that achieved in the clinic after a therapeutic gemfibrozil dose. Overall, the complex interactions of gemfibrozil can be quantitatively rationalized, and the learnings from this analysis can be applied in support of future predictions of gemfibrozil DDIs.
Collapse
Affiliation(s)
- Manthena V S Varma
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - Jian Lin
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - Yi-an Bi
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - Emi Kimoto
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - A David Rodrigues
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| |
Collapse
|
121
|
De Mattia E, Cecchin E, Toffoli G. Pharmacogenomics of intrinsic and acquired pharmacoresistance in colorectal cancer: Toward targeted personalized therapy. Drug Resist Updat 2015; 20:39-70. [DOI: 10.1016/j.drup.2015.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023]
|
122
|
Zhu L, Zhang Y, Yang J, Wang Y, Zhang J, Zhao Y, Dong W. Prediction of the pharmacokinetics and tissue distribution of levofloxacin in humans based on an extrapolated PBPK model. Eur J Drug Metab Pharmacokinet 2015; 41:395-402. [PMID: 25753830 DOI: 10.1007/s13318-015-0271-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/23/2015] [Indexed: 12/27/2022]
Abstract
This study developed a physiologically based pharmacokinetic (PBPK) model in intraabdominally infected rats and extrapolated it to humans to predict the levofloxacin pharmacokinetics and penetration into tissues. Twelve male rats with intraabdominal infections induced by Escherichia coli received a single dose of 50 mg/kg body weight of levofloxacin. Blood plasma was collected at 5, 10, 20, 30, 60, 120, 240, 480 and 1440 min after injection, respectively. A PBPK model was developed in rats and extrapolated to humans using GastroPlus software. The predictions were assessed by comparing predictions and observations. In the plasma concentration-versus-time profile of levofloxacin in rats, C max was 23.570 μg/ml at 5 min after intravenous injection, and t1/2 was 2.38 h. The plasma concentration and kinetics in humans were predicted and validated by the observed data. Levofloxacin penetrated and accumulated with high concentrations in the heart, liver, kidney, spleen, muscle and skin tissues in humans. The predicted tissue-to-plasma concentration ratios in abdominal viscera were between 1.9 and 2.3. When rat plasma concentrations were known, extrapolation of a PBPK model was a method to predict the drug pharmacokinetics and penetration in humans. Levofloxacin had good penetration into the liver, kidney and spleen as well as other tissues in humans. This pathological model extrapolation may provide a reference for the study of antiinfective PK/PD. In our study, levofloxacin penetrated well into abdominal organs. Also ADR monitoring should be implemented when using levofloxacin.
Collapse
Affiliation(s)
- Liqin Zhu
- Pharmacy Department, Tianjin First Center Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China.
| | - Yuan Zhang
- Pharmacy Department, Tianjin First Center Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Jianwei Yang
- Tianjin Medical University, Tianjin, 300070, China
| | | | - Jianlei Zhang
- Pharmacy Department, Tianjin First Center Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Yuanyuan Zhao
- The 153 Central Hospital of the Chinese People's Liberation Army, Henan, 450000, China
| | - Weilin Dong
- Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
123
|
Schophuizen CM, De Napoli IE, Jansen J, Teixeira S, Wilmer MJ, Hoenderop JG, Van den Heuvel LP, Masereeuw R, Stamatialis D. Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane. Acta Biomater 2015; 14:22-32. [PMID: 25527093 DOI: 10.1016/j.actbio.2014.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/22/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
The need for improved renal replacement therapies has stimulated innovative research for the development of a cell-based renal assist device. A key requirement for such a device is the formation of a "living membrane", consisting of a tight kidney cell monolayer with preserved functional organic ion transporters on a suitable artificial membrane surface. In this work, we applied a unique conditionally immortalized proximal tubule epithelial cell (ciPTEC) line with an optimized coating strategy on polyethersulfone (PES) membranes to develop a living membrane with a functional proximal tubule epithelial cell layer. PES membranes were coated with combinations of 3,4-dihydroxy-l-phenylalanine and human collagen IV (Coll IV). The optimal coating time and concentrations were determined to achieve retention of vital blood components while preserving high water transport and optimal ciPTEC adhesion. The ciPTEC monolayers obtained were examined through immunocytochemistry to detect zona occludens 1 tight junction proteins. Reproducible monolayers were formed when using a combination of 2 mg ml(-1) 3,4-dihydroxy-l-phenylalanine (4 min coating, 1h dissolution) and 25 μg ml(-1) Coll IV (4 min coating). The successful transport of (14)C-creatinine through the developed living membrane system was used as an indication for organic cation transporter functionality. The addition of metformin or cimetidine significantly reduced the creatinine transepithelial flux, indicating active creatinine uptake in ciPTECs, most likely mediated by the organic cation transporter, OCT2 (SLC22A2). In conclusion, this study shows the successful development of a living membrane consisting of a reproducible ciPTEC monolayer on PES membranes, an important step towards the development of a bioartificial kidney.
Collapse
|
124
|
Varma MV, Pang KS, Isoherranen N, Zhao P. Dealing with the complex drug-drug interactions: Towards mechanistic models. Biopharm Drug Dispos 2015; 36:71-92. [DOI: 10.1002/bdd.1934] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Manthena V. Varma
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Inc; Groton Connecticut USA
| | - K. Sandy Pang
- Leslie Dan Faculty of Pharmacy; University of Toronto; M5S 3M2 Canada
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy; University of Washington; Seattle WA USA
| | - Ping Zhao
- Division of Pharmacometrics, Office of Clinical Pharmacology/Office of Translational Sciences; Center for Drug Evaluation and Research, US Food and Drug Administration; Silver Spring MD USA
| |
Collapse
|
125
|
Sampson KE, Brinker A, Pratt J, Venkatraman N, Xiao Y, Blasberg J, Steiner T, Bourner M, Thompson DC. Zinc finger nuclease-mediated gene knockout results in loss of transport activity for P-glycoprotein, BCRP, and MRP2 in Caco-2 cells. Drug Metab Dispos 2015; 43:199-207. [PMID: 25388687 DOI: 10.1124/dmd.114.057216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Membrane transporters P-glycoprotein [P-gp; multidrug resistance 1 (MDR1)], multidrug resistance-associated protein (MRP) 2, and breast cancer resistance protein (BCRP) affect drug absorption and disposition and can also mediate drug-drug interactions leading to safety/toxicity concerns in the clinic. Challenges arise with interpreting cell-based transporter assays when substrates or inhibitors affect more than one actively expressed transporter and when endogenous or residual transporter activity remains following overexpression or knockdown of a given transporter. The objective of this study was to selectively knock out three drug efflux transporter genes (MDR1, MRP2, and BCRP), both individually as well as in combination, in a subclone of Caco-2 cells (C2BBe1) using zinc finger nuclease technology. The wild-type parent and knockout cell lines were tested for transporter function in Transwell bidirectional assays using probe substrates at 5 or 10 μM for 2 hours at 37°C. P-gp substrates digoxin and erythromycin, BCRP substrates estrone 3-sulfate and nitrofurantoin, and MRP2 substrate 5-(and-6)-carboxy-2',7'-dichlorofluorescein each showed a loss of asymmetric transport in the MDR1, BCRP, and MRP2 knockout cell lines, respectively. Furthermore, transporter interactions were deduced for cimetidine, ranitidine, fexofenadine, and colchicine. Compared with the knockout cell lines, standard transporter inhibitors showed substrate-specific variation in reducing the efflux ratios of the test compounds. These data confirm the generation of a panel of stable Caco-2 cell lines with single or double knockout of human efflux transporter genes and a complete loss of specific transport activity. These cell lines may prove useful in clarifying complex drug-transporter interactions without some of the limitations of current chemical or genetic knockdown approaches.
Collapse
|
126
|
Togami K, Kanehira Y, Tada H. Pharmacokinetic evaluation of tissue distribution of pirfenidone and its metabolites for idiopathic pulmonary fibrosis therapy. Biopharm Drug Dispos 2015; 36:205-15. [DOI: 10.1002/bdd.1932] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Kohei Togami
- Division of Pharmaceutics; Hokkaido Pharmaceutical University School of Pharmacy; 7-1 Katsuraoka-cho Otaru Hokkaido 047-0264 Japan
- Department of Biopharmaceutics, School of Pharmaceutical Science; Ohu University; 31-1 Misumido, Tomita-Machi Koriyama Fukushima 963-8611 Japan
| | - Yukimune Kanehira
- Division of Pharmaceutics; Hokkaido Pharmaceutical University School of Pharmacy; 7-1 Katsuraoka-cho Otaru Hokkaido 047-0264 Japan
- Department of Biopharmaceutics, School of Pharmaceutical Science; Ohu University; 31-1 Misumido, Tomita-Machi Koriyama Fukushima 963-8611 Japan
| | - Hitoshi Tada
- Division of Pharmaceutics; Hokkaido Pharmaceutical University School of Pharmacy; 7-1 Katsuraoka-cho Otaru Hokkaido 047-0264 Japan
- Department of Biopharmaceutics, School of Pharmaceutical Science; Ohu University; 31-1 Misumido, Tomita-Machi Koriyama Fukushima 963-8611 Japan
| |
Collapse
|
127
|
Zhou J, Xu J, Huang Z, Wang M. Transporter-mediated tissue targeting of therapeutic molecules in drug discovery. Bioorg Med Chem Lett 2015; 25:993-7. [PMID: 25650254 DOI: 10.1016/j.bmcl.2015.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 12/26/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022]
Abstract
Tissue concentrations of endogenous chemicals and nutrients are in large part regulated by membrane transporters through their substrate specificity and differential tissue distributions. These transporters also play a key role in the disposition of therapeutic agents thus affecting their efficacy and safety profile. A transporter-mediated tissue targeting strategy, where the structural features recognized by the transporters are incorporated into the therapeutic molecule, is emerging as an effective approach in drug discovery. In this digest, we review this phenomenon and highlight recent cases in the design of liver and kidney targeted drug molecules.
Collapse
Affiliation(s)
- Jingye Zhou
- Lilly China Research and Development Center (LCRDC), Eli Lilly and Company, Building 8, 338 Jia Li Lue Road, Shanghai 201203, PR China
| | - Jianfeng Xu
- Lilly China Research and Development Center (LCRDC), Eli Lilly and Company, Building 8, 338 Jia Li Lue Road, Shanghai 201203, PR China
| | - Zheng Huang
- Lilly China Research and Development Center (LCRDC), Eli Lilly and Company, Building 8, 338 Jia Li Lue Road, Shanghai 201203, PR China
| | - Minmin Wang
- Lilly China Research and Development Center (LCRDC), Eli Lilly and Company, Building 8, 338 Jia Li Lue Road, Shanghai 201203, PR China
| |
Collapse
|
128
|
Maeda K. Organic Anion Transporting Polypeptide (OATP)1B1 and OATP1B3 as Important Regulators of the Pharmacokinetics of Substrate Drugs. Biol Pharm Bull 2015; 38:155-68. [DOI: 10.1248/bpb.b14-00767] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences,
The University of Tokyo
| |
Collapse
|
129
|
Bosgra S, van de Steeg E, Vlaming ML, Verhoeckx KC, Huisman MT, Verwei M, Wortelboer HM. Predicting carrier-mediated hepatic disposition of rosuvastatin in man by scaling from individual transfected cell-lines in vitro using absolute transporter protein quantification and PBPK modeling. Eur J Pharm Sci 2014; 65:156-66. [DOI: 10.1016/j.ejps.2014.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/21/2014] [Accepted: 09/05/2014] [Indexed: 11/12/2022]
|
130
|
Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol 2014; 5:231. [PMID: 25400580 PMCID: PMC4215795 DOI: 10.3389/fphar.2014.00231] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022] Open
Abstract
One approach to experimental science involves creating hypotheses, then testing them by varying one or more independent variables, and assessing the effects of this variation on the processes of interest. We use this strategy to compare the intellectual status and available evidence for two models or views of mechanisms of transmembrane drug transport into intact biological cells. One (BDII) asserts that lipoidal phospholipid Bilayer Diffusion Is Important, while a second (PBIN) proposes that in normal intact cells Phospholipid Bilayer diffusion Is Negligible (i.e., may be neglected quantitatively), because evolution selected against it, and with transmembrane drug transport being effected by genetically encoded proteinaceous carriers or pores, whose “natural” biological roles, and substrates are based in intermediary metabolism. Despite a recent review elsewhere, we can find no evidence able to support BDII as we can find no experiments in intact cells in which phospholipid bilayer diffusion was either varied independently or measured directly (although there are many papers where it was inferred by seeing a covariation of other dependent variables). By contrast, we find an abundance of evidence showing cases in which changes in the activities of named and genetically identified transporters led to measurable changes in the rate or extent of drug uptake. PBIN also has considerable predictive power, and accounts readily for the large differences in drug uptake between tissues, cells and species, in accounting for the metabolite-likeness of marketed drugs, in pharmacogenomics, and in providing a straightforward explanation for the late-stage appearance of toxicity and of lack of efficacy during drug discovery programmes despite macroscopically adequate pharmacokinetics. Consequently, the view that Phospholipid Bilayer diffusion Is Negligible (PBIN) provides a starting hypothesis for assessing cellular drug uptake that is much better supported by the available evidence, and is both more productive and more predictive.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester Manchester, UK ; Manchester Institute of Biotechnology, The University of Manchester Manchester, UK
| | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge Cambridge, UK ; Cambridge Systems Biology Centre, University of Cambridge Cambridge, UK
| |
Collapse
|
131
|
Varma MV, Bi YA, Kimoto E, Lin J. Quantitative prediction of transporter- and enzyme-mediated clinical drug-drug interactions of organic anion-transporting polypeptide 1B1 substrates using a mechanistic net-effect model. J Pharmacol Exp Ther 2014; 351:214-23. [PMID: 25107633 DOI: 10.1124/jpet.114.215970] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Quantitative prediction of complex drug-drug interactions (DDIs) involving hepatic transporters and cytochromes P450 (P450s) is challenging. We evaluated the extent of DDIs of nine victim drugs-which are substrates to organic anion-transporting polypeptide 1B1 and undergo P450 metabolism or biliary elimination-caused by five perpetrator drugs, using in vitro data and the proposed extended net-effect model. Hepatobiliary transport and metabolic clearance estimates were obtained from in vitro studies. Of the total of 62 clinical interaction combinations assessed using the net-effect model, 58 (94%) could be predicted within a 2-fold error, with few false-negative predictions. Model predictive performance improved significantly when in vitro active uptake clearance was corrected to recover in vivo clearance. The basic R-value model yielded only 63% predictions within 2-fold error. This study demonstrates that the interactions involving transporter-enzyme interplay need to be mechanistically assessed for quantitative rationalization and prospective prediction.
Collapse
Affiliation(s)
- Manthena V Varma
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, Pfizer, Groton, Connecticut
| | - Yi-an Bi
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, Pfizer, Groton, Connecticut
| | - Emi Kimoto
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, Pfizer, Groton, Connecticut
| | - Jian Lin
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, Pfizer, Groton, Connecticut
| |
Collapse
|
132
|
Nielsen LM, Olesen AE, Branford R, Christrup LL, Sato H, Drewes AM. Association Between Human Pain-Related Genotypes and Variability in Opioid Analgesia: An Updated Review. Pain Pract 2014; 15:580-94. [DOI: 10.1111/papr.12232] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/04/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Lecia M. Nielsen
- Mech-Sense; Department of Gastroenterology and Hepatology; Aalborg University Hospital; Aalborg Denmark
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Anne E. Olesen
- Mech-Sense; Department of Gastroenterology and Hepatology; Aalborg University Hospital; Aalborg Denmark
| | - Ruth Branford
- Department of Palliative Medicine; Royal Marsden Hospital; London UK
| | - Lona L. Christrup
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Hiroe Sato
- Interstitial Lung Disease Unit; Royal Brompton Hospital & National Heart and Lung Institute; Imperial College London; London UK
| | - Asbjørn M. Drewes
- Mech-Sense; Department of Gastroenterology and Hepatology; Aalborg University Hospital; Aalborg Denmark
- Department of Clinical Medicine; Aalborg University; Aalborg Denmark
| |
Collapse
|
133
|
Moßhammer D, Schaeffeler E, Schwab M, Mörike K. Mechanisms and assessment of statin-related muscular adverse effects. Br J Clin Pharmacol 2014; 78:454-66. [PMID: 25069381 PMCID: PMC4243897 DOI: 10.1111/bcp.12360] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/14/2014] [Indexed: 12/11/2022] Open
Abstract
Statin-associated muscular adverse effects cover a wide range of symptoms, including asymptomatic increase of creatine kinase serum activity and life-threatening rhabdomyolysis. Different underlying pathomechanisms have been proposed. However, a unifying concept of the pathogenesis of statin-related muscular adverse effects has not emerged so far. In this review, we attempt to categorize these mechanisms along three levels. Firstly, among pharmacokinetic factors, it has been shown for some statins that inhibition of cytochrome P450-mediated hepatic biotransformation and hepatic uptake by transporter proteins contribute to an increase of systemic statin concentrations. Secondly, at the myocyte membrane level, cell membrane uptake transporters affect intracellular statin concentrations. Thirdly, at the intracellular level, inhibition of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase results in decreased intracellular concentrations of downstream metabolites (e.g. selenoproteins, ubiquinone, cholesterol) and alteration of gene expression (e.g. ryanodine receptor 3, glycine amidinotransferase). We also review current recommendations for prescribers.
Collapse
Affiliation(s)
- Dirk Moßhammer
- Division of General Practice, University Hospital TübingenTübingen, D-72074, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgart, D-70376, Germany
- University TübingenTübingen, Germany
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital TübingenTübingen, D-72076, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgart, D-70376, Germany
- University TübingenTübingen, Germany
| | - Klaus Mörike
- Department of Clinical Pharmacology, University Hospital TübingenTübingen, D-72076, Germany
| |
Collapse
|
134
|
Benz-de Bretagne I, Zahr N, Le Gouge A, Hulot JS, Houillier C, Hoang-Xuan K, Gyan E, Lissandre S, Choquet S, Le Guellec C. Urinary coproporphyrin I/(I + III) ratio as a surrogate for MRP2 or other transporter activities involved in methotrexate clearance. Br J Clin Pharmacol 2014; 78:329-42. [PMID: 24433481 PMCID: PMC4137825 DOI: 10.1111/bcp.12326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 01/03/2014] [Indexed: 12/21/2022] Open
Abstract
AIMS The urinary coproporphyrin I/(I + III) ratio may be a surrogate for MRP2 activity. We conducted a prospective study in patients receiving methotrexate (MTX) to examine the relationship between this ratio and the pharmacokinetics of a MRP2 substrate. METHODS Three urine samples were collected from 81 patients for UCP I/(I + III) ratio determination: one before (P1), one at the end of MTX infusion (P2), and one on the day of hospital discharge (P3). Three polymorphisms of ABCC2 were analysed and their relationships with basal UCP I/(I + III) ratio values assessed. All associated drugs were recorded and a drug interaction score (DIS) was assigned. Population pharmacokinetic analysis was conducted to assess whether MTX clearance (MTXCL) was associated with the basal UCP I/(I + III) ratio, its variation during MTX infusion, the DIS or other common covariates. RESULTS The basal UCP I/(I + III) ratio was not associated with ABCC2 polymorphisms and did not differ according to the DIS. Significant changes in the ratio were observed over time, with an increase between P1 and P2 and a decrease at P3 (P < 0.001). No association was found between basal UCP I/(I + III) ratio and MTXCL. The final model indicates that MTXCL was dependent on the change in the ratio between P1 and P3, DIS and creatinine clearance. CONCLUSION The basal UCP I/(I + III) ratio is not predictive of MTXCL. However, it is sensitive to the presence of MTX, so it is plausible that it reflects a function modified in response to the drug.
Collapse
Affiliation(s)
- Isabelle Benz-de Bretagne
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU de ToursTours, France
- Université François Rabelais de Tours, PRES Centre Val de Loire UniversitéEA4245, Tours, France
| | - Noël Zahr
- Service de Pharmacologie, CHU Pitié-SalpêtrièreAP-HP, Paris, France
| | - Amélie Le Gouge
- CHRU de Tours, Centre d'investigation cliniqueTours, France
- Université François Rabelais de Tours, PRES Centre Val de Loire UniversitéInserm 202, Tours, France
| | - Jean-Sébastien Hulot
- Service de Pharmacologie, CHU Pitié-SalpêtrièreAP-HP, Paris, France
- UPMC Université Paris 06UMR_S 956, Paris, France
| | - Caroline Houillier
- Service de Neurologie, CHU Pitié-Salpêtrière, Centre expert national LOCAP-HP, Paris, France
| | - Khe Hoang-Xuan
- Service de Neurologie, CHU Pitié-Salpêtrière, Centre expert national LOCAP-HP, Paris, France
| | - Emmanuel Gyan
- Service d'Hématologie et Thérapie Cellulaire, CHRU de ToursTours, France
| | - Séverine Lissandre
- Service d'Hématologie et Thérapie Cellulaire, CHRU de ToursTours, France
| | - Sylvain Choquet
- Service d'Hématologie, CHU Pitié-SalpêtrièreAP-HP, Paris, France
| | - Chantal Le Guellec
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU de ToursTours, France
- Université François Rabelais de Tours, PRES Centre Val de Loire UniversitéEA4245, Tours, France
| |
Collapse
|
135
|
Li R, Barton HA, Varma MV. Prediction of Pharmacokinetics and Drug–Drug Interactions When Hepatic Transporters are Involved. Clin Pharmacokinet 2014; 53:659-78. [DOI: 10.1007/s40262-014-0156-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
136
|
Grandjean TRB, Chappell MJ, Lench AM, Yates JWT, O’Donnell CJ. Experimental and mathematical analysis ofin vitroPitavastatin hepatic uptake across species. Xenobiotica 2014; 44:961-74. [DOI: 10.3109/00498254.2014.923952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
137
|
Suzuki M, Doi H, Koyama H, Zhang Z, Hosoya T, Onoe H, Watanabe Y. Pd0-Mediated Rapid Cross-Coupling Reactions, the RapidC-[11C]Methylations, Revolutionarily Advancing the Syntheses of Short-Lived PET Molecular Probes. CHEM REC 2014; 14:516-41. [DOI: 10.1002/tcr.201400002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Masaaki Suzuki
- National Center for Geriatrics and Gerontology; 35 Gengo Morioka-cho Obu-shi Aichi 474-8511 Japan
| | - Hisashi Doi
- Division of Bio-Function Dynamics Imaging; Riken Center for Life Science Technologies (CLST); 6-7-3 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| | - Hiroko Koyama
- Division of Regeneration and Advanced Medical Science; Graduate School of Medicine; Gifu University; 1-1 Yanagido Gifu 501-1194 Japan
| | - Zhouen Zhang
- Division of Bio-Function Dynamics Imaging; Riken Center for Life Science Technologies (CLST); 6-7-3 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| | - Takamitsu Hosoya
- Division of Regeneration and Advanced Medical Science; Graduate School of Medicine; Gifu University; 1-1 Yanagido Gifu 501-1194 Japan
| | - Hirotaka Onoe
- Division of Bio-Function Dynamics Imaging; Riken Center for Life Science Technologies (CLST); 6-7-3 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| | - Yasuyoshi Watanabe
- Division of Bio-Function Dynamics Imaging; Riken Center for Life Science Technologies (CLST); 6-7-3 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
138
|
Sjögren E, Hedeland M, Bondesson U, Lennernäs H. Effects of verapamil on the pharmacokinetics and hepatobiliary disposition of fexofenadine in pigs. Eur J Pharm Sci 2014; 57:214-23. [PMID: 24075962 DOI: 10.1016/j.ejps.2013.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/19/2013] [Accepted: 09/18/2013] [Indexed: 11/29/2022]
Abstract
The pharmacokinetics (PK) of fexofenadine (FEX) in pigs were investigated with the focus on exploring the interplay between hepatic transport and metabolism when administered intravenously (iv) alone or with verapamil. The in vivo pig model enabled simultaneous sampling from plasma (pre-liver, post-liver and peripheral), bile and urine. Each animal was administered FEX 35mg iv alone or with verapamil 35mg. Plasma, bile and urine were analyzed with liquid chromatography-tandem mass spectrometry. Non-compartmental analysis (NCA) was used to estimate traditional PK parameters. In addition, a physiologically based pharmacokinetic (PBPK) model consisting of 11 compartments (6 tissues +5 sample sites) was applied for mechanistic elucidation and estimation of individual PK parameters. FEX had a terminal half-life of 1.7h and a liver extraction of 3%. The fraction of the administered dose of unchanged FEX excreted into the bile was 25% and the bile exposure was more than 100 times higher than the portal vein total plasma exposure, indicating carrier-mediated (CM) disposition processes in the liver. 23% of the administered dose of FEX was excreted unchanged in the urine. An increase in FEX plasma exposure (+50%) and a decrease in renal clearance (-61%) were detected by NCA as a direct effect of concomitant administration of verapamil. However, analysis of the PBPK model also revealed that biliary clearance was significantly inhibited (-53%) by verapamil. In addition, PBPK analysis established that metabolism and CM uptake were important factors in the disposition of FEX in the liver. In conclusion, this study demonstrated that CM transport of FEX in both liver and kidneys was inhibited by a single dose of verapamil.
Collapse
Affiliation(s)
- Erik Sjögren
- Department of Pharmacy, Biopharmaceutic Research Group, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden.
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 573, SE-751 23 Uppsala, Sweden; National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-751 89 Uppsala, Sweden
| | - Ulf Bondesson
- Department of Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 573, SE-751 23 Uppsala, Sweden; National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-751 89 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Biopharmaceutic Research Group, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| |
Collapse
|
139
|
Pharmacokinetic study of rosuvastatin in males and females. Eur J Drug Metab Pharmacokinet 2014; 40:313-8. [PMID: 24920353 DOI: 10.1007/s13318-014-0211-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/31/2014] [Indexed: 01/01/2023]
Abstract
Rosuvastatin is used to treat dyslipidemia and is metabolized by CYP2C9 that shows variable metabolic activity in males and females. Pharmacokinetics (PK) of drugs varies in males and females that may result in altered drug response and therapeutic efficacy. In current study, PK of rosuvastatin has been evaluated in males and females. A single oral dose (40 mg rosuvastatin), open-label and non-controlled PK study was arranged. A reversed phase HPLC method was applied for quantification of rosuvastatin in serum samples. PK parameters of rosuvastatin were compared in males and females by applying student t test at 95 % confidence interval. The C max, [Formula: see text]and [Formula: see text]of rosuvastatin was significantly higher (p < 0.05) in females compared with males. The Vd/F of rosuvastatin was insignificantly higher (p > 0.05) in males compared with females while CL/F was significantly (p < 0.05) faster in males when compared at 95 % confidence interval. Rosuvastatin plasma level was significantly high in females compared with males that may be a possible reason for higher incidence of cardiac myopathy and other side effects in females. The variation in PK of drugs in males and females may require dose adjustment for maximum therapeutic effectiveness and safety.
Collapse
|
140
|
Li R, Bi YA, Lai Y, Sugano K, Steyn SJ, Trapa PE, Di L. Permeability comparison between hepatocyte and low efflux MDCKII cell monolayer. AAPS JOURNAL 2014; 16:802-9. [PMID: 24854896 DOI: 10.1208/s12248-014-9616-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/07/2014] [Indexed: 01/04/2023]
Abstract
Determination of passive permeability is not only important for predicting oral absorption and brain penetration, but also for accurately predicting hepatic clearance. High throughput (HT) measurement of passive permeability across hepatocyte cell membrane is technically more challenging than using monolayer cell-based permeability assays. In this study, we evaluated if the HT Madin-Darby canine kidney II-low efflux (MDCKII-LE) cell monolayer permeability assay can be used as a surrogate to predict the passive permeability of hepatocytes. Apparent passive permeability of MDCKII-LE is well correlated to passive diffusion clearance of human and rat hepatocytes, suggesting that the HT MDCKII-LE assay can be used as a surrogate to estimate the passive permeability of hepatocytes. In addition, lipophilicity (Log D determined at pH 7.4) was also found to be well correlated with both MDCKII-LE and hepatocyte permeability for most compounds, hence it may serve as another permeability surrogate.
Collapse
Affiliation(s)
- Rui Li
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts, 02139, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Varma MVS, Scialis RJ, Lin J, Bi YA, Rotter CJ, Goosen TC, Yang X. Mechanism-based pharmacokinetic modeling to evaluate transporter-enzyme interplay in drug interactions and pharmacogenetics of glyburide. AAPS JOURNAL 2014; 16:736-48. [PMID: 24839071 DOI: 10.1208/s12248-014-9614-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 04/26/2014] [Indexed: 11/30/2022]
Abstract
The purpose of this study is to characterize the involvement of hepato-biliary transport and cytochrome-P450 (CYP)-mediated metabolism in the disposition of glyburide and predict its pharmacokinetic variability due to drug interactions and genetic variations. Comprehensive in vitro studies suggested that glyburide is a highly permeable drug with substrate affinity to multiple efflux pumps and to organic anion transporting polypeptide (OATP)1B1 and OATP2B1. Active hepatic uptake was found to be significantly higher than the passive uptake clearance (15.8 versus 5.3 μL/min/10(6)-hepatocytes), using the sandwich-cultured hepatocyte model. In vitro, glyburide is metabolized (intrinsic clearance, 52.9 μL/min/mg-microsomal protein) by CYP3A4, CYP2C9, and CYP2C8 with fraction metabolism of 0.53, 0.36, and 0.11, respectively. Using these in vitro data, physiologically based pharmacokinetic models, assuming rapid-equilibrium between blood and liver compartments or permeability-limited hepatic disposition, were built to describe pharmacokinetics and evaluate drug interactions. Permeability-limited model successfully predicted glyburide interactions with rifampicin and other perpetrator drugs. Conversely, model assuming rapid-equilibrium mispredicted glyburide interactions, overall, suggesting hepatic uptake as the primary rate-determining process in the systemic clearance of glyburide. Further modeling and simulations indicated that the impairment of CYP2C9 function has a minimal effect on the systemic exposure, implying discrepancy in the contribution of CYP2C9 to glyburide clearance.
Collapse
Affiliation(s)
- Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA,
| | | | | | | | | | | | | |
Collapse
|
142
|
Schuetz JD, Swaan PW, Tweedie DJ. The role of transporters in toxicity and disease. Drug Metab Dispos 2014; 42:541-5. [PMID: 24598705 PMCID: PMC3965901 DOI: 10.1124/dmd.114.057539] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 01/19/2023] Open
Abstract
The significance of transporters in the disposition, metabolism, and elimination of drugs is well recognized. One gap in our knowledge is a comprehensive understanding of how drug transporters change functionality (their amount and activity) in response to disease and how disease and its inevitable pathology change transporter expression. In this issue of Drug Metabolism and Disposition a series of review and primary research articles are presented to highlight the importance of transporters in toxicity and disease. Because of the central role of the liver in drug metabolism, many of the articles in this theme issue focus on transporters in the liver and how pathology or alterations in physiology affects transporter expression. The contributing authors have also considered the role of transporters in drug interactions as well as drug-induced liver injury. Noninvasive approaches to assessing transporter function in vivo are also described. Several articles highlight important issues in oncology where toxicity must be balanced against efficacy. In total, this theme issue will provide a stepping-stone to future studies that will establish a more comprehensive understanding of transporters in disease.
Collapse
Affiliation(s)
- John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (J.D.S); Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S); and Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut (D.J.T.)
| | | | | |
Collapse
|
143
|
Li Y, Zhou J, Ramsden D, Taub ME, O'Brien D, Xu J, Busacca CA, Gonnella N, Tweedie DJ. Enzyme-transporter interplay in the formation and clearance of abundant metabolites of faldaprevir found in excreta but not in circulation. Drug Metab Dispos 2014; 42:384-93. [PMID: 24346834 DOI: 10.1124/dmd.113.055863] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Faldaprevir is a hepatitis C virus protease inhibitor that effectively reduces viral load in patients. Since faldaprevir exhibits slow metabolism in vitro and low clearance in vivo, metabolism was expected to be a minor clearance pathway. The human [(14)C] absorption, distribution, metabolism, and excretion study revealed that two monohydroxylated metabolites (M2a and M2b) were the most abundant excretory metabolites in feces, constituting 41% of the total administered dose. To deconvolute the formation and disposition of M2a and M2b in humans and determine why the minor change in structure [the addition of 16 atomic mass units (amu)] produced chemical entities that were excreted and were not present in the circulation, multiple in vitro test systems were used. The results from these in vitro studies clarified the formation and clearance of M2a and M2b. Faldaprevir is metabolized primarily in the liver by CYP3A4/5 to form M2a and M2b, which are also substrates of efflux transporters (P-glycoprotein and breast cancer resistance protein). The role of transporters is considered important for M2a and M2b as they demonstrate low permeability. It is proposed that both metabolites are efficiently excreted via bile into feces and do not enter the systemic circulation to an appreciable extent. If these metabolites permeate to blood, they can be readily taken up into hepatocytes from the circulation by uptake transporters (likely organic anion transporting polypeptides). These results highlight the critical role of drug-metabolizing enzymes and multiple transporters in the process of the formation and clearance of faldaprevir metabolites. Faldaprevir metabolism also provides an interesting case study for metabolites that are exclusively excreted in feces but are of clinical relevance.
Collapse
Affiliation(s)
- Yongmei Li
- Drug Metabolism & Pharmacokinetics (Y.L., J.Z., D.R., M.E.T., D.O., J.X., D.J.T.), Chemical Development (C.A.B.), and Analytical Development (N.G.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Waters NJ, Obach RS, Di L. Consideration of the unbound drug concentration in enzyme kinetics. Methods Mol Biol 2014; 1113:119-45. [PMID: 24523111 DOI: 10.1007/978-1-62703-758-7_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The study of enzyme kinetics in drug metabolism involves assessment of rates of metabolism and inhibitory potencies over a suitable concentration range. In all but the very simplest in vitro system, these drug concentrations can be influenced by a variety of nonspecific binding reservoirs that can reduce the available concentration to the enzyme system under investigation. As a consequence, the apparent kinetic parameters that are derived, such as K m or K i, can deviate from the true values. There are a number of sources of these nonspecific binding depots or barriers, including membrane permeation and partitioning, plasma or serum protein binding, and incubational binding. In the latter case, this includes binding to the assay apparatus, as well as biological depots, depending on the characteristics of the in vitro matrix being used. Given the wide array of subcellular, cellular, and recombinant enzyme systems utilized in drug metabolism, each of these has different components that can influence the free drug concentration. The physicochemical properties of the test compound are also paramount in determining the influential factors in any deviation between true and apparent kinetic behavior. This chapter describes the underlying mechanisms determining the free drug concentration in vitro and how these factors can be accounted for in drug metabolism studies, illustrated with case studies from the literature.
Collapse
Affiliation(s)
- Nigel J Waters
- Drug Metabolism and Pharmacokinetics, Epizyme Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
145
|
Prasad B, Evers R, Gupta A, Hop CECA, Salphati L, Shukla S, Ambudkar SV, Unadkat JD. Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex. Drug Metab Dispos 2014; 42:78-88. [PMID: 24122874 PMCID: PMC3876790 DOI: 10.1124/dmd.113.053819] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/11/2013] [Indexed: 11/22/2022] Open
Abstract
Interindividual variability in protein expression of organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, OATP2B1, and multidrug resistance-linked P-glycoprotein (P-gp) or ABCB1 was quantified in frozen human livers (n = 64) and cryopreserved human hepatocytes (n = 12) by a validated liquid chromatography tandem mass spectroscopy (LC-MS/MS) method. Membrane isolation, sample workup, and LC-MS/MS analyses were as described before by our laboratory. Briefly, total native membrane proteins, isolated from the liver tissue and cryopreserved hepatocytes, were trypsin digested and quantified by LC-MS/MS using signature peptide(s) unique to each transporter. The mean ± S.D. (maximum/minimum range in parentheses) protein expression (fmol/µg of membrane protein) in human liver tissue was OATP1B1- 2.0 ± 0.9 (7), OATP1B3- 1.1 ± 0.5 (8), OATP2B1- 1 1.7 ± 0.6 (5), and P-gp- 0.4 ± 0.2 (8). Transporter expression in the liver tissue was comparable to that in the cryopreserved hepatocytes. Most important is that livers with SLCO1B1 (encoding OATP1B1) haplotypes *14/*14 and *14/*1a [i.e., representing single nucleotide polymorphisms (SNPs), c.388A > G, and c.463C > A] had significantly higher (P < 0.0001) protein expression than the reference haplotype (*1a/*1a). Based on these genotype-dependent protein expression data, we predicted (using Simcyp) an up to ∼40% decrease in the mean area under the curve of rosuvastatin or repaglinide in subjects harboring these variant alleles compared with those harboring the reference alleles. SLCO1B3 (encoding OATP1B3) SNPs did not significantly affect protein expression. Age and sex were not associated with transporter protein expression. These data will facilitate the prediction of population-based human transporter-mediated drug disposition, drug-drug interactions, and interindividual variability through physiologically based pharmacokinetic modeling.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington (B.P., J.D.U.); Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Rahway, New Jersey (R.E.); Drug Metabolism and Pharmacokinetics, Infection DMPK, AstraZeneca Pharmaceuticals LLP, Waltham, Massachusetts (A.G.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (C.E.H., L.S.); Laboratory of Cell Biology, Center for Cancer Research, National Institutes of Health National Cancer Institute, Bethesda, Maryland (S.S., S.V.A.)
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Di L, Atkinson K, Orozco CC, Funk C, Zhang H, McDonald TS, Tan B, Lin J, Chang C, Obach RS. In vitro-in vivo correlation for low-clearance compounds using hepatocyte relay method. Drug Metab Dispos 2013; 41:2018-23. [PMID: 23857891 DOI: 10.1124/dmd.113.053322] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In vitro-in vivo correlation (IVIVC) of intrinsic clearance in preclinical species of rat and dog was established using the hepatocyte relay method to support high-confidence prediction of human pharmacokinetics for low-clearance compounds. Good IVIVC of intrinsic clearance was observed for most of the compounds, with predicted values within 2-fold of the observed values. The exceptions involved transporter-mediated uptake clearance or metabolizing enzymes with extensive extrahepatic contribution. This is the first assay available to address low clearance challenges in preclinical species for IVIVC in drug discovery. It extends the utility of the hepatocyte relay method in addressing low clearance issues.
Collapse
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, Obach RS. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos 2013; 41:1975-93. [PMID: 24065860 DOI: 10.1124/dmd.113.054031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Prediction of human pharmacokinetics of new drugs, as well as other disposition attributes, has become a routine practice in drug research and development. Prior to the 1990s, drug disposition science was used in a mostly descriptive manner in the drug development phase. With the advent of in vitro methods and availability of human-derived reagents for in vitro studies, drug-disposition scientists became engaged in the compound design phase of drug discovery to optimize and predict human disposition properties prior to nomination of candidate compounds into the drug development phase. This has reaped benefits in that the attrition rate of new drug candidates in drug development for reasons of unacceptable pharmacokinetics has greatly decreased. Attributes that are predicted include clearance, volume of distribution, half-life, absorption, and drug-drug interactions. In this article, we offer our experience-based perspectives on the tools and methods of predicting human drug disposition using in vitro and animal data.
Collapse
Affiliation(s)
- Li Di
- Pfizer Inc., Groton, Connecticut
| | | | | | | | | | | | | |
Collapse
|
148
|
Chan TS, Yu H, Moore A, Khetani SR, Kehtani SR, Tweedie D. Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model, HepatoPac. Drug Metab Dispos 2013; 41:2024-32. [PMID: 23959596 DOI: 10.1124/dmd.113.053397] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Generating accurate in vitro intrinsic clearance data is an important aspect of predicting in vivo human clearance. Primary hepatocytes in suspension are routinely used to predict in vivo clearance; however, incubation times have typically been limited to 4-6 hours, which is not long enough to accurately evaluate the metabolic stability of slowly metabolized compounds. HepatoPac is a micropatterened hepatocyte-fibroblast coculture system that can be used for continuous incubations of up to 7 days. This study evaluated the ability of human HepatoPac to predict the in vivo clearance (CL) of 17 commercially available compounds with low to intermediate clearance (<12 ml/min per kg). In vitro half-life for disappearance of each compound was converted to hepatic clearance using the well stirred model, with and without correction for plasma protein binding. Hepatic CL, using three individual donors, was accurately predicted for 10 of 17 compounds (59%; predicted clearance within 2-fold of observed human in vivo clearance values). The accuracy of prediction increased to 76% (13 of 17 compounds) with an acceptance criterion defined as within 3-fold. When considering only low clearance compounds (<5 ml/min per kg), which represented 10 of the 17 compounds, the accuracy of prediction was 60% within 2-fold and 90% within 3-fold. In addition, the turnover of three slowly metabolized compounds (alprazolam, meloxicam, and tolbutamide) in HepatoPac was directly compared with turnover in suspended hepatocytes. The turnover of alprazolam and tolbutamide was approximately 2-fold greater using HepatoPac compared with suspended hepatocytes, which was roughly in line with the extrapolated values (correcting for the longer incubation time and lower cell number with HepatoPac). HepatoPac, but not suspended hepatocytes, demonstrated significant turnover of meloxicam. These results demonstrate the utility of HepatoPac for prediction of in vivo hepatic clearance, particularly with low clearance compounds.
Collapse
Affiliation(s)
- Tom S Chan
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | | | | | | | | | | |
Collapse
|
149
|
Powell DA. An overview of patented small molecule stearoyl coenzyme-A desaturase inhibitors (2009 - 2013). Expert Opin Ther Pat 2013; 24:155-75. [PMID: 24251719 DOI: 10.1517/13543776.2014.851669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Stearoyl coenzyme-A desaturase (SCD) is a critical lipogenic enzyme that converts a range of unsaturated lipids to their corresponding monounsaturated fatty acids. Genetic and enzyme-knockdown experiments have suggested an important role of SCD1 in the regulation of various metabolic disorders. With the prognostication that SCD-inhibition may serve to remediate various metabolic diseases, several pharmaceutical companies have embarked on the development of small-molecule SCD-inhibitors, with over 100 patent applications by 17 companies being reported to date. AREAS COVERED Recent progress on the development of SCD-inhibitors, including preclinical efficacy and safety are reviewed. Strategies toward overcoming systemic adverse events and the establishment of a suitable therapeutic margin for clinical studies are discussed. EXPERT OPINION Preclinically, SCD-inhibition leads to reductions in body-weight gain, improvements in glucose clearance and improved liver-lipid profile. However, chronic SCD inhibition in skin and eye-lubricating glands results in undesirable adverse events. Several strategies to overcome these findings have been described, including alternative administration routes for acne or oncology applications, use of potent and rapidly cleared compounds and SCD-inhibitors with a liver-targeted tissue distribution profile. The attainment of sufficient therapeutic margin and robust efficacy for therapeutic applications in humans remains a major frontier for SCD-inhibitors.
Collapse
Affiliation(s)
- David A Powell
- Inception Sciences Canada , 887 Great Northern Way, Suite 210, Vancouver, British Columbia, V5T 4T5 , Canada +1 858 224 7743 ; +1 858 224 7773 ;
| |
Collapse
|
150
|
Nordell P, Winiwarter S, Hilgendorf C. Resolving the distribution-metabolism interplay of eight OATP substrates in the standard clearance assay with suspended human cryopreserved hepatocytes. Mol Pharm 2013; 10:4443-51. [PMID: 24102095 DOI: 10.1021/mp400253f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Uptake transporters may act to elevate the intrahepatic exposure of drugs, impacting the route and rate of elimination, as well as the drug-drug interaction potential. We have here extended the assessment of metabolic drug stability in a standard human hepatocyte incubation to allow for elucidation of the distribution-metabolism interplay established for substrates of drug transporters. Cellular concentration-time profiles were obtained from incubations of eight known OATP substrates at 1 μM, each for two different 10-donor batches of suspended cryopreserved human hepatocytes. The kinetic data sets were analyzed using a mechanistic mathematical model that allowed for separate estimation of active uptake, bidirectional diffusion, metabolism and nonspecific extracellular and intracellular binding. The range of intrinsic clearances attributed to active uptake, diffusion and metabolism of the test set spanned more than 2 orders of magnitude each, with median values of 18, 5.3, and 0.5 μL/min/10(6) cells, respectively. This is to be compared with the values for the apparent clearance from the incubations, which only spanned 1 order of magnitude with a median of 2.6 μL/min/10(6) cells. The parameter estimates of the two pooled 10-donor hepatocyte batches investigated displayed only small differences in contrast to the variability associated with use of cells from individual donors reported in the literature. The active contribution to the total cellular uptake ranged from 55% (glyburide) to 96% (rosuvastatin), with an unbound intra-to-extracellular concentration ratio at steady state of 2.1 and 17, respectively. Principal component analysis showed that the parameter estimates of the investigated compounds were largely influenced by lipophilicity. Active cellular uptake in hepatocytes was furthermore correlated to pure OATP1B1-mediated uptake as measured in a transfected cell system. The presented approach enables the assessment of the key pathways regulating hepatic disposition of transporter and enzyme substrates from one single, reproducible and generally accessible human in vitro system.
Collapse
Affiliation(s)
- Pär Nordell
- Drug Safety and Metabolism, AstraZeneca R&D Mölndal , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | | | | |
Collapse
|