101
|
Incorporating Differential Gene Expression Analysis with Predictive Biomarkers to Identify Novel Therapeutic Drugs for Fuchs Endothelial Corneal Dystrophy. J Ophthalmol 2021; 2021:5580595. [PMID: 34258047 PMCID: PMC8260298 DOI: 10.1155/2021/5580595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/15/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Based on the differential gene expression analysis for predictive biomarkers with RNA-Sequencing data from Fuchs endothelial corneal dystrophy (FECD) patients, we are aiming to evaluate the efficacy of Library of Integrated Network-based Cellular Signatures (LINCS) perturbagen prediction software to identify novel pharmacotherapeutic targets that can revert the pathogenic gene expression signatures and reverse disease phenotype in FECD. Methods A publicly available RNA-seq dataset was used to compare corneal endothelial specimens from controls and patients with FECD. Based on the differential gene expression analysis for predictive biomarkers, we evaluated the efficacy of LINCS perturbagen prediction software to identify novel therapeutic targets that can revert the pathogenic gene expression signatures and reverse disease phenotypes in FECD. Results The RNA-seq dataset of the corneal endothelial cells from FECD patients revealed the differential gene expression signatures of FECD. Many of the differential expressed genes are related to canonical pathways of the FECD pathogenesis, such as extracellular matrix reorganization and immunological response. The expression levels of genes VSIG2, IL18, and ITGB8 were significantly increased in FECD compared with control. Meanwhile, the expression levels of CNGA3, SMOX, and CERS1 were significantly lower in the FECD than in control. We employed LINCS L1000 Characteristic Direction Signature Search Engine (L1000-CDS2) to investigate pathway-based molecular treatment. L1000-CDS2 predicted that small molecule drugs such as histone deacetylase (HDAC) inhibitors might be a potential candidate to reverse the pathological gene expression signature in FECD. Conclusions Based on differential gene expression signatures, several candidate drugs have been identified to reverse the disease phenotypes in FECD. Gene expression signature with LINCS small molecule prediction software can discover novel preclinical drug candidates for FECD.
Collapse
|
102
|
Jung B, Lee H, Kim S, Tchah H, Hwang C. Effect of Rho-Associated Kinase Inhibitor and Mesenchymal Stem Cell-Derived Conditioned Medium on Corneal Endothelial Cell Senescence and Proliferation. Cells 2021; 10:1463. [PMID: 34207965 PMCID: PMC8230597 DOI: 10.3390/cells10061463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022] Open
Abstract
This study aims to obtain sufficient corneal endothelial cells for regenerative application. We examined the combinatory effects of Rho-associated kinase (ROCK) inhibitor Y-27632 and mesenchymal stem cell-derived conditioned medium (MSC-CM) on the proliferation and senescence of rabbit corneal endothelial cells (rCECs). rCECs were cultured in a control medium, a control medium mixed with either Y-27632 or MSC-CM, and a combinatory medium containing Y-27632 and MSC-CM. Cells were analyzed for morphology, cell size, nuclei/cytoplasmic ratio, proliferation capacity and gene expression. rCECs cultured in a combinatory culture medium showed a higher passage number, cell proliferation, and low senescence. rCECs on collagen type I film showed high expression of tight junction. The cell proliferation marker Ki-67 was positively stained either in Y-27632 or MSC-CM-containing media. Genes related to cell proliferation resulted in negligible changes in MKI67, CIP2A, and PCNA in the combinatory medium, suggesting proliferative capacity was maintained. In contrast, all of these genes were significantly downregulated in the other groups. Senescence marker β-galactosidase-positive cells significantly decreased in either MSC-CM and/or Y-27632 mixed media. Senescence-related genes downregulated LMNB1 and MAP2K6, and upregulated MMP2. Cell cycle checkpoint genes such as CDC25C, CDCA2, and CIP2A did not vary in the combinatory medium but were significantly downregulated in either ROCK inhibitor or MSC-CM alone. These results imply the synergistic effect of combinatory culture medium on corneal endothelial cell proliferation and high cell number. This study supports high potential for translation to the development of human corneal endothelial tissue regeneration.
Collapse
Affiliation(s)
- Boyoung Jung
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Department of Ophthalmology, Asan Medical Center, Seoul 05505, Korea
| | - Sumi Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| | - Hungwon Tchah
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Department of Ophthalmology, Asan Medical Center, Seoul 05505, Korea
| | - Changmo Hwang
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| |
Collapse
|
103
|
Uehara H, Zhang X, Pereira F, Narendran S, Choi S, Bhuvanagiri S, Liu J, Ravi Kumar S, Bohner A, Carroll L, Archer B, Zhang Y, Liu W, Gao G, Ambati J, Jun AS, Ambati BK. Start codon disruption with CRISPR/Cas9 prevents murine Fuchs' endothelial corneal dystrophy. eLife 2021; 10:e55637. [PMID: 34100716 PMCID: PMC8216720 DOI: 10.7554/elife.55637] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
A missense mutation of collagen type VIII alpha 2 chain (COL8A2) gene leads to early-onset Fuchs' endothelial corneal dystrophy (FECD), which progressively impairs vision through the loss of corneal endothelial cells. We demonstrate that CRISPR/Cas9-based postnatal gene editing achieves structural and functional rescue in a mouse model of FECD. A single intraocular injection of an adenovirus encoding both the Cas9 gene and guide RNA (Ad-Cas9-Col8a2gRNA) efficiently knocked down mutant COL8A2 expression in corneal endothelial cells, prevented endothelial cell loss, and rescued corneal endothelium pumping function in adult Col8a2 mutant mice. There were no adverse sequelae on histology or electroretinography. Col8a2 start codon disruption represents a non-surgical strategy to prevent vision loss in early-onset FECD. As this demonstrates the ability of Ad-Cas9-gRNA to restore the phenotype in adult post-mitotic cells, this method may be widely applicable to adult-onset diseases, even in tissues affected with disorders of non-reproducing cells.
Collapse
Affiliation(s)
- Hironori Uehara
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of OregonEugene, ORUnited States
| | - Xiaohui Zhang
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of OregonEugene, ORUnited States
| | - Felipe Pereira
- Department of Ophthalmology, University of VirginiaCharlottesvilleUnited States
| | - Siddharth Narendran
- Department of Ophthalmology, University of VirginiaCharlottesvilleUnited States
| | - Susie Choi
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Sai Bhuvanagiri
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Jinlu Liu
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Sangeetha Ravi Kumar
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of OregonEugene, ORUnited States
| | - Austin Bohner
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Lara Carroll
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Bonnie Archer
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of OregonEugene, ORUnited States
| | - Yue Zhang
- Division of Epidemiology, Department of Internal Medicine, University of UtahSalt Lake CityUnited States
| | - Wei Liu
- Division of Epidemiology, Department of Internal Medicine, University of UtahSalt Lake CityUnited States
| | - Guangping Gao
- Gene Therapy Center, Department of Microbiology and Physiological Science Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Jayakrishna Ambati
- Department of Ophthalmology, University of VirginiaCharlottesvilleUnited States
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Balamurali K Ambati
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of OregonEugene, ORUnited States
| |
Collapse
|
104
|
Numa K, Ueno M, Fujita T, Ueda K, Hiramoto N, Mukai A, Tokuda Y, Nakano M, Sotozono C, Kinoshita S, Hamuro J. Mitochondria as a Platform for Dictating the Cell Fate of Cultured Human Corneal Endothelial Cells. Invest Ophthalmol Vis Sci 2021; 61:10. [PMID: 33275651 PMCID: PMC7718813 DOI: 10.1167/iovs.61.14.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Aiming to clarify the role of mitochondria in cell fate decision of cultured human corneal endothelial cell (cHCEC) subpopulations. Methods The mitochondrial respiratory ability were examined with Mito stress and Mito fuel flex test assays using an extracellular flux analyzer (XFe24; Agilent Technologies; Santa Clara, CA) for human corneal endothelium tissues, mature cHCECs and a variety of cell state transitioned cHCECs. Tricarboxylic acid cycle and acetyl-coenzyme A–related enzymes was analyzed by proteomics for cell lysates using liquid chromatography–tandem mass spectrometry for cHCEC subpopulations. Results The maximum oxygen consumption rate was found to become stable depending on the maturation of cHCECs. In the Mito stress tests, culture supplements, epidermal growth factor, SB203580, and SB431543 significantly repressed oxygen consumption rate, whereas a Rho-associated protein kinase inhibitor Y-27632 increased. Tricarboxylic acid cycle and mitochondria acetyl-coenzyme A–related enzymes were selectively upregulated in mature cHCECs, but not in cell state transitioned cHCECs. The maximum oxygen consumption rate was found to be higher in healthy human corneal endothelium tissues than those with deeply reduced cell density. An upregulated tricarboxylic acid cycle was linked with metabolic rewiring converting cHCECs to acquire the mitochondria-dependent oxidative phenotype. Conclusions Mitochondrial metabolic intermediates and energy metabolism are tightly linked to the endothelial cell fate and function. These findings will help us to standardize a protocol for endothelial cell injection.
Collapse
Affiliation(s)
- Kohsaku Numa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Fujita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Nao Hiramoto
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atushi Mukai
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuichi Tokuda
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junji Hamuro
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
105
|
Toffoletto N, Chauhan A, Alvarez-Lorenzo C, Saramago B, Serro AP. Asymmetry in Drug Permeability through the Cornea. Pharmaceutics 2021; 13:694. [PMID: 34064834 PMCID: PMC8151369 DOI: 10.3390/pharmaceutics13050694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
The permeability through the cornea determines the ability of a drug or any topically applied compound to cross the tissue and reach the intraocular area. Most of the permeability values found in the literature are obtained considering topical drug formulations, and therefore, refer to the drug permeability inward the eye. However, due to the asymmetry of the corneal tissue, outward drug permeability constitutes a more meaningful parameter when dealing with intraocular drug-delivery systems (i.e., drug-loaded intraocular lenses, intraocular implants or injections). Herein, the permeability coefficients of two commonly administered anti-inflammatory drugs (i.e., bromfenac sodium and dexamethasone sodium) were determined ex vivo using Franz diffusion cells and porcine corneas in both inward and outward configurations. A significantly higher drug accumulation in the cornea was detected in the outward direction, which is consistent with the different characteristics of the corneal layers. Coherently, a higher permeability coefficient was obtained for bromfenac sodium in the outward direction, but no differences were detected for dexamethasone sodium in the two directions. Drug accumulation in the cornea can prolong the therapeutic effect of intraocular drug-release systems.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Anuj Chauhan
- Department of Chemical Engineering, Colorado School of Mines, Golden, CO 80401, USA;
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
106
|
Baturina GS, Katkova LE, Palchikova IG, Kolosova NG, Solenov EI, Iskakov IA. Mitochondrial Antioxidant SkQ1 Improves Hypothermic Preservation of the Cornea. BIOCHEMISTRY (MOSCOW) 2021; 86:382-388. [PMID: 33838637 DOI: 10.1134/s0006297921030135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Diseases of the cornea are a frequent cause of blindness worldwide. Keratoplasty is an efficient method for treating severely damaged cornea. The functional competence of corneal endothelial cells is crucial for successful grafting, which requires improving the media for the hypothermic cornea preservation, as well as developing the methods for the evaluation of the corneal functional properties. The transport of water and ions by the corneal endothelium is important for the viability and optic properties of the cornea. We studied the impact of SkQ1 on the equilibrium sodium concentration in the endothelial cells after hypothermic preservation of pig cornea at 4°C for 1, 5, and 10 days in standard Eusol-C solution. The intracellular sodium concentration in the endothelial cells was assayed using the fluorescent dye Sodium Green; the images were analyzed with the custom-designed CytoDynamics computer program. The concentrations of sodium in the pig corneal endothelium significantly increased after 10 days of hypothermic preservation, while addition of 1.0 nM SkQ1 to the preservation medium decreased the equilibrium concentration of intracellular sodium (at 37°C). After 10 days of hypothermic preservation, the permeability of the plasma membrane for sodium decreased in the control cells, but not in the cells preserved in the presence of 1 nM SkQ1. Therefore, SkQ1 increased the ability of endothelial cells to restore the intracellular sodium concentration, which makes SkQ1 a promising agent for facilitating retention of the functional competence of endothelial cells during cold preservation.
Collapse
Affiliation(s)
- Galina S Baturina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Lubov E Katkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina G Palchikova
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Technological Design Institute of Scientific Instrument Engineering, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630058, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Evgeniy I Solenov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.,Novosibirsk State Technical University, Novosibirsk, 630087, Russia
| | - Igor A Iskakov
- Fyodorov Eye Microsurgery Complex, Novosibirsk, 630096, Russia
| |
Collapse
|
107
|
Öztürk-Öncel MÖ, Erkoc-Biradli FZ, Rasier R, Marcali M, Elbuken C, Garipcan B. Rose petal topography mimicked poly(dimethylsiloxane) substrates for enhanced corneal endothelial cell behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112147. [PMID: 34082958 DOI: 10.1016/j.msec.2021.112147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Low proliferation capacity of corneal endothelial cells (CECs) and worldwide limitations in transplantable donor tissues reveal the critical need of a robust approach for in vitro CEC growth. However, preservation of CEC-specific phenotype with increased proliferation has been a great challenge. Here we offer a biomimetic cell substrate design, by optimizing mechanical, topographical and biochemical characteristics of materials with CEC microenvironment. We showed the surprising similarity between topographical features of white rose petals and corneal endothelium due to hexagonal cell shapes and physiologically relevant cell density (≈ 2000 cells/mm2). Polydimethylsiloxane (PDMS) substrates with replica of white rose petal topography and cornea-friendly Young's modulus (211.85 ± 74.9 kPa) were functionalized with two of the important corneal extracellular matrix (ECM) components, collagen IV (COL 4) and hyaluronic acid (HA). White rose petal patterned and COL 4 modified PDMS with optimized stiffness provided enhanced bovine CEC response with higher density monolayers and increased phenotypic marker expression. This biomimetic approach demonstrates a successful platform to improve in vitro cell substrate properties of PDMS for corneal applications, suggesting an alternative environment for CEC-based therapies, drug toxicity investigations, microfluidics and organ-on-chip applications.
Collapse
Affiliation(s)
| | | | - Rıfat Rasier
- Department of Ophthalmology, Demiroglu Bilim University, Istanbul, Turkey
| | - Merve Marcali
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Caglar Elbuken
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
| | - Bora Garipcan
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
108
|
Schlötzer-Schrehardt U, Zenkel M, Strunz M, Gießl A, Schondorf H, da Silva H, Schmidt GA, Greiner MA, Okumura N, Koizumi N, Kinoshita S, Tourtas T, Kruse FE. Potential Functional Restoration of Corneal Endothelial Cells in Fuchs Endothelial Corneal Dystrophy by ROCK Inhibitor (Ripasudil). Am J Ophthalmol 2021; 224:185-199. [PMID: 33316261 DOI: 10.1016/j.ajo.2020.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Rho-associated kinase (ROCK) inhibitors have been successfully used as a rescue strategy in eyes that failed to clear after descemetorhexis without endothelial graft for treatment of Fuchs endothelial corneal dystrophy (FECD). The functional mechanisms by which ROCK inhibitors modulate corneal endothelial cell regeneration in FECD patients have, however, not been clarified. Here, we analyzed the effect of the ROCK inhibitor ripasudil on corneal endothelial cells of FECD patients and normal donors using ex vivo tissue and in vitro cellular models. DESIGN Experimental study: laboratory investigation. METHODS This institutional study used endothelial cell-Descemet membrane lamellae from FECD patients (n = 450) undergoing Descemet membrane endothelial keratoplasty (FECD ex vivo model), normal research-grade donor corneas (n = 30) after scraping off central endothelial cells (ex vivo wound healing model), normal donor corneas (n = 20) without endothelial injury, and immortalized cell lines (n = 3) generated from FECD patients (FECD in vitro model). Descemet membrane lamellae were dissected into halves and incubated for 24-72 hours in storage medium with or without a single dose of 30 μM ripasudil. The effects of ripasudil on expression of genes and proteins related to endothelial cell proliferation, migration, functionality, and endothelial-to-mesenchymal transition were analyzed and complemented by functional assays on FECD cell lines. RESULTS A single dose of ripasudil induced significant upregulation of genes and proteins related to cell cycle progression, cell-matrix adhesion and migration, as well as endothelial barrier and pump function up to 72 hours, whereas classical markers of endothelial-to-mesenchymal transition were downregulated in both FECD and normal specimens compared to unstimulated controls ex vivo. In addition to stimulation of proliferation and migration, ripasudil-induced changes in expression of functional signature genes could be also verified in FECD cell lines in vitro. CONCLUSIONS These data support the concept that inhibition of ROCK signaling represents a potent tool in regenerative therapies in FECD patients through reactivation of cell proliferation and migration as well as restoration of endothelial pump and barrier function without inducing adverse phenotypic changes.
Collapse
|
109
|
Ong HS, Ang M, Mehta J. Evolution of therapies for the corneal endothelium: past, present and future approaches. Br J Ophthalmol 2021; 105:454-467. [PMID: 32709756 PMCID: PMC8005807 DOI: 10.1136/bjophthalmol-2020-316149] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/16/2020] [Indexed: 12/13/2022]
Abstract
Corneal endothelial diseases are leading indications for corneal transplantations. With significant advancement in medical science and surgical techniques, corneal transplant surgeries are now increasingly effective at restoring vision in patients with corneal diseases. In the last 15 years, the introduction of endothelial keratoplasty (EK) procedures, where diseased corneal endothelium (CE) are selectively replaced, has significantly transformed the field of corneal transplantation. Compared to traditional penetrating keratoplasty, EK procedures, namely Descemet's stripping automated endothelial keratoplasty (DSAEK) and Descemet membrane endothelial keratoplasty (DMEK), offer faster visual recovery, lower immunological rejection rates, and improved graft survival. Although these modern techniques can achieve high success, there are fundamental impediments to conventional transplantations. A lack of suitable donor corneas worldwide restricts the number of transplants that can be performed. Other barriers include the need for specialized expertise, high cost, and risks of graft rejection or failure. Research is underway to develop alternative treatments for corneal endothelial diseases, which are less dependent on the availability of allogeneic tissues - regenerative medicine and cell-based therapies. In this review, an overview of past and present transplantation procedures used to treat corneal endothelial diseases are described. Potential novel therapies that may be translated into clinical practice will also be presented.
Collapse
Affiliation(s)
- Hon Shing Ong
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Marcus Ang
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Jodhbir Mehta
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
- School of Material Science & Engineering and School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
110
|
Current development of alternative treatments for endothelial decompensation: Cell-based therapy. Exp Eye Res 2021; 207:108560. [PMID: 33811914 DOI: 10.1016/j.exer.2021.108560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Current treatment for corneal endothelial dysfunction consists in the replacement of corneal endothelium by keratoplasty. Owing to the scarcity of donor corneas and the increasing number of transplants, alternative treatments such as cell-based therapies are necessary. In this article, we highlight the biological aspects of the cornea and the corneal endothelium, as well as the context that surrounds the need for new alternatives to conventional keratoplasty. We then review some of those experimental treatments in more detail, focusing on the development of the in vitro and preclinical phases of two cell-based therapies: tissue-engineered endothelial keratoplasty (TE-EK) and cell injection. In the case of TE-EK graft construction, we analyse the current progress, considering all the requirements it must meet in order to be functional. Moreover, we discuss the inherent drawbacks of endothelial keratoplasties, which TE-EK grafts should overcome in order to make surgical intervention easier and to improve the outcomes of current endothelial keratoplasties. Finally, we analyse the development of preclinical trials and their limitations in terms of performing an optimal functional evaluation of cell-based therapy, and we conclude by discussing early clinical trials in humans.
Collapse
|
111
|
Ali M, Khan SY, Jang Y, Na CH, Talbot CC, Gottsch JD, Handa JT, Riazuddin SA. Cigarette Smoke Triggers Loss of Corneal Endothelial Cells and Disruption of Descemet's Membrane Proteins in Mice. Invest Ophthalmol Vis Sci 2021; 62:3. [PMID: 33651877 PMCID: PMC7938020 DOI: 10.1167/iovs.62.3.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate changes at a molecular level in the mouse corneal endothelium (CE) exposed to chronic cigarette smoke (CS). Methods Pregnant mice (gestation days 18–20) were placed in a whole-body exposure smoking chamber, and a few days later pups were born. After 3.5 months of CS exposure, a ConfoScan4 scanning microscope was used to examine the corneal endothelial cells (CECs) of CS-exposed and control (Ct) mice. The CE was peeled under a microscope and maintained as four biological replicates (two male and two female) for CS-exposed and Ct mice; each replicate consisted of 16 CEs. The proteome of the CE was investigated through mass spectrometry. Results The CE images of CS-exposed and Ct mice revealed a difference in the shape of CECs accompanied by a nearly 10% decrease in CEC density (P < 0.00003) following CS exposure. Proteome profiling identified a total of 524 proteins exhibiting statistically significant changes in CE from CS-exposed mice. Importantly, proteins associated with Descemet's membrane (DM), including COL4α1, COL4α2, COL4α3, COL4α4, COL4α5, COL4α6, COL8α1, COL8α2, and FN1, among others, exhibited diminished protein levels in the CE of CS-exposed mice. Conclusions Our data confirm that exposure to CS results in reduced CEC density accompanied by diminished levels of multiple collagen and extracellular matrix proteins associated with DM.
Collapse
Affiliation(s)
- Muhammad Ali
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Shahid Y Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Yura Jang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Chan Hyun Na
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - John D Gottsch
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - James T Handa
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
112
|
Wang X, Zhou Q, Zhao C, Duan H, Li W, Dong C, Gong Y, Li Z, Shi W. Multiple roles of FGF10 in the regulation of corneal endothelial wound healing. Exp Eye Res 2021; 205:108517. [PMID: 33617851 DOI: 10.1016/j.exer.2021.108517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/29/2022]
Abstract
Corneal endothelial dysfunction usually induces corneal haze and oedema, which seriously affect visual function. The main therapeutic strategy for this condition is corneal transplantation, but the use of this strategy is limited by the shortage of healthy donor corneas. Compared with corneal transplantation, drug intervention is less invasive and more accessible; thus, finding an effective pharmaceutical alternative for cornea transplantation is critical for the treatment of corneal endothelial dysfunction. In this study, we established a rabbit scratch model to investigate the effect of fibroblast growth factor 10 (FGF10) on corneal endothelial wound healing. Results showed that FGF10 injection accelerated the recovery of corneal transparency and increased the protein expression levels of ZO1, Na+/K+-ATPase and AQP-1. Moreover, FGF10 significantly inhibited the expression levels of endothelial-to-mesenchymal transition proteins and reduced the expression levels of the proinflammatory factors IL-1β and TNF-α in the anterior chamber aqueous humour. FGF10 also enhanced the Na+/K+-ATPase activity by enhancing mitochondrial function as a result of its direct interaction with its conjugate receptor. Thus, FGF10 could be a new pharmaceutical preparation as treatment for corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medicine, Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Can Zhao
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University &Shandong Academy of Medical Sciences, China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Wenjing Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Chunxiao Dong
- Department of Medicine, Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Yajie Gong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University &Shandong Academy of Medical Sciences, China.
| |
Collapse
|
113
|
Zhang K, Zhao L, Zhu C, Nan W, Ding X, Dong Y, Zhao M. The effect of diabetes on corneal endothelium: a meta-analysis. BMC Ophthalmol 2021; 21:78. [PMID: 33568093 PMCID: PMC7874671 DOI: 10.1186/s12886-020-01785-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND This research was conducted with the aim to determine the effect of diabetes mellitus on corneal endothelial cells. METHODS The terms: ("diabetes mellitus" or "diabetes" or "diabetic") and ("corneal endothelium" or "cornea" or "Corneas") searched in Pubmed, Embase, Cochrane, and Web of science until August 2019. The included types of studies contained observational studies. The standard mean difference (SMD) which was deemed as main size effects for continuous data was calculated by means and standard deviations. The data on corneal endothelial cell density (ECD), mean cell area (MCA), cell area variation coefficient (CV) and percentage of hexagonal cells (HEX) included in the study were collected and analyzed using stata15.1. RESULTS The final 16 cross-sectional studies and 2 case-control studies were included for the meta-analysis. Meta-analysis revealed that diabetes mellitus could reduce ECD (SMD = - 0.352, 95% CI -0.538, - 0.166) and the HEX (SMD = - 0.145, 95% CI -0.217, - 0.074), in addition to increasing CV (SMD = 0.195, 95% CI 0.123, 0.268). Nevertheless, there was no statistically significant differences observed when combining MCA (SMD = 0.078, 95% CI -0.022, 0.178). In subgroup analysis, Type 2 diabetes patients owned less corneal ECD (P < 0.05). Moreover the same results also found during the subgroup form Asia, Europe and American. The meta-regression revealed the type of diabetes mellitus might be contributing to heterogeneity. (P = 0.008). The results indicated a significant publication bias for studies, with combined CV (Begg's test, P = 0.006; Egger's test, P = 0.005) and merged combined HEX (Begg's test, P = 0.113; Egger's test, P = 0.024). CONCLUSIONS As indicated by meta-analysis, diabetes mellitus could cause a detrimental effect on corneal endothelium health. Diabetes mellitus contributed to the instability of corneal endothelium during the analysis. Therefore, further research is considered necessary to confirm our research results. TRIAL REGISTRATION CED 42019145858 .
Collapse
Affiliation(s)
- Kaikai Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Jilin University, Changchun, 13000, China
| | - Liangliang Zhao
- Department of Ophthalmology, The Second Affiliated Hospital of Jilin University, Changchun, 13000, China
| | - Chao Zhu
- Department of Ophthalmology, The Second Affiliated Hospital of Jilin University, Changchun, 13000, China
| | - Weijin Nan
- Department of Ophthalmology, The Second Affiliated Hospital of Jilin University, Changchun, 13000, China
| | - Xinfen Ding
- Department of Ophthalmology, The Second Affiliated Hospital of Jilin University, Changchun, 13000, China
| | - Yuchen Dong
- Department of Ophthalmology, The Second Affiliated Hospital of Jilin University, Changchun, 13000, China
| | - Meisheng Zhao
- Department of Ophthalmology, The Second Affiliated Hospital of Jilin University, Changchun, 13000, China.
| |
Collapse
|
114
|
Directed Differentiation of Human Pluripotent Stem Cells towards Corneal Endothelial-Like Cells under Defined Conditions. Cells 2021; 10:cells10020331. [PMID: 33562615 PMCID: PMC7915025 DOI: 10.3390/cells10020331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
The most crucial function of corneal endothelial cells (CEnCs) is to maintain optical transparency by transporting excess fluid out of stroma. Unfortunately, CEnCs are not able to proliferate in vivo in the case of trauma or dystrophy. Visually impaired patients with corneal endothelial deficiencies that are waiting for transplantation due to massive global shortage of cadaveric corneal transplants are in a great need of help. In this study, our goal was to develop a defined, clinically applicable protocol for direct differentiation of CEnCs from human pluripotent stem cells (hPSCs). To produce feeder-free hPSC-CEnCs, we used small molecule induction with transforming growth factor (TGF) beta receptor inhibitor SB431542, GSK-3-specific inhibitor CHIR99021 and retinoic acid to guide differentiation through the neural crest and periocular mesenchyme (POM). Cells were characterized by the morphology and expression of human (h)CEnC markers with immunocytochemistry and RT-qPCR. After one week of induction, we observed the upregulation of POM markers paired-like homeodomain transcription factor 2 (PITX2) and Forkhead box C1 (FOXC1) and polygonal-shaped cells expressing CEnC-associated markers Zona Occludens-1 (ZO-1), sodium-potassium (Na+/K+)-ATPase, CD166, sodium bicarbonate cotransporter 1 (SLC4A4), aquaporin 1 (AQP1) and N-cadherin (NCAD). Furthermore, we showed that retinoic acid induced a dome formation in the cell culture, with a possible indication of fluid transport by the differentiated cells. Thus, we successfully generated CEnC-like cells from hPSCs with a defined, simple and fast differentiation method.
Collapse
|
115
|
Erkoc-Biradli FZ, Ozgun A, Öztürk-Öncel MÖ, Marcali M, Elbuken C, Bulut O, Rasier R, Garipcan B. Bioinspired hydrogel surfaces to augment corneal endothelial cell monolayer formation. J Tissue Eng Regen Med 2021; 15:244-255. [PMID: 33448665 DOI: 10.1002/term.3173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/08/2020] [Accepted: 12/26/2020] [Indexed: 11/06/2022]
Abstract
Corneal endothelial cells (CECs) have limited proliferation ability leading to corneal endothelium (CE) dysfunction and eventually vision loss when cell number decreases below a critical level. Although transplantation is the main treatment method, donor shortage problem is a major bottleneck. The transplantation of in vitro developed endothelial cells with desirable density is a promising idea. Designing cell substrates that mimic the native CE microenvironment is a substantial step to achieve this goal. In the presented study, we prepared polyacrylamide (PA) cell substrates that have a microfabricated topography inspired by the dimensions of CECs. Hydrogel surfaces were prepared via two different designs with small and large patterns. Small patterned hydrogels have physiologically relevant hexagon densities (∼2000 hexagons/mm2 ), whereas large patterned hydrogels have sparsely populated hexagons (∼400 hexagons/mm2 ). These substrates have similar elastic modulus of native Descemet's membrane (DM; ∼50 kPa) and were modified with Collagen IV (Col IV) to have biochemical content similar to native DM. The behavior of bovine corneal endothelial cells on these substrates was investigated and results show that cell proliferation on small patterned substrates was significantly (p = 0.0004) higher than the large patterned substrates. Small patterned substrates enabled a more densely populated cell monolayer compared to other groups (p = 0.001 vs. flat and p < 0.0001 vs. large patterned substrates). These results suggest that generating bioinspired surface topographies augments the formation of CE monolayers with the desired cell density, addressing the in vitro development of CE layers.
Collapse
Affiliation(s)
- Fatma Zehra Erkoc-Biradli
- (Bio)3 Research laboratory, Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Alp Ozgun
- (Bio)3 Research laboratory, Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | | | - Merve Marcali
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Caglar Elbuken
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.,Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Osman Bulut
- Faculty of Civil Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Rıfat Rasier
- Department of Ophthalmology, Demiroglu Bilim University, Istanbul, Turkey
| | - Bora Garipcan
- (Bio)3 Research laboratory, Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
116
|
McNutt PM, Kelly KEM, Altvater AC, Nelson MR, Lyman ME, O'Brien S, Conroy MT, Ondeck CA, Bodt SML, Wolfe SE, Schulz SM, Kniffin DM, Hall NB, Hamilton TA. Dose-dependent emergence of acute and recurrent corneal lesions in sulfur mustard-exposed rabbit eyes. Toxicol Lett 2021; 341:33-42. [PMID: 33497768 DOI: 10.1016/j.toxlet.2021.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/11/2020] [Accepted: 01/16/2021] [Indexed: 12/17/2022]
Abstract
Sulfur mustard (SM) is a lipid soluble alkylating agent that causes genotoxic injury. The eye is highly sensitive to SM toxicity and exposures exceeding 400 mg min/m3 can elicit irreversible corneal pathophysiologies. Development of medical countermeasures for ocular SM exposure has been hindered by a limited understanding of dose-dependent effects of SM on corneal injury. Here, clinical, histological and ultrastructural analyses were used to characterize the effects of SM dose on corneal injury progression. Corneas were evaluated for up to 20 wk following exposure to saturated SM vapor for 30-150 s, which corresponds to 300-1,500 mg min/m3. In acute studies, a ceiling effect on corneal edema developed at doses associated with full-thickness corneal lesions, implicating endothelial toxicity in corneal swelling. Recurrent edematous lesions (RELs) transiently emerged after 2 wk in a dose-dependent fashion, followed by the development of secondary corneal pathophysiologies such as neovascularization, stromal scarring and endothelial abnormalities. RELs appeared in 96 % of corneas exposed for ≥ 90 s, 52 % of corneas exposed for 60 s and 0 % of corneas exposed for 30 s. While REL latency was variable in corneas exposed for 60 s, REL emergence was synchronized at exposures ≥ 90 s. Corneas did not exhibit more than one REL, suggesting RELs are part of a programmed pathophysiological response to severe alkylating lesions. In post-mortem studies at 12 wk, corneal edema was positively correlated to severity of endothelial pathologies, consistent with previous findings that endothelial toxicity influences long-term outcomes. These results provide novel insight into long-term corneal pathophysiological responses to acute toxicity and identify exposure conditions suitable for therapeutic testing.
Collapse
Affiliation(s)
- Patrick M McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, United States; US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States.
| | - Kyle E M Kelly
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Amber C Altvater
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Marian R Nelson
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Megan E Lyman
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Sean O'Brien
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Matthieu T Conroy
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Celinia A Ondeck
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Skylar M L Bodt
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States; Penn State School of Medicine, Hershey, PA, United States
| | - Sarah E Wolfe
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States; University of Colorado School of Medicine, United States
| | - Susan M Schulz
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Denise M Kniffin
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Nicole B Hall
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Tracey A Hamilton
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| |
Collapse
|
117
|
López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, Herrero-Vanrell R, Molina-Martínez IT. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin Drug Deliv 2021; 18:819-847. [PMID: 33412914 DOI: 10.1080/17425247.2021.1872542] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The development of ophthalmic formulations able to deliver hydrophilic and hydrophobic drugs to the inner structures of the eye and restore the preocular tear film has been a leading topic of discussion over the last few years. In this sense, liposomes represent a suitable strategy to achieve these objectives in ocular drug delivery.Areas covered: Knowledge of the different physiological and anatomical eye structures, and specially the ocular surface are critical to better understanding and comprehending the characteristics required for the development of topical ophthalmic liposomal formulations. In this review, several features of liposomes are discussed such as the main materials used for their fabrication, basic structure and preparation methods, from already established to novel techniques, allowing the control and design of special characteristics. Besides, physicochemical properties, purification processes and strategies to overcome delivery or encapsulation challenges are also presented. Expert opinion: Regarding ocular drug delivery of liposomes, there are some features that can be redesigned. Specific biocompatible and biodegradable materials presenting therapeutic properties, such as lipidic compounds or polymers significantly change the way of tackling ophthalmic diseases. Besides, liposomes entail an effective, safe and versatile strategy for the treatment of diseases in the clinical practice.
Collapse
Affiliation(s)
- José Javier López-Cano
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Miriam Ana González-Cela-Casamayor
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Vanessa Andrés-Guerrero
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Irene Teresa Molina-Martínez
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| |
Collapse
|
118
|
Zhang W, Frausto R, Chung DD, Griffis CG, Kao L, Chen A, Azimov R, Sampath AP, Kurtz I, Aldave AJ. Energy Shortage in Human and Mouse Models of SLC4A11-Associated Corneal Endothelial Dystrophies. Invest Ophthalmol Vis Sci 2021; 61:39. [PMID: 32721020 PMCID: PMC7425690 DOI: 10.1167/iovs.61.8.39] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To elucidate the molecular events in solute carrier family 4 member 11 (SLC4A11)-deficient corneal endothelium that lead to the endothelial dysfunction that characterizes the dystrophies associated with SLC4A11 mutations, congenital hereditary endothelial dystrophy (CHED) and Fuchs endothelial corneal dystrophy 4. Methods Comparative transcriptomic analysis (CTA) was performed in primary human corneal endothelial cells (pHCEnC) and murine corneal endothelial cells (MCEnC) with normal and reduced levels of SLC4A11 (SLC4A11 KD pHCEnC) and Slc4a11 (Slc4a11−/− MCEnC), respectively. Validation of differentially expressed genes was performed using immunofluorescence staining of CHED corneal endothelium, as well as western blot and quantitative PCR analysis of SLC4A11 KD pHCEnC and Slc4a11−/− MCEnC. Functional analyses were performed to investigate potential functional changes associated with the observed transcriptomic alterations. Results CTA revealed inhibition of cell metabolism and ion transport function as well as mitochondrial dysfunction, leading to reduced adenosine triphosphate (ATP) production, in SLC4A11 KD pHCEnC and Slc4a11−/− MCEnC. Co-localization of SNARE protein STX17 with mitochondria marker COX4 was observed in CHED corneal endothelium, as was activation of AMPK–p53/ULK1 in both SLC4A11 KD pHCEnC and Slc4a11−/− MCEnC, providing additional evidence of mitochondrial dysfunction and mitophagy. Reduced Na+-dependent HCO3− transport activity and altered NH4Cl-induced membrane potential changes were observed in Slc4a11−/− MCEnC. Conclusions Reduced steady-state ATP levels and subsequent activation of the AMPK–p53 pathway provide a link between the metabolic functional deficit and transcriptome alterations, as well as evidence of insufficient ATP to maintain the Na+/K+-ATPase corneal endothelial pump as the cause of the edema that characterizes SLC4A11-associated corneal endothelial dystrophies.
Collapse
|
119
|
Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 2021; 80:100863. [PMID: 32438095 PMCID: PMC7648733 DOI: 10.1016/j.preteyeres.2020.100863] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common primary corneal endothelial dystrophy and the leading indication for corneal transplantation worldwide. FECD is characterized by the progressive decline of corneal endothelial cells (CECs) and the formation of extracellular matrix (ECM) excrescences in Descemet's membrane (DM), called guttae, that lead to corneal edema and loss of vision. FECD typically manifests in the fifth decades of life and has a greater incidence in women. FECD is a complex and heterogeneous genetic disease where interaction between genetic and environmental factors results in cellular apoptosis and aberrant ECM deposition. In this review, we will discuss a complex interplay of genetic, epigenetic, and exogenous factors in inciting oxidative stress, auto(mito)phagy, unfolded protein response, and mitochondrial dysfunction during CEC degeneration. Specifically, we explore the factors that influence cellular fate to undergo apoptosis, senescence, and endothelial-to-mesenchymal transition. These findings will highlight the importance of abnormal CEC-DM interactions in triggering the vicious cycle of FECD pathogenesis. We will also review clinical characteristics, diagnostic tools, and current medical and surgical management options for FECD patients. These new paradigms in FECD pathogenesis present an opportunity to develop novel therapeutics for the treatment of FECD.
Collapse
Affiliation(s)
- Stephan Ong Tone
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Viridiana Kocaba
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Myriam Böhm
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Adam Wylegala
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tomas L White
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Ula V Jurkunas
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
120
|
Pan P, Chan MF. Corneal Repair Models in Mice: Epithelial/Mechanical Versus Stromal/Chemical Injuries. Methods Mol Biol 2021; 2193:149-158. [PMID: 32808267 PMCID: PMC10448794 DOI: 10.1007/978-1-0716-0845-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tissue response to injury is a complex process. The cornea is an excellent model for studying wound repair processes because of its simple anatomy, easy accessibility, and normal avascular state. Here, we describe two corneal repair models in mice: an epithelial/mechanical injury model and a stromal/chemical injury model. The two models induce different repair responses, and consequently enable the study of independent repair processes. Here, we describe how these two wound models may be used to study basic cellular and molecular mechanisms of corneal repair.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA
| | - Matilda F Chan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA.
- Francis I. Proctor Foundation, University of California, San Francisco, CA, USA.
| |
Collapse
|
121
|
Regenerative capacity of the corneal transition zone for endothelial cell therapy. Stem Cell Res Ther 2020; 11:523. [PMID: 33276809 PMCID: PMC7716425 DOI: 10.1186/s13287-020-02046-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium located on the posterior corneal surface is responsible for regulating stromal hydration. This is contributed by a monolayer of corneal endothelial cells (CECs), which are metabolically active in a continuous fluid-coupled efflux of ions from the corneal stroma into the aqueous humor, preventing stromal over-hydration and preserving the orderly arrangement of stromal collagen fibrils, which is essential for corneal transparency. Mature CECs do not have regenerative capacity and cell loss due to aging and diseases results in irreversible stromal edema and a loss of corneal clarity. The current gold standard of treatment for this worldwide blindness caused by corneal endothelial failure is the corneal transplantation using cadaveric donor corneas. The top indication is Fuchs corneal endothelial dystrophy/degeneration, which represents 39% of all corneal transplants performed. However, the global shortage of transplantable donor corneas has restricted the treatment outcomes, hence instigating a need to research for alternative therapies. One such avenue is the CEC regeneration from endothelial progenitors, which have been identified in the peripheral endothelium and the adjacent transition zone. This review examines the evidence supporting the existence of endothelial progenitors in the posterior limbus and summarizes the existing knowledge on the microanatomy of the transitional zone. We give an overview of the isolation and ex vivo propagation of human endothelial progenitors in the transition zone, and their growth and differentiation capacity to the corneal endothelium. Transplanting these bioengineered constructs into in vivo models of corneal endothelial degeneration will prove the efficacy and viability, and the long-term maintenance of functional endothelium. This will develop a novel regenerative therapy for the management of corneal endothelial diseases.
Collapse
|
122
|
McNutt PM, Mohan RR. The Need for Improved Therapeutic Approaches to Protect the Cornea Against Chemotoxic Injuries. Transl Vis Sci Technol 2020; 9:2. [PMID: 33200044 PMCID: PMC7645219 DOI: 10.1167/tvst.9.12.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cornea, a highly specialized transparent tissue, is the major refractive element of the eye. The cornea is highly susceptible to chemotoxic injury through topical exposure to vapors, microparticles, and aqueous drops, as well as through systemically absorbed chemicals that access the cornea via tear film, aqueous humor, and limbal vasculature. Corneal injury activates a carefully orchestrated series of repair processes capable of resolving minor lesions over time, but it often fails to overcome the menace of moderate, severe, and chronic injuries and secondary pathophysiologies that permanently impair vision. The most serious complications of chemical injuries-persistent corneal edema, neovascularization, scarring/haze, limbal stem cell deficiency, and corneal melting-often manifest over months to years, suggesting that a better understanding of endogenous regenerative mechanisms of corneal repair can lead to the development of improved treatments that may attenuate or prevent corneal defects and protect vision.
Collapse
Affiliation(s)
- Patrick M. McNutt
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, USA
| | - Rajiv R. Mohan
- Departments of Ophthalmology, Biomedical Sciences, and Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
| |
Collapse
|
123
|
Trufanov SV, Fisenko NV. [Molecular genetic aspects of Fuchs' endothelial corneal dystrophy pathogenesis]. Vestn Oftalmol 2020; 136:260-267. [PMID: 33063975 DOI: 10.17116/oftalma2020136052260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fuchs' corneal dystrophy (FCD) is a common bilateral non-inflammatory endothelial pathology. It is a multigenic disorder with various expressivity, penetrance and population prevalence. This review discusses corneal endothelium pump function, FCD pathogenesis and its known genetic factors.
Collapse
Affiliation(s)
- S V Trufanov
- Research Institute of Eye Diseases, Moscow, Russia
| | - N V Fisenko
- Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
124
|
Khalili M, Asadi M, Kahroba H, Soleyman MR, Andre H, Alizadeh E. Corneal endothelium tissue engineering: An evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. J Cell Physiol 2020; 236:3275-3303. [PMID: 33090510 DOI: 10.1002/jcp.30085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Cornea is an avascular and transparent tissue that focuses light on retina. Cornea is supported by the corneal-endothelial layer through regulation of hydration homeostasis. Restoring vision in patients afflicted with corneal endothelium dysfunction-mediated blindness most often requires corneal transplantation (CT), which faces considerable constrictions due to donor limitations. An emerging alternative to CT is corneal endothelium tissue engineering (CETE), which involves utilizing scaffold-based methods and scaffold-free strategies. The innovative scaffold-free method is cell sheet engineering, which typically generates cell layers surrounded by an intact extracellular matrix, exhibiting tunable release from the stimuli-responsive surface. In some studies, scaffold-based or scaffold-free technologies have been reported to achieve promising outcomes. However, yet some issues exist in translating CETE from bench to clinical practice. In this review, we compare different corneal endothelium regeneration methods and elaborate on the application of multiple cell types (stem cells, corneal endothelial cells, and endothelial precursors), signaling molecules (growth factors, cytokines, chemical compounds, and small RNAs), and natural and synthetic scaffolds for CETE. Furthermore, we discuss the importance of three-dimensional bioprinting strategies and simulation of Descemet's membrane by biomimetic topography. Finally, we dissected the recent advances, applications, and prospects of cell sheet engineering for CETE.
Collapse
Affiliation(s)
- Mostafa Khalili
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Asadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Biomedicine Institute, and Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Soleyman
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Helder Andre
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
125
|
Therapeutic HL-Contact Lens versus Standard Bandage Contact Lens for Corneal Edema: A Prospective, Multicenter, Randomized, Crossover Study. J Ophthalmol 2020; 2020:8410920. [PMID: 33014443 PMCID: PMC7525312 DOI: 10.1155/2020/8410920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction To compare the safety and efficacy of the Therapeutic Hyper-CL™ lens versus a standard bandage contact lens (PureVision B&L) for chronic corneal edema. Methods Prospective, multicenter, randomized, crossover study. Chronic corneal edema patients were randomized to one of two arms. The first arm was fitted with the Therapeutic Hyper-CL™ lens while the second arm was fitted with a standard soft bandage contact lens. Both arms were treated with 5% sodium chloride 6 times a day. After a 7-day treatment period, there was a 7-day washout period, after which the arms were crossed over. Patients were evaluated at days 0 (baseline), 7 (following first treatment allocation), 14 (following washout), and 21 (following second treatment allocation). The primary outcomes were 3 lines of BCVA (best corrected visual acuity) improvement. Results In total, 49 patients were enrolled. There was significantly greater BCVA improvement rate >3 lines (30.4% versus 17.4%, P=0.04) in the Therapeutic Hyper-CL™ lens group. The mean change in BCVA lines was significantly greater for the Therapeutic Hyper-CL™ lens (3.4 ± 6.7 versus 0.9 ± 2.3, P=0.02). Conclusions The Therapeutic Hyper-CL™ lens was associated with a higher chance for significant visual acuity improvement when compared to a standard bandage contact lens combined with 5% sodium chloride. This trial is registered with NCT02660151.
Collapse
|
126
|
Hamuro J, Deguchi H, Fujita T, Ueda K, Tokuda Y, Hiramoto N, Numa K, Nakano M, Bush J, Ueno M, Sotozono C, Kinoshita S. Polarized Expression of Ion Channels and Solute Carrier Family Transporters on Heterogeneous Cultured Human Corneal Endothelial Cells. Invest Ophthalmol Vis Sci 2020; 61:47. [PMID: 32455435 PMCID: PMC7405722 DOI: 10.1167/iovs.61.5.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To clarify the expression profiles of ion channels and transporters of metabolic substrates among heterogeneous cultured human corneal endothelial cells (cHCECs) distinct in their effectiveness in reconstituting the corneal endothelium. Methods Integrated proteomics for cell lysates by liquid chromatography–tandem mass spectrometry was carried out from three aliquots of cHCECs enriched in either cluster of definition (CD)44−/+ (mature) cHCECs or CD44++/+++ cell-state transition (CST) cHCECs. The expression profiles of cations/anions, monocarboxylic acid transporters (MCTs), and solute carrier (SLC) family proteins, as well as carbonic anhydrases (CAs), were investigated. Results The polarized expression of cations/anions, MCTs, and SLC family proteins, as well as CAs, was clarified for mature and CST cHCECs. Most SLC4 family members, including SLC4A11 and SLC4A4 (NBCe1), were upregulated in the CST cHCECs, whereas SLC9A1 (Na+/H+ exchanger isoform one [NHE1]) and CA5B were detected only in the mature cHCECs. In addition, SLC25A42, catalyzing the entry of coenzyme A into the mitochondria, and SLC25A18, functioning as a mitochondrial glutamate carrier 2 (both relevant for providing the substrates for mitochondrial bioenergetics), were selectively expressed in the mature cHCECs. Conclusions Our findings may suggest the relevance of qualifying the polarized expression of these ion channels and transporter-like proteins to ensure not only the suitability but also the in vivo biological functionality of cHCECs selected for use in a cell-injection therapy.
Collapse
|
127
|
Abstract
SIGNIFICANCE This study evaluated the effects scleral lens wear has on corneal health using fluorometry and in vivo confocal microscopy. No subclinical changes on healthy corneas of young subjects were observed during 3 months of scleral lens wear. PURPOSE This study aimed to evaluate the effects 3 months of scleral lens wear has on the corneal epithelial barrier function, dendritic cell density, and nerve fiber morphology. METHODS Twenty-seven neophytes (mean [standard deviation] age, 21.4 [3.9] years) wore scleral lenses of a fluorosilicone acrylate material bilaterally (97 Dk, 15.6 to 16.0-mm diameter) for 3 months without overnight wear. Subjects were randomized to use either Addipak (n = 12) or PuriLens Plus (n = 15) during lens insertion. Measurements of corneal epithelial permeability to fluorescein were performed with automated scanning fluorophotometer (Fluorotron Master; Ocumetrics, Mountain View, CA) on the central cornea of the right eye and the temporal corneal periphery of the left eye. Images of the distributions of corneal nerve fibers and dendritic cells and nerve fibers were captured in vivo with a confocal laser scanning microscope (Heidelberg Retina Tomograph, Rostock Cornea Module; Heidelberg Engineering, Heidelberg, Germany) on the central and inferior peripheral cornea of the left eye. Corneal measurements and imaging were performed at baseline and after 1 and 3 months of lens wear. RESULTS The corneal permeability values in natural log, dendritic cell densities, and nerve fiber morphology did not significantly change from baseline to 1 and 3 months of lens wear, for both central and peripheral corneal regions (P > .05). Dendritic cell density at the inferior cornea was higher than the central cornea throughout the study (P < .001). No relationships were observed between each outcome measurements and the saline solution groups (P > .05). CONCLUSIONS Scleral lens wear for 3 months on healthy cornea of young subjects did not affect corneal epithelial barrier function, nerve fiber, and dendritic cell densities. Buffered and nonbuffered saline solutions impacted the corneal health in similar ways.
Collapse
|
128
|
Maurizi E, Schiroli D, Zini R, Limongelli A, Mistò R, Macaluso C, Pellegrini G. A fine-tuned β-catenin regulation during proliferation of corneal endothelial cells revealed using proteomics analysis. Sci Rep 2020; 10:13841. [PMID: 32796906 PMCID: PMC7427785 DOI: 10.1038/s41598-020-70800-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Corneal endothelial (CE) dysfunction is the main indication for corneal transplantation, an invasive procedure with several limitations. Developing novel strategies to re-activate CE regenerative capacity is, therefore, of fundamental importance. This goal has proved to be challenging as corneal endothelial cells (CEnC) are blocked in the G0/G1 phase of the cell cycle in vivo and, albeit retaining proliferative capacity in vitro, this is further hindered by endothelial-to-mesenchymal transition. Herein we investigated the mechanisms regulating CEnC proliferation in vitro. Comparing the proteome of non-proliferating (in vivo-G0/G1) and proliferating (in vitro-G2/M) rabbit CEnC (rCEnC), 77 proteins, out of 3,328 identified, were differentially expressed in the two groups (p < 0.005). Literature and Gene Ontology analysis revealed β-catenin and transforming growth factor (TGF-β) pathways to be correlated with the identified proteins. Treatment of rCEnC with a β-catenin activator and inhibitor showed that β-catenin activation was necessary during rCEnC proliferation, but not sufficient for its induction. Furthermore, both pro-proliferative activity of basic fibroblast growth factor and anti-proliferative effects of TGF-β were regulated through β-catenin. Overall, these results provide novel insights into the molecular basis underlying the proliferation process that CEnC re-activate in vitro, consolidating the role of β-catenin and TGF-β.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Medicine and Surgery, Dentistry Center, University of Parma, Parma, Italy.
| | - Davide Schiroli
- Transfusion Medicine Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Roberta Zini
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Claudio Macaluso
- Department of Medicine and Surgery, Dentistry Center, University of Parma, Parma, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
129
|
Van Hoorick J, Delaey J, Vercammen H, Van Erps J, Thienpont H, Dubruel P, Zakaria N, Koppen C, Van Vlierberghe S, Van den Bogerd B. Designer Descemet Membranes Containing PDLLA and Functionalized Gelatins as Corneal Endothelial Scaffold. Adv Healthc Mater 2020; 9:e2000760. [PMID: 32603022 DOI: 10.1002/adhm.202000760] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/10/2020] [Indexed: 01/08/2023]
Abstract
Corneal blindness is the fourth leading cause of visual impairment. Of specific interest is blindness due to a dysfunctional corneal endothelium which can only be treated by transplanting healthy tissue from a deceased donor. Unfortunately, corneal supply does not meet the demand with only one donor for every 70 patients. Therefore, there is a huge interest in tissue engineering of grafts consisting of an ultra-thin scaffold seeded with cultured endothelial cells. The present research describes the fabrication of such artificial Descemet membranes based on the combination of a biodegradable amorphous polyester (poly (d,l-lactic acid)) and crosslinkable gelatins. Four different crosslinkable gelatin derivatives are compared in terms of processing, membrane quality, and function, as well as biological performance in the presence of corneal endothelial cells. The membranes are fabricated through multi-step spincoating, including a sacrificial layer to allow for straightforward membrane detachment after production. As a consequence, ultrathin (<1 µm), highly transparent (>90%), semi-permeable membranes could be obtained with high biological potential. The membranes supported the characteristic morphology and correct phenotype of corneal endothelial cells while exhibiting similar proliferation rates as the positive control. As a consequence, the proposed membranes prove to be a promising synthetic alternative to donor tissue.
Collapse
Affiliation(s)
- Jasper Van Hoorick
- Polymer Chemistry & Biomaterials GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Ghent 9000 Belgium
- Brussels PhotonicsDepartment of Applied Physics and PhotonicsVrije Universiteit Brussel and Flanders Make Brussels 1050 Belgium
| | - Jasper Delaey
- Polymer Chemistry & Biomaterials GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Ghent 9000 Belgium
| | - Hendrik Vercammen
- Antwerp Research Group for Ocular Science (ARGOS)Translational NeurosciencesFaculty of MedicineUniversity of Antwerp Wilrijk 2610 Belgium
| | - Jürgen Van Erps
- Brussels PhotonicsDepartment of Applied Physics and PhotonicsVrije Universiteit Brussel and Flanders Make Brussels 1050 Belgium
| | - Hugo Thienpont
- Polymer Chemistry & Biomaterials GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Ghent 9000 Belgium
- Brussels PhotonicsDepartment of Applied Physics and PhotonicsVrije Universiteit Brussel and Flanders Make Brussels 1050 Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Ghent 9000 Belgium
| | - Nadia Zakaria
- Antwerp Research Group for Ocular Science (ARGOS)Translational NeurosciencesFaculty of MedicineUniversity of Antwerp Wilrijk 2610 Belgium
- Department of OphthalmologyAntwerp University Hospital Edegem 2650 Belgium
| | - Carina Koppen
- Antwerp Research Group for Ocular Science (ARGOS)Translational NeurosciencesFaculty of MedicineUniversity of Antwerp Wilrijk 2610 Belgium
- Department of OphthalmologyAntwerp University Hospital Edegem 2650 Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Ghent 9000 Belgium
- Brussels PhotonicsDepartment of Applied Physics and PhotonicsVrije Universiteit Brussel and Flanders Make Brussels 1050 Belgium
| | - Bert Van den Bogerd
- Antwerp Research Group for Ocular Science (ARGOS)Translational NeurosciencesFaculty of MedicineUniversity of Antwerp Wilrijk 2610 Belgium
| |
Collapse
|
130
|
Bourges JL. [When cataracts lead to a corneal transplant]. Med Sci (Paris) 2020; 36:747-751. [PMID: 32821051 DOI: 10.1051/medsci/2020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The eye has two converging lenses arranged in series: the cornea and the lens. They combine their powers. The image, which is naturally defocused ad infinitum, by crossing them successively, focuses on the retina to be seen clearly. Edema can cause the cornea to lose transparency while the clouding of lens leads to cataract. The loss of transparency of one or both lenses significantly affects the vision. Treating cataracts is a common practice. However, this can lead to the permanent loss of transparency of the cornea. A graft of the latter must then be carried out. How does this sometimes come about?
Collapse
Affiliation(s)
- Jean-Louis Bourges
- Université de Paris, CRC Inserm 1138-E17, Assistance publique-Hôpitaux de Paris, Hôpital Cochin, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France
| |
Collapse
|
131
|
Fautsch MP, Wieben ED, Baratz KH, Bhattacharyya N, Sadan AN, Hafford-Tear NJ, Tuft SJ, Davidson AE. TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Prog Retin Eye Res 2020; 81:100883. [PMID: 32735996 PMCID: PMC7988464 DOI: 10.1016/j.preteyeres.2020.100883] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a common cause for heritable visual loss in the elderly. Since the first description of an association between FECD and common polymorphisms situated within the transcription factor 4 (TCF4) gene, genetic and molecular studies have implicated an intronic CTG trinucleotide repeat (CTG18.1) expansion as a causal variant in the majority of FECD patients. To date, several non-mutually exclusive mechanisms have been proposed that drive and/or exacerbate the onset of disease. These mechanisms include (i) TCF4 dysregulation; (ii) toxic gain-of-function from TCF4 repeat-containing RNA; (iii) toxic gain-of-function from repeat-associated non-AUG dependent (RAN) translation; and (iv) somatic instability of CTG18.1. However, the relative contribution of these proposed mechanisms in disease pathogenesis is currently unknown. In this review, we summarise research implicating the repeat expansion in disease pathogenesis, define the phenotype-genotype correlations between FECD and CTG18.1 expansion, and provide an update on research tools that are available to study FECD as a trinucleotide repeat expansion disease. Furthermore, ongoing international research efforts to develop novel CTG18.1 expansion-mediated FECD therapeutics are highlighted and we provide a forward-thinking perspective on key unanswered questions that remain in the field. FECD is a common, age-related corneal dystrophy. The majority of cases are associated with expansion of a CTG repeat (CTG18.1). FECD is the most common trinucleotide repeat expansion disease in humans. Evidence supports multiple molecular mechanisms underlying the pathophysiology. Novel CTG18.1-targeted therapeutics are in development.
Collapse
Affiliation(s)
- Michael P Fautsch
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Eric D Wieben
- Department of Biochemistry and Molecular Biology, 200 1st St SW, Mayo Clinic, Rochester, MN, USA.
| | - Keith H Baratz
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | | | - Amanda N Sadan
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| | | | - Stephen J Tuft
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK; Moorfields Eye Hospital, London, EC1V 2PD, UK.
| | - Alice E Davidson
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| |
Collapse
|
132
|
Lahagu EA, Fachiroh J, Anugrah AS, Gunawan W, Mahayana IT, Suhardjo. Changes of lactate dehydrogenase in corneal edema after cataract surgery treated with trans-corneal oxygenation therapy. Int J Ophthalmol 2020; 13:1148-1151. [PMID: 32685404 DOI: 10.18240/ijo.2020.07.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/03/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the changes in levels of the lactate dehydrogenase (LDH) enzyme in corneal edema after cataract surgery with trans-corneal oxygenation therapy. METHODS This pre-post design study design conducted on 15 patients with corneal edema after cataract surgery and receiving trans-corneal oxygenation therapy. Tear sample (using Schirmer paper, from the inferior fornix of the conjunctiva) was carried out prior to trans-corneal oxygenation therapy, on the day 2 (D2) and day 5 (D5) postoperatively before and after trans-corneal oxygenation therapy. Visual acuity [VA (LogMAR)], corneal endothelial density, central corneal thickness (CCT), and coefficient of variation corneal endothelial (CoV) were recorded. The value of LDH was measured using ELISA. The difference in mean LDH value before and after trans-corneal oxygenation therapy, between two groups were analyzed using Wilcoxon signed rank test. RESULTS There was a decrease in LDH tear concentration at D2 (pre vs post: 1127.54±497.09 vs 696.91±489.49; P=0.002) and D5 (pre vs post: 1064.17±677.77 vs 780.28±428.95; P=0.027) after trans-corneal oxygenation therapy as well as decrease in LDH concentration on the D2 compared to D5 (P=0.041). The mean CCT was decreased significantly after the administration of trans-corneal oxygenation (pre vs post: 632.10±25.66 vs 563.90±51.54; P=0.005). The mean VA and CoV increased significantly after the administration of trans-corneal oxygenation (P=0.001 and P=0.028, respectively). However, there was no difference in mean of corneal endothelial density (P=0.814). CONCLUSION Trans-corneal oxygenation therapy is associated with significant decrease of tears LDH levels in post cataract surgery with corneal edema. It is accompanied by clinical improvement such as significant reduction of CCT.
Collapse
Affiliation(s)
- Eunike Amelina Lahagu
- Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada-Dr.Sardjito General Hospital, Yogyakarta 55284, Indonesia
| | - Jajah Fachiroh
- Department of Biomolecular and Cell Biology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55284, Indonesia
| | - Andreas Surya Anugrah
- Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada-Dr.Sardjito General Hospital, Yogyakarta 55284, Indonesia
| | - Wasisdi Gunawan
- Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada-Dr.Sardjito General Hospital, Yogyakarta 55284, Indonesia
| | - Indra Tri Mahayana
- Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada-Dr.Sardjito General Hospital, Yogyakarta 55284, Indonesia
| | - Suhardjo
- Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada-Dr.Sardjito General Hospital, Yogyakarta 55284, Indonesia
| |
Collapse
|
133
|
Fuest M, Yam GHF, Mehta JS, Duarte Campos DF. Prospects and Challenges of Translational Corneal Bioprinting. Bioengineering (Basel) 2020; 7:bioengineering7030071. [PMID: 32640721 PMCID: PMC7552635 DOI: 10.3390/bioengineering7030071] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
Corneal transplantation remains the ultimate treatment option for advanced stromal and endothelial disorders. Corneal tissue engineering has gained increasing interest in recent years, as it can bypass many complications of conventional corneal transplantation. The human cornea is an ideal organ for tissue engineering, as it is avascular and immune-privileged. Mimicking the complex mechanical properties, the surface curvature, and stromal cytoarchitecure of the in vivo corneal tissue remains a great challenge for tissue engineering approaches. For this reason, automated biofabrication strategies, such as bioprinting, may offer additional spatial control during the manufacturing process to generate full-thickness cell-laden 3D corneal constructs. In this review, we discuss recent advances in bioprinting and biomaterials used for in vitro and ex vivo corneal tissue engineering, corneal cell-biomaterial interactions after bioprinting, and future directions of corneal bioprinting aiming at engineering a full-thickness human cornea in the lab.
Collapse
Affiliation(s)
- Matthias Fuest
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence: (M.F.); (D.F.D.C.)
| | - Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Jodhbir S. Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Singapore National Eye Centre, Singapore 169856, Singapore
| | - Daniela F. Duarte Campos
- Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
- DWI Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Correspondence: (M.F.); (D.F.D.C.)
| |
Collapse
|
134
|
Amador-Muñoz D, Gutiérrez ÁM, Payán-Gómez C, Matheus LM. In silico and in vitro analysis of cation-activated potassium channels in human corneal endothelial cells. Exp Eye Res 2020; 197:108114. [PMID: 32561484 DOI: 10.1016/j.exer.2020.108114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022]
Abstract
The corneal endothelium is the inner cell monolayer involved in the maintenance of corneal transparence by the generation of homeostatic dehydration. The glycosaminoglycans of the corneal stroma develop a continuous swelling pressure that should be counteracted by the corneal endothelial cells through active transport mechanisms to move the water to the anterior chamber. Protein transporters for sodium (Na+), potassium (K+), chloride (Cl-) and bicarbonate (HCO3-) are involved in this endothelial "pump function", however despite its physiological importance, the efflux mechanism is not completely understood. There is experimental evidence describing transendothelial diffusion of water in the absence of osmotic gradients. Therefore, it is important to get a deeper understanding of alternative models that drive the fluid transport across the endothelium such as the electrochemical gradients. Three transcriptomic datasets of the corneal endothelium were used in this study to analyze the expression of genes that encode proteins that participate in the transport and the reestablishment of the membrane potential across the semipermeable endothelium. Subsequently, the expression of the identified channels was validated in vitro both at mRNA and protein levels. The results of this study provide the first evidence of the expression of KCNN2, KCNN3 and KCNT2 genes in the corneal endothelium. Differences among the level of expression of KCNN2, KCNT2 and KCNN4 genes were found in a differentially expressed gene analysis of the dataset. Taken together these results underscore the potential importance of the ionic channels in the pathophysiology of corneal diseases. Moreover, we elucidate novel mechanisms that might be involved in the pivotal dehydrating function of the endothelium and in others physiologic functions of these cells using in silico pathways analysis.
Collapse
Affiliation(s)
- Diana Amador-Muñoz
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63 C 69, P.O 111221, Bogotá, Colombia.
| | - Ángela María Gutiérrez
- Escuela Superior de Oftalmología, Instituto Barraquer de América, Calle 100 No. 18 A 51, Bogotá, Colombia.
| | - César Payán-Gómez
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Carrera 24 No. 63 C 69, Bogotá, P.O 111221, Colombia.
| | - Luisa Marina Matheus
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63 C 69, P.O 111221, Bogotá, Colombia.
| |
Collapse
|
135
|
Hwang JS, Yi HC, Shin YJ. Effect of SOX2 Repression on Corneal Endothelial Cells. Int J Mol Sci 2020; 21:ijms21124397. [PMID: 32575737 PMCID: PMC7352647 DOI: 10.3390/ijms21124397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose: Human corneal endothelial cells (hCECs) pump out water from the stroma and maintain the clarity of the cornea. The sex-determining region Y-box 2 (SOX2) participates in differentiation during the development of the anterior segment of the eye and is found in the periphery of wounded corneas. This study was performed to investigate the effect of SOX2 repression on hCECs. Methods: Cultured hCECs were transfected by siRNA for SOX2. The wound healing rate and cell viability were measured. The cell proliferation-associated protein level was evaluated by Western blotting and RT-PCR. The energy production and mitochondrial function were measured, and cell shape and WNT signaling were assessed. Results: Upon transfecting the cultured cells with siRNA for SOX2, the SOX2 level was reduced by 80%. The wound healing rate and viability were also reduced. Additionally, CDK1, cyclin D1, SIRT1, and ATP5B levels were reduced, and CDKN2A and pAMPK levels were increased. Mitochondrial oxidative stress and mitochondrial viability decreased, and the cell shape became elongated. Furthermore, SMAD1, SNAI1, WNT3A, and β-catenin levels were increased. Conclusion: SOX2 repression disrupts the normal metabolism of hCECs through modulating WNT signaling and mitochondrial functions.
Collapse
Affiliation(s)
- Jin Sun Hwang
- Department of Ophthalmology, Hallym University College of Medicine, 1, Hallymdaehak-gil, Chuncheon-si, Gangwon-do 24252, Korea; (J.S.H.); (H.C.Y.)
- Department of Ophthalmology, Hallym University Medical Center, 1 Shingil-ro, Youngdeungpo-gu, Seoul 07441, Korea
| | - Ho Chul Yi
- Department of Ophthalmology, Hallym University College of Medicine, 1, Hallymdaehak-gil, Chuncheon-si, Gangwon-do 24252, Korea; (J.S.H.); (H.C.Y.)
- Department of Ophthalmology, Hallym University Medical Center, 1 Shingil-ro, Youngdeungpo-gu, Seoul 07441, Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University College of Medicine, 1, Hallymdaehak-gil, Chuncheon-si, Gangwon-do 24252, Korea; (J.S.H.); (H.C.Y.)
- Department of Ophthalmology, Hallym University Medical Center, 1 Shingil-ro, Youngdeungpo-gu, Seoul 07441, Korea
- Correspondence: ; Tel.: +82-2-6960-1240
| |
Collapse
|
136
|
The Self-assembly Approach as a Tool for the Tissue Engineering of a Bi-lamellar Human Cornea. Methods Mol Biol 2020. [PMID: 32542603 DOI: 10.1007/978-1-0716-0599-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Tissue engineering is a flourishing field of regenerative medicine that allows the reconstruction of various tissues of our body, including the cornea. In addition to addressing the growing need for organ transplants, such tissue-engineered substitutes may also serve as good in vitro models for fundamental and preclinical studies. Recent progress in the field of corneal tissue engineering has led to the development of new technologies allowing the reconstruction of a human bi-lamellar cornea. One unique feature of this model is the complete absence of exogenous material. Indeed, these human corneal equivalents are exclusively composed of untransformed human corneal fibroblasts (hCFs) entangled in their own extracellular matrix, as well as untransformed human corneal epithelial cells (hCECs), both of which isolated from donor corneas. The reconstructed human bi-lamellar cornea thereby exhibits a well-organized stroma as well as a well-differentiated epithelium. This chapter describes the methods used for the isolation and culture of hCFs, the production and assembly of hCFs stromal sheets, the seeding of hCECs, and the maturation of the tissue-engineered cornea.
Collapse
|
137
|
Quade BN, Marshall A, Parker MD. pH dependence of the Slc4a11-mediated H + conductance is influenced by intracellular lysine residues and modified by disease-linked mutations. Am J Physiol Cell Physiol 2020; 319:C359-C370. [PMID: 32520610 DOI: 10.1152/ajpcell.00128.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
SLC4A11 is the only member of the SLC4 family that transports protons rather than bicarbonate. SLC4A11 is expressed in corneal endothelial cells, and its mutation causes corneal endothelial dystrophy, although the mechanism of pathogenesis is unknown. We previously demonstrated that the magnitude of the H+ conductance (Gm) mediated by SLC4A11 is increased by rises in intracellular as well as extracellular pH (pHi and pHe). To better understand this feature and whether it is altered in disease, we studied the pH dependence of wild-type and mutant mouse Slc4a11 expressed in Xenopus oocytes. Using voltage-clamp circuitry in conjunction with a H+-selective microelectrode and a microinjector loaded with NaHCO3, we caused incremental rises in oocyte pHi and measured the effect on Gm. We find that the rise of Gm has a steeper pHi dependence at pHe =8.50 than at pHe =7.50. Data gathered at pHe =8.50 can be fit to the Hill equation enabling the calculation of a pK value that reports pHi dependence. We find that mutation of lysine residues that are close to the first transmembrane span (TM1) causes an alkaline shift in pK. Furthermore, two corneal-dystrophy-causing mutations close to the extracellular end of TM1, E399K and T401K (E368K and T370K in mouse), cause an acidic shift in pK, while a third mutation in the fourth intracellular loop, R804H (R774H in mouse), causes an alkaline shift in pK. This is the first description of determinants of SLC4A11 pH dependence and the first indication that a shift in pH dependence could modify disease expressivity in some cases of corneal dystrophy.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, New York
| | - Aniko Marshall
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, New York
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, New York.,Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York, Buffalo, New York.,State University of New York Eye Institute, University at Buffalo: The State University of New York, Buffalo, New York
| |
Collapse
|
138
|
Ong HS, Peh G, Neo DJH, Ang HP, Adnan K, Nyein CL, Morales-Wong F, Bhogal M, Kocaba V, Mehta JS. A Novel Approach of Harvesting Viable Single Cells from Donor Corneal Endothelium for Cell-Injection Therapy. Cells 2020; 9:cells9061428. [PMID: 32526886 PMCID: PMC7349718 DOI: 10.3390/cells9061428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Donor corneas with low endothelial cell densities (ECD) are deemed unsuitable for corneal endothelial transplantation. This study evaluated a two-step incubation and dissociation harvesting approach to isolate single corneal endothelial cells (CECs) from donor corneas for corneal endothelial cell-injection (CE-CI) therapy. To isolate CECs directly from donor corneas, optimization studies were performed where donor Descemet’s membrane/corneal endothelium (DM/CE) were peeled and incubated in either M4-F99 or M5-Endo media before enzymatic digestion. Morphometric analyses were performed on the isolated single cells. The functional capacities of these cells, isolated using the optimized simple non-cultured endothelial cells (SNEC) harvesting technique, for CE-CI therapy were investigated using a rabbit bullous keratopathy model. The two control groups were the positive controls, where rabbits received cultured CECs, and the negative controls, where rabbits received no CECs. Whilst it took longer for CECs to dislodge as single cells following donor DM/CE incubation in M5-Endo medium, CECs harvested were morphologically more homogenous and smaller compared to CECs obtained from DM/CE incubated in M4-F99 medium (p < 0.05). M5-Endo medium was hence selected as the DM/CE incubation medium prior to enzymatic digestion to harvest CECs for the in vivo cell-injection studies. Following SNEC injection, mean central corneal thickness (CCT) of rabbits increased to 802.9 ± 147.8 μm on day 1, gradually thinned, and remained clear with a CCT of 385.5 ± 38.6 μm at week 3. Recovery of corneas was comparable to rabbits receiving cultured CE-CI (p = 0.40, p = 0.17, and p = 0.08 at weeks 1, 2, and 3, respectively). Corneas that did not receive any cells remained significantly thicker compared to both SNEC injection and cultured CE-CI groups (p < 0.05). This study concluded that direct harvesting of single CECs from donor corneas for SNEC injection allows the utilization of donor corneas unsuitable for conventional endothelial transplantation.
Collapse
Affiliation(s)
- Hon Shing Ong
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (G.P.); (D.J.H.N.); (H.-P.A.); (K.A.); (C.L.N.); (F.M.-W.); (M.B.); (V.K.)
- Eye-Academic Clinical Program (ACP), Duke-National University of Singapore (NUS), Graduate Medical School, Singapore 169857, Singapore
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 168751, Singapore
- Correspondence: (H.S.O.); (J.S.M.); Tel.: +65-6227-7255 (H.S.O. & J.S.M.); Fax: +65-6227-7290 (H.S.O. & J.S.M.)
| | - Gary Peh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (G.P.); (D.J.H.N.); (H.-P.A.); (K.A.); (C.L.N.); (F.M.-W.); (M.B.); (V.K.)
- Eye-Academic Clinical Program (ACP), Duke-National University of Singapore (NUS), Graduate Medical School, Singapore 169857, Singapore
| | - Dawn Jin Hui Neo
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (G.P.); (D.J.H.N.); (H.-P.A.); (K.A.); (C.L.N.); (F.M.-W.); (M.B.); (V.K.)
| | - Heng-Pei Ang
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (G.P.); (D.J.H.N.); (H.-P.A.); (K.A.); (C.L.N.); (F.M.-W.); (M.B.); (V.K.)
| | - Khadijah Adnan
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (G.P.); (D.J.H.N.); (H.-P.A.); (K.A.); (C.L.N.); (F.M.-W.); (M.B.); (V.K.)
| | - Chan Lwin Nyein
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (G.P.); (D.J.H.N.); (H.-P.A.); (K.A.); (C.L.N.); (F.M.-W.); (M.B.); (V.K.)
| | - Fernando Morales-Wong
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (G.P.); (D.J.H.N.); (H.-P.A.); (K.A.); (C.L.N.); (F.M.-W.); (M.B.); (V.K.)
| | - Maninder Bhogal
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (G.P.); (D.J.H.N.); (H.-P.A.); (K.A.); (C.L.N.); (F.M.-W.); (M.B.); (V.K.)
- Cornea Unit, Guy’s & St Thomas’ Hospital, London SE1 7EH, UK
| | - Viridiana Kocaba
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (G.P.); (D.J.H.N.); (H.-P.A.); (K.A.); (C.L.N.); (F.M.-W.); (M.B.); (V.K.)
- Netherlands Institute for Innovative Ocular Surgery, Melles Cornea Clinic, Amnitrans EyeBank Rotterdam, 3071 AA Rotterdam, The Netherlands
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (G.P.); (D.J.H.N.); (H.-P.A.); (K.A.); (C.L.N.); (F.M.-W.); (M.B.); (V.K.)
- Eye-Academic Clinical Program (ACP), Duke-National University of Singapore (NUS), Graduate Medical School, Singapore 169857, Singapore
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 168751, Singapore
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Correspondence: (H.S.O.); (J.S.M.); Tel.: +65-6227-7255 (H.S.O. & J.S.M.); Fax: +65-6227-7290 (H.S.O. & J.S.M.)
| |
Collapse
|
139
|
A new storage solution for the hypothermic preservation of corneal grafts: an experimental study. Cell Tissue Bank 2020; 21:507-521. [PMID: 32451748 DOI: 10.1007/s10561-020-09838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
In this experimental study we used for the first time Tiprotec® as a solution for corneal preservation and cold storage. We compared the resultant endothelial cell morphology and viability with this obtained after preservation of the ex-vivo corneas with both usual standard techniques: conventional cold storage (using Eusol-C) and organ culture. This prospective, in vitro, 3-armed parallel study was performed with the use of 90 porcine corneas (examined for their endothelial quality and transparency) randomly selected for preservation in three storage methods (each 30 corneas): organ culture, standard cold storage (Eusol-C) and experimental cold storage (Tiprotec®) Endothelium cell quantity and quality as well as corneal opacification were assessed. The degree of endothelial transparency was significantly reduced over time with all preservation media, without any significant difference among the three groups at any point of time. A reduction in endothelial cell density was also observed with all three preservation media after 30 days of storage without statistically significant differences between groups. The number of hexagonal and pentagonal endothelium cells was significantly reduced overtime in all media with significantly more hexagonal and pentagonal in the organ culture group compared to the cold storage groups. We could show that the cryopreservation medium Tiprotec®, used until now for the preservation of vascular grafts, was of similar quality compared to the medium Eusol-C for the hypothermic storage of corneal tissue for an extended period of time up to 30 days. In comparison to organic culture with culture medium KII, both Tiprotec® and Eusol-C were found less effective in preserving endothelial cell quality, as assessed by the morphometric analysis, and viability, as assessed by the degree of vacuolization at least up to the 30th day of storage. However, both, Tiprotec®- and Eusol-C-preserved corneas demonstrated a certain capacity to recover after their submission in organ culture.
Collapse
|
140
|
Sundaresan Y, Gaikwad GG, Prajapati KA, Prajna NV, Chidambaranathan GP. Comparison of structural integrity and functional status of corneal endothelium stored in Cornisol and Optisol-GS. Indian J Ophthalmol 2020; 67:1579-1584. [PMID: 31546484 PMCID: PMC6786208 DOI: 10.4103/ijo.ijo_2026_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose: To compare the structural integrity and functional status of the donor corneas stored in Cornisol and Optisol-GS. Methods: Fifteen optical grade corneal donor buttons (6 pairs; 3 individual) obtained from Rotary Aravind International Eye Bank were used for the study. The left eye of the paired sample was preserved in Cornisol and the right in Optisol-GS. The three individual buttons were used for the baseline data. The corneas were assessed with slit lamp and specular microscope before and after storage time (7, 10, or 14 days). They were then immunostained for markers of structural integrity (ZO-1, Phalloidin) and functionality (Na+/K+ ATPase). The images were acquired using confocal microscope and analyzed using ImageJ software. Results: There was no difference in the clinical evaluation of the corneal layers between the two media. No marked variation was observed in the immunostaining data with reference to the storage period. Intact cellular integrity was identified in 91% (51%, 98%) [Median (min, max)] of cells in Cornisol and 94% (38%, 98%) cells in Optisol based on ZO-1 staining, comparable to the baseline data [87% (76%, 97%)]. Stress fibers were detected in 42.5% (1%, 88%) cells in Cornisol stored corneas and in 55% (11%, 94%) in Optisol when stained for actin cytoskeleton, which correlated with the presence of epithelial defect before storage and vacuolated endothelial cells after storage. No difference was observed between the two media based on the staining pattern for Na+/K+ ATPase. Conclusion: Cornisol and Optisol-GS are equivalent in maintaining the structural integrity and functionality of the donor corneas.
Collapse
Affiliation(s)
- Yogapriya Sundaresan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Ganesh Govardhan Gaikwad
- Department of Cornea and Refractive Surgery, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Kishan Anilkumar Prajapati
- Department of Cornea and Refractive Surgery, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | | |
Collapse
|
141
|
Phenotypic and functional characterization of corneal endothelial cells during in vitro expansion. Sci Rep 2020; 10:7402. [PMID: 32366916 PMCID: PMC7198491 DOI: 10.1038/s41598-020-64311-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
The advent of cell culture-based methods for the establishment and expansion of human corneal endothelial cells (CEnC) has provided a source of transplantable corneal endothelium, with a significant potential to challenge the one donor-one recipient paradigm. However, concerns over cell identity remain, and a comprehensive characterization of the cultured CEnC across serial passages has not been performed. To this end, we compared two established CEnC culture methods by assessing the transcriptomic changes that occur during in vitro expansion. In confluent monolayers, low mitogenic culture conditions preserved corneal endothelial cell state identity better than culture in high mitogenic conditions. Expansion by continuous passaging induced replicative cell senescence. Transcriptomic analysis of the senescent phenotype identified a cell senescence signature distinct for CEnC. We identified activation of both classic and new cell signaling pathways that may be targeted to prevent senescence, a significant barrier to realizing the potential clinical utility of in vitro expansion.
Collapse
|
142
|
Jin M, Wang Y, Wang Y, Li Y, Wang G, Liu X, Xue Y, Liu Z, Li C. Protective Effects Oncorneal Endothelium During Intracameral Irrigation Using N-(2)-l-alanyl-l-Glutamine. Front Pharmacol 2020; 11:369. [PMID: 32292346 PMCID: PMC7118711 DOI: 10.3389/fphar.2020.00369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Corneal endothelial disease is a global sight-threatening disease, and corneal transplantation using donor corneas remains the sole therapeutic option. A previous work demonstrated that N (2)-alanyl-glutamine (Ala-Gln) protected against apoptosis and cellular stress, and maintained intestinal tissue integrity. In this pursuit, the present study aimed to examine the effect of Ala-Gln in the protection of the corneal endothelium and expand its range of potential clinical applications. Mice in the control group were intracamerally irrigated with Ringers lactate injection, whereas those in the experimental group were irrigated with Ringers lactate injection containing Ala-Gln. The mean intraocular pressure increased to 44 ± 3.5 mm Hg during intracameral irrigation (normal range 10.2 ± 0.4 mmHg). In vivo confocal microscopy results showed that the addition of Ala-Gln protected the morphology, structure, and density of the corneal endothelial cells. Optical Coherence Tomography (OCT) measurements showed that corneal thickness was not significantly different between the two groups, because of the immediate corneal edema after irrigation, but the addition of Ala-Gln obviously promoted the recovery of the corneal edema. Scanning electron microscopy indicated that the corneal endothelial cells were severely ruptured and exfoliated in the Ringer’s group accompanied with cellular edema, when compared with the Ala-Gln group. The intracameral irrigation using Ala-Gln protected the structure and expression of cytoskeleton and Na-K-ATPase, which exhibited a regular distribution and significantly increased expression in comparison to Ringer’s group. Furthermore, Ala-Gln maintained the mitochondrial morphology and increased the activity of mitochondria. Moreover, transmission electron microscopy showed that intracameral irrigation of Ala-Gln reversed the ultrastructural changes induced by the acute ocular hypertension in mice. Our study demonstrates that the intracameral irrigation of Ala-Gln effectively maintained the corneal endothelial pump function and barrier function by protecting the mitochondrial function and preventing the rearrangement of cytoskeleton in acute ocular hypertension in mice.
Collapse
Affiliation(s)
- Mengyi Jin
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yanzi Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yixin Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yunpeng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Guoliang Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xuezhi Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zuguo Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| |
Collapse
|
143
|
Yu B, Li XR, Zhang XM. Mesenchymal stem cell-derived extracellular vesicles as a new therapeutic strategy for ocular diseases. World J Stem Cells 2020; 12:178-187. [PMID: 32266050 PMCID: PMC7118288 DOI: 10.4252/wjsc.v12.i3.178] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/22/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted considerable attention for their activity in the treatment of refractory visual disorders. Since MSCs were found to possess the beneficial effects by secreting paracrine factors rather than direct differentiation, MSC-derived extracellular vesicles (EVs) were widely studied in various disease models. MSCs generate abundant EVs, which act as important mediators by exchanging protein and genetic information between MSCs and target cells. It has been confirmed that MSC-derived EVs possess unique anti-inflammatory, anti-apoptotic, tissue repairing, neuroprotective, and immunomodulatory properties, similar to their parent cells. Upon intravitreal injection, MSC-derived EVs rapidly diffuse through the retina to alleviate retinal injury or inflammation. Due to possible risks associated with MSC transplantation, such as vitreous opacity and pathological proliferation, EVs appear to be a better choice for intravitreal injection. Small size EVs can pass through biological barriers easily and their contents can be modified genetically for optimal therapeutic effect. Hence, currently, they are also explored for the possibility of serving as drug delivery vehicles. In the current review, we describe the characteristics of MSC-derived EVs briefly, comprehensively summarize their biological functions in ocular diseases, and discuss their potential applications in clinical settings.
Collapse
Affiliation(s)
- Bo Yu
- Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiao-Rong Li
- Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiao-Min Zhang
- Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.
| |
Collapse
|
144
|
Defoe DM, Rao H, Harris DJ, Moore PD, Brocher J, Harrison TA. A non-canonical role for p27Kip1 in restricting proliferation of corneal endothelial cells during development. PLoS One 2020; 15:e0226725. [PMID: 31929545 PMCID: PMC6957298 DOI: 10.1371/journal.pone.0226725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/30/2019] [Indexed: 12/04/2022] Open
Abstract
The cell cycle regulator p27Kip1 is a critical factor controlling cell number in many lineages. While its anti-proliferative effects are well-established, the extent to which this is a result of its function as a cyclin-dependent kinase (CDK) inhibitor or through other known molecular interactions is not clear. To genetically dissect its role in the developing corneal endothelium, we examined mice harboring two loss-of-function alleles, a null allele (p27−) that abrogates all protein function and a knockin allele (p27CK−) that targets only its interaction with cyclins and CDKs. Whole-animal mutants, in which all cells are either homozygous knockout or knockin, exhibit identical proliferative increases (~0.6-fold) compared with wild-type tissues. On the other hand, use of mosaic analysis with double markers (MADM) to produce infrequently-occurring clones of wild-type and mutant cells within the same tissue environment uncovers a roughly three- and six-fold expansion of individual p27CK−/CK− and p27−/− cells, respectively. Mosaicism also reveals distinct migration phenotypes, with p27−/− cells being highly restricted to their site of production and p27CK−/CK− cells more widely scattered within the endothelium. Using a density-based clustering algorithm to quantify dispersal of MADM-generated clones, a four-fold difference in aggregation is seen between the two types of mutant cells. Overall, our analysis reveals that, in developing mouse corneal endothelium, p27 regulates cell number by acting cell autonomously, both through its interactions with cyclins and CDKs and through a cyclin-CDK-independent mechanism(s). Combined with its parallel influence on cell motility, it constitutes a potent multi-functional effector mechanism with major impact on tissue organization.
Collapse
Affiliation(s)
- Dennis M. Defoe
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- * E-mail:
| | - Huiying Rao
- Department of Ophthalmology, Fujian Provincial Hospital, Fujian, Fuzhou, Peoples Republic of China
| | - David J. Harris
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Preston D. Moore
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Graduate Biomedical Research Program, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | | | - Theresa A. Harrison
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| |
Collapse
|
145
|
Malhotra D, Casey JR. Molecular Mechanisms of Fuchs and Congenital Hereditary Endothelial Corneal Dystrophies. Rev Physiol Biochem Pharmacol 2020; 178:41-81. [PMID: 32789790 DOI: 10.1007/112_2020_39] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cornea, the eye's outermost layer, protects the eye from the environment. The cornea's innermost layer is an endothelium separating the stromal layer from the aqueous humor. A central role of the endothelium is to maintain stromal hydration state. Defects in maintaining this hydration can impair corneal clarity and thus visual acuity. Two endothelial corneal dystrophies, Fuchs Endothelial Corneal Dystrophy (FECD) and Congenital Hereditary Endothelial Dystrophy (CHED), are blinding corneal diseases with varied clinical presentation in patients across different age demographics. Recessive CHED with an early onset (typically age: 0-3 years) and dominantly inherited FECD with a late onset (age: 40-50 years) have similar phenotypes, although caused by defects in several different genes. A range of molecular mechanisms have been proposed to explain FECD and CHED pathology given the involvement of multiple causative genes. This critical review provides insight into the proposed molecular mechanisms underlying FECD and CHED pathology along with common pathways that may explain the link between the defective gene products and provide a new perspective to view these genetic blinding diseases.
Collapse
Affiliation(s)
- Darpan Malhotra
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Joseph R Casey
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada.
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.
- Department of Ophthalmology and Visual Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
146
|
Li Z, Liu T, Ma J, Guo Q, Ma L, Lv Q, Jiang Y, Wei C, Zhang J. TGF-β induces corneal endothelial senescence via increase of mitochondrial reactive oxygen species in chronic corneal allograft failure. Aging (Albany NY) 2019; 10:3474-3485. [PMID: 30482886 PMCID: PMC6286827 DOI: 10.18632/aging.101659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
The corneal endothelium (CE) dysfunction impairs optical transparency and leads to corneal allograft failure. Morphologically, CE cells are characterized by premature senescence at the late stage of corneal graft. However, the detailed molecular mechanisms are largely unknown. Here we found that transforming growth factor-β (TGF-β) is elevated in the CE of late graft failure. In addition, senescence-associated gene p21 and p16 are increased as well, which is consistent with their elevation upon TGF-β treatment in human corneal endothelial cell B4G12. Furthermore, TGF-β treatment leads to high positive ratio of SA-β-gal, indicating B4G12 cells undergo cellular senescence. Mechanistically, we demonstrated that TGF-β could induce mitochondrial ROS (mtROS) production and mtROS scavenger could rescue CE cell senescence upon TGF-β treatment. Our study provides new evidence that elevated TGF-β plays a crucial role in the CE cell senescence and loss in chronic corneal graft failure, which could be potential targets for clinical treatment.
Collapse
Affiliation(s)
- Zhiyuan Li
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Junwei Ma
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Clinical Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liang Ma
- Department of Child Health Care, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiulan Lv
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Jiang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Jisheng Zhang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
147
|
Corliss BA, Ray HC, Mathews C, Fitzgerald K, Doty RW, Smolko CM, Shariff H, Peirce SM, Yates PA. Myh11 Lineage Corneal Endothelial Cells and ASCs Populate Corneal Endothelium. Invest Ophthalmol Vis Sci 2019; 60:5095-5103. [PMID: 31826231 PMCID: PMC6905658 DOI: 10.1167/iovs.19-27276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose To establish Myh11 as a marker of a subset of corneal endothelial cells (CECs), and to demonstrate the feasibility of restoring the corneal endothelium with Myh11-lineage (Myh11-Lin[+]) adipose-derived stromal cells (ASCs). Methods Intraperitoneal administration of tamoxifen and (Z)-4-hydroxytamoxifen eyedrops were used to trace the lineage of Myh11-expressing cells with the Myh11-Cre-ERT2-flox-tdTomato mouse model. Immunostaining and Western blot characterized marker expression and spatial distribution of Myh11-Lin(+) cells in the cornea, and administration of 5-ethynyl-2'-deoxyuridine labeled proliferating cells. ASCs were isolated from epididymal adipose Myh11+ mural cells and treated with cornea differentiation media to evaluate corneal endothelial differentiation potential. Differentiated ASCs were injected into the anterior chamber to test for incorporation into corneal endothelium following scratch injury. Results A subset of CECs express Myh11, a marker previously thought restricted to only mural cells. Myh11-Lin(+) CECs marked a stable subpopulation of cells in the cornea endothelium. Myh11-Lin(+) ASCs undergo CEC differentiation in vitro and incorporate into injured corneal endothelium. Conclusions Dystrophy and dysfunction of the corneal endothelium accounts for almost half of all corneal transplants, the maintenance of the cornea endothelium is poorly understood, and there are a lack of mouse models to study specific CEC populations. We establish a mouse model that can trace the cell fate of a subpopulation of CECs based on Myh11 expression. A subset of ASCs that share this Myh11 transcriptional lineage are capable of differentiating into CECs that can incorporate into injured corneal endothelium, revealing a potential cell source for creating engineered transplant material.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - H. Clifton Ray
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Corbin Mathews
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Kathleen Fitzgerald
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Richard W. Doty
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Chris M. Smolko
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Hamzah Shariff
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Shayn M. Peirce
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, Virginia, United States
| | - Paul A. Yates
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
148
|
Vadhul R, Halbach CS, Areaux RG, Berry S, Hou JH. Endothelial dysfunction in a child with Pearson marrow-pancreas syndrome managed with Descemet stripping automated endothelial keratoplasty using a suture pull-through technique. Digit J Ophthalmol 2019; 25:59-64. [PMID: 32076389 DOI: 10.5693/djo.02.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A 4-year-old girl with a history of Pearson marrow-pancreas syndrome presenting with severe, progressive photophobia was found to have bilateral, diffuse corneal thickening and peripheral pigmentary retinopathy. She underwent Descemet stripping automated endothelial keratoplasty (DSAEK) surgery in both eyes using a modified suture pull-through technique. Postoperatively there was no evidence of cataract formation or graft detachment; her corneas thinned, and her photophobia improved dramatically.
Collapse
Affiliation(s)
| | - Caroline S Halbach
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis
| | - Raymond G Areaux
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis
| | - Susan Berry
- Department of Pediatrics, University of Minnesota, Minneapolis
| | - Joshua H Hou
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis
| |
Collapse
|
149
|
Van den Bogerd B, Zakaria N, Adam B, Matthyssen S, Koppen C, Ní Dhubhghaill S. Corneal Endothelial Cells Over the Past Decade: Are We Missing the Mark(er)? Transl Vis Sci Technol 2019; 8:13. [PMID: 31772824 PMCID: PMC6859829 DOI: 10.1167/tvst.8.6.13] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Corneal endothelial dysfunction is one of the leading causes of corneal edema and visual impairment, requiring corneal endothelial transplantation. The treatments are limited, however, by both logistics and a global donor shortage. As a result, corneal researchers are striving to develop tissue-engineered constructs as an alternative. Recently, the clinical results of the first patients treated using a novel corneal endothelial cell therapy were reported, and it is likely many more will follow shortly. As we move from lab to clinic, it is crucial that we establish accurate and robust methods of proving the cellular identity of these products, both in genotype and phenotype. In this review, we summarized all of the markers and techniques that have been reported during the development of corneal endothelial cell therapies over the past decade. The results show the most frequently used markers were very general, namely Na+/K+ ATPase and zonula occludens-1 (ZO-1). While these markers are expressed in nearly every epithelial cell, it is the hexagonal morphology that points to cells being corneal endothelium in nature. Only 11% of articles aimed at discovering novel markers, while 30% were already developing cell therapies. Finally, we discuss the potential of functional testing of cell products to demonstrate potency in parallel with identity markers. With this review, we would like to highlight that, while this is an exciting era in corneal endothelial cell therapies, there is still no accepted consensus on a unique endothelial marker panel. We must ask the question of whether or not we are getting ahead of ourselves and whether we need to refocus on basic science rather than enter clinics prematurely.
Collapse
Affiliation(s)
- Bert Van den Bogerd
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Nadia Zakaria
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Bianca Adam
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Steffi Matthyssen
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Carina Koppen
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Sorcha Ní Dhubhghaill
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium.,Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands
| |
Collapse
|
150
|
Pan P, Weisenberger DJ, Zheng S, Wolf M, Hwang DG, Rose-Nussbaumer JR, Jurkunas UV, Chan MF. Aberrant DNA methylation of miRNAs in Fuchs endothelial corneal dystrophy. Sci Rep 2019; 9:16385. [PMID: 31705138 PMCID: PMC6841734 DOI: 10.1038/s41598-019-52727-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Homeostatic maintenance of corneal endothelial cells is essential for maintenance of corneal deturgescence and transparency. In Fuchs endothelial corneal dystrophy (FECD), an accelerated loss and dysfunction of endothelial cells leads to progressively severe visual impairment. An abnormal accumulation of extracellular matrix (ECM) is a distinctive hallmark of the disease, however the molecular pathogenic mechanisms underlying this phenomenon are not fully understood. Here, we investigate genome-wide and sequence-specific DNA methylation changes of miRNA genes in corneal endothelial samples from FECD patients. We discover that miRNA gene promoters are frequent targets of aberrant DNA methylation in FECD. More specifically, miR-199B is extensively hypermethylated and its mature transcript miR-199b-5p was previously found to be almost completely silenced in FECD. Furthermore, we find that miR-199b-5p directly and negatively regulates Snai1 and ZEB1, two zinc finger transcription factors that lead to increased ECM deposition in FECD. Taken together, these findings suggest a novel epigenetic regulatory mechanism of matrix protein production by corneal endothelial cells in which miR-199B hypermethylation leads to miR-199b-5p downregulation and thereby the increased expression of its target genes, including Snai1 and ZEB1. Our results support miR-199b-5p as a potential therapeutic target to prevent or slow down the progression of FECD disease.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Siyu Zheng
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Marie Wolf
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - David G Hwang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Jennifer R Rose-Nussbaumer
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Ula V Jurkunas
- Department of Ophthalmology, Harvard Medical School, and Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA. .,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA.
| |
Collapse
|