101
|
Soil fungal taxonomic diversity along an elevation gradient on the semi-arid Xinglong Mountain, Northwest China. Arch Microbiol 2020; 202:2291-2302. [PMID: 32556390 DOI: 10.1007/s00203-020-01948-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/02/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022]
Abstract
Elevation gradients, often regarded as "natural experiments or laboratories", can be used to study changes in the distribution of microbial diversity related to changes in environmental conditions that typically occur over small geographical scales. We exploited this feature by characterizing fungal composition and diversity along an elevation gradient on Xinglong Mountain, northwest China. For this, we used MiSeq sequencing to obtain fungal sequences and clustered them into operational taxonomic units (OTUs). In total, we obtained 1,203,302 reads, 133,700 on average in each sample of soil collected at three selected elevations (2807, 3046, and 3536 m). The reads were assigned to 2192 OTUs. Inconsistent variations were observed in fungal alpha-diversity in samples from the three elevations. However, Principal Coordinate Analysis based on Bray-Curtis and UniFrac (weighted and unweighted) distance metrics revealed that fungal communities in soil samples from 3046 and 3536 m elevations were most similar. Principal Component Analysis based on relative abundances of shared OTUs confirmed that OTUs in samples from 3536 m elevation were more closely related to OTUs from 3046 m than samples from 2807 m elevation. Ascomycota, Basidiomycota, Glomeromycota, Cercozoa and Chytridiomycota were the most abundant fungal phyla across the elevation gradient. Our study also provides valuable indications of relations between fungal communities and an array of soil chemical properties, and variations in fungal taxonomic diversity across a substantial elevation gradient.
Collapse
|
102
|
García de Jalón L, Limousin JM, Richard F, Gessler A, Peter M, Hättenschwiler S, Milcu A. Microhabitat and ectomycorrhizal effects on the establishment, growth and survival of Quercus ilex L. seedlings under drought. PLoS One 2020; 15:e0229807. [PMID: 32502167 PMCID: PMC7274372 DOI: 10.1371/journal.pone.0229807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022] Open
Abstract
The success of tree recruitment in Mediterranean holm oak (Quercus ilex) forests is threatened by the increasing intensity, duration and frequency of drought periods. Seedling germination and growth are modulated by complex interactions between abiotic (microhabitat conditions) and biotic factors (mycorrhiza association) that may mitigate the impacts of climate change on tree recruitment. To better understand and anticipate these effects, we conducted a germination experiment in a long-term precipitation reduction (PR) field experiment where we monitored seedling establishment and survival, micro-habitat conditions and ectomycorrhizal (ECM) colonization by different mycelia exploration types during the first year of seedling growth. We hypothesized that (i) the PR treatment decreases seedling survival relative to the control with ambient conditions, (ii) microhabitat conditions of water and light availability are better predictors of seedling survival than the PR treatment, (iii) the PR treatment will favour the development of ECM exploration types with drought-resistance traits such as differentiated rhizomorphs. Contrary to our first hypothesis, seedling survival was lower in control plots with overall higher soil moisture. Micro-habitat light and soil moisture conditions were better predictors of seedling survival and growth than the plot-level PR treatment, confirming our second hypothesis. Furthermore, in line with our third hypothesis, we found that ECM with longer extramatrical mycelia were more abundant in the PR treatment plots and were positively correlated to survival, which suggests a potential role of this ECM exploration type in seedling survival and recruitment. Although summer drought was the main cause of seedling mortality, our study indicates that drier conditions in spring can increase seedling survival, presumably through a synergistic effect of drought adapted ECM species and less favourable conditions for root pathogens.
Collapse
Affiliation(s)
- Laura García de Jalón
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Jean-Marc Limousin
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Franck Richard
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Martina Peter
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Stephan Hättenschwiler
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Alexandru Milcu
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
- Ecotron Européen de Montpellier (UPS-3248), CNRS, Montferrier-sur-Lez, France
| |
Collapse
|
103
|
|
104
|
Pec GJ, Simard SW, Cahill JF, Karst J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. MYCORRHIZA 2020; 30:173-183. [PMID: 32088844 DOI: 10.1007/s00572-020-00940-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
For tree seedlings in boreal forests, ectomycorrhizal (EM) fungal networks may promote, while root competition may impede establishment. Thus, disruption to EM fungal networks may decrease seedling establishment owing to the loss of positive interactions among neighbors. Widespread tree mortality can disrupt EM networks, but it is not clear whether seedling establishment will be limited by the loss of positive interactions or increased by the loss of negative interactions with surrounding roots. Depending upon the relative influence of these mechanisms, widespread tree mortality may have complicated consequences on seedling establishment, and in turn, the composition of future forests. To discern between these possible outcomes and the drivers of seedling establishment, we determined the relative importance of EM fungal networks, root presence, and the bulk soil on the establishment of lodgepole pine and white spruce seedlings along a gradient of beetle-induced tree mortality. We manipulated seedling contact with EM fungal networks and roots through the use of mesh-fabric cylinders installed in soils of lodgepole pine forests experiencing a range of overstorey tree mortality caused by mountain pine beetle. Lodgepole pine seedling survival was higher with access to EM fungal networks in undisturbed pine forests in comparison with that in beetle-killed stands. That is, overstorey tree mortality shifted fungal networks from being a benefit to a cost on seedling survival. In contrast, overstorey tree mortality did not change the relative strength of EM fungal networks, root presence and the bulk soil on survival and biomass of white spruce seedlings. Furthermore, the relative influence of EM fungal networks, root presence, and bulk soils on foliar N and P concentrations was highly contingent on seedling species and overstorey tree mortality. Our results highlight that following large-scale insect outbreak, soil-mediated processes can enable differential population growth of two common conifer species, which may result in species replacement in the future.
Collapse
Affiliation(s)
- Gregory J Pec
- Department of Biological Sciences, University of Alberta, B717a, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada.
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, 68849, USA.
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, University of British Columbia, Forest Sciences Centre #3601-2424 Main Hall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, B717a, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Justine Karst
- Department of Biological Sciences, University of Alberta, B717a, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| |
Collapse
|
105
|
Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science 2020; 367:367/6480/eaba1223. [PMID: 32079744 DOI: 10.1126/science.aba1223] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mycorrhizal fungi provide plants with a range of benefits, including mineral nutrients and protection from stress and pathogens. Here we synthesize current information about how the presence and type of mycorrhizal association affect plant communities. We argue that mycorrhizal fungi regulate seedling establishment and species coexistence through stabilizing and equalizing mechanisms such as soil nutrient partitioning, feedback to soil antagonists, differential mycorrhizal benefits, and nutrient trade. Mycorrhizal fungi have strong effects on plant population and community biology, with mycorrhizal type-specific effects on seed dispersal, seedling establishment, and soil niche differentiation, as well as interspecific and intraspecific competition and hence plant diversity.
Collapse
Affiliation(s)
- Leho Tedersoo
- Natural History Museum of Estonia, Tallinn, Estonia.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
106
|
Brown-Marsden ME. GEOGRAPHICAL DISTRIBUTION AND SEASONAL VARIATION OF HEXALECTRIS (ORCHIDACEAE) IN TEXAS: IMPLICATIONS FOR RARITY AND CONSERVATION. SOUTHWEST NAT 2020. [DOI: 10.1894/0038-4909-64-2-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Margaret E. Brown-Marsden
- McCoy College of Science, Mathematics and Engineering, Midwestern State University, 3410 Taft Boulevard, Wichita Falls, TX 76308
| |
Collapse
|
107
|
Teste FP, Jones MD, Dickie IA. Dual-mycorrhizal plants: their ecology and relevance. THE NEW PHYTOLOGIST 2020; 225:1835-1851. [PMID: 31514244 DOI: 10.1111/nph.16190] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Dual-mycorrhizal plants are capable of associating with fungi that form characteristic arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) structures. Here, we address the following questions: (1) How many dual-mycorrhizal plant species are there? (2) What are the advantages for a plant to host two, rather than one, mycorrhizal types? (3) Which factors can provoke shifts in mycorrhizal dominance (i.e. mycorrhizal switching)? We identify a large number (89 genera within 32 families) of confirmed dual-mycorrhizal plants based on observing arbuscules or coils for AM status and Hartig net or similar structures for EM status within the same plant species. We then review the possible nutritional benefits and discuss the possible mechanisms leading to net costs and benefits. Cost and benefits of dual-mycorrhizal status appear to be context dependent, particularly with respect to the life stage of the host plant. Mycorrhizal switching occurs under a wide range of abiotic and biotic factors, including soil moisture and nutrient status. The relevance of dual-mycorrhizal plants in the ecological restoration of adverse sites where plants are not carbon limited is discussed. We conclude that dual-mycorrhizal plants are underutilized in ecophysiological-based experiments, yet are powerful model plant-fungal systems to better understand mycorrhizal symbioses without confounding host effects.
Collapse
Affiliation(s)
- François P Teste
- Grupo de Estudios Ambientales, IMASL-CONICET & Universidad Nacional de San Luis, Av. Ejercito de los Andes 950 (5700), San Luis, Argentina
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA, 6009, Australia
| | - Melanie D Jones
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Ian A Dickie
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
108
|
Starke R, Capek P, Morais D, Jehmlich N, Baldrian P. Explorative Meta-Analysis of 377 Extant Fungal Genomes Predicted a Total Mycobiome Functionality of 42.4 Million KEGG Functions. Front Microbiol 2020; 11:143. [PMID: 32117162 PMCID: PMC7015973 DOI: 10.3389/fmicb.2020.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Unveiling the relationship between taxonomy and function of the microbiome is crucial to determine its contribution to ecosystem functioning. However, while there is a considerable amount of information on microbial taxonomic diversity, our understanding of its relationship to functional diversity is still scarce. Here, we used a meta-analysis of completely annotated extant genomes of 377 taxonomically distinct fungal species to predict the total fungal microbiome functionality on Earth with accumulation curves (ACs) of all known functions from the level 3 of KEGG Orthology using both parametric and non-parametric estimates in an explorative data-mining approach. The unsaturated model extrapolating functional diversity as a function of species richness described the ACs significantly better than the saturated model that assumed a limited total number of functions, which suggested the presence of widespread and rare functions. Based on previous estimates of 3.8 million fungal species on Earth, we propagated the unsaturated model to predict a total of 42.4 ± 0.5 million KEGG level 3 functions of which only 0.06% are known today. Our approach not only highlights the presence of widespread and rare functions but points toward the necessity of novel and more sophisticated methods to unveil the entirety of functions to fully understand the involvement of the fungal microbiome in ecosystem functioning.
Collapse
Affiliation(s)
- Robert Starke
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Capek
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Daniel Morais
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Nico Jehmlich
- Molecular Systems Biology, Helmholtz-Center for Environmental Research-UFZ, Leipzig, Germany
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
109
|
Gap creation alters the mode of conspecific distance-dependent seedling establishment via changes in the relative influence of pathogens and mycorrhizae. Oecologia 2020; 192:449-462. [PMID: 31960145 DOI: 10.1007/s00442-020-04596-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
In forest communities, conspecific density/distance dependence (CDD) is an important factor regulating diversity. It remains unknown how and the extent to which gap creation alters the mode and strength of CDD via changes in the relative importance of pathogens and mycorrhizae. Seeds of two hardwoods (i.e., Acer mono associated with arbuscular mycorrhizae [AM] and Quercus serrata associated with ectomycorrhizae [EM]) were sown reciprocally at four distances from the boundary between Acer- and Quercus-dominated forests towards forest interior in each of forest understories (FUs) and gaps. The causes of seed and seedling mortality, seedling growth and colonization of mycorrhizal fungi were investigated. In Acer, seed and seedling mortality were highest in Acer forests and gradually decreased towards the interior of Quercus forests in FU, mainly due to severe attack of soil pathogens, invertebrates, and leaf diseases. The reverse was true in gaps, due to reduction of damping-off damage caused by distance-dependent colonization of AM. In Quercus, most seeds and seedlings were eaten by vertebrates in FUs. The seedling mortality caused by leaf diseases was not high, even beneath conspecific forests with higher colonization of EM in gaps, suggesting a positive EM influence. In both species, seedling mass was greatest in conspecific forests and gradually decreased towards the interior of heterospecific forests in gaps, due to higher colonization of mycorrhizae near conspecifics. In conclusion, light conditions strongly altered the mode of CDD via changes in relative influence of pathogens and mycorrhizae, suggesting that gap creation may regulate species diversity via changes in the mode of CDD.
Collapse
|
110
|
May M, Jąkalski M, Novotná A, Dietel J, Ayasse M, Lallemand F, Figura T, Minasiewicz J, Selosse MA. Three-year pot culture of Epipactis helleborine reveals autotrophic survival, without mycorrhizal networks, in a mixotrophic species. MYCORRHIZA 2020; 30:51-61. [PMID: 31965295 DOI: 10.1007/s00572-020-00932-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/10/2020] [Indexed: 05/04/2023]
Abstract
Some mixotrophic plants from temperate forests use the mycorrhizal fungi colonizing their roots as a carbon source to supplement their photosynthesis. These fungi are also mycorrhizal on surrounding trees, from which they transfer carbon to mixotrophic plants. These plants are thus reputed difficult to transplant, even when their protection requires it. Here, we take profit of a successful ex situ pot cultivation over 1 to 3 years of the mixotrophic orchid Epipacis helleborine to investigate its mycorrhizal and nutrition status. Firstly, compared with surrounding autotrophic plants, it did not display the higher N content and higher isotopic (13C and 15N) abundance that normally feature mixotrophic orchids because they incorporate N-, 13C-, and 15N-rich fungal biomass. Second, fungal barcoding by next-generation sequencing revealed that the proportion of ectomycorrhizal fungi (expressed as percentage of the total number of either reads or operational taxonomic units) was unusually low compared with E. helleborine growing in situ: instead, we found a high percentage of rhizoctonias, the usual mycorrhizal partners of autotrophic orchids. Altogether, this supports autotrophic survival. Added to the recently published evidence that plastid genomes of mixotrophic orchids have intact photosynthetic genes, this suggests that at least some of them have abilities for autotrophy. This adds to the ecological plasticity of mixotrophic plants, and may allow some reversion to autotrophy in their evolution.
Collapse
Affiliation(s)
- Michał May
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marcin Jąkalski
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Alžběta Novotná
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jennifer Dietel
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, D-89081, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, D-89081, Ulm, Germany
| | - Félix Lallemand
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, F-75005, Paris, France
| | - Tomáš Figura
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, F-75005, Paris, France
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Julita Minasiewicz
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marc-André Selosse
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland.
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, F-75005, Paris, France.
| |
Collapse
|
111
|
Starke R, Capek P, Morais D, Callister SJ, Jehmlich N. The total microbiome functions in bacteria and fungi. J Proteomics 2019; 213:103623. [PMID: 31863929 DOI: 10.1016/j.jprot.2019.103623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023]
Abstract
Unveiling the relationship between phylogeny and function of the microbiome is crucial to determine its contribution to ecosystem functioning. However, while there is a considerable amount of information on microbial phylogenetic diversity, our understanding of its relationship to functional diversity is still scarce. Here we predicted the total microbiome functions of bacteria and fungi on Earth using the total known functions from level 3 of KEGG Orthology by modelling the increase of functions with increasing diversity of bacteria or fungi. For bacteria and fungi, the unsaturated model described the data significantly better (for both P <2.2e-16), suggesting the presence of two types of functions. Widespread functions ubiquitous in every living organism that make up two thirds of our current knowledge of microbiome functions are separated from rare functions from specialised enzymes present in only a few species. Given previous estimates on species richness, we predicted a global total of 35.5 million functions in bacteria and 3.2 million in fungi; of which only 0.02% and 0.14% are known today. Our approach highlights the necessity of novel and more sophisticated methods to unveil the entirety of rare functions to fully understand the involvement of the microbiome in ecosystem functioning. SIGNIFICANCE: The functionality of and within a microbial community is generally inferred based on the taxonomic annotation of the organism. However, our understanding of functional diversity and how it relates to taxonomy is still limited. Here we predict the total microbiome functionality in bacteria and fungi on Earth using known and annotated protein-coding sequences in species accumulation curves. Our estimates reveal that the majority of functionality (>99%) could be assigned to yet unknown and rare functions, highlighting that our current knowledge is incomplete and functional inference is thus lackluster.
Collapse
Affiliation(s)
- Robert Starke
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic.
| | - Petr Capek
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Czechia
| | - Daniel Morais
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| | - Stephen J Callister
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Nico Jehmlich
- Molecular Systems Biology, Helmholtz-Center for Environmental Research, UFZ, Leipzig, Germany
| |
Collapse
|
112
|
Albert LP, Restrepo-Coupe N, Smith MN, Wu J, Chavana-Bryant C, Prohaska N, Taylor TC, Martins GA, Ciais P, Mao J, Arain MA, Li W, Shi X, Ricciuto DM, Huxman TE, McMahon SM, Saleska SR. Cryptic phenology in plants: Case studies, implications, and recommendations. GLOBAL CHANGE BIOLOGY 2019; 25:3591-3608. [PMID: 31343099 DOI: 10.1111/gcb.14759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 06/10/2023]
Abstract
Plant phenology-the timing of cyclic or recurrent biological events in plants-offers insight into the ecology, evolution, and seasonality of plant-mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season-initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are "cryptic"-that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere models.
Collapse
Affiliation(s)
- Loren P Albert
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
- Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
| | - Natalia Restrepo-Coupe
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
- School of Life Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Marielle N Smith
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
| | - Jin Wu
- Biological, Environmental & Climate Sciences Department, Brookhaven National Laboratory, New York, NY, USA
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Cecilia Chavana-Bryant
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Climate & Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA
| | - Neill Prohaska
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
| | - Tyeen C Taylor
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
| | - Giordane A Martins
- Ciências de Florestas Tropicais, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace, Gif sur Yvette, France
| | - Jiafu Mao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - M Altaf Arain
- School of Geography and Earth Sciences & McMaster Centre for Climate Change, McMaster University, Hamilton, ON, Canada
| | - Wei Li
- Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace, Gif sur Yvette, France
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Tsinghua University, Beijing, China
| | - Xiaoying Shi
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daniel M Ricciuto
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Travis E Huxman
- Ecology and Evolutionary Biology & Center for Environmental Biology, University of California, Irvine, CA, USA
| | - Sean M McMahon
- Smithsonian Institution's Forest Global Earth Observatory & Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
113
|
Song Y, Wang M, Zeng R, Groten K, Baldwin IT. Priming and filtering of antiherbivore defences among Nicotiana attenuata plants connected by mycorrhizal networks. PLANT, CELL & ENVIRONMENT 2019; 42:2945-2961. [PMID: 31348534 DOI: 10.1111/pce.13626] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with a majority of terrestrial plants to form underground common mycorrhizal networks (CMNs) that connect neighbouring plants. Because Nicotiana attenuata plants do not respond to herbivory-elicited volatiles from neighbours, we used this ecological model system to evaluate if CMNs function in interplant transmission of herbivory-elicited responses. A mesocosm system was designed to establish and remove CMNs linking N. attenuata plants to examine the herbivory-elicited metabolic and hormone responses in CMNs-connected "receiver" plants after the elicitation of "donor" plants by wounding (W) treated with Manduca sexta larval oral secretions (OS). AMF colonization increased constitutive jasmonate (JA and JA-Ile) levels in N. attenuata roots but did not affect well-characterized JAs-regulated defensive metabolites in systemic leaves. Interestingly, larger JAs bursts, and higher levels of several amino acids and particular sectors of hydroxygeranyllinalool diterpene glycoside metabolism were elevated in the leaves of W + OS-elicited "receivers" with CMN connections with "donors" that had been W + OS-elicited 6 hr previously. Our results demonstrate that AMF colonization alone does not enhance systemic defence responses but that sectors of systemic responses in leaves can be primed by CMNs, suggesting that CMNs can transmit and even filter defence signalling among connected plants.
Collapse
Affiliation(s)
- Yuanyuan Song
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Karin Groten
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
114
|
Lo YH, Blanco JA, González de Andrés E, Imbert JB, Castillo FJ. CO2 fertilization plays a minor role in long-term carbon accumulation patterns in temperate pine forests in the southwestern Pyrenees. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
115
|
|
116
|
Montesinos-Navarro A, Valiente-Banuet A, Verdú M. Processes underlying the effect of mycorrhizal symbiosis on plant-plant interactions. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
117
|
Nagati M, Roy M, Desrochers A, Manzi S, Bergeron Y, Gardes M. Facilitation of Balsam Fir by Trembling Aspen in the Boreal Forest: Do Ectomycorrhizal Communities Matter? FRONTIERS IN PLANT SCIENCE 2019; 10:932. [PMID: 31379909 PMCID: PMC6657621 DOI: 10.3389/fpls.2019.00932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Succession is generally well described above-ground in the boreal forest, and several studies have demonstrated the role of interspecific facilitation in tree species establishment. However, the role of mycorrhizal communities for tree establishment and interspecific facilitation, has been little explored. At the ecotone between the mixed boreal forest, dominated by balsam fir and hardwood species, and the boreal forest, dominated by black spruce, several stands of trembling aspen can be found, surrounded by black spruce forest. Regeneration of balsam fir seems to have increased in the recent decades within the boreal forest, and it seems better adapted to grow in trembling aspen stands than in black spruce stands, even when located in similar abiotic conditions. As black spruce stands are also covered by ericaceous shrubs, we investigated if differences in soil fungal communities and ericaceous shrubs abundance could explain the differences observed in balsam fir growth and nutrition. We conducted a study centered on individual saplings to link growth and foliar nutrient concentrations to local vegetation cover, mycorrhization rate, and mycorrhizal communities associated with balsam fir roots. We found that foliar nutrient concentrations and ramification indices (colonization by mycorrhiza per length of root) were greater in trembling aspen stands and were positively correlated to apical and lateral growth of balsam fir saplings. In black spruce stands, the presence of ericaceous shrubs near balsam fir saplings affected ectomycorrhizal communities associated with tree roots which in turn negatively correlated with N foliar concentrations. Our results reveal that fungal communities observed under aspen are drivers of balsam fir early growth and nutrition in boreal forest stands and may facilitate ecotone migration in a context of climate change.
Collapse
Affiliation(s)
- Mélissande Nagati
- UQAT-UQAM Industrial Chair in Sustainable Forest Management, Forest Research Institute, University of Québec in Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
- UMR5174, Laboratory Evolution and Biological Diversity, Centre National de la Recherche Scientifique – IRD, Université Paul Sabatier, Toulouse, France
| | - Mélanie Roy
- UMR5174, Laboratory Evolution and Biological Diversity, Centre National de la Recherche Scientifique – IRD, Université Paul Sabatier, Toulouse, France
| | - Annie Desrochers
- UQAT-UQAM Industrial Chair in Sustainable Forest Management, Forest Research Institute, University of Québec in Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
| | - Sophie Manzi
- UMR5174, Laboratory Evolution and Biological Diversity, Centre National de la Recherche Scientifique – IRD, Université Paul Sabatier, Toulouse, France
| | - Yves Bergeron
- UQAT-UQAM Industrial Chair in Sustainable Forest Management, Forest Research Institute, University of Québec in Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
| | - Monique Gardes
- UMR5174, Laboratory Evolution and Biological Diversity, Centre National de la Recherche Scientifique – IRD, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
118
|
Wu D, Zhang M, Peng M, Sui X, Li W, Sun G. Variations in Soil Functional Fungal Community Structure Associated With Pure and Mixed Plantations in Typical Temperate Forests of China. Front Microbiol 2019; 10:1636. [PMID: 31379786 PMCID: PMC6646410 DOI: 10.3389/fmicb.2019.01636] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022] Open
Abstract
Forest plants are in constant contact with the soil fungal community, which plays an important role in the circulation of nutrients through forest ecosystems. The objective of this study was to evaluate the fungal diversity in soil and elucidate the ecological role of functional fungal communities in forest ecosystems using soil samples from seven different plantations in northeastern China. Our results showed that the fungal communities were dominated by the phyla Ascomycota, Basidiomycota, and Mortierellomycota, and the mixed plantation of Fraxinus mandshurica and Pinus koraiensis had a soil fungal population clearly divergent from those in the other plantations. Additionally, the mixed plantation of F. mandshurica and P. koraiensis, which was low in soil nutrients, contained a highly diverse and abundant population of ectomycorrhizal fungi, whereas saprophytic fungi were more abundant in plantations with high soil nutrients. Redundancy analysis demonstrated a strong correlation between saprophytic fungi and the level of soil nutrients, whereas ectomycorrhizal fungi were mainly distributed in soils with low nutrient. Our findings provide insights into the importance of functional fungi and the mediation of soil nutrients in mixed plantations and reveal the effect of biodiversity on temperate forests.
Collapse
Affiliation(s)
- Di Wu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Mengmeng Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Mu Peng
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xin Sui
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, China
| | - Guangyu Sun
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
119
|
Sortibrán L, Verdú M, Valiente-Banuet A. A nurse plant benefits from facilitative interactions through mycorrhizae. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:670-676. [PMID: 30537030 DOI: 10.1111/plb.12948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Plant facilitation promotes coexistence by maintaining differences in the regeneration niche because some nurse species recruit under arid conditions, whereas facilitated species recruit under more mesic conditions. In one Mexican community, 95% of species recruit through facilitation; Mimosa luisana being a keystone nurse for many of them. M. luisana individuals manifest greater fitness when growing in association with their facilitated plants than when growing in isolation. This observation suggests that nurses also benefit from their facilitated plants, a benefit thought to be mediated by mycorrhizal fungi. Under field conditions, we experimentally tested whether mycorrhizal fungi mediate the increased fitness that M. luisana experiences when growing in association with its facilitated plants. We applied fungicide to the soil for nurse plants growing alone and growing in association with their facilitated plants in order to reduce the mycorrhizal colonisation of roots. We then assessed the quantity and quality of seed production of M. luisana in four treatments (isolated-control, isolated-fungicide, associated-control and associated-fungicide). Fungicide application reduced the percentage root length colonised by mycorrhizae and reduced fitness of M. luisana when growing in association with their facilitated plants but not when growing in isolation. This reduction was reflected in the total number of seeds, number of seeds per pod, seed mass and seed viability. These results suggest that nurses benefit from the presence of their facilitated plants through links established by mycorrhizae, indicating that both plants and belowground mutualistic communities are all part of one system, coexisting by means of intrinsically linked interactions.
Collapse
Affiliation(s)
- L Sortibrán
- Departamento de Ecología de la Biodiversidad Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - M Verdú
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV), Valencia, Spain
| | - A Valiente-Banuet
- Departamento de Ecología de la Biodiversidad Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Ciencias de la Complejidad Ciudad Universitaria México, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
120
|
Oborny B. The plant body as a network of semi-autonomous agents: a review. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180371. [PMID: 31006361 PMCID: PMC6553591 DOI: 10.1098/rstb.2018.0371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2018] [Indexed: 01/31/2023] Open
Abstract
Plants can solve amazingly difficult tasks while adjusting their growth and development to the environment. They can explore and exploit several resources simultaneously, even when the distributions of these vary in space and time. The systematic study of plant behaviour goes back to Darwin's book The power of movement in plants. Current research has highlighted that modularity is a key to understanding plant behaviour, as the production, functional specialization and death of modules enable the plant to adjust its movement to the environment. The adjustment is assisted by a flow of information and resources among the modules. Experiments have yielded many results about these processes in various plant species. Theoretical research, however, has lagged behind the empirical studies, possibly owing to the lack of a proper modelling framework that could encompass the high number of components and interactions. In this paper, I propose such a framework on the basis of network theory, viewing the plant as a group of connected, semi-autonomous agents. I review some characteristic plant responses to the environment through changing the states of agents and/or links. I also point out some unexplored areas, in which a dialogue between plant science and network theory could be mutually inspiring. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Beata Oborny
- Institute of Biology, Loránd Eötvös University, Budapest, Hungary
- GINOP Sustainable Ecosystems Group, Centre for Ecological Research, Hungarian Academy of Sciences, Tihany, Hungary
| |
Collapse
|
121
|
Gaggini L, Rusterholz HP, Baur B. The annual invasive plant Impatiens glandulifera reduces hyphal biomass of soil fungi in deciduous forests. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
122
|
Newbery DM, Neba GA. Micronutrients may influence the efficacy of ectomycorrhizas to support tree seedlings in a lowland African rain forest. Ecosphere 2019. [DOI: 10.1002/ecs2.2686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- David M. Newbery
- Institute of Plant Sciences University of Bern Altenbergrain 21 CH‐3013 Bern Switzerland
| | - Godlove A. Neba
- Department of Botany and Plant Physiology University of Buea P.O. Box 63 Buea S. W. Region Cameroon
| |
Collapse
|
123
|
Debono MW, Souza GM. Plants as electromic plastic interfaces: A mesological approach. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 146:123-133. [PMID: 30826433 DOI: 10.1016/j.pbiomolbio.2019.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 02/21/2019] [Indexed: 11/15/2022]
Abstract
In this manuscript, we propose that plants are eco-plastic and electromic interfaces that can drive emergent intelligent behaviours from synchronized electrical networks. Behind the semantic and anthropocentric problems related by many authors to the extensive use of the terms cognition, intelligence or even 'consciousness' for plants, we suggest a more pragmatic perspective, considering the vegetal world to be a complex biosystemic entity that is able to co-build the world or a form of the world or of significant reality via a set of reciprocal, emerging and confluent interactions. Speaking of adaptive sensory modalities involving perceptual binding or a global state of receptivity nonlinearly leading to cognitive functions, learning capabilities and intelligent behaviours of plants seem to be the more realistic and operational model to describe how plants perceive and treat environmental data. In this study, we strongly suggest that the electrome, which mainly involves constant spontaneous emission of low voltage potentials, is an early marker and a unifying factor of whole plant reactivity in a constantly changing environment and is therefore the key to understanding the cognitive nature of plants. This dynamic coupling enables plants to be knowledge-accumulating systems that are used by evolution to progress and survive, while mesological plasticity is a unique means for plants to interact as subjects with their milieu (umwelt) or natural habitat and to co-signify a possible world.
Collapse
|
124
|
Mycorrhizal Studies in Temperate Rainforests of Southern Chile. Fungal Biol 2019. [DOI: 10.1007/978-3-030-15228-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
125
|
Pither J, Pickles BJ, Simard SW, Ordonez A, Williams JW. Below-ground biotic interactions moderated the postglacial range dynamics of trees. THE NEW PHYTOLOGIST 2018; 220:1148-1160. [PMID: 29770964 DOI: 10.1111/nph.15203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/03/2018] [Indexed: 05/05/2023]
Abstract
Tree range shifts during geohistorical global change events provide a useful real-world model for how future changes in forest biomes may proceed. In North America, during the last deglaciation, the distributions of tree taxa varied significantly as regards the rate and direction of their responses for reasons that remain unclear. Local-scale processes such as establishment, growth, and resilience to environmental stress ultimately influence range dynamics. Despite the fact that interactions between trees and soil biota are known to influence local-scale processes profoundly, evidence linking below-ground interactions to distribution dynamics remains scarce. We evaluated climate velocity and plant traits related to dispersal, environmental tolerance and below-ground symbioses, as potential predictors of the geohistorical rates of expansion and contraction of the core distributions of tree genera between 16 and 7 ka bp. The receptivity of host genera towards ectomycorrhizal fungi was strongly supported as a positive predictor of poleward rates of distribution expansion, and seed mass was supported as a negative predictor. Climate velocity gained support as a positive predictor of rates of distribution contraction, but not expansion. Our findings indicate that understanding how tree distributions, and thus forest ecosystems, respond to climate change requires the simultaneous consideration of traits, biotic interactions and abiotic forcing.
Collapse
Affiliation(s)
- Jason Pither
- Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Okanagan Campus, 3187 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Brian J Pickles
- School of Biological Sciences, University of Reading, Harborne Building, Whiteknights, Reading, RG6 6AS, UK
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Alejandro Ordonez
- Department of Bioscience - Section for Ecoinformatics and Biodiversity, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark
- Queen's University Belfast - School of Biological Sciences, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - John W Williams
- Department of Geography and Center for Climatic Research, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
126
|
Corrales A, Henkel TW, Smith ME. Ectomycorrhizal associations in the tropics - biogeography, diversity patterns and ecosystem roles. THE NEW PHYTOLOGIST 2018; 220:1076-1091. [PMID: 29689121 DOI: 10.1111/nph.15151] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1076 I. Introduction 1076 II. Historical overview 1077 III. Identities and distributions of tropical ectomycorrhizal plants 1077 IV. Dominance of tropical forests by ECM trees 1078 V. Biogeography of tropical ECM fungi 1081 VI. Beta diversity patterns in tropical ECM fungal communities 1082 VII. Conclusions and future research 1086 Acknowledgements 1087 References 1087 SUMMARY: Ectomycorrhizal (ECM) associations were historically considered rare or absent from tropical ecosystems. Although most tropical forests are dominated by arbuscular mycorrhizal (AM) trees, ECM associations are widespread and found in all tropical regions. Here, we highlight emerging patterns of ECM biogeography, diversity and ecosystem functions, identify knowledge gaps, and offer direction for future research. At the continental and regional scales, tropical ECM systems are highly diverse and vary widely in ECM plant and fungal abundance, diversity, composition and phylogenetic affinities. We found strong regional differences among the dominant host plant families, suggesting that biogeographical factors strongly influence tropical ECM symbioses. Both ECM plants and fungi also exhibit strong turnover along altitudinal and soil fertility gradients, suggesting niche differentiation among taxa. Ectomycorrhizal fungi are often more abundant and diverse in sites with nutrient-poor soils, suggesting that ECM associations can optimize plant nutrition and may contribute to the maintenance of tropical monodominant forests. More research is needed to elucidate the diversity patterns of ECM fungi and plants in the tropics and to clarify the role of this symbiosis in nutrient and carbon cycling.
Collapse
Affiliation(s)
- Adriana Corrales
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Terry W Henkel
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
127
|
Jiang X, Yanbin L. A bibliometric analysis for global research trends on ectomycorrhizae over the past thirty years. ELECTRONIC LIBRARY 2018. [DOI: 10.1108/el-05-2017-0104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose
Based on the significance of ectomycorrhizae (ECM) and increased publication activity on this subject, it was decided to carry out a bibliometric analysis of scientific outputs in this area. The purpose of this study is to reveal the research trends of scientific outputs on ECM for the past 30 years and provide a potential guide for future research.
Design/methodology/approach
A method of bibliometric analysis was performed, based on the online version of the Science Citation Index Expanded, Web of Science, from 1986 to 2017. The authors evaluated the publication types, languages, source countries, journals, the patterns of publication outputs, most-cited articles, most-productive authors, institutional distributions, subject categories, high-frequency keywords and keywords plus and high-frequency terms in the title and abstract of ectomycorrhizal research. Keywords, keywords plus and high-frequency terms in the title and abstract were analyzed via VOSviewer to illustrate the extent of co-occurrence. This study further describes the recent research priority or hotspots and reveals the research trends.
Findings
From 1986 to 2017, the publication output on ECM showed a rising trend; the number of articles has rapidly increased after 2003. Based on co-occurrence analysis for keywords, keywords plus and terms in the title and abstract, “ectomycorrhizal fungi” is the most popular keyword and keywords plus; “concentration” is the most high-frequency terms in the title and abstracts. Plant biology, mycology and ecology are the hotspots in the ectomycorrhizal research. Ectomycorrhizal taxonomy, the molecular mechanisms of ectomycorrhizal symbioses and the common mycorrhizal networks are the future direction.
Originality/value
A bibliometric analysis has been carried out to analyze the trends of ECM research with 30 years. This study provides a potential guide for future research related to ectomycorrhizae.
Collapse
|
128
|
Worrich A, Wick LY, Banitz T. Ecology of Contaminant Biotransformation in the Mycosphere: Role of Transport Processes. ADVANCES IN APPLIED MICROBIOLOGY 2018; 104:93-133. [PMID: 30143253 DOI: 10.1016/bs.aambs.2018.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fungi and bacteria often share common microhabitats. Their co-occurrence and coevolution give rise to manifold ecological interactions in the mycosphere, here defined as the microhabitats surrounding and affected by hyphae and mycelia. The extensive structure of mycelia provides ideal "logistic networks" for transport of bacteria and matter in structurally and chemically heterogeneous soil ecosystems. We describe the characteristics of the mycosphere as a unique and highly dynamic bacterial habitat and a hot spot for contaminant biotransformation. In particular, we emphasize the role of the mycosphere for (i) bacterial dispersal and colonization of subsurface interfaces and new habitats, (ii) matter transport processes and contaminant bioaccessibility, and (iii) the functional stability of microbial ecosystems when exposed to environmental fluctuations such as stress or disturbances. Adopting concepts from ecological theory, the chapter disentangles bacterial-fungal impacts on contaminant biotransformation in a systemic approach that interlinks empirical data from microbial ecosystems with simulation data from computational models. This approach provides generic information on key factors, processes, and ecological principles that drive microbial contaminant biotransformation in soil. We highlight that the transport processes create favorable habitat conditions for efficient bacterial contaminant degradation in the mycosphere. In-depth observation, understanding, and prediction of the role of mycosphere transport processes will support the use of bacterial-fungal interactions in nature-based solutions for contaminant biotransformation in natural and man-made ecosystems, respectively.
Collapse
Affiliation(s)
- Anja Worrich
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | - Thomas Banitz
- Department of Ecological Modelling, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
129
|
Impacts of a High Nitrogen Load on Foliar Nutrient Status, N Metabolism, and Photosynthetic Capacity in a Cupressus lusitanica Mill. Plantation. FORESTS 2018. [DOI: 10.3390/f9080483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
At present, anthropogenic nitrogen deposition has dramatically increased worldwide and has shown negative impacts on temperate/boreal forest ecosystems. However, it remains unclear how an elevated N load affects plant growth in the relatively N-rich subtropical forests of Southern China. To address this question, a study was conducted in a six-year-old Cupressus lusitanica Mill. plantation at the Scientific Research and Teaching Base of Nanjing Forestry University, with N addition levels of N0 (0 kg ha−1 year−1), N1 (24 kg ha−1 year−1), N2 (48 kg ha−1 year−1), N3 (72 kg ha−1 year−1), N4 (96 kg ha−1 year−1), and N5 (120 kg ha−1 year−1). Leaf physiological traits associated with foliar nutrient status, photosynthetic capacity, pigment, and N metabolites were measured. The results showed that (1) N addition led to significant effects on foliar N, but had no marked effects on K concentration. Furthermore, remarkable increases of leaf physiological traits including foliar P, Ca, Mg, and Mn concentration; photosynthetic capacity; pigment; and N metabolites were always observed under low and middle-N supply. (2) High N supply notably decreased foliar P, Ca, and Mg concentration, but increased foliar Mn content. Regarding the chlorophyll, photosynthetic capacity, and N metabolites, marked declines were also observed under high N inputs. (3) Redundancy analysis showed that the net photosynthesis rate was positively correlated with foliar N, P, Ca, Mg, and Mn concentration; the Mn/Mg ratio; and concentrations of chlorophyll and N metabolites, while the net photosynthesis rate was negatively correlated with foliar K concentration and N/P ratios. These findings suggest that excess N inputs can promote nutrient imbalances and inhibit the photosynthetic capacity of Cupressus lusitanica Mill., indicating that high N deposition could threaten plant growth in tropical forests in the future. Meanwhile, further study is merited to track the effects of high N deposition on the relationship between foliar Mn accumulation and photosynthesis in Cupressus lusitanica Mill.
Collapse
|
130
|
Zhan F, Li B, Jiang M, Yue X, He Y, Xia Y, Wang Y. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24338-24347. [PMID: 29948717 DOI: 10.1007/s11356-018-2487-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/04/2018] [Indexed: 05/08/2023]
Abstract
In this study, we investigated the effects of the arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae and Diversispora spurcum on the growth, antioxidant physiology, and uptake of phosphorus (P), sulfur (S), lead (Pb), zinc (Zn), cadmium (Cd), and arsenic (As) by maize (Zea mays L.) grown in heavy metal-polluted soils though a potted plant experiment. F. mosseae significantly increased the plant chlorophyll a content, height, and biomass; decreased the H2O2 and malondialdehyde (MDA) contents; and enhanced the superoxide dismutase (SOD) and catalase (CAT) activities and the total antioxidant capacity (T-AOC) in maize leaves; this effect was not observed with D. spurcum. Both F. mosseae and D. spurcum promoted the retention of heavy metals in roots and increased the uptake of Pb, Zn, Cd, and As, and both fungi restricted heavy metal transfer, resulting in decreased Pb, Zn, and Cd contents in shoots. Therefore, the fungi reduced the translocation factors for heavy metal content (TF) and uptake (TF') in maize. Additionally, F. mosseae promoted P and S uptake by shoots, and D. spurcum increased P and S uptake by roots. Moreover, highly significant negative correlations were found between antioxidant capacity and the H2O2, MDA, and heavy metal contents, and there was a positive correlation with the biomass of maize leaves. These results suggested that AMF alleviated plant toxicity and that this effect was closely related to antioxidant activation in the maize leaves and increased retention of heavy metals in the roots.
Collapse
Affiliation(s)
- Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Ming Jiang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Xianrong Yue
- School of Marxism, Yunnan Agricultural University, Kunming, 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| | - Yunsheng Xia
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| | - Youshan Wang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
131
|
Amma S, Toju H, Wachrinrat C, Sato H, Tanabe AS, Artchawakom T, Kanzaki M. Composition and Diversity of Soil Fungi in Dipterocarpaceae-Dominated Seasonal Tropical Forests in Thailand. Microbes Environ 2018; 33:135-143. [PMID: 29848838 PMCID: PMC6031388 DOI: 10.1264/jsme2.me17168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/13/2018] [Indexed: 11/25/2022] Open
Abstract
Although fungi play essential roles in nutrient cycles and plant growth in forest ecosystems, limited information is currently available on the community compositions of soil fungi in tropical forests. Few studies have examined fungal community structures in seasonal tropical forests, in which forest fires potentially have a large impact on above- and belowground community processes. Based on high-throughput sequencing technologies, we herein examined the diversity and community structures of soil fungi in dry seasonal tropical forests in Sakaerat, northeast Thailand. We found that fungal community compositions diverged among dry evergreen, dry deciduous, and fire-protected dry deciduous forests within the region. Although tree species diversity did not positively correlate with soil fungal diversity, the coverage of an understory bamboo species (Vietnamosasa pusilla) showed a strong relationship with fungal community structures. Our community ecological analysis also yielded a list of fungi showing habitat preferences for either of the neighboring evergreen and deciduous forests in Sakaerat. The present results provide a basis for managing soil fungal communities and aboveground plant communities in seasonal tropical forests in Southeast Asia.
Collapse
Affiliation(s)
- Sarasa Amma
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto UniversityKitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606–8502Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University509–3, 2-chome, Hirano, Otsu, Shiga, 520–2113Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology AgencyKawaguchi, Saitama 332–0012Japan
| | - Chongrak Wachrinrat
- Department of Silviculture, Faculty of Forestry, Kasetsart UniversityBangkokThailand
| | - Hirotoshi Sato
- Department of Environmental Solution Technology, Faculty of Science & Technology, Ryukoku UniversitySeta-Oe, Otsu, 520–2194 ShigaJapan
| | - Akifumi S. Tanabe
- Department of Biology, Graduate School of Science, Kobe University1–1 Rokkodai, Nada-ku, Kobe, 657–8501Japan
| | - Taksin Artchawakom
- Sakaerat Environmental Research Station, Wang Nam KhiaoWang Nam Khiao-District, Nakon Ratchashima, 30370Thailand
| | - Mamoru Kanzaki
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto UniversityKitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606–8502Japan
| |
Collapse
|
132
|
How disturbances and management practices affect bird communities in a Carpathian river ecosystem? ACTA OECOLOGICA 2018. [DOI: 10.1016/j.actao.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
133
|
Wen Z, Shi L, Tang Y, Hong L, Xue J, Xing J, Chen Y, Nara K. Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests. MYCORRHIZA 2018; 28:49-58. [PMID: 28942552 DOI: 10.1007/s00572-017-0800-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Chinese Douglas-fir (Pseudotsuga sinensis) is an endangered Pinaceae species found in several isolated regions of China. Although soil spore banks of ectomycorrhizal (ECM) fungi can play an important role in seedling establishment after disturbance, such as in the well-known North American relative (Pseudotsuga menziesii), we have no information about soil spore bank communities in relict forests of Chinese Douglas-fir. We conducted bioassays of 73 soil samples collected from three Chinese Douglas-fir forests, using North American Douglas-fir as bait seedlings, and identified 19 species of ECM fungi. The observed spore bank communities were significantly different from those found in ECM fungi on the roots of resident trees at the same sites (p = 0.02). The levels of potassium (K), nitrogen (N), organic matter, and the pH of soil were the dominant factors shaping spore bank community structure. A new Rhizopogon species was the most dominant species in the spore banks. Specifically, at a site on Sanqing Mountain, 22 of the 57 surviving bioassay seedlings (representing 21 of the 23 soil samples) were colonized by this species. ECM fungal richness significantly affected the growth of bioassay seedlings (R 2 = 0.20, p = 0.007). Growth was significantly improved in seedlings colonized by Rhizopogon or Meliniomyces species compared with uncolonized seedlings. Considering its specificity to Chinese Douglas-fir, predominance in the soil spore banks, and positive effect on host growth, this new Rhizopogon species could play critical roles in seedling establishment and forest regeneration of endangered Chinese Douglas-fir.
Collapse
Affiliation(s)
- Zhugui Wen
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, 224002, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yangze Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lizhou Hong
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, 224002, China
| | - Jiawang Xue
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jincheng Xing
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, 224002, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Kazuhide Nara
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
| |
Collapse
|
134
|
Vahabi K, Reichelt M, Scholz SS, Furch ACU, Matsuo M, Johnson JM, Sherameti I, Gershenzon J, Oelmüller R. Alternaria Brassicae Induces Systemic Jasmonate Responses in Arabidopsis Which Travel to Neighboring Plants via a Piriformsopora Indica Hyphal Network and Activate Abscisic Acid Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:626. [PMID: 29868082 PMCID: PMC5952412 DOI: 10.3389/fpls.2018.00626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Stress information received by a particular local plant tissue is transferred to other tissues and neighboring plants, but how the information travels is not well understood. Application of Alternaria Brassicae spores to Arabidopsis leaves or roots stimulates local accumulation of jasmonic acid (JA), the expression of JA-responsive genes, as well as of NITRATE TRANSPORTER (NRT)2.5 and REDOX RESPONSIVE TRANSCRIPTION FACTOR1 (RRTF1). Infection information is systemically spread over the entire seedling and propagates radially from infected to non-infected leaves, axially from leaves to roots, and vice versa. The local and systemic NRT2.5 responses are reduced in the jar1 mutant, and the RRTF1 response in the rbohD mutant. Information about A. brassicae infection travels slowly to uninfected neighboring plants via a Piriformospora Indica hyphal network, where NRT2.5 and RRTF1 are up-regulated. The systemic A. brassicae-induced JA response in infected plants is converted to an abscisic acid (ABA) response in the neighboring plant where ABA and ABA-responsive genes are induced. We propose that the local threat information induced by A. brassicae infection is spread over the entire plant and transferred to neighboring plants via a P. indica hyphal network. The JA-specific response is converted to a general ABA-mediated stress response in the neighboring plant.
Collapse
Affiliation(s)
- Khabat Vahabi
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexandra C. U. Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mitsuhiro Matsuo
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Joy M. Johnson
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
- *Correspondence: Ralf Oelmüller
| |
Collapse
|
135
|
Murata M, Kanetani S, Nara K. Ectomycorrhizal fungal communities in endangered Pinus amamiana forests. PLoS One 2017; 12:e0189957. [PMID: 29261780 PMCID: PMC5736215 DOI: 10.1371/journal.pone.0189957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022] Open
Abstract
Interactions between trees and ectomycorrhizal (ECM) fungi are critical for the growth and survival of both partners. However, ECM symbiosis in endangered trees has hardly been explored, complicating conservation efforts. Here, we evaluated resident ECM roots and soil spore banks of ECM fungi from endangered Pinus amamiana forests on Yakushima and Tanegashima Islands, Kagoshima Prefecture, Japan. Soil samples were collected from remaining four forests in the two islands. The resident ECM roots in soil samples were subjected to molecular identification. Soil spore banks of ECM fungi were analyzed via bioassays using a range of host seedlings (P. amamiana, P. parviflora, P. densiflora and Castanopsis sieboldii) for 6-8 months. In all remaining P. amamiana forests, we discovered a new Rhizopogon species (Rhizopogon sp.1), the sequence of which has no match amoung numerous Rhizopogon sequences deposited in the international sequence database. Host identification of the resident ECM roots confirmed that Rhizopogon sp.1 was associated only with P. amamiana. Rhizopogon sp.1 was far more dominant in soil spore banks than in resident ECM roots, and its presence was confirmed in nearly all soil samples examined across the major remaining populations. While Rhizopogon sp.1 did not completely lose compatibility to other pine species, its infection rate in the bioassays was highest in the original host, P. amamiana, the performance of which was improved by the infection. These results indicate that Rhizopogon sp.1 is very likely to have a close ecological relationship with endangered P. amamiana, probably due to a long co-evolutionary period on isolated islands, and to play the key role in seedling establishment after disturbance. We may need to identify and utilize such key ECM fungi to conserve endangered trees practically.
Collapse
Affiliation(s)
- Masao Murata
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Seiichi Kanetani
- Kyushu Research Center, Forestry and Forest Products Research Institute, Chuo-ku, Kumamoto, Japan
| | - Kazuhide Nara
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
136
|
Cantarello E, Newton AC, Martin PA, Evans PM, Gosal A, Lucash MS. Quantifying resilience of multiple ecosystem services and biodiversity in a temperate forest landscape. Ecol Evol 2017; 7:9661-9675. [PMID: 29187998 PMCID: PMC5696413 DOI: 10.1002/ece3.3491] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/17/2017] [Accepted: 09/16/2017] [Indexed: 02/05/2023] Open
Abstract
Resilience is increasingly being considered as a new paradigm of forest management among scientists, practitioners, and policymakers. However, metrics of resilience to environmental change are lacking. Faced with novel disturbances, forests may be able to sustain existing ecosystem services and biodiversity by exhibiting resilience, or alternatively these attributes may undergo either a linear or nonlinear decline. Here we provide a novel quantitative approach for assessing forest resilience that focuses on three components of resilience, namely resistance, recovery, and net change, using a spatially explicit model of forest dynamics. Under the pulse set scenarios, we explored the resilience of nine ecosystem services and four biodiversity measures following a one‐off disturbance applied to an increasing percentage of forest area. Under the pulse + press set scenarios, the six disturbance intensities explored during the pulse set were followed by a continuous disturbance. We detected thresholds in net change under pulse + press scenarios for the majority of the ecosystem services and biodiversity measures, which started to decline sharply when disturbance affected >40% of the landscape. Thresholds in net change were not observed under the pulse scenarios, with the exception of timber volume and ground flora species richness. Thresholds were most pronounced for aboveground biomass, timber volume with respect to the ecosystem services, and ectomycorrhizal fungi and ground flora species richness with respect to the biodiversity measures. Synthesis and applications. The approach presented here illustrates how the multidimensionality of stability research in ecology can be addressed and how forest resilience can be estimated in practice. Managers should adopt specific management actions to support each of the three components of resilience separately, as these may respond differently to disturbance. In addition, management interventions aiming to deliver resilience should incorporate an assessment of both pulse and press disturbances to ensure detection of threshold responses to disturbance, so that appropriate management interventions can be identified.
Collapse
Affiliation(s)
- Elena Cantarello
- Department of Life and Environmental SciencesBournemouth UniversityPooleUK
| | - Adrian C. Newton
- Department of Life and Environmental SciencesBournemouth UniversityPooleUK
| | - Philip A. Martin
- Department of Life and Environmental SciencesBournemouth UniversityPooleUK
| | - Paul M. Evans
- Department of Life and Environmental SciencesBournemouth UniversityPooleUK
| | - Arjan Gosal
- Department of Life and Environmental SciencesBournemouth UniversityPooleUK
| | - Melissa S. Lucash
- Department of Environmental Science and Management, SRTC B1‐04DPortland State UniversityPortlandORUSA
| |
Collapse
|
137
|
|
138
|
Thresholds of biodiversity and ecosystem function in a forest ecosystem undergoing dieback. Sci Rep 2017; 7:6775. [PMID: 28754979 PMCID: PMC5533776 DOI: 10.1038/s41598-017-06082-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/07/2017] [Indexed: 11/23/2022] Open
Abstract
Ecological thresholds, which represent points of rapid change in ecological properties, are of major scientific and societal concern. However, very little research has focused on empirically testing the occurrence of thresholds in temperate terrestrial ecosystems. To address this knowledge gap, we tested whether a number of biodiversity, ecosystem functions and ecosystem condition metrics exhibited thresholds in response to a gradient of forest dieback, measured as changes in basal area of living trees relative to areas that lacked recent dieback. The gradient of dieback was sampled using 12 replicate study areas in a temperate forest ecosystem. Our results provide novel evidence of several thresholds in biodiversity (namely species richness of ectomycorrhizal fungi, epiphytic lichen and ground flora); for ecological condition (e.g. sward height, palatable seedling abundance) and a single threshold for ecosystem function (i.e. soil respiration rate). Mechanisms for these thresholds are explored. As climate-induced forest dieback is increasing worldwide, both in scale and speed, these results imply that threshold responses may become increasingly widespread.
Collapse
|
139
|
Fricker MD, Heaton LLM, Jones NS, Boddy L. The Mycelium as a Network. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0033-2017. [PMID: 28524023 PMCID: PMC11687498 DOI: 10.1128/microbiolspec.funk-0033-2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 01/12/2023] Open
Abstract
The characteristic growth pattern of fungal mycelia as an interconnected network has a major impact on how cellular events operating on a micron scale affect colony behavior at an ecological scale. Network structure is intimately linked to flows of resources across the network that in turn modify the network architecture itself. This complex interplay shapes the incredibly plastic behavior of fungi and allows them to cope with patchy, ephemeral resources, competition, damage, and predation in a manner completely different from multicellular plants or animals. Here, we try to link network structure with impact on resource movement at different scales of organization to understand the benefits and challenges of organisms that grow as connected networks. This inevitably involves an interdisciplinary approach whereby mathematical modeling helps to provide a bridge between information gleaned by traditional cell and molecular techniques or biophysical approaches at a hyphal level, with observations of colony dynamics and behavior at an ecological level.
Collapse
Affiliation(s)
- Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom
| | - Luke L M Heaton
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom
- Mathematics Department, Imperial College, Queen's Gate, London SW7 2AZ, United Kingdom
| | - Nick S Jones
- Mathematics Department, Imperial College, Queen's Gate, London SW7 2AZ, United Kingdom
| | - Lynne Boddy
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
140
|
Montesinos-Navarro A, Verdú M, Querejeta JI, Valiente-Banuet A. Nurse plants transfer more nitrogen to distantly related species. Ecology 2017; 98:1300-1310. [DOI: 10.1002/ecy.1771] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Alicia Montesinos-Navarro
- Departamento de Ecología de la Biodiversidad; Instituto de Ecología; Universidad Nacional Autónoma de México; A.P. 70-275 C.P. 04510 México D.F México
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV); Carretera de Moncada-Náquera Km 4.5 46113 Moncada Valencia Spain
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV); Carretera de Moncada-Náquera Km 4.5 46113 Moncada Valencia Spain
| | - José Ignacio Querejeta
- Departamento de Conservación de Suelos y Aguas; Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC); Campus de Espinardo, PO Box 4195 E-30100 Murcia Spain
| | - Alfonso Valiente-Banuet
- Departamento de Ecología de la Biodiversidad; Instituto de Ecología; Universidad Nacional Autónoma de México; A.P. 70-275 C.P. 04510 México D.F México
- Centro de Ciencias de la Complejidad; Universidad Nacional Autónoma de México; Ciudad Universitaria 04510 México D.F México
| |
Collapse
|
141
|
|
142
|
Pickles BJ, Wilhelm R, Asay AK, Hahn AS, Simard SW, Mohn WW. Transfer of 13 C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas. THE NEW PHYTOLOGIST 2017; 214:400-411. [PMID: 27870059 DOI: 10.1111/nph.14325] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/08/2016] [Indexed: 05/27/2023]
Abstract
Processes governing the fixation, partitioning, and mineralization of carbon in soils are under increasing scrutiny as we develop a more comprehensive understanding of global carbon cycling. Here we examined fixation by Douglas-fir seedlings and transfer to associated ectomycorrhizal fungi, soil microbes, and full-sibling or nonsibling neighbouring seedlings. Stable isotope probing with 99% 13 C-CO2 was applied to trace 13 C-labelled photosynthate throughout plants, fungi, and soil microbes in an experiment designed to assess the effect of relatedness on 13 C transfer between plant pairs. The fixation and transfer of the 13 C label to plant, fungal, and soil microbial tissue was examined in biomass and phospholipid fatty acids. After a 6 d chase period, c. 26.8% of the 13 C remaining in the system was translocated below ground. Enrichment was proportionally greatest in ectomycorrhizal biomass. The presence of mesh barriers (0.5 or 35 μm) between seedlings did not restrict 13 C transfer. Fungi were the primary recipients of 13 C-labelled photosynthate throughout the system, representing 60-70% of total 13 C-enriched phospholipids. Full-sibling pairs exhibited significantly greater 13 C transfer to recipient roots in two of four Douglas-fir families, representing three- and fourfold increases (+ c. 4 μg excess 13 C) compared with nonsibling pairs. The existence of a root/mycorrhizal exudation-hyphal uptake pathway was supported.
Collapse
Affiliation(s)
- Brian J Pickles
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- School of Biological Sciences, University of Reading, Harborne Building, Whiteknights, Reading, RG6 6AS, UK
| | - Roland Wilhelm
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Amanda K Asay
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Aria S Hahn
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - William W Mohn
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| |
Collapse
|
143
|
Cambray J. The emergence of the ecological mind in Hua-Yen/Kegon Buddhism and Jungian psychology. THE JOURNAL OF ANALYTICAL PSYCHOLOGY 2017; 62:20-31. [DOI: 10.1111/1468-5922.12277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
144
|
Selosse MA, Charpin M, Not F. Mixotrophy everywhere on land and in water: thegrand écarthypothesis. Ecol Lett 2016; 20:246-263. [DOI: 10.1111/ele.12714] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/22/2016] [Accepted: 11/13/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Marc-André Selosse
- Institut de Systématique, Évolution; Biodiversité (ISYEB - UMR 7205 - CNRS; MNHN; UPMC; EPHE); Muséum national d'Histoire naturelle; Sorbonne Universités; 57 rue Cuvier CP50 75005 Paris France
- Department of Plant Taxonomy and Nature Conservation; University of Gdansk; Wita Stwosza 59 80-308 Gdansk Poland
| | - Marie Charpin
- Université Blaise Pascal; Clermont-Ferrand; CNRS Laboratoire micro-organismes: Génome et Environnement; UMR 6023 1 Impasse Amélie Murat 63178 Aubière France
| | - Fabrice Not
- Sorbonne Universités; UPMC Université Paris 06; CNRS; Laboratoire Adaptation et Diversité en Milieu Marin UMR7144; Station Biologique de Roscoff; 29680 Roscoff France
| |
Collapse
|
145
|
Abstract
ABSTRACT
Mycorrhizal fungi belong to several taxa and develop mutualistic symbiotic associations with over 90% of all plant species, from liverworts to angiosperms. While descriptive approaches have dominated the initial studies of these fascinating symbioses, the advent of molecular biology, live cell imaging, and “omics” techniques have provided new and powerful tools to decipher the cellular and molecular mechanisms that rule mutualistic plant-fungus interactions. In this article we focus on the most common mycorrhizal association, arbuscular mycorrhiza (AM), which is formed by a group of soil fungi belonging to Glomeromycota. AM fungi are believed to have assisted the conquest of dry lands by early plants around 450 million years ago and are found today in most land ecosystems. AM fungi have several peculiar biological traits, including obligate biotrophy, intracellular development inside the plant tissues, coenocytic multinucleate hyphae, and spores, as well as unique genetics, such as the putative absence of a sexual cycle, and multiple ecological functions. All of these features make the study of AM fungi as intriguing as it is challenging, and their symbiotic association with most crop plants is currently raising a broad interest in agronomic contexts for the potential use of AM fungi in sustainable production under conditions of low chemical input.
Collapse
|
146
|
Wang G, Sheng L, Zhao D, Sheng J, Wang X, Liao H. Allocation of Nitrogen and Carbon Is Regulated by Nodulation and Mycorrhizal Networks in Soybean/Maize Intercropping System. FRONTIERS IN PLANT SCIENCE 2016; 7:1901. [PMID: 28018420 PMCID: PMC5160927 DOI: 10.3389/fpls.2016.01901] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/01/2016] [Indexed: 05/07/2023]
Abstract
Soybean/maize intercropping has remarkable advantages in increasing crop yield and nitrogen (N) efficiency. However, little is known about the contributions of rhizobia or arbuscular mycorrhizal fungi (AMF) to yield increases and N acquisition in the intercropping system. Plus, the mechanisms controlling carbon (C) and N allocation in intercropping systems remain unsettled. In the present study, a greenhouse experiment combined with 15N and 13C labeling was conducted using various inoculation and nutrient treatments. The results showed that co-inoculation with AMF and rhizobia dramatically increased biomass and N content of soybean and maize, and moderate application of N and phosphorus largely amplified the effect of co-inoculation. Maize had a competitive advantage over soybean only under co-inoculation and moderate nutrient availability conditions, indicating that the effects of AMF and rhizobia in intercropping systems are closely related to nutrient status. Results from 15N labeling showed that the amount of N transferred from soybean to maize in co-inoculations was 54% higher than that with AMF inoculation alone, with this increased N transfer partly resulting from symbiotic N fixation. The results from 13C labeling showed that 13C content increased in maize shoots and decreased in soybean roots with AMF inoculation compared to uninoculated controls. Yet, with co-inoculation, 13C content increased in soybean. These results indicate that photosynthate assimilation is stimulated by AM symbiosis in maize and rhizobial symbiosis in soybean, but AMF inoculation leads to soybean investing more carbon than maize into common mycorrhizal networks (CMNs). Overall, the results herein demonstrate that the growth advantage of maize when intercropped with soybean is due to acquisition of N by maize via CMNs while this crop contributes less C into CMNs than soybean under co-inoculation conditions.
Collapse
Affiliation(s)
- Guihua Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural UniversityGuangzhou, China
| | - Lichao Sheng
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environmental Sciences, Xinjiang Agricultural UniversityUrumqi, China
| | - Dan Zhao
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environmental Sciences, Xinjiang Agricultural UniversityUrumqi, China
| | - Jiandong Sheng
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environmental Sciences, Xinjiang Agricultural UniversityUrumqi, China
| | - Xiurong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural UniversityGuangzhou, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
147
|
Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 2016; 41:109-130. [DOI: 10.1093/femsre/fuw040] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2016] [Indexed: 12/13/2022] Open
|
148
|
Uesugi T, Nakano M, Selosse MA, Obase K, Matsuda Y. Pyrola japonica, a partially mycoheterotrophic Ericaceae, has mycorrhizal preference for russulacean fungi in central Japan. MYCORRHIZA 2016; 26:819-829. [PMID: 27323714 DOI: 10.1007/s00572-016-0715-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Mycorrhizal symbiosis often displays low specificity, except for mycoheterotrophic plants that obtain carbon from their mycorrhizal fungi and often have higher specificity to certain fungal taxa. Partially mycoheterotrophic (or mixotrophic, MX) plant species tend to have a larger diversity of fungal partners, e.g., in the genus Pyrola (Monotropoideae, Ericaceae). Preliminary evidence however showed that the Japanese Pyrola japonica has preference for russulacean fungi based on direct sequencing of the fungal internal transcribed spacer (ITS) region from a single site. The present study challenges this conclusion using (1) sampling of P. japonica in different Japanese regions and forest types and (2) fungal identification by ITS cloning. Plants were sampled from eight sites in three regions, in one of which the fungal community on tree ectomycorrhizal (ECM) tips surrounding P. japonica was also analyzed. In all, 1512 clone sequences were obtained successfully from 35 P. japonica plants and 137 sequences from ECM communities. These sequences were collectively divided into 74 molecular operational taxonomic units (MOTUs) (51 and 33 MOTUs, respectively). MOTUs from P. japonica involved 36 ECM taxa (96 % of all clones), and 17 of these were Russula spp. (76.2 % of all clones), which colonized 33 of the 35 sampled plants. The MOTU composition significantly differed between P. japonica and ECM tips, although shared species represented 26.3 % of the ECM tips community in abundance. This suggests that P. japonica has a preference for russulacean fungi.
Collapse
Affiliation(s)
- Takashi Uesugi
- Laboratory of Forest Mycology, Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie, 514-8507, Japan
| | - Miho Nakano
- Faculty of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie, 514-8507, Japan
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP50, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Keisuke Obase
- Laboratory of Forest Mycology, Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie, 514-8507, Japan
- Department of Forest Microbiology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
| | - Yosuke Matsuda
- Laboratory of Forest Mycology, Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
149
|
Cheol Song G, Sim HJ, Kim SG, Ryu CM. Root-mediated signal transmission of systemic acquired resistance against above-ground and below-ground pathogens. ANNALS OF BOTANY 2016; 118:821-831. [PMID: 27555496 PMCID: PMC5055637 DOI: 10.1093/aob/mcw152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/20/2016] [Accepted: 06/03/2016] [Indexed: 05/20/2023]
Abstract
Background and Aims Plants modulate defence signalling networks in response to various biotic stresses via inter-organ communications. The root-mediated transmission of systemic acquired resistance (SAR) against soil-borne and air-borne plant pathogens from SAR-induced plants to neighbouring plants subjected to local chemical and pathogen treatments was evaluated. Methods The first two plants out of ten Nicotiana benthamiana seedlings were pre-treated with the SAR-triggering chemical benzothiadiazole (BTH). All ten seedlings were then challenged with two pathogenic bacteria, i.e. the root (bacterial wilt) pathogen Ralstonia solanacearum and the leaf (wildfire) pathogen Pseudomonas syringae pv. tabaci, at 7 d after SAR induction. Key Results Disease severity was noticeably lower in BTH-pre-treated plants than in the control. Surprisingly, two plants located next to BTH-treated plants exhibited reduced disease symptoms indicating that SAR signal transmission occurred through the root system. Determinant(s) secreted from the root system were search for and it was found that salicylic acid (SA) is a major molecule involved in SAR transmission through the root. Analysis of the expression of the defence-related genes N. benthamiana pathogenesis-related gene 1a (NbPR1a) and NbPR2 confirmed that BTH treatment elicited SAR via root-root transmission between plants. Plants with knock-down of the multiple resistance component SGT1 and SA biosynthesis-related gene ICS1 by Tobacco rattle virus-mediated virus-induced gene silencing exhibited a lack of root-mediated SAR transmission. The biological relevance of this finding was validated by challenge with the SAR-inducing avirulent pathogen P. syringae pv. syringae instead of BTH, which produced similar results. Conclusions Our findings demonstrated that SAR is transmissible through the root system from SAR-triggered plants to neighbouring plants.
Collapse
Affiliation(s)
- Geun Cheol Song
- Molecular Phytobacteriology Laboratory, Superbacteria Research Center, KRIBB, Daejeon 34141, South Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul 08826, South Korea
| | - Sang-Gyu Kim
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul 08826, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Superbacteria Research Center, KRIBB, Daejeon 34141, South Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 34113, South Korea
| |
Collapse
|
150
|
Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E, Geml J. Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities. GLOBAL CHANGE BIOLOGY 2016; 22:3080-3096. [PMID: 27004610 DOI: 10.1111/gcb.13294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/16/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Many arctic ecological processes are regulated by soil temperature that is tightly interconnected with snow cover distribution and persistence. Recently, various climate-induced changes have been observed in arctic tundra ecosystems, e.g. shrub expansion, resulting in reduction in albedo and greater C fixation in aboveground vegetation as well as increased rates of soil C mobilization by microbes. Importantly, the net effects of these shifts are unknown, in part because our understanding of belowground processes is limited. Here, we focus on the effects of increased snow depth, and as a consequence, increased winter soil temperature on ectomycorrhizal (ECM) fungal communities in dry and moist tundra. We analyzed deep DNA sequence data from soil samples taken at a long-term snow fence experiment in Northern Alaska. Our results indicate that, in contrast with previously observed responses of plants to increased snow depth at the same experimental site, the ECM fungal community of the dry tundra was more affected by deeper snow than the moist tundra community. In the dry tundra, both community richness and composition were significantly altered while in the moist tundra, only community composition changed significantly while richness did not. We observed a decrease in richness of Tomentella, Inocybe and other taxa adapted to scavenge the soil for labile N forms. On the other hand, richness of Cortinarius, and species with the ability to scavenge the soil for recalcitrant N forms, did not change. We further link ECM fungal traits with C soil pools. If future warmer atmospheric conditions lead to greater winter snow fall, changes in the ECM fungal community will likely influence C emissions and C fixation through altering N plant availability, fungal biomass and soil-plant C-N dynamics, ultimately determining important future interactions between the tundra biosphere and atmosphere.
Collapse
Affiliation(s)
- Luis N Morgado
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Tatiana A Semenova
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
- Faculty of Science, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Jeffrey M Welker
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | | | - Erik Smets
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
- Faculty of Science, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, Box 2437, 3001, Leuven, Belgium
| | - József Geml
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
- Faculty of Science, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|