101
|
Campos F, Vieira M, Sousa M, Jorge L, Ferreira G, Marques M, Boaro C. Defense Mechanisms of Xylopia aromatica (Lam.) Mart. in the Dry Season in the Brazilian Savanna. Life (Basel) 2024; 14:1416. [PMID: 39598214 PMCID: PMC11595764 DOI: 10.3390/life14111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Water availability and light during the dry and rainy seasons in the Cerrado may influence plants' stomatal movement and the entry of CO2 for organic synthesis, which is the main electron drain. A lower stomatal conductance may contribute to the energy accumulated in the chloroplasts being directed towards the synthesis of compounds, which contributes to the activity of antioxidant enzymes to neutralize reactive oxygen species. Xylopia aromatica is a characteristic Cerrado species, and it is often recommended for recovering degraded areas. This study aimed to investigate the influence of the dry and rainy seasons on the metabolic adjustments of Xylopia aromatica in a portion of the Brazilian savanna in the state of São Paulo. In the rainy season, better photosynthetic performance led to greater investment in essential oil production. In the dry season, the plants may direct part of their reducing sugars to the syntheses of carotenoids and anthocyanins, which may help the antioxidant enzymes to neutralize reactive oxygen species. Carotenoids assist in the dissipation of photosystem energy, which has the potential to cause oxidative stress. During this season, lower stomatal conductance prevented excessive water loss. These results suggest the acclimatization of this species to the conditions of the Brazilian savanna.
Collapse
Affiliation(s)
- Felipe Campos
- Biodiversity and Biostatistics Departament, Biosciences Institute, São Paulo State University (UNESP), Campus (Botucatu), P.O. Box 510, Botucatu 18618-970, SP, Brazil; (M.V.); (M.S.); (L.J.); (G.F.); (C.B.)
| | - Maria Vieira
- Biodiversity and Biostatistics Departament, Biosciences Institute, São Paulo State University (UNESP), Campus (Botucatu), P.O. Box 510, Botucatu 18618-970, SP, Brazil; (M.V.); (M.S.); (L.J.); (G.F.); (C.B.)
| | - Marília Sousa
- Biodiversity and Biostatistics Departament, Biosciences Institute, São Paulo State University (UNESP), Campus (Botucatu), P.O. Box 510, Botucatu 18618-970, SP, Brazil; (M.V.); (M.S.); (L.J.); (G.F.); (C.B.)
| | - Letícia Jorge
- Biodiversity and Biostatistics Departament, Biosciences Institute, São Paulo State University (UNESP), Campus (Botucatu), P.O. Box 510, Botucatu 18618-970, SP, Brazil; (M.V.); (M.S.); (L.J.); (G.F.); (C.B.)
| | - Gisela Ferreira
- Biodiversity and Biostatistics Departament, Biosciences Institute, São Paulo State University (UNESP), Campus (Botucatu), P.O. Box 510, Botucatu 18618-970, SP, Brazil; (M.V.); (M.S.); (L.J.); (G.F.); (C.B.)
| | - Marcia Marques
- Agronomic Institute of Campinas (IAC), Plant Genetic Resources Center, Campinas 13075-630, SP, Brazil;
| | - Carmen Boaro
- Biodiversity and Biostatistics Departament, Biosciences Institute, São Paulo State University (UNESP), Campus (Botucatu), P.O. Box 510, Botucatu 18618-970, SP, Brazil; (M.V.); (M.S.); (L.J.); (G.F.); (C.B.)
| |
Collapse
|
102
|
Moura VS, Olandin LD, Mariano BS, Rodrigues J, Devite FT, Arantes ACC, Queiroga CL, Sartoratto A, de Azevedo FA, Bastianel M. Antifungal Activity of Citrus Essential Oil in Controlling Sour Rot in Tahiti Acid Lime Fruits. PLANTS (BASEL, SWITZERLAND) 2024; 13:3075. [PMID: 39519993 PMCID: PMC11548434 DOI: 10.3390/plants13213075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Sour rot, caused by Geotrichum citri-aurantii, is a significant post-harvest disease in citrus, resulting in economic losses due to the lack of effective fungicides. This study investigates the antifungal activity of citrus essential oils in controlling sour rot in Tahiti acid lime fruits. Essential oils were extracted via hydrodistillation with chemical composition analyzed by CG-MS and tested in vitro and in vivo. In vitro assays evaluated mycelial growth inhibition at 2 to 32 µL mL-1 concentrations. In vivo trials involved preventive and curative treatments on artificially inoculated fruits stored at 25 °C ± 2, and the results showed that Pera IAC sweet orange oil, at 32 µL mL-1, reduced disease severity by 96% in curative treatments. In contrast, Late IAC 585 willowleaf mandarin oil demonstrated moderate inhibition (44%) at the highest concentration in vitro. The oils did not affect key fruit quality parameters such as juice yield and total soluble solids. These findings suggest that citrus essential oils could be natural alternatives to synthetic fungicides for post-harvest sour rot management, combining effectiveness with maintaining fruit quality.
Collapse
Affiliation(s)
- Vanessa Santos Moura
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| | - Lara Dias Olandin
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| | - Beatriz Saraiva Mariano
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| | - Josiane Rodrigues
- Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras 13600-970, SP, Brazil;
| | - Fernando Trevizan Devite
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| | - Ana Carolina Costa Arantes
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| | - Carmen Lucia Queiroga
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas 13148-218, SP, Brazil; (C.L.Q.); (A.S.)
| | - Adilson Sartoratto
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas 13148-218, SP, Brazil; (C.L.Q.); (A.S.)
| | - Fernando Alves de Azevedo
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| | - Marinês Bastianel
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| |
Collapse
|
103
|
Qin T, Dowah RGW, Chen K, Xi B, Pan L, Xie J. Antimicrobial potential of carvacrol against Edwardsiella piscicida in vitro. Microb Pathog 2024; 196:106947. [PMID: 39293726 DOI: 10.1016/j.micpath.2024.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/29/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
With the alarming rise of antibiotic-resistant bacteria, novel antibacterial substances are urgently needed for controlling and treating multidrug-resistant bacterial infections. Edwardsiella piscicida is an important zoonotic enteric pathogen, that can cause systemic hemorrhagic septicemia in fish. Carvacrol, a major terpene of oregano essential oil, has a wide range of antibacterial activities. This study aimed to analyze the effect of carvacrol on the growth and virulence of E. piscicida in vitro. The minimum inhibitory concentration (MIC) of carvacrol against E. piscicida was 125 μg/mL. The sub-inhibitory concentrations of carvacrol significantly decreased the biofilm formation of E. piscicida in a dose dependent manner, whereas increased the hemolytic activity with a negative correlation. The quantitative real-time PCR results showed that carvacrol at sub-MICs downregulated the expression of related virulence genes, including flagellum (fimA, fliC, flgN), hemolysins (ethA, ethB), quorum sensing systems (luxR, qseB), T3SS (esrB, esrC) and T6SS (evpB, evpC). Moreover, carvacrol (≤1/8 MIC) reduced the cytotoxicity, adherence and internalization activities of E. piscicida to the EPC cells. In vivo trial, the diet mixed with carvacrol increased the survival of zebrafish infected with E. piscicida. Overall, these findings suggested that carvacrol might be a promising therapeutic agent against E. piscicida infection in aquaculture.
Collapse
Affiliation(s)
- Ting Qin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 214081, China
| | - Richline Gedeh Wentee Dowah
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Department of Fisheries and Aquaculture Sciences, Faculty of Aquaculture, University of Liberia, Monrovia, Liberia
| | - Kai Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 214081, China.
| | - Liangkun Pan
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 214081, China
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 214081, China
| |
Collapse
|
104
|
Cheng F, Ma X, Lu X, Zhu Y, Abula R, Wu T, Bakri M, He F, Maiwulanjiang M. Antimicrobial properties of essential oil extracted from Schizonepeta annua against methicillin-resistant Staphylococcus aureus via membrane disruption. Microb Pathog 2024; 196:106975. [PMID: 39313133 DOI: 10.1016/j.micpath.2024.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Schizonepeta annua (Pall.) Schischk. has long been traditionally employed in China for its anti-inflammatory, antimicrobial, and soothing properties. This study evaluates the antibacterial properties of essential oil extracted from Schizonepeta annua (SEO) and oregano (OEO) against methicillin-resistant Staphylococcus aureus (MRSA). SEO and OEO demonstrated substantial antibacterial efficacy, with SEO exhibiting significantly enhanced antibacterial activity due to its complex composition. Mechanistic investigations revealed that both essential oils disrupt bacterial membrane integrity and biosynthetic pathways, leading to the extrusion of intracellular contents. Metabolomic analyses using GC-Q-TOF-MS highlighted SEO's selective targeting of bacterial membranes, while non-targeted metabolomics indicated significant effects on MRSA's amino acid metabolism and aminoacyl-tRNA biosynthesis. These findings suggest that SEO causes considerable damage to MRSA cell membranes and affects amino acid metabolism, supporting its traditional use and highlighting its potential in treating infections. Our results offer robust theoretical support for SEO's role as an antimicrobial agent and establish a solid foundation for its practical application in combating multidrug-resistant infections.
Collapse
Affiliation(s)
- Feng Cheng
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China; College of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xueping Ma
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China; College of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiuxiang Lu
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China; College of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yueyue Zhu
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China; College of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Reyanggu Abula
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China; College of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tao Wu
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Mahinur Bakri
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Fei He
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Maitinuer Maiwulanjiang
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China.
| |
Collapse
|
105
|
Tokasi S, Mehrnia MR, Roudsari FP. Antibacterial gelatin/tragacanth gum films containing galbanum essential oil for in vitro scratch-healing. Int J Biol Macromol 2024; 281:136284. [PMID: 39368589 DOI: 10.1016/j.ijbiomac.2024.136284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Natural substances and bioactive agents possess great potential in wound care based on their ability to promote healing and prevent infection. This study focused on the fabrication of antibacterial wound dressings by combining gelatin (G), tragacanth gum (TG), and galbanum essential oil (GEO) as a loaded drug. TG addition resulted in more elastic and flexible films besides enabling encapsulation of the hydrophobic GEO into the biopolymeric matrix. GEO was utilized as an antibacterial and a wound-healing enhancer for open wounds such as incisions. Field emission scanning electron microscopy (FE-SEM) analysis revealed a porous film structure after GEO incorporation. Higher GEO concentration caused reduced swelling and slower degradation. Water vapor transfer rate varied from 596 to 894 g/m2.day, making the films suitable for wound dressings. GEO release exhibited a two-phase profile with prolonged diffusion-controlled release for a higher content of GEO. The films demonstrated dose-dependent antimicrobial activity against S. aureus and E. coli strains. Effectiveness and noteworthy application of this research were approved by scratch assay on human dermal fibroblast cells, and films with 3 % GEO showed 79.42 % wound closure, which is significantly higher than the control sample (55.15 %), indicating promoted cell migration and promising wound healing properties.
Collapse
Affiliation(s)
- Samin Tokasi
- School of Chemical Engineering, College of Engineering, University of Tehran, 11155-4563 Tehran, Iran
| | - Mohammad Reza Mehrnia
- School of Chemical Engineering, College of Engineering, University of Tehran, 11155-4563 Tehran, Iran.
| | | |
Collapse
|
106
|
Yagafarov N, Kuang J, Takeda N, Liu Y, Ouali A, Unno M. Synthesis and Thermal Properties of Bio-Based Janus Ring Siloxanes Incorporating Terpenes and Terpenoids. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5348. [PMID: 39517618 PMCID: PMC11547749 DOI: 10.3390/ma17215348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
A mild and highly selective hydrosilylation method was employed to synthesize five novel well-defined Janus ring siloxanes bearing terpenes and terpenoids, which are the main bioactive components of essential oils. The characterization of these new bio-sourced molecular materials, derived from hydrosilyl-substituted all-cis-cyclotetrasiloxane, was conducted through comprehensive analyses using multinuclear NMR, infrared spectroscopy, elemental analysis, and mass spectroscopy. The thermal stability of the newly synthesized Janus rings was investigated, and the siloxane skeleton was shown to confer an enhanced thermal stability compared with free terpenes and terpenoids.
Collapse
Affiliation(s)
- Niyaz Yagafarov
- Department of Chemistry and Chemical Biology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan; (N.Y.); (J.K.); (N.T.); (M.U.)
| | - Jiaorong Kuang
- Department of Chemistry and Chemical Biology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan; (N.Y.); (J.K.); (N.T.); (M.U.)
| | - Nobuhiro Takeda
- Department of Chemistry and Chemical Biology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan; (N.Y.); (J.K.); (N.T.); (M.U.)
| | - Yujia Liu
- Department of Chemistry and Chemical Biology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan; (N.Y.); (J.K.); (N.T.); (M.U.)
| | - Armelle Ouali
- ICGM, Univ Montpellier, CNRS, ENSCM (Institut Charles Gerhardt Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Ecole Nationale Supérieure de Chimie de Montpellier), 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France
| | - Masafumi Unno
- Department of Chemistry and Chemical Biology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan; (N.Y.); (J.K.); (N.T.); (M.U.)
| |
Collapse
|
107
|
Elsewedy HS, Alshehri S, Kola-Mustapha AT, Genedy SM, Siddiq KM, Asiri BY, Alshammari RA, Refat M. Selim HM, Adedeji OJ, Ambrose GO. Insights into antibacterial design: Computational modeling of eugenol derivatives targeting DNA gyrase. Heliyon 2024; 10:e39394. [PMID: 39498057 PMCID: PMC11532840 DOI: 10.1016/j.heliyon.2024.e39394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
The rise of antibiotic resistance underscores the urgent need for novel antibacterial agents. DNA gyrase, an essential enzyme involved in bacterial DNA replication, is a promising target for antibacterial therapy. Computational approaches offer a cost-effective means to design and screen potential inhibitors, such as eugenol derivatives. This study aims to computationally design eugenol derivatives as potential antibacterial agents targeting DNA gyrase, assess their binding affinities, evaluate physicochemical properties, and toxicity, and select lead compounds for further investigation. Molecular docking simulations were conducted to investigate the binding affinities of eugenol derivatives and controls to DNA gyrase. Physicochemical properties and toxicity assessments of eugenol were evaluated. Lead compounds were selected based on drug likeness, toxicity, and binding affinity. Molecular docking studies revealed varying binding affinities of eugenol derivatives to DNA gyrase, with lead compounds exhibiting superior affinity compared to eugenol. Physicochemical properties indicated moderate lipophilicity and low aqueous solubility for eugenol. Toxicity assessment revealed mutagenicity and tumorigenicity. De novo compound synthesis generated 244 novel compounds, with 44 selected based on drug-likeness, toxicity, and binding affinity as lead candidates. These findings provide valuable insights for the development of novel antibacterial agents targeting DNA gyrase, with implications for combating antibiotic resistance.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Adeola T. Kola-Mustapha
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria
- College of Pharmacy, Alfaisal University Riyadh, Saudi Arabia
| | - Shaymaa M. Genedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Khuzama M. Siddiq
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Bushra Y. Asiri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Rehab A. Alshammari
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Heba Mohammed Refat M. Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Microbiology and Immunology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 35527, Egypt
| | | | | |
Collapse
|
108
|
Liu Q, Li L, Yang Z, Xiong X, Song Q, Li B, Zou H, Zhang L, Liu T. Antifungal Effect of Oregano Essential Oil Against Penicillium expansum on Pyrus sinkiangensis. J Fungi (Basel) 2024; 10:752. [PMID: 39590672 PMCID: PMC11595797 DOI: 10.3390/jof10110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Given the increasing demand for fruit safety assurance and environmental protection, plant essential oils have gained significant attention as natural alternatives for control of postharvest decay caused by various pathogens. In postharvest management, it is particularly important to effectively control postharvest decay without compromising the quality attributes of fruits. Although oregano essential oil (OEO) has been extensively studied for its antimicrobial properties against various postharvest pathogens, few studies have focused on its interactions with postharvest fruits. In this study, OEO was applied for management of postharvest decay of Pyrus sinkiangensis caused by Penicillium expansum, and its antifungal mechanisms and impacts on the quality attributes of pears were investigated. The OEO exhibited notable inhibitory effects, with determined MIC (0.02%) and MFC (0.04%) against P. expansum, which highlighted its potential as a viable alternative to synthetic fungicides. Our findings revealed that OEO disrupted P. expansum by compromising the integrity of the fungal plasma membrane, as evidenced by changes in plasma membrane permeability and the leakage of cellular components. The OEO treatment significantly reduced weight loss, maintained firmness, and preserved soluble-solid content in the treated pears. In addition, OEO treatment stimulated the intrinsic antioxidant mechanisms of pears, as demonstrated by elevated activities of superoxide dismutase and catalase during storage. This study provides compelling evidence for the antifungal and quality-preserving properties of OEO in the postharvest management of pears, underscoring its potential as an alternative to synthetic fungicides for controlling postharvest decay. The elucidation of the interaction between OEO and P. sinkiangensis would greatly enhance our comprehensive understanding of the biological activities of OEO and facilitate its practical application in the postharvest management of pears.
Collapse
Affiliation(s)
- Qun Liu
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| | - Li Li
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| | - Zhenyuan Yang
- Liuzhou Quality Inspection and Testing Research Center, Liuzhou 545001, China
| | - Xiaodi Xiong
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- College of Advanced Agriculture and Ecological Environment, Hei Longjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, China
| | - Qi Song
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- College of Advanced Agriculture and Ecological Environment, Hei Longjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, China
| | - Baishu Li
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| | - Hang Zou
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| | - Lixiang Zhang
- College of Advanced Agriculture and Ecological Environment, Hei Longjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, China
| | - Tao Liu
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| |
Collapse
|
109
|
El-Sayed MH, AlHarbi M, Elsehemy IA, Haggag WM, Refaat BM, Ali SM, Elkelish A. Natural Inhibitory Treatment of Fungi-Induced Deterioration of Carbonate and Cellulosic Ancient Monuments: Isolation, Identification and Simulation of Biogenic Deterioration. J Microbiol Biotechnol 2024; 34:2049-2069. [PMID: 39263788 PMCID: PMC11540613 DOI: 10.4014/jmb.2404.04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Fungi play a significant role in the deterioration of various types of monuments. Therefore, the protection of ancient monuments from fungal attacks is an important goal that must attract the attention of researchers worldwide. A total of 69 fungal isolates were recovered from 22 deteriorated objects compromising paper, textiles, wood, and stone in the National Museum of Egyptian Civilization (NMEC) storeroom, Cairo, Egypt. The isolates were identified as 12 different species categorized into three different genera, namely, Aspergillus (9 species), Penicillium (2 species) and Trichoderma (1 species). Among them, Aspergillus fumigatus was the most prevalent species. Three essential oils were assessed for antifungal activity and compared with the antifungal effects of five synthetic microcides to identify a natural inhibitory treatment. Thyme oil and sodium azide were found to be the most active growth inhibitors, with minimum inhibitory concentrations (MICs) of 625 and 100 ppm, with inhibition zone diameters of 19.0 ± 0.70 - 23.76 ± 1.15 and 13.30 ± 0.35 - 19.66 ± 0.54 mm, respectively. An in vitro simulation of the biodeterioration process was conducted using spores of the A. fumigatus strain NMEC-PSTW.1 on model cubes made of paper, textile, wood, and stone materials. The changes in the characteristics of the artificially deteriorated materials were analyzed using environmental scanning electron microscopy/energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The results revealed changes in the morphology, physical properties, and chemical composition induced by A. fumigatus NMEC-PSTW.1. Overall, thyme oil is recommended as a natural inhibitor to protect carbonate and cellulosic monuments in NMEC against fungal attack.
Collapse
Affiliation(s)
- Mohamed H. El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Maha AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh11671, Saudi Arabia
| | - Islam A. Elsehemy
- Department of Natural and Microbial Products Chemistry, Pharmaceutical Industry Division, National Research Centre, Dokki, Egypt
| | - Wafaa M. Haggag
- Department of Plant Pathology, National Research Centre, Dokki, Egypt
| | - Bahgat M. Refaat
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Sharaf M. Ali
- Central Research Laboratory, National Museum of Egyptian Civilization, Ministry of Antiquities, Cairo, Egypt
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
110
|
Ayub MA, Iram I, Waseem R, Ayub I, Hussain A, Abid MA, Iqbal SZ. Optimizing the extraction of essential oil yield from Pistacia lentiscus oleo-gum resin by superheated steam extraction using response surface methodology. Sci Rep 2024; 14:25791. [PMID: 39468086 PMCID: PMC11519484 DOI: 10.1038/s41598-024-74972-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Pistacia lentiscus L. is an aromatic plant containing a significant percentage of essential oil (EO) used in fragrance, pharmaceuticals, cosmetics, and the food industry. The purpose of this work is focused on the optimization of Pistacia lentiscus L. oleo gum resin EO yield extracted by superheated steam extraction (SHSE) by response surface methodology, including extraction parameters of particle size (0. 5 - 1 mm), temperature (140-180 °C) and time (90-150 min). The optimum conditions for Pistacia lentiscus L. EO extracted by SHSE were found to be (particle size: 0.75 mm, time: 120 min and temperature: 160 ℃) which produced the highest EO yield of 5.7%. A regression model was developed, demonstrating a robust quadratic correlation with an R2 value of 0.9991, making it suitable for predictions. Furthermore, the yield of Pistacia lentiscus L. EO extracted by SHSE was compared with the conventional steam and hydro distillation techniques. The study revealed that SHSE yielded higher quantities of EO than other extraction methods. GC-MS analyzed the chemical composition of Pistacia lentiscus L. EO. The predominant compound of Pistacia lentiscus L. EO was determined to be α-pinene, while the other identified compounds include trans-verbenol, verbenol, cis-verbenone, camphene, β-myrcene, d-limonene, cymene, α-myrtenol, α-campholenal, α-copaene, and α-thujene, whose content differed according to different extraction techniques. Overall, superheated steam extraction is an efficient technique for extracting Pistacia lentiscus L. essential oil that enhances EO yield, requiring less time for extraction.
Collapse
Affiliation(s)
| | - Iqra Iram
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Rameen Waseem
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Iqra Ayub
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, Punjab, 56300, Pakistan
| | - Muhammad Amin Abid
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Shahzad Zafar Iqbal
- Food Safety and Food Toxicology Lab, Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
111
|
Yue Z, Xu Y, Cai M, Fan X, Pan H, Zhang D, Zhang Q. Floral Elegance Meets Medicinal Marvels: Traditional Uses, Phytochemistry, and Pharmacology of the Genus Lagerstroemia L. PLANTS (BASEL, SWITZERLAND) 2024; 13:3016. [PMID: 39519935 PMCID: PMC11548200 DOI: 10.3390/plants13213016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The genus Lagerstroemia L. (Lythraceae), known for its exquisite flowers and prolonged flowering period, is commonly employed in traditional medicinal systems across Asian countries, where it has always been consumed as tea or employed to address ailments such as diabetes, urinary disorders, coughs, fevers, inflammation, pain, and anesthesia. Its diverse uses may be attributed to its rich active ingredients. Currently, at least 364 biological compounds have been identified from Lagerstroemia extracts, encompassing various types such as terpenes, flavonoids, phenolic acids, alkaloids, and phenylpropanoids. Extensive in vitro and in vivo experiments have examined the pharmacological activities of different extracts, revealing their potential in various domains, including but not limited to antidiabetic, anti-obesity, antitumor, antimicrobial, antioxidant, anti-inflammatory, analgesic, and hepatoprotective effects. Additionally, 20 core components have been proven to be associated with antidiabetic and hypoglycemic effects of Lagerstroemia. Overall, Lagerstroemia exhibit substantial medicinal potential, and the alignment between its traditional applications and contemporary pharmacological findings present promising opportunities for further investigation, particularly in food and health products, drug development, herbal teas, and cosmetics. However, evidence-based pharmacological research has largely been confined to in vitro screening and animal model, lacking clinical trials and bioactive compound isolations. Consequently, future endeavors should adopt a more holistic approach.
Collapse
Affiliation(s)
- Ziwei Yue
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| | - Yan Xu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| | - Ming Cai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| | - Xiaohui Fan
- Luoyang Landscape and Greening Center, Luoyang 471000, China;
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| | - Donglin Zhang
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA;
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| |
Collapse
|
112
|
Elbaz AM, El-Sonousy NK, Arafa AS, Sallam MG, Ateya A, Abdelhady AY. Oregano essential oil and Bacillus subtilis role in enhancing broiler's growth, stress indicators, intestinal integrity, and gene expression under high stocking density. Sci Rep 2024; 14:25411. [PMID: 39455628 PMCID: PMC11511934 DOI: 10.1038/s41598-024-75533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigates the role of dietary Bacillus subtilis and oregano essential oil in mitigating the effects of high stocking density on growth performance, carcass traits, physiological stress indicators, gene expression, and intestinal integrity in broiler chickens. A total of, 1250 one-day-old Ross 308 male broiler chicks were randomly allocated to five experimental groups, where each group had five replicates of 50 chicks. Group 1 (control, LSD): 15 chicks/m2 fed a basal diet without feed additive, group 2 (HSD): 20 chicks/m2 fed a basal diet without feed additive, group 3 (BHSD): 20 chicks/m2 fed a basal diet supplemented with B. subtilis (500 mg/kg diet), group 4 (OHSD): 20 chicks/m2 fed a basal diet supplemented with oregano essential oil (300 mg/kg diet), group 5 (CHSD): 20 chicks/m2 fed a basal diet supplemented with oregano essential oil and B. subtilis. At 35 days of age, there was a noticeable improvement in the growth performance of broilers fed CHSD under high stocking density through the increase in body weight gain, dressing percentage, and crude protein digestibility with a decrease in feed conversion rate compared to other groups. Adding CHSD enhanced the state of oxidation and immunity through increasing superoxide dismutase, glutathione peroxidase, and the relative weight of bursa of Fabricius, while decreasing malondialdehyde, in addition to increasing plasma triiodothyronine levels. The microbial structure and morphometric parameters improved in the group that received the CHSD compared to the other groups, where villus height and Lactobacillus population increased, whereas Escherichia coli and Clostridium perfringens population decreased. Glucose transporter 2 (GLUT2), fatty acid transporter 1 (FABP1), and amino acid transferase 1 (CAT1) gene expression levels significantly increased when feeding on oregano essential oil with B. subtilis. In conclusion, combining oregano essential oil and B. subtilis supplements mitigated the effects of high stocking density by enhancing growth performance, antioxidative status, and intestinal integrity, in addition to modifying the genetic expression of genes related to nutrient absorption.
Collapse
Affiliation(s)
- Ahmed M Elbaz
- Nutrition Department, Desert Research Center, Mataria, Cairo, Egypt.
| | - Neima K El-Sonousy
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - A Sabry Arafa
- Poultry Nutrition Department, Animal Production Research Institute, Agricultural Research Center, Ministry Of Agriculture, Giza, Egypt
| | - M G Sallam
- Animal Production Department, Agricultural and Biology Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
113
|
Minaz M. A new herbal anesthetic agent for common carp ( Cyprinus carpio) sedation and anesthesia: nutmeg ( Myristica fragrans) essential oil. Front Vet Sci 2024; 11:1477357. [PMID: 39469587 PMCID: PMC11514786 DOI: 10.3389/fvets.2024.1477357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
In aquaculture, interest in natural essential oils is increasing alongside synthetic anesthetic agents. In this context, the anesthetic efficacy of nutmeg essential oil, which had not been previously tested, was investigated in common carp (Cyprinus carpio). The study, conducted using three different concentrations (800 μL/L "LC", 1,200 μL/L "MC", and 1,400 μL/L "HC"), found that induction times were <3 min for MC and HC, while LC had a longer induction time, exceeding acceptable levels. Within the first 4 h, white blood cells, red blood cells, hemoglobin, and hematocrit levels increased to >5 103/μL, >1 106/μL, >6 g/dL, and >12%, respectively. However, they returned to control levels after 8 h. Histological signs were more severe with higher concentrations, and necrosis was only observed in the HC group. Alkaline comet assay results showed DNA migration only in the HC group. According to the PROMETHEE multi-criteria decision-making model, the LC concentration is suitable for sedation, while the MC concentration should be used for deep anesthesia. The current study demonstrates that nutmeg essential oil can be used as an alternative to commercial synthetic anesthetic agents.
Collapse
Affiliation(s)
- Mert Minaz
- Department of Aquaculture, Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
114
|
Boutaj H. A Comprehensive Review of Moroccan Medicinal Plants for Diabetes Management. Diseases 2024; 12:246. [PMID: 39452489 PMCID: PMC11507334 DOI: 10.3390/diseases12100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Moroccan flora, renowned for its diverse medicinal plant species, has long been used in traditional medicine to manage diabetes. This review synthesizes ethnobotanical surveys conducted during the last two decades. Among these plants, 10 prominent Moroccan medicinal plants are evaluated for their phytochemical composition and antidiabetic properties through both in vitro and in vivo studies. The review encompasses a comprehensive analysis of the bioactive compounds identified in these plants, including flavonoids, phenolic acids, terpenoids, and alkaloids. Phytochemical investigations revealed a broad spectrum of secondary metabolites contributing to their therapeutic efficacy. In vitro assays demonstrated the significant inhibition of key enzymes α-amylase and α-glucosidase, while in vivo studies highlighted their potential in reducing blood glucose levels and enhancing insulin secretion. Among the ten plants, notable examples include Trigonella foenum-graecum, Nigella Sativa, and Artemisia herba-alba, each showcasing distinct mechanisms of action, such as enzymatic inhibition and the modulation of glucose metabolism pathways. This review underscores the necessity for further chemical, pharmacological, and clinical research to validate the antidiabetic efficacy of these plants and their active compounds, with a view toward their potential integration into therapeutic practices.
Collapse
Affiliation(s)
- Hanane Boutaj
- Laboratory of Life and Health Sciences, FMP, Abdelmalek Essaadi University, Tetouan 93000, Morocco;
- Centre d’Agrobiotechnologie et de Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Équipe “Physiologie des Stress Abiotiques”, Faculté de Sciences et Tecchniques, Université Cadi Ayyad, Marrakesh 40000, Morocco
| |
Collapse
|
115
|
Lee JE, Jayakody JTM, Kim JI, Jeong JW, Choi KM, Kim TS, Seo C, Azimi I, Hyun JM, Ryu BM. The Influence of Solvent Choice on the Extraction of Bioactive Compounds from Asteraceae: A Comparative Review. Foods 2024; 13:3151. [PMID: 39410186 PMCID: PMC11475975 DOI: 10.3390/foods13193151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
While the potential of Asteraceae plants as herbal remedies has been globally recognized, their widespread application in the food, cosmetic, and pharmaceutical industries requires a deeper understanding of how extraction methods influence bioactive compound yields and functionalities. Previous research has primarily focused on the physiological activities or chemical compositions of individual Asteraceae species, often overlooking the critical role of solvent selection in optimizing extraction. Additionally, the remarkable physiological activities observed in these plants have spurred a growing number of clinical trials, aiming to validate their efficacy and safety for potential therapeutic and commercial applications. This work aims to bridge these knowledge gaps by providing an integrated analysis of extraction techniques, the diverse range of bioactive compounds present in Asteraceae, and the influence of solvent choice on isolating these valuable substances. By elucidating the interplay between extraction methods, solvent properties, and bioactivity, we underscore the promising potential of Asteraceae plants and highlight the importance of continued research, including clinical trials, to fully unlock their potential in the food, cosmetic, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Jae-Il Kim
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
| | - Jin-Woo Jeong
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Kyung-Min Choi
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Tae-Su Kim
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Chan Seo
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Iman Azimi
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC 3168, Australia;
| | - Ji-Min Hyun
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
| | - Bo-Mi Ryu
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
116
|
Cruz APM, Nishimura FG, dos Santos VCO, Steling EG, Von Zeska Kress MR, Marins M, Fachin AL. Essential Oil-Based Soap with Clove and Oregano: A Promising Antifungal and Antibacterial Alternative against Multidrug-Resistant Microorganisms. Molecules 2024; 29:4682. [PMID: 39407610 PMCID: PMC11477625 DOI: 10.3390/molecules29194682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The transmission of microorganisms via hands is a critical factor in healthcare-associated infections (HAIs), underscoring the importance of rigorous hand hygiene. The rise of antimicrobial-resistant microorganisms, driven in part by the overuse of antibiotics in clinical medicine, presents a significant global health challenge. Antimicrobial soaps, although commonly used, may exacerbate bacterial resistance and disrupt skin microbiota, posing additional health risks and environmental hazards. Essential oils, with their broad-spectrum antimicrobial properties, offer a promising alternative. This study evaluates the antimicrobial activity of essential oils against various bacterial and fungal strains, including multidrug-resistant isolates. Using a range of in vitro and in vivo antimicrobial assays, including minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), and minimal fungicidal concentration (MFC), the essential oils were tested against a broad spectrum of pathogens. Additionally, the chemical composition of the oils was analyzed in detail using gas chromatography-mass spectrometry (CG-MS). Clove, oregano, and thyme oils demonstrated potent inhibition of all tested ATCC bacterial strains, with MIC values ranging from 3.125 to 50 μL/mL. These oils also showed significant activity against multidrug-resistant Escherichia coli and Pseudomonas aeruginosa strains. Notably, clove oil exhibited remarkable efficacy against fungal strains such as Aspergillus fumigatus and Trichophyton rubrum, with MIC values as low as 1.56 μL/mL. Synergy tests revealed that combinations of clove, oregano, and thyme oils yielded significantly lower MIC values than individual oils, indicating additive or synergistic effects. The formulation of a soap incorporating clove and oregano oils demonstrated efficacy comparable to synthetic antiseptics in vivo. These findings highlight the exceptional antimicrobial potential of essential oils, mainly clove and oregano, against resistant microorganisms, offering a viable alternative to conventional antimicrobial agents.
Collapse
Affiliation(s)
- Ana Paula Merino Cruz
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (A.P.M.C.); (F.G.N.); (V.C.O.d.S.); (M.M.)
| | - Felipe Garcia Nishimura
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (A.P.M.C.); (F.G.N.); (V.C.O.d.S.); (M.M.)
| | - Vinícius Cristian Oti dos Santos
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (A.P.M.C.); (F.G.N.); (V.C.O.d.S.); (M.M.)
| | - Eliana Guedes Steling
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040–903, Brazil; (E.G.S.); (M.R.V.Z.K.)
| | - Marcia Regina Von Zeska Kress
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040–903, Brazil; (E.G.S.); (M.R.V.Z.K.)
| | - Mozart Marins
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (A.P.M.C.); (F.G.N.); (V.C.O.d.S.); (M.M.)
| | - Ana Lucia Fachin
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (A.P.M.C.); (F.G.N.); (V.C.O.d.S.); (M.M.)
| |
Collapse
|
117
|
Afkar S. Assessment of chemical compositions and antibacterial activity of the essential oil of Mentha piperita in response to salicylic acid. Nat Prod Res 2024; 38:3562-3573. [PMID: 37700677 DOI: 10.1080/14786419.2023.2256020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023]
Abstract
Mentha piperita, as a species of the mint family, is used in various medical, cosmetic, industrial and culinary products. The effect of different concentrations of salicylic acid (SA) (0. 0.5, 1 mM) on phytochemical activity and antimicrobial potential of Mentha piperita essential oil against six human pathogenic bacteria (Streptococcus agalactiae, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus and Listeria monocytogenes) were investigated. According to the results to prevent the growth of L. monocytogenes and S. agalactiae, Gram-positive bacteria, peppermint, essential oil treatment with 1 mM salicylic acid is suggested. But to prevent the growth of Gram-negative bacteria P. aeruginosa and E. coli, peppermint essential oil of control plants is proposed. These results showed that salicylic acid elicitor changed the type and amount of peppermint essential oil compounds. Probably, salicylic acid elicitor improved antimicrobial properties of peppermint essential oil with a change in essential oil components. The inhibitory activity of essential oil depends on the type of microorganism, the concentration of essential oil and the concentration and time of salicylic acid treatment.
Collapse
Affiliation(s)
- Soheila Afkar
- Agriculture Department, Payame Noor University, Tehran, Iran
| |
Collapse
|
118
|
Liu R, Huang L, Feng X, Wang D, Gunarathne R, Kong Q, Lu J, Ren X. Unraveling the effective inhibition of α-terpinol and terpene-4-ol against Aspergillus carbonarius: Antifungal mechanism, ochratoxin A biosynthesis inhibition and degradation perspectives. Food Res Int 2024; 194:114915. [PMID: 39232535 DOI: 10.1016/j.foodres.2024.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Aspergillus carbonarius, a common food-contaminating fungus, produces ochratoxin A (OTA) and poses a risk to human health. This study aimed to assess the inhibitory activity of tea tree essential oil and its main components, Terpene-4-ol (T4), α-terpineol (αS), and 3-carene (3C) against A. carbonarius. The study showed αS and T4 were the main antifungal components of tea tree essential oil, which primarily inhibit A. carbonarius growth through cell membrane disruption, reducing antioxidant enzyme activities (catalase, peroxidase, superoxide dismutase) and interrupting the tricarboxylic acid cycle. Furthermore, αS and T4 interacted with enzymes related to OTA biosynthesis. Molecular docking and molecular dynamics show that they bound mainly to P450 with a minimum binding energy of -7.232 kcal/mol, we infered that blocking the synthesis of OTA precursor OTβ. Our hypothesis was preliminarily verified by the detection of key substances in the OTA synthesis pathway. The results of UHPLC-QTOF-MS2 analysis demonstrated that T4 achieved a degradation rate of 43 % for OTA, while αS reached 29.6 %, resulting in final breakdown products such as OTα and phenylalanine. These results indicated that α-terpinol and Terpene-4-ol have the potential to be used as naturally safe and efficient preservatives or active packaging to prevent OTA contamination.
Collapse
Affiliation(s)
- Rong Liu
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Lingxuan Huang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Xuan Feng
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Di Wang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Rasika Gunarathne
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - QingJun Kong
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Jun Lu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Xueyan Ren
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
119
|
Souza RP, Pimentel VD, de Sousa RWR, Sena EP, da Silva ACA, Dittz D, Ferreira PMP, de Oliveira AP. Non-clinical investigations about cytotoxic and anti-platelet activities of gamma-terpinene. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8145-8160. [PMID: 38801455 DOI: 10.1007/s00210-024-03173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Gamma-terpinene (γ-TPN) is a cyclohexane monoterpene isolated from plant essential oils, such as tea tree (Melaleuca alternifolia), oregano (Origanum vulgare), rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris Marchand), and eucalyptus (Eucalyptus sp.). Terpenes are widely studied molecules pharmacologically active on the cardiovascular system, hemostasis, and antioxidant actions. Herein, it was investigated the cytotoxic and antiplatelet activity of γ-TPN using different non-clinical laboratory models. For in silico evaluation, the PreADMET, SwissADME, and SwissTargetPrediction softwares were used. Molecular docking was performed using the AutoDockVina and BIOVIA Discovery Studio databases. The cytotoxicity of γ-TPN was analyzed by the MTT assay upon normal murine endothelial SVEC4-10 and fibroblast L-929 cells. Platelet aggregation was evaluated with platelet-rich (PRP) and platelet-poor (PPP) plasma from spontaneously hypertensive rats (SHR), in addition to SVEC4-10 cells pre-incubated with γ-TPN (50, 100, and 200 µM) for 24 h. SHR animals were pre-treated by gavage with γ-TPN for 7 days and divided into four groups (negative control, 25, 50, and 100 mg/kg). Blood samples were collected to measure nitrite using the Griess reagent. Gamma-TPN proved to be quite lipid-soluble (Log P = +4.50), with a qualified profile of similarity to the drug, good bioavailability, and adequate pharmacokinetics. It exhibited affinity mainly for the P2Y12 receptor (6.450 ± 0.232 Kcal/mol), moderate cytotoxicity for L-929 (CC50 = 333.3 µM) and SVEC 4-10 (CC50 = 366.7 µM) cells. The presence of γ-TPN in SVEC 4-10 cells was also able to reduce platelet aggregation by 51.57 and 44.20% at lower concentrations (50 and 100 µM, respectively). Then, γ-TPN has good affinity with purinergic receptors and an effect on the reversal of platelet aggregation and oxidative stress, being promising and safe for therapeutic targets and subsequent studies on the control of thromboembolic diseases.
Collapse
Affiliation(s)
- Railson Pereira Souza
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Cardiovascular Pharmacology (Lafac), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Vinícius Duarte Pimentel
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Rayran Walter Ramos de Sousa
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Emerson Portela Sena
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Cardiovascular Pharmacology (Lafac), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Alda Cássia Alves da Silva
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Dalton Dittz
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Antineoplastic Pharmacology (Lafan), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Aldeídia Pereira de Oliveira
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil.
- Laboratory of Cardiovascular Pharmacology (Lafac), Federal University of Piauí, Teresina, 64049-550, Brazil.
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil.
| |
Collapse
|
120
|
Mostafa RM, Baz MM, Ebeed HT, Essawy HS, Dawwam GE, Darwish AB, Selim A, El-Shourbagy NM. Biological effects of Bougainvillea glabra, Delonix regia, Lantana camara, and Platycladus orientalis extracts and their possible metabolomics therapeutics against the West Nile virus vector, Culex pipiens (Diptera: Culicidae). Microb Pathog 2024; 195:106870. [PMID: 39163920 DOI: 10.1016/j.micpath.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Plants are a treasure trove of biological materials containing a wide range of potential phytochemicals that are target-specific, rapidly biodegradable, and environmentally friendly, with multiple medicinal effects. Unfortunately, the development of resistance to synthetic pesticides and antibiotics led to the discovery of new antibiotics, antioxidants, and biopesticides. This has also led to the creation of new medications that work very well. The current study aimed to prove that ornamental plants contain specialized active substances that are used in several biological processes. Mosquitoes, one of the deadliest animals on the planet, cause millions of fatalities each year by transmitting several human illnesses. Phytochemicals are possible biological agents for controlling pests that are harmful. The potential of leaf extracts of Bougainvillea glabra, Delonix regia, Lantana camara, and Platycladus orientalis against Culex pipiens and microbial agents was evaluated. Acetone extracts had more toxic effects against Cx. pipiens larvae (99.0-100 %, 72 h post-treatment), and the LC50 values were 142.8, 189.5, 95.4, and 71.1 ppm for B. glabra, D. regia, L. camara, and P. orientalis, respectively. Plant extracts tested in this study showed high insecticidal, antimicrobial, and antioxidant potential. GC-MS and HPLC analyses showed a higher number of terpenes, flavonoids, and phenolic compounds. The ADME analysis of element, caryophyllene oxide, caryophyllene, and copaene showed that they were similar to drugs and that they were better absorbed by the body and able to pass through the blood-brain barrier. Our results confirm the ability of ornamental plants to have promising larvicidal and antimicrobial activity and biotechnology.
Collapse
Affiliation(s)
- Reham M Mostafa
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Qalyubiya, 13518, Egypt
| | - Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| | - Heba Talat Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt; National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| | - Heba S Essawy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Qalyubiya, 13518, Egypt
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Qalyubiya, 13518, Egypt
| | - Ahmed B Darwish
- Zoology Department, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University Toukh, 13736, Egypt.
| | - Nancy M El-Shourbagy
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| |
Collapse
|
121
|
Kamenova K, Iliev I, Prancheva A, Tuleshkov P, Rusanov K, Atanassov I, Petrov PD. Hydroxypropyl Cellulose Hydrogel Containing Origanum vulgare ssp. hirtum Essential-Oil-Loaded Polymeric Micelles for Enhanced Treatment of Melanoma. Gels 2024; 10:627. [PMID: 39451280 PMCID: PMC11508108 DOI: 10.3390/gels10100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Origanum vulgare ssp. hirtum essential oil (OEO) is a natural oil with high therapeutic potential. For some applications, however, the development of novel formulations is still needed to improve the bioavailability and stability of OEO. In this study, we describe the fabrication of an original nanocomposite hydroxypropyl cellulose (HPC) physical hydrogel, containing OEO-loaded polymeric micelles, for topical delivery. The concentration of the main active compounds of OEO-carvacol and thymol-was determined using gas chromatography (GC) analysis. OEO was first encapsulated into Pluronic F127 micelles, and then embedded into HPC gel. Micellar and gel formulations of pure polymers and OEO-containing systems were characterized by dynamic light scattering (DLS) and rheology measurements, respectively. Selected formulations were evaluated for cytotoxicity and antiproliferative activity. The hydrogel formulation of HPC with micellar OEO (8% HPC, 2% F127, 1% OEO) exhibited sustained release of the oil and selectivity towards SH-4 tumor cells (an in vitro model of melanoma).
Collapse
Affiliation(s)
- Katya Kamenova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (A.P.); (P.T.)
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Anna Prancheva
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (A.P.); (P.T.)
| | - Pencho Tuleshkov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (A.P.); (P.T.)
| | - Krasimir Rusanov
- Department of Agrobiotechnology, AgroBioInstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (K.R.); (I.A.)
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (CoC BioResources), 1000 Sofia, Bulgaria
| | - Ivan Atanassov
- Department of Agrobiotechnology, AgroBioInstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (K.R.); (I.A.)
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (CoC BioResources), 1000 Sofia, Bulgaria
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (A.P.); (P.T.)
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (CoC BioResources), 1000 Sofia, Bulgaria
| |
Collapse
|
122
|
Alabrahim OAA, Lababidi JM, Fritzsche W, Azzazy HMES. Beyond aromatherapy: can essential oil loaded nanocarriers revolutionize cancer treatment? NANOSCALE ADVANCES 2024:d4na00678j. [PMID: 39415775 PMCID: PMC11474398 DOI: 10.1039/d4na00678j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Cancer, a complex global health burden, necessitates the development of innovative therapeutic strategies. While chemotherapy remains the primary treatment approach, its severe side effects and chemoresistance drive the search for novel alternatives. Essential oils (EOs), consisting of diverse bioactive phytochemicals, offer promise as anticancer agents. However, their limitations, such as instability, limited bioavailability, and non-specific targeting, hinder their therapeutic potential. These challenges were circumvented by utilizing nanoparticles and nanosystems as efficient delivery platforms for EOs. This review highlights the accumulating evidence based on loading EOs into several nanocarriers, including polymeric nanoparticles, nanoemulsions, nanofibers, lipid-based nanocapsules and nanostructures, niosomes, and liposomes, as effective anticancer regimens. It covers extraction and chemical composition of EOs, their mechanisms of action, and targeting strategies to various tumors. Additionally, it delves into the diverse landscape of nanocarriers, including their advantages and considerations for cancer targeting and EO encapsulation. The effectiveness of EO-loaded nanocarriers in cancer targeting and treatment is examined, highlighting enhanced cellular uptake, controlled drug release, and improved therapeutic efficacy. Finally, the review addresses existing challenges and future perspectives, emphasizing the potential for clinical translation and personalized medicine approaches.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
| | - Jude Majed Lababidi
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| |
Collapse
|
123
|
Caballero-Román A, Nardi-Ricart A, Vila R, Cañigueral S, Ticó JR, Miñarro M. Use of Natural Polymers for the Encapsulation of Eugenol by Spray Drying. Pharmaceutics 2024; 16:1251. [PMID: 39458582 PMCID: PMC11510493 DOI: 10.3390/pharmaceutics16101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Eugenol is a colourless or yellowish compound whose presence in clove essential oil surpasses the 75% of its composition. This phenylpropanoid, widely used as an antiseptic, anaesthetic and antioxidant, can be extracted by steam distillation from the dried flower buds of Syzygium aromaticum (L.). Due to its chemical instability in presence of light and air, it should be protected when developing a formulation to avoid or minimise its degradation. Methods: A promising approach would be encapsulation by spray drying, using natural coating products such as maltodextrin, gum arabic, and soy lecithin. To do so, a factorial design was carried out to evaluate the effect of five variables at two levels (inlet temperature, aspirator and flow rate, method of homogenisation of the emulsion and its eugenol:polymers ratio). Studied outcomes were yield and outlet temperature of the spray drying process, eugenol encapsulation efficiency, and particle size expressed as d(0.9). Results: The best three formulations were prepared by using a lower amount of eugenol than polymers (1:2 ratio), homogenised by Ultra-Turrax®, and pumped to the spray dryer at 35 m3/h. Inlet temperature and flow rate varied in the top three formulations, but their values in the best formulation (DF22) were 130 °C and 4.5 mL/min. These microcapsules encapsulated between 47.37% and 65.69% of eugenol and were spray-dried achieving more than a 57.20% of product recovery. Their size, ranged from 22.40 μm to 55.60 μm. Conclusions: Overall, the whole spray drying process was optimised, and biodegradable stable polymeric microcapsules containing eugenol were successfully prepared.
Collapse
Affiliation(s)
- Aitor Caballero-Román
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Avinguda Joan XXIII, 27-31, 08028 Barcelona, Spain; (A.N.-R.); (M.M.)
| | - Anna Nardi-Ricart
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Avinguda Joan XXIII, 27-31, 08028 Barcelona, Spain; (A.N.-R.); (M.M.)
| | - Roser Vila
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Avinguda Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.V.); (S.C.)
| | - Salvador Cañigueral
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Avinguda Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.V.); (S.C.)
| | - Josep R. Ticó
- Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Avinguda Joan XXIII, 27-31, 08028 Barcelona, Spain;
| | - Montserrat Miñarro
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Avinguda Joan XXIII, 27-31, 08028 Barcelona, Spain; (A.N.-R.); (M.M.)
| |
Collapse
|
124
|
Rostaei M, Fallah S, Carrubba A, Lorigooini Z. Organic manures enhance biomass and improve content, chemical compounds of essential oil and antioxidant capacity of medicinal plants: A review. Heliyon 2024; 10:e36693. [PMID: 39296011 PMCID: PMC11408794 DOI: 10.1016/j.heliyon.2024.e36693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
The current farming systems strongly depend on chemical fertilizers (CF), which are widely applied to increase crop yield worldwide. However, although CF enhance crop yield in the short term, their excessive and long-term application can have adverse effects on environmental and human health. One of the most important goals of sustainable agriculture is substituting CF with organic manures. Organic manures can be used as a low-cost and safe alternative for CF. They contain essential nutrients for crop growth, improve soil conditions and nutrient availability, increase plant growth, and ultimately enhance yield. The application of organic manures to medicinal plants (MP) is more critical than to other plants, because organic manures not only enhance the growth and productivity of MP but also modify quality of their products. In this review, the effect of different types of organic manures on the biomass, content and chemical compositions of essential oil and antioxidant activity of various MP has been investigated. The included information was gathered from scientific databases such as Science Direct, Google Scholar, PubMed, and Scopus. Many of the collected studies showed that organic manures increase biomass and improve the quality of these plants. The findings of this review indicate that broiler litter (BL) and compost (C) are highly recommended as organic manures to promote biomass. Moreover, C, sheep manure, and vermicompost (VC) are suggested as the optimal organic manures for enhancing the essential oil content. Organic manures significantly changed the aroma profile of the essential oils and in many cases, they enhanced major chemical compositions. The usage of VC raised the content of the linalool of studied MP. Most of the organic manures, especially BL, VC, farmyard manure, and poultry manure increased the antioxidant activity of these plants. Hence, the utilization of organic manures can be recommended for productivity enhancement and quality improvement of MP.
Collapse
Affiliation(s)
- Maryam Rostaei
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Alessandra Carrubba
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Italy
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
125
|
Santos JS, Galvão JG, Mendonça MRC, Costa AMB, Silva ARST, Oliveira DS, Santos ADJ, Lira AAM, Scher R, Sales Júnior PA, Pereira VRA, Formiga FR, Nunes RS. Encapsulation of Citrus sinensis essential oil and R-limonene in lipid nanocarriers: A potential strategy for the treatment of leishmaniasis. Int J Pharm 2024; 662:124464. [PMID: 39033939 DOI: 10.1016/j.ijpharm.2024.124464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Leishmaniases, a group of neglected tropical diseases caused by an intracellular parasite of the genus Leishmania, have significant impacts on global health. Current treatment options are limited due to drug resistance, toxicity, and high cost. This study aimed to develop nanostructured lipid carriers (NLCs) for delivering Citrus sinensis essential oil (CSEO) and its main constituent, R-limonene, against leishmaniasis. The influence of surface-modified NLCs using chitosan was also examined. The NLCs were prepared using a warm microemulsion method, and surface modification with chitosan was achieved through electrostatic interaction. These nanocarriers were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy, and dynamic light scattering (DLS). In vitro cytotoxicity was assessed in L929 and RAW 264.7 cells, and leishmanicidal activity was evaluated against promastigote and amastigote forms. The NLCs were spherical, with particle sizes ranging from 97.9 nm to 111.3 nm. Chitosan-coated NLCs had a positive surface charge, with zeta potential values ranging from 45.8 mV to 59.0 mV. Exposure of L929 cells to NLCs resulted in over 70 % cell viability. Conversely, surface modification significantly reduced the viability of promastigotes (93 %) compared to free compounds. Moreover, chitosan-coated NLCs presented a better IC50 against the amastigote forms than uncoated NLCs. Taken together, these findings demonstrate the feasibility of using NLCs to overcome the limitations of current leishmaniasis treatments, warranting further research.
Collapse
Affiliation(s)
- Jeferson S Santos
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil.
| | - Juliana G Galvão
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Marcos R C Mendonça
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Amanda M B Costa
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Audrey R S T Silva
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Daniela S Oliveira
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Adriana de J Santos
- Process Engineering Program, University of Tiradentes (UNIT), Aracaju, SE 49032-490, Brazil
| | - Ana Amélia M Lira
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Ricardo Scher
- Departament of Morphology, Federal University of Sergipe, São Cristóovão 49100-000, Sergipe, Brazil
| | | | | | - Fábio Rocha Formiga
- Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil; Faculty of Medical Sciences (FCM), University of Pernambuco (UPE), 52171-011 Recife, PE, Brazil
| | - Rogéria S Nunes
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| |
Collapse
|
126
|
Furukawa T, Inagaki A, Hatta T, Moroishi S, Kawanishi K, Itoh Y, Maehana S, Amarasiri M, Sei K. Cell Extracts Derived from Cypress and Cedar Show Antiviral Activity against Enveloped Viruses. Microorganisms 2024; 12:1813. [PMID: 39338487 PMCID: PMC11433713 DOI: 10.3390/microorganisms12091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
The antiviral efficacy of cell-extracts (CEs) derived from cypress (Chamaecyparis obtusa (Siebold & Zucc.) Endl., C. obtusa) and cedar (Cryptomeria japonica (Thunb. ex. L.) D.Don, C. japonica) was assessed using phi6 and MS2 bacteriophages, which are widely accepted surrogate models for enveloped and non-enveloped viruses, in order to verify their potential use as antiviral agents. Our results indicate that CEs derived from C. obtusa are dominantly composed of terpinen-4-ol (18.0%), α-terpinyl acetate (10.1%), bornyl acetate (9.7%), limonene (7.1%), and γ-terpinene (6.7%), while CEs derived from C. japonica are dominantly composed of terpinen-4-ol (48.0%) and α-pinene (15.9%), which exhibited robust antiviral activity against phi6 bacteriophage. Both CEs successfully inactivated the phi6 bacteriophage below the detection limit (10 PFU/mL) within a short exposure time of 30 s (log reduction value, LRV > 4). Through exposure experiments utilizing CEs with content ratios prepared via 2-fold serial dilutions (ranging from 3.13% to 100%), we demonstrated that the antiviral effect could be sustained up to a concentration of 25% (C. obtusa LRV = 3.8, C. japonica LRV > 4.3 at a 25% CE content ratio for each species). However, CEs with content ratios below 12.5% did not produce a significant reduction in bacteriophage concentration and consequently lost their antiviral effects. Conversely, both CEs did not exhibit antiviral activity against MS2 bacteriophage, a non-enveloped virus. Our findings reveal for the first time the potential of CEs derived from C. obtusa and C. japonica for use as antiviral agents specifically targeting enveloped viruses.
Collapse
Affiliation(s)
- Takashi Furukawa
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Ayumu Inagaki
- Department of Mechanical Engineering, National Institute of Technology, Oita College, 1666 Maki, Oita 870-0152, Japan
| | - Takeshi Hatta
- Department of Parasitology and Tropical Medicine, School of Medicine, Kitasato University, Sagamihara 252-0374, Japan
| | - Suzuha Moroishi
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Katsuki Kawanishi
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Yuki Itoh
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Shotaro Maehana
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
- Research Facility of Regenerative Medicine and Cell Design, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Mohan Amarasiri
- Graduate School of Engineering, Tohoku University, 6-6-06, Aoba-Ku, Sendai 980-8579, Japan
| | - Kazunari Sei
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| |
Collapse
|
127
|
Zhu X, Li K, Li J, Peng L. Physicochemical properties and antibacterial property of pickering emulsion stabilized by smart Janus nanospheres. Food Chem 2024; 451:139413. [PMID: 38663237 DOI: 10.1016/j.foodchem.2024.139413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024]
Abstract
In this study, responsive Janus nanospheres were prepared by grafting LMA and DMAEMA monomers on both sides of SiO2 nanospheres using the Pickering emulsion stencil method and RAFT polymerization. The successful synthesis was verified through infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), scanning electron microscopy (SEM) characterizations. Subsequently, Pickering emulsion was formulated using Janus nanospheres as emulsifiers. The particle size of the emulsion droplets was systematically investigated by manipulating factors such as pH, nanosphere dosage, water to oil ratio, and oil phase polarity. Notably, the Pickering emulsion exhibited responsive properties to pH, temperature, and CO2. Furthermore, Janus nanospheres exhibited excellent emulsification property for real oil phases, including canola oil, kerosene, gasoline, and diesel oil. Building upon this, a smart antibacterial Pickering emulsion was developed using Janus nanospheres, and its inhibition rate against E. coli could reach 100% within 4 h, which would be beneficial for its application in the food field.
Collapse
Affiliation(s)
- Xiaoping Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Keran Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610500, PR China.
| | - Jing Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Lifei Peng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| |
Collapse
|
128
|
Lima EAS, Campos DR, Soares EFMS, Fortunato ABR, Silva TME, de Figueiredo Pereira N, Chaves DSDA, Cid YP, Coumendouros K. Insecticidal and Repellent Activity of Essential Oils from Copaifera reticulata, Citrus paradisi, Lavandula hybrida and Salvia sclarea Against Immature and Adult Stages of Ctenocephalides felis felis. Acta Parasitol 2024; 69:1426-1438. [PMID: 39147955 DOI: 10.1007/s11686-024-00874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE The flea Ctenocephalides felis (Siphonaptera: Pulicidae), parasitizes dogs and cats globally, acting as a vector for various pathogens affecting both animals and humans. Growing interest in environmentally friendly, plant-based products prompted this study. The aim of the study was to determine the chemical composition of essential oils (EOs) from Copaifera reticulata, Citrus paradisi, Lavandula hybrida and Salvia sclarea, assessing their insecticidal and repellent properties, determining lethal concentrations (LC50 and LC90), and evaluating residual efficacy in vitro against Ctenocephalides felis felis. METHODS Gas Chromatography with Flame Ionization Detector analyzed EO composition. In vitro tests involved preparing EO solutions at various concentrations. Ten specimens from each life stage (egg, larva, pupa, adult) were used for insecticidal activity assessment. Adulticidal activity was assessed using 10 cm2 filter paper strip, each treated with 0.200 mL of the test solution. Immature stages activities were evaluated using 23.76 cm2 discs of the same filter paper, each treated with 0.470 mL of the test solution. Mortality percentage was calculated using (number of dead insects × 100) / number of incubated insects. Probit analysis calculated LC50 values with a 95% confidence interval. RESULTS Major EO constituents were β-caryophyllene (EOCR), linalool (EOLH), linalyl acetate (EOSS), and limonene (EOCP). LC50 values were obtained for all stages except for the essential oil of C. paradisi. All oils showed repellent activity at 800 μg/cm2. OECR exhibited greater residual efficacy. CONCLUSION Each EO demonstrated superior insecticidal activity against specific C. felis felis stages.
Collapse
Affiliation(s)
- Emily Andressa Santos Lima
- Laboratory of Experimental Chemotherapy in Veterinary Parasitology (LQEPV), Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Diefrey Ribeiro Campos
- Laboratory of Experimental Chemotherapy in Veterinary Parasitology (LQEPV), Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Eduardo Fellipe Melo Santos Soares
- Laboratory of Experimental Chemotherapy in Veterinary Parasitology (LQEPV), Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil.
| | - Anna Beatriz Ribeiro Fortunato
- Laboratory of Experimental Chemotherapy in Veterinary Parasitology (LQEPV), Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Taynara Monsores E Silva
- Laboratory of Experimental Chemotherapy in Veterinary Parasitology (LQEPV), Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Nayana de Figueiredo Pereira
- Laboratory of Pharmacognosy and Bioactive Natural, Pharmaceutical Sciences Department, Health and Biological Science Institute, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Douglas Siqueira de Almeida Chaves
- Laboratory of Pharmacognosy and Bioactive Natural, Pharmaceutical Sciences Department, Health and Biological Science Institute, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Yara Peluso Cid
- Pharmaceutical Sciences Department, Health and Biological Science Institute, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Katherina Coumendouros
- Laboratory of Experimental Chemotherapy in Veterinary Parasitology (LQEPV), Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| |
Collapse
|
129
|
Ramírez N, Cassola F, Gambero A, Sartoratto A, Gómez Castellanos LM, Ribeiro G, Ferreira Rodrigues RA, Duarte MCT. Control of pathogenic bacterial biofilm associated with acne and the anti-inflammatory potential of an essential oil blend. Microb Pathog 2024; 194:106834. [PMID: 39094711 DOI: 10.1016/j.micpath.2024.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Acne is one of the most common skin conditions worldwide, with multifactorial origins it affects areas of the skin with hair follicles and sebaceous glands that become clogged. Bacterial incidence aggravates treatment due to resistance to antimicrobial agents and production of virulence factors such as biofilm formation. Based on these information, this study aims to conduct in vitro evaluations of the antibacterial activity of essential oils (EOs), alone and in combination, against Propionibacterium acnes, Staphylococcus aureus, and Staphylococcus epidermidis in planktonic and biofilm forms. This study also assessed the anti-inflammatory potential (TNF-α) and the effects of EOs on the viability of human keratinocytes (HaCaT), murine fibroblasts (3T3-L1), and bone marrow-derived macrophages (BMDMs). Of all EOs tested, 13 had active action against P. acnes, 9 against S. aureus, and 9 against S. epidermidis at concentrations of 0.125-2.0 mg/mL. Among the most active plant species, a blend of essential oil (BEOs) was selected, with Cymbopogon martini (Roxb.) Will. Watson, Eugenia uniflora L., and Varronia curassavica Jacq., the latter due to its anti-inflammatory action. This BEOs showed higher inhibition rates when compared to chloramphenicol against S. aureus and S. epidermidis, and higher eradication rates when compared to chloramphenicol for the three target species. The BEOs did not affect the cell viability of cell lines evaluated, and the levels of TNF-α decreased. According to these results, the BEOs evaluated showed potential for the development of an alternative natural formulation for the treatment of acne.
Collapse
Affiliation(s)
- Nedy Ramírez
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, Brazil; Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, Brazil.
| | - Fábio Cassola
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, Brazil; Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, Brazil
| | - Alessandra Gambero
- Centro de Ciências da Vida, Pontifícia Universidade Católica de Campinas, Campinas, Brazil
| | - Adilson Sartoratto
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, Brazil
| | | | - Guilherme Ribeiro
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | | | | |
Collapse
|
130
|
Leal KW, Leal MLR, Breancini M, Signor MH, Vitt MG, Silva LEL, Wagner R, Jung CTK, Kozloski GV, de Araujo RC, Da Silva AS. Essential oils and capsaicin in the diet of Jersey cows at early lactation and their positive impact on anti-inflammatory, antioxidant and immunological responses. Trop Anim Health Prod 2024; 56:247. [PMID: 39215939 DOI: 10.1007/s11250-024-04077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
The objective of this work was to determine whether the addition of phytogenic compounds based on essential oils (carvacrol, eugenol, cinnamaldehyde) and resinous pepper oil (capsaicin) to the diet of Jersey cows at the beginning of lactation affects anti-inflammatory, antioxidant and immunomodulatory responses, as well as whether there are effects of EO on blood metabolites, ruminal fermentation, digestibility and milk production and composition. Six primiparous cows (370.00 ± 17 kg body weight (BW); 13.02 kg dry matter intake (DMI); 21 days of lactation and average milk production of 20 ± 2 L per day) were allocated to crossed experimental design (2 × 2) with two experimental periods of 28 days and two treatments. Blood, milk and rumen fluid were collected and, at the end of each period, feed and feces samples were collected to evaluate the apparent digestibility of nutrients. The groups were control (CLT) without supplementation and treated (BEO) with the addition of 150 mg/kg of dry matter of the phytogenic to the concentrated portion of the diet. Cows in the BEO group had lower numbers of leukocytes (P ≤ 0.05) and lymphocytes (P ≤ 0.02), but total protein and globulin levels were higher on days 21 and 28 (P ≤ 0.01). In the BEO group, the levels of immunoglobulin A, immunoglobulin heavy chain and transferrin were higher (P ≤ 0.05). The levels of ceruloplasmin, haptoglobin and C-reactive protein were lower in the BEO group (P ≤ 0.05). Lipid peroxidation levels and protein carbonyl content were lower in the BEO group. The total antioxidant capacity (P ≤ 0.09) and the activity of glutathione S-transferase (P ≤ 0.03) and glutathione peroxidase (P ≤ 0.05) were higher in the BEO group. Cows in the BEO group had lower pH (P ≤ 0.05), acetic acid concentrations (P ≤ 0.01) and higher protozoa counts (P ≤ 0.01). Our results suggest that phytogenic supplementation has positive effects on the health of Jersey cows in early lactation, characterized by immunostimulant, antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Karoline W Leal
- Graduate Program in Veterinary Medicine (PPGMV), Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marta L R Leal
- Department of Large Animal Clinic, UFSM, Santa Maria, RS, Brazil
| | - Michel Breancini
- Department of Animal Science, State University of Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Mateus H Signor
- Department of Animal Science, State University of Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Maksuel G Vitt
- Graduate Program in Animal Science, UDESC, Chapecó, SC, Brazil
| | | | - Roger Wagner
- Department of Food Sciences, UFSM, Santa Maria, RS, Brazil
| | | | | | - Rafael C de Araujo
- Department of Research and Development - Ruminant Division, GRASP Ind. & Com. LTDA, Curitiba, PR, 81260-000, Brazil
| | - Aleksandro S Da Silva
- Department of Animal Science, State University of Santa Catarina (UDESC), Chapecó, SC, Brazil.
| |
Collapse
|
131
|
El-Demerdash AS, Alfaraj R, Farid FA, Yassin MH, Saleh AM, Dawwam GE. Essential oils as capsule disruptors: enhancing antibiotic efficacy against multidrug-resistant Klebsiella pneumoniae. Front Microbiol 2024; 15:1467460. [PMID: 39282565 PMCID: PMC11392748 DOI: 10.3389/fmicb.2024.1467460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Background Multidrug-resistant Klebsiella pneumoniae (MDR-KP) poses a significant global health threat due to its involvement in severe infections and high mortality rates. The emergence of MDR strains necessitates the exploration of alternative therapeutic strategies. Methods K. pneumoniae isolates were obtained from human and animal sources. Antibacterial susceptibility testing was performed, followed by the evaluation of essential oil activity through inhibition zone, MIC, and MBC determinations. Checkerboard assays were conducted to assess synergistic effects with amikacin. Gene expression analysis and transmission electron microscopy were employed to elucidate the mechanisms of action. Molecular docking studies were performed to identify potential binding targets of bioactive compounds. Results Klebsiella pneumoniae was isolated from 25 of the100 samples examined, representing a prevalence rate of 25%. All isolates were found to be multidrug-resistant. Tea tree and thyme essential oils exhibited potent antibacterial activity and synergistic effects with amikacin. Notably, these combinations significantly downregulated the expression of key capsule virulence genes (wcaG, rmpA, magA, uge, and wabG), suggesting a novel mechanism for enhancing amikacin efficacy. Transmission electron microscopy revealed disrupted cell integrity in MDR-KP cells treated with the combinations. Molecular docking analysis identified Terpinen-4-ol, Farnesol, 1,4-Dihydroxy-p-menth-2-ene, and 7-Oxabicyclo [4.1.0] heptane as potential bioactive compounds responsible for the observed effects. Conclusion By effectively combating MDR-KP, this research holds promise for reducing antibiotic resistance, improving treatment outcomes, and ultimately enhancing potential care.
Collapse
Affiliation(s)
- Azza SalahEldin El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faten A Farid
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Mohamed H Yassin
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Abdulrahman M Saleh
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Epidemiological Surveillance Unit, Aweash El-Hagar Family Medicine Center, MOHP, Mansoura, Egypt
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
132
|
Mohanta YK, Biswas K, Mishra AK, Patra B, Mishra B, Panda J, Avula SK, Varma RS, Panda BP, Nayak D. Amelioration of gold nanoparticles mediated through Ocimum oil extracts induces reactive oxygen species and mitochondrial instability against MCF-7 breast carcinoma. RSC Adv 2024; 14:27816-27830. [PMID: 39224640 PMCID: PMC11367626 DOI: 10.1039/d4ra04807e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Phytomedicines are potential immunity-boosting components with effective anticystic properties, minimal side effects, and biomedical applications, making them valuable for combating various diseases. India is renowned globally for Ayurveda, an ancient treatment methodology known for its holistic approach in identifying the root cause of diseases. Tulsi (Ocimum sanctum) is a common household medicine in India. While essential oils from plants like Tulsi have long been recognized for their medicinal properties, there is a gap in understanding their potential in synthesizing gold nanoparticles (AuNPs) and their efficacy against breast carcinoma, particularly in the context of immunosuppressive conditions. We investigated the potential application of essential oils isolated from O. sanctum in the synthesis of AuNPs and their efficacy against MCF-7 breast carcinoma. Gas chromatography-mass spectroscopy identified compounds with potential anticancer effects against breast cancer cells. Synthesised AuNPs displayed high hemocompatibility and antimicrobial activity against nosocomial Pseudomonas aeruginosa, Escherichia coli, Vibrio cholerae, and Bacillus subtilis strains. Os-AuNPs induced chromosomal instability and mitotic arrest in the G2/M cell cycle phase. Subsequent fluorescence and cell cytometry studies demonstrated the systemic release of ROS, depolarisation of mitochondrial membrane potential, and production of apoptotic bodies. DNA damage and comet assays confirmed the anticancer potential of synthesised AuNPs. This study illuminates the potential of O. sanctum-derived AuNPs in breast carcinoma treatment, paving the way for future AuNP-based therapies in biomedicine.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya Techno City, 9th Mile, Baridua, Ri-Bhoi 793101 Meghalaya India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education Kelambakkam 603103 Tamil Nadu India
| | - Kunal Biswas
- Centre for Nanoscience & Nanotechnology International Research Centre, Sathyabama Institute of Science and Technology Jeppiaar Nagar, Rajiv Gandhi Salai Chennai 600119 India
| | | | - Biswajit Patra
- Department of Botany, Fakir Mohan University Balasore 756020 Odisha India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT) Gandipet Hyderabad 500075 Telangana India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya Techno City, 9th Mile, Baridua, Ri-Bhoi 793101 Meghalaya India
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa Nizwa 616 Oman
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, 20 Federal University of São Carlos 13565-905 São Carlos SP Brazil
| | - Bibhu Prasad Panda
- Environmental Sciences, Department of Chemistry, ITER, Siksha "O" Anusandhan (Deemed to be University) Bhubaneswar 751030 Odisha India
| | - Debasis Nayak
- Bioresources and Traditional Knowledge Laboratory, Department of Wildlife and Biodiversity Conservation, Maharaja Sriram Chandra Bhanja Deo University Sriram Chandra Vihar, Takatpur Baripada 757003 India
| |
Collapse
|
133
|
Maghraby Y, Ibrahim AH, El-Shabasy RM, Azzazy HMES. Overview of Nanocosmetics with Emphasis on those Incorporating Natural Extracts. ACS OMEGA 2024; 9:36001-36022. [PMID: 39220491 PMCID: PMC11360025 DOI: 10.1021/acsomega.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
The cosmetic industry is rapidly rising worldwide. To overcome certain deficiencies of conventional cosmetics, nanomaterials have been introduced to formulations of nails, lips, hair, and skin for treating/alleviating hyperpigmentation, hair loss, acne, dandruff, wrinkles, photoaging, etc. Innovative nanocarrier materials applied in the cosmetic sector for carrying the active ingredients include niosomes, fullerenes, liposomes, carbon nanotubes, and nanoemulsions. These exhibit several advantages, such as elevated stability, augmented skin penetration, specific site targeting, and sustained release of active contents. Nevertheless, continuous exposure to nanomaterials in cosmetics may pose some health hazards. This review features the different new nanocarriers applied for delivering cosmetics, their positive impacts and shortcomings, currently marketed nanocosmetic formulations, and their possible toxic effects. The role of natural ingredients, including vegetable oils, seed oils, essential oils, fats, and plant extracts, in the formulation of nanocosmetics is also reviewed. This review also discusses the current trend of green cosmetics and cosmetic regulations in selected countries.
Collapse
Affiliation(s)
- Yasmin
R. Maghraby
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed H. Ibrahim
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Center
for Materials Science, Zewail City of Science
and Technology, Sixth
of October,12578 Giza, Egypt
| | - Rehan M. El-Shabasy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Chemistry
Department, Faculty of Science, Menoufia
University, 32512 Shebin El-Kom, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute of
Photonic Technology, Jena 07745, Germany
| |
Collapse
|
134
|
Pozzi E, Motteran F, de Mello BS, Rodrigues BCG, Sarti A. Biomass Profiling in a Horizontal-Flow Anaerobic Bioreactor Used for Limonene Degradation. Curr Microbiol 2024; 81:323. [PMID: 39179725 DOI: 10.1007/s00284-024-03849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
This study characterized the microbial community present in the bench scale horizontal-flow anaerobic immobilized biomass bioreactor (HAIB) used in the removal of limonene, a compound present in citrus processing industries. The HAIB was filled with three support materials (coal, polyurethane foam and gravel) which were inoculated with anaerobic sludge. The limonene initial concentration on the substrate ranged from 10 mg/L to 500 mg/L. The analysis of 16S rRNA showed the presence of 22 OTUs (based on ⩾97% sequence identity), distributed in 57 genera, considering three different matrices. Higher relative abundance of phyla was observed as Synergistetes (43-57%), Proteobacteria (32-42%), Firmicutes (7-8%) and Acidobacteria (2-3%). Actinobacteria, Bacterioidetes and Chloroflexi had the lowest relative abundances between 1 and 2%. Synergistaceae family was the predominated group (47.6%-mineral coal, 55.9%-foam and 43.5%-gravel) followed by Syntrophaceae (2.4%-coal, 1.5%-foam and 2.2%-gravel), which kept a syntrophic relationship with methanogenesis (hydrogenotrophic methanogens) to maintain the anaerobic digestion. Among the Proteobacteria phylum, the Pseudomonadaceae family was predominant in the system with 12.0% on coal, 13.1% on foam, and 20.4% on gravel. The metabolic versatility of Pseudomonas sp. makes them an important bioremediation agent by being capable of metabolizing xenobiotic and chemical toxic compounds, thus having great prominence for the limonene removal in the HAIB bioreactor.
Collapse
Affiliation(s)
- Eloisa Pozzi
- Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering, University of São Paulo (USP), São Carlos, SP, Brazil
| | - Fabricio Motteran
- Environmental Sanitation Laboratory and Molecular Biology and Environmental Technology Laboratory (LSA/LABIOTA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Bruna Sampaio de Mello
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives (CEMPEQC), Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil
- Bioenergy Research Institute (IPBEN), Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Brenda Clara Gomes Rodrigues
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives (CEMPEQC), Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil
- Bioenergy Research Institute (IPBEN), Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Arnaldo Sarti
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives (CEMPEQC), Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil.
- Bioenergy Research Institute (IPBEN), Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
135
|
Baz MM, Selim AM, Radwan IT, Alkhaibari AM, Gattan HS, Alruhaili MH, Alasmari SM, Gad ME. Evaluating larvicidal, ovicidal and growth inhibiting activity of five medicinal plant extracts on Culex pipiens (Diptera: Culicidae), the West Nile virus vector. Sci Rep 2024; 14:19660. [PMID: 39191818 PMCID: PMC11350158 DOI: 10.1038/s41598-024-69449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Mosquitoes, one of the deadliest animals on the planet, cause millions of fatalities each year by transmitting several human illnesses. Synthetic pesticides were previously used to prevent the spread of diseases by mosquitoes, which was effective in protecting humans but caused serious human health problems, environmental damage, and developed mosquito pesticide resistance. This research focuses on exploring new, more effective, safer, and environmentally friendly compounds to improve mosquito vector management. Phytochemicals are possible biological agents for controlling pests and many are target-specific, rapidly biodegradable, and eco-friendly. The potential of extracts of Lantana camara, Melia azedarach, Nerium oleander, Ricinus communis, and Withania somnifera against 3rd instar Culex pipiens (Common house mosquito) larvae was evaluated. Methanol extracts had more toxic effects against Cx. pipiens larvae (95-100%, 24 h post-treatment) than aqueous extracts (63-91%, 24 h post-treatment). The methanol extracts of Nerium oleander (LC50 = 158.92 ppm) and Ricinus communis (LC50 = 175.04 ppm) were very effective at killing mosquito larvae, 24 h after treatment. N. oleander (LC50 = 373.29 ppm) showed high efficacy in aqueous plant extracts. Among the different extracts of the five plants screened, the methanol extract of R. communis recorded the highest ovicidal activity of 5% at 800 ppm concentration. Total developmental duration and growth index were highly affected by R. communis and M. azedarach methanol extracts. In field tests it was clear that plant extracts decreased mosquito larval density, especially when mixed with mosquito Bti briquette, with stability up to seven days for N. oleander. GC-MS results showed that the methanol extract had a higher number of chemical compounds, particularly with more terpene compounds. A high-performance liquid chromatography (HPLC) technique was used to detect the existence of non-volatile polyphenols and flavonoids. All five methanol extracts showed high concentrations of active ingredients such as gallic acid, chlorogenic acid (more than 100 μg/ml) and the rosmarinic acid was also found in all the five extracts in addition to 17 active polyphenols and flavonoids presented at moderate to low concentrations. Molecular modeling of 18 active ingredients detected by the HPLC were performed to the vicinity of one of the fatty acid binding proteins of lm-FABP (PDB code: 2FLJ). Rutin, Caffeic acid, coumaric acid and rosmarinic acid which presented densely in R. communis and N. oleander showed multiple and stable intermolecular hydrogen bonding and π-π stacking interactions. The inhibition ability of the fatty acid binding protein, FABP4, was evaluated with remarkable receptor inhibition evident, especially with R. communis and N. oleander having inhibitory concentrations of IC50 = 0.425 and 0.599 µg/mL, respectively. The active phytochemical compounds in the plants suggest promising larvicidal and ovicidal activity, and have potential as a safe and effective alternative to synthetic insecticides.
Collapse
Affiliation(s)
- Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Qalyubiya, Egypt
| | - Abdelfattah M Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt.
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Saeed M Alasmari
- Department of Biology, Faculty of Science and Arts, Najran University, 1988, Najran, Saudi Arabia
| | - Mohammed E Gad
- Department of Zoology and Entomology, Faculty of Science, Al Azhar University, Nasr City, 11884, Cairo, Egypt
| |
Collapse
|
136
|
Gebremedin BD, Asfaw BT, Mengesha WA, Abebe KA. Biochemical Characterization of Ethiopian Black Cumin ( Nigella sativa L.). INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:2746560. [PMID: 39185325 PMCID: PMC11343625 DOI: 10.1155/2024/2746560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Black cumin (Nigella sativa L.) seed oil has been used for its medicinal and aromatic values. Some studies revealed the presence of variability among N. sativa genotypes in seed oil content and yield. In Ethiopia, very few studies were conducted to investigate the variability of N. sativa genotypes by using biochemical traits. Thus, this study was conducted at Debre Zeit and Kulumsa Agricultural Research Centers' experimental sites under field conditions during the 2021 cropping season to investigate the variability of Ethiopian N. sativa genotypes based on biochemical traits. Sixty-four genotypes were used and arranged in an 8 × 8 simple lattice design with two replications. Essential oils (EOs) and fixed oils were extracted by the respective methods of hydro distillation and solvent extraction. The univariate, bivariate, and multivariate analyses of the collected data were performed. Combined analysis of variance (ANOVA) revealed significant differences among genotypes in fixed oil yield per hectare (FOY), EO content (EOC), and EO yield per hectare (EOY). EOY had a significant positive correlation with FOY and EOC. It is expected to improve all biochemical traits by 17.39%-94.62% over the improved varieties by selection of the top 5% landraces. Therefore, genotypes 90504, 219970, and 013_ATH were the top 5% best performed landraces by FOY and EOY over the improved varieties. So, through selection, it would also be possible to improve the studied biochemical traits of the genotypes. The principal component (PC) analysis (PCA) of four biochemical traits showed 85.86% of the total variance captured by the first two PCs. EOY and FOY were the main contributor traits to the variation in the first PC, whereas FOC and EOC were the main contributor traits to the variation in the second PC. The genotypes were grouped into three different clusters based on four biochemical traits with significant intercluster distance. This showed that there was sufficient diversity among the genotypes which can be exploited for the future N. sativa improvement program in Ethiopia.
Collapse
Affiliation(s)
- Basazinew Degu Gebremedin
- Wondo Genet Agricultural Research CenterEthiopian Institute of Agricultural Research, P. O. Box 198, Shashemene, Ethiopia
- School of Plant and Horticultural ScienceHawassa University, P. O. Box 05, Hawassa, Ethiopia
| | - Bizuayehu Tesfaye Asfaw
- School of Plant and Horticultural ScienceHawassa University, P. O. Box 05, Hawassa, Ethiopia
| | - Wendawek Abebe Mengesha
- Department of MolecularCellular and Microbial BiologyAddis Ababa University, P. O. Box 3434, Addis Ababa, Ethiopia
| | - Kebebew Assefa Abebe
- Debre Zeit Agricultural Research CenterEthiopian Institute of Agricultural Research, P. O. Box 32, Debre Zeit, Ethiopia
| |
Collapse
|
137
|
Elbouzidi A, Taibi M, El Hachlafi N, Haddou M, Jeddi M, Baraich A, Aouraghe A, Bellaouchi R, Mothana RA, Hawwal MF, Mesnard F, Hano C, Asehraou A, Chaabane K, El Guerrouj B, Addi M. Formulation of a Three-Component Essential Oil Mixture from Lavandula dentata, Rosmarinus officinalis, and Myrtus communis for Improved Antioxidant Activity. Pharmaceuticals (Basel) 2024; 17:1071. [PMID: 39204175 PMCID: PMC11357427 DOI: 10.3390/ph17081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The optimization of existing natural antioxidants that are highly effective is crucial for advancements in medicine and the food industry. Due to growing concerns regarding the safety of synthetic antioxidants, researchers are increasingly focusing on natural sources, particularly essential oils (EOs). Combining EOs might enhance antioxidant activity due to increased chemical diversity. This study investigates, for the first time, the antioxidant properties of EOs from Lavandula dentata, Rosmarinus officinalis, and Myrtus communis, both individually and in combination, using the augmented-simplex design methodology. The in vitro evaluation of the antioxidant activity was performed using DPPH and ABTS radical scavenging assays. Chromatography gas-mass spectrometry (CG-MS) revealed that 1,8-cineol (37.27%) and pinocarveol (12.67%) are the primary components of L. dentata; verbenone (16.90%), camphor (15.00%), and camphene (11.03%) are predominant in R. officinalis; while cineol (43.32%) is the main component of M. communis. The EOs showed varying scavenging activities against ABTS and DPPH radicals, with DPPH assay values ranging from 194.10 ± 3.01 to 541.19 ± 3.72 µg/mL and ABTS assay values ranging from 134.07 ± 1.70 to 663.42 ± 2.99 µg/mL. These activities were enhanced when the EOs were combined. The optimal antioxidant blend for DPPHIC50 consisted of 20% L. dentata, 50% R. officinalis, and 30% M. communis. For the highest ABTS radical scavenging activity, the best combination was 18% L. dentata, 43% R. officinalis, and 40% M. communis. These results highlight the potential of EO combinations as new natural formulations for use in cosmeceutical, food, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez P.O. Box 2202, Morocco; (N.E.H.); (M.J.)
| | - Mounir Haddou
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez P.O. Box 2202, Morocco; (N.E.H.); (M.J.)
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (A.B.); (R.B.); (A.A.)
| | - Aya Aouraghe
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (A.B.); (R.B.); (A.A.)
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.)
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.)
| | - François Mesnard
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, 80000 Amiens, France;
| | - Christophe Hano
- Institut de Chimie Organique et Analytique, Université d’Orléans-CNRS, UMR 7311 BP 6759, CEDEX 2, 45067 Orléans, France;
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (A.B.); (R.B.); (A.A.)
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
| |
Collapse
|
138
|
Khandehroo F, Moravvej G, Farhadian N, Ahmadzadeh H. Enhanced repellent and anti-nutritional activities of polymeric nanoparticles containing essential oils against red flour beetle, Tribolium castaneum. Sci Rep 2024; 14:18567. [PMID: 39127742 DOI: 10.1038/s41598-024-69318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Encapsulation of essential oils (EOs) is an important strategy that can be applied to intensify the stability and efficiency of these compounds in integrated pest management. The present study aimed to investigate the sub-lethal activity of polymer-based EOs nanoparticles against red flour beetle, Tribolium castaneum adults as an important critical pest of stored products. Chitosan nanoparticles (CSNPs) containing garlic and cinnamon essential oils (GEO and CEO) prepared using the ionic cross-link technique. Stability of nano-formulations evaluated over temperature and storage time. The fumigant effect (LC10, LC20, LC30) and contact toxicity (LC10, LC15, LC25) determined. In addition, the contact toxicities of EOs and their nanoparticles on nutritional indices evaluated. An olfactometer used to assess the repellent activity of EOs and EOs loaded in CSNPs (EOs@CSNPs) in sub-lethal fumigant concentrations. Characterization results showed GEO loaded in CSNPs has particle size of 231.14 ± 7.55 nm, polydispersity index (PDI) value of 0.15 ± 0.02, encapsulation efficiency (EE) percentage of 76.77 ± 0.20 and zeta potential of - 18.82 ± 0.90 mV, in which these values for the CEO loaded in CSNPs (CEO@CSNPs) changed to 303.46 ± 0.00 nm, 0.20 ± 0.05, 86.81 ± 0.00% and - 20.16 ± 0.35 mV, respectively. A lower PDI value for both CSNPs showed an appropriate NPs size distribution. Furthermore, NPs size and encapsulation efficiency did not change in various temperatures and during four months which confirm good stability of the EOs@CSNPs. In LC30 of GEO@CSNPs, the maximum repellency was determined as 66.66 ± 3.33. Among nutritional indices, in LC25 of GEO@CSNPs, the relative growth rate (RGR) (0.011 ± 0.003 mg.mg-1.day-1), relative consumption rate (RCR) (0.075 ± 0.004 mg.mg-1.day-1) and feeding deterrence index (FDI) (54.662 ± 1.616%) were more affected, so GEO@CSNPs was more effective than CEO@CSNPs. The results of repellent and anti-dietary activities of EOs and EOs@CSNPs confirmed the higher repellency and adverse effectivity on nutritional indices of Tribolium castaneum pest treated with EOs@CSNPs compared to free EOs. In conclusion, the NPs form of GEO and CEO can be a novel and efficient carrier for improving the repellent and anti-nutritional activities of EOs.
Collapse
Affiliation(s)
- Fatemeh Khandehroo
- Plant Protection Department, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamhossein Moravvej
- Plant Protection Department, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hossein Ahmadzadeh
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
139
|
Yan X, David SD, Du G, Li W, Liang D, Nie S, Ge M, Wang C, Qiao J, Li Y, Caiyin Q. Biological Properties of Sandalwood Oil and Microbial Synthesis of Its Major Sesquiterpenoids. Biomolecules 2024; 14:971. [PMID: 39199359 PMCID: PMC11352278 DOI: 10.3390/biom14080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Sandalwood essential oil is extracted from the heartwood part of mature sandalwood and is known for its pleasant fragrance and exceptional medicinal activities, including antimicrobial, antitumor, and anti-inflammatory properties. The (Z)-α-santalol and (Z)-β-santalol are the most vital ingredients contributing to sandalwood oil's bioactivities and unique woody odor characteristics. Metabolic engineering strategies have shown promise in transforming microorganisms such as yeast and bacteria into effective cell factories for enhancing the production of vital sesquiterpenes (santalene and santalol) found in sandalwood oil. This review aims to summarize sources of sandalwood oil, its components/ingredients, and its applications. It also highlights the biosynthesis of santalene and santalol and the various metabolic engineering strategies employed to reconstruct and enhance santalene and santalol biosynthesis pathways in heterologous hosts.
Collapse
Affiliation(s)
- Xiaoguang Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Sichone Daniel David
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Guangzhao Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Weiguo Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Dongmei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Shengxin Nie
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Mingyue Ge
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yanni Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| |
Collapse
|
140
|
Napiórkowska A, Szpicer A, Górska-Horczyczak E, Kurek M. Understanding emulsifier influence on complex coacervation: Essential oils encapsulation perspective. J Food Sci 2024; 89:4997-5015. [PMID: 38980959 DOI: 10.1111/1750-3841.17220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
The objective of this research was to explore the viability of pea protein as a substitute for gelatin in the complex coacervation process, with a specific focus on understanding the impact of incorporating an emulsifier into this process. The study involved the preparation of samples with varying polymer mixing ratios (1:1, 1:2, and 2:1) and emulsifier content. As core substances, black pepper and juniper essential oils were utilized, dissolved beforehand in grape seed oil or soybean oil, to minimize the loss of volatile compounds. In total, 24 distinct samples were created, subjected to freeze-drying to produce powder, and then assessed for their physicochemical properties. Results revealed the significant impact of emulsifier addition on microcapsule parameters. Powders lacking emulsifiers exhibited higher water solubility (57.10%-81.41%) compared to those with emulsifiers (24.64%-40.13%). Moreover, the emulsifier significantly decreased thermal stability (e.g., without emulsifier, Ton = 137.21°C; with emulsifier, Ton = 41.55°C) and adversely impacted encapsulation efficiency (highest efficiency achieved: 67%; with emulsifier: 21%).
Collapse
Affiliation(s)
- Alicja Napiórkowska
- Department of Technique and Product Development, Warsaw University of Life Sciences, Warszawa, Poland
| | - Arkadiusz Szpicer
- Department of Technique and Product Development, Warsaw University of Life Sciences, Warszawa, Poland
| | | | - Marcin Kurek
- Department of Technique and Product Development, Warsaw University of Life Sciences, Warszawa, Poland
| |
Collapse
|
141
|
Saber M, Mokhtari B. Effect of Eucalyptus globulus and Ferula assafoetida essential oils and their nanoformulations on the life table parameters of Tetranychus urticae (Acari: Tetranychidae). EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:297-315. [PMID: 38869726 DOI: 10.1007/s10493-024-00929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
One of the most damaging pests of agricultural crops across the globe is the two-spotted spider mite, Tetranychus urticae Koch. A wide variety of arthropods and plant pathogens can be controlled by essential oils, which are secondary metabolites produced by plants. It is possible to enhance the stability as well as the anti-pest efficiency of plant essential oils by encapsulation. Water distillation was used to extract the essential oils from Eucalyptus globulus and Ferula assafoetida. The chitosan nanoparticles were used to load both essential oils into nanoformulations. Studies were conducted on T. urticae life table characteristics under experimental circumstances to determine the sublethal impacts of essential oils and their nanoformulations. Intrinsic growth rate (r) for population exposed to E. globulus, F. assafoetida essential oils, their nanoformulations and the control were 0.1, 0.069, 0.051, 0.018 and 0.21 per day, respectively. F. assafoetida and E. globulus nanoformulations resulted the lowest fecundity compared to the other treatments. According the result of the lethal and sublethal effects of purified essential oils and nanoformulations of F. assafoetida and E. globulus, they would be recommended for controlling the two-spotted spider mites, T. urticae.
Collapse
Affiliation(s)
- Moosa Saber
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Batool Mokhtari
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
142
|
Abdulsalam RA, Ijabadeniyi OA, Sabiu S. Fatty acid-modified chitosan and nanoencapsulation of essential oils: A snapshot of applications. Carbohydr Res 2024; 542:109196. [PMID: 38936268 DOI: 10.1016/j.carres.2024.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Chitosan (CS) and its modification with fatty acid (FA) in addition to the nanoencapsulation with essential oils (EOs) have emerged as promising approaches with diverse applications, particularly in food and fruit preservation. This review aims to curate data on the prospects of CS modified with FA as nanostructures, serving as carriers for EOs and its application in the preservation of fruits. A narrative review with no restricted period was used for the general overview of CS and strategies for its modification with FA. Report on CS modified with FA and nanoencapsulation with EO and their applications were appraised. The prospects of CS modified with FA and EO nanoencapsulation in food and fruit preservation were outlined. Most chitosan-fatty acid (CS-FA) studies have found relevance in water, medical and pharmaceutical industries, with few studies on food preservation. CS-FA formulation with EOs shows substantial potential in preserving fruits and will significantly impact the food industry in the future by extending the shelf life of fruits and reducing food waste.
Collapse
Affiliation(s)
- Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Oluwatosin Ademola Ijabadeniyi
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
143
|
Ayed A, Caputo L, De Feo V, Elshafie HS, Fratianni F, Nazzaro F, Hamrouni L, Amri I, Mabrouk Y, Camele I, Polito F. Antimicrobial, anti-enzymatic and antioxidant activities of essential oils from some Tunisian E ucalyptus species. Heliyon 2024; 10:e34518. [PMID: 39113961 PMCID: PMC11303996 DOI: 10.1016/j.heliyon.2024.e34518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Many plants can produce essential oils (EOs), having various biological properties. This study evaluated the antioxidant, anti-enzymatic and antimicrobial effects of the EOs derived from leaves of Eucalyptus cladocalyx, E. angulosa, E. microcorys, E. ovata, E. diversicolor, E. saligna, E. sargentii and E. resinifera. The antioxidant activity of the EOs was carried out with three different methods (ABTS, DPPH and FRAP). In addition, their anti-colinesterases, anti α-amylase and anti α-glucosidase effects were assessed by spectrophotometric assays. The antimicrobial activities were tested against six phytopathogenic bacterial strains, including two G + ve (Bacillus mojavensis and Clavibacter michiganensis) and four G-ve (Pseudomonas fluorescence, P. syringae, Xanthomonas campestris and E. coli). The current study has also investigated the inhibition of biofilm formation and the possible effect on bacterial cells biofilm metabolism of three Gram-negative (Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumannii) and two Gram-positive pathogenic bacteria (Staphylococcus aureus and Listeria monocytogenes). The ABTS and DPPH tests indicated that E. diversicolor and E. saligna EOs showed high antioxidant activities, whereas FRAP test suggested that E. diversicolor EO exhibited the better antioxidant activity. E. resinifera and E. ovata EOs were the most active against cholinesterases instead E. ovata and E. sargentii EOs were more active against enzymes involved in diabetes. Antibacterial assays revealed that E. ovata and E. saligna EOs possess significant activity closely to tetracycline. Whereas, the antifungal assay revealed that all EOs have effectively suppressed the tested fungal growth. E. saligna EO showed substantial efficacy inhibiting both the mature biofilm (85.40 %) and metabolic activities (89.80 %) of L. monocytogenes. These results demonstrate the wide range of possible uses for Eucalyptus EOs in both agriculture and medicine fields, suggesting potential uses as strong antibiofilm agents and for biocontrol of phytopathogens.
Collapse
Affiliation(s)
- Amira Ayed
- Laboratory of Biotechnology and Nuclear Technology, National Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet Technopark, Sidi Thabet 2020, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Sidi Thabet 2020, Tunisia
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Hazem S. Elshafie
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | | | - Filomena Nazzaro
- Institute of Food Science, ISA-CNR, Via Roma, 64, 83100 Avellino, Italy
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Ismail Amri
- Laboratory of Biotechnology and Nuclear Technology, National Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet Technopark, Sidi Thabet 2020, Tunisia
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet Technopark, Sidi Thabet 2020, Tunisia
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
144
|
Borromeo I, De Luca A, Domenici F, Giordani C, Rossi L, Forni C. Antioxidant Properties of Lippia alba Essential Oil: A Potential Treatment for Oxidative Stress-Related Conditions in Plants and Cancer Cells. Int J Mol Sci 2024; 25:8276. [PMID: 39125846 PMCID: PMC11312047 DOI: 10.3390/ijms25158276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Lippia alba (Mill.) N.E.Br. ex Britton and P. Wilson is used in folk medicine of Central and South America for its biological activities: i.e., antifungal, antibacterial, antiviral, and anti-inflammatory. Based on ethnopharmacological information and the increasing interest in this species, this work aimed to test a possible wide use of its essential oil (EO) in pharmaceutical and horticultural applications. Therefore, we focused the attention on the antioxidant activity of the oil as a possible tool to overcome the oxidative stress in both applications. For this purpose, we have chosen three aggressive breast cancer cell lines and two horticultural species (Solanum lycopersicum L. and Phaseolus acutifolius L.) that are very sensitive to salt stress. We determined the antioxidant activity of L. alba EO through the quantification of phenols and flavonoids. Regarding tomato and bean plants under salt stress, L. alba EO was used for the first time as a seed priming agent to enhance plant salt tolerance. In this case, the seed treatment enhanced the content of phenolic compounds, reduced power and scavenger activity, and decreased membrane lipid peroxidation, thus mitigating the oxidative stress induced by salt. While in breast cancer cells the EO treatment showed different responses according to the cell lines, i.e., in SUM149 and MDA-MB-231 the EO decreased proliferation and increased antioxidant activity and lipid peroxidation, showing high cytotoxic effects associated with the release of lactate dehydrogenase, vice versa no effect was observed in MDA-MB-468. Such antioxidant activity opens a new perspective about this essential oil as a possible tool to counteract proliferation in some cancer cell lines and in horticulture as a seed priming agent to protect from oxidative damage in crops sensitive to salinity.
Collapse
Affiliation(s)
- Ilaria Borromeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (I.B.); (A.D.L.); (L.R.)
- PhD School in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (I.B.); (A.D.L.); (L.R.)
| | - Fabio Domenici
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Cristiano Giordani
- Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia;
- Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (I.B.); (A.D.L.); (L.R.)
| | - Cinzia Forni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (I.B.); (A.D.L.); (L.R.)
| |
Collapse
|
145
|
Scheau C, Pop CR, Rotar AM, Socaci S, Mălinaș A, Zăhan M, Coldea ȘD, Pop VC, Fit NI, Chirilă F, Criveanu HR, Oltean I. The Influence of Physical Fields (Magnetic and Electric) and LASER Exposure on the Composition and Bioactivity of Cinnamon Bark, Patchouli, and Geranium Essential Oils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1992. [PMID: 39065519 PMCID: PMC11281253 DOI: 10.3390/plants13141992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
In recent years, essential oils (EOs) have received increased attention from the research community, and the EOs of cinnamon, patchouli, and geranium have become highly recognized for their antibacterial, antifungal, antiviral, and antioxidant effects. Due to these properties, they have become valuable and promising candidates for addressing the worldwide threat of antimicrobial resistance and other diseases. Simultaneously, studies have revealed promising new results regarding the effects of physical fields (magnetic and electric) and LASER (MEL) exposure on seed germination, plant growth, biomass accumulation, and the yield and composition of EOs. In this frame, the present study aims to investigate the influence of MEL treatments on cinnamon, patchouli, and geranium EOs, by specifically examining their composition, antimicrobial properties, and antioxidant activities. Results showed that the magnetic influence has improved the potency of patchouli EO against L. monocytogenes, S. enteritidis, and P. aeruginosa, while the antimicrobial activity of cinnamon EO against L. monocytogenes was enhanced by the electric and laser treatments. All exposures have increased the antifungal effect of geranium EO against C. albicans. The antioxidant activity was not modified by any of the treatments. These findings could potentially pave the way for a deeper understanding of the efficiency, the mechanisms of action, and the utilization of EOs, offering new insights for further exploration and application.
Collapse
Affiliation(s)
- Camelia Scheau
- PhD School of Agricultural Engineering Sciences, USAMV Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Ancuța Mihaela Rotar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Sonia Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Anamaria Mălinaș
- Department of Environmental Protection and Engineering, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Marius Zăhan
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.Z.); (Ș.D.C.)
| | - Ștefania Dana Coldea
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.Z.); (Ș.D.C.)
| | - Viorel Cornel Pop
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Nicodim Iosif Fit
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania; (N.I.F.); (F.C.)
| | - Flore Chirilă
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania; (N.I.F.); (F.C.)
| | - Horia Radu Criveanu
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania;
| | - Ion Oltean
- Department of Plant Protection, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
146
|
de Souza HF, dos Santos FR, Cunha JS, Pacheco FC, Pacheco AFC, Soutelino MEM, Martins CCN, Andressa I, Rocha RDS, da Cruz AG, Paiva PHC, Brandi IV, Kamimura ES. Microencapsulation to Harness the Antimicrobial Potential of Essential Oils and Their Applicability in Dairy Products: A Comprehensive Review of the Literature. Foods 2024; 13:2197. [PMID: 39063282 PMCID: PMC11275287 DOI: 10.3390/foods13142197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
This literature review explores cutting-edge microencapsulation techniques designed to enhance the antimicrobial efficacy of essential oils in dairy products. As consumer demand for natural preservatives rises, understanding the latest advancements in microencapsulation becomes crucial for improving the shelf life and safety of these products. The bibliometric analysis utilized in this review highlighted a large number of documents published on this topic in relation to the following keywords: essential oils, AND antimicrobials, AND dairy products, OR microencapsulation. The documents published in the last 11 years, between 2013 and 2023, showed a diversity of authors and countries researching this topic and the keywords commonly used. However, in the literature consulted, no study was identified that was based on bibliometric analysis and that critically evaluated the microencapsulation of essential oils and their antimicrobial potential in dairy products. This review synthesizes findings from diverse studies, shedding light on the various encapsulation methods employed and their impact on preserving the quality of dairy goods. Additionally, it discusses the potential applications and challenges associated with implementation in the dairy industry. This comprehensive analysis aims to provide valuable insights for researchers, food scientists, and industry professionals seeking to optimize the use of essential oils with antimicrobial properties in dairy formulations.
Collapse
Affiliation(s)
- Handray Fernandes de Souza
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (H.F.d.S.); (R.d.S.R.)
| | - Fabio Ribeiro dos Santos
- Department of Food Technology, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil; (F.R.d.S.); (J.S.C.); (F.C.P.); (I.A.)
| | - Jeferson Silva Cunha
- Department of Food Technology, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil; (F.R.d.S.); (J.S.C.); (F.C.P.); (I.A.)
| | - Flaviana Coelho Pacheco
- Department of Food Technology, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil; (F.R.d.S.); (J.S.C.); (F.C.P.); (I.A.)
| | - Ana Flávia Coelho Pacheco
- Instituto de Laticínios Cândido Tostes, Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Lieutenant Luiz de Freitas, 116, Juiz de Fora 36045-560, MG, Brazil; (A.F.C.P.); (P.H.C.P.)
| | | | - Caio Cesar Nemer Martins
- Forest Engineering Department, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil;
| | - Irene Andressa
- Department of Food Technology, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil; (F.R.d.S.); (J.S.C.); (F.C.P.); (I.A.)
| | - Ramon da Silva Rocha
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (H.F.d.S.); (R.d.S.R.)
| | - Adriano Gomes da Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro, Rio de Janeiro 20270-021, RJ, Brazil;
| | - Paulo Henrique Costa Paiva
- Instituto de Laticínios Cândido Tostes, Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Lieutenant Luiz de Freitas, 116, Juiz de Fora 36045-560, MG, Brazil; (A.F.C.P.); (P.H.C.P.)
| | - Igor Viana Brandi
- Institute of Agricultural Sciences, Federal University of Minas Gerais, Av. Universitária, 1000, Montes Claros 39404-547, MG, Brazil;
| | - Eliana Setsuko Kamimura
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (H.F.d.S.); (R.d.S.R.)
| |
Collapse
|
147
|
Imam MW, Luqman S. Unveiling the mechanism of essential oil action against skin pathogens: from ancient wisdom to modern science. Arch Microbiol 2024; 206:347. [PMID: 38985339 DOI: 10.1007/s00203-024-03986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 07/11/2024]
Abstract
Essential oils are among the most well-known phyto-compounds, and since ancient times, they have been utilized in medicine. Over 100 essential oils have been identified and utilized as therapies for various skin infections and related ailments. While numerous commercial medicines are available in different dosage forms to treat skin diseases, the persisting issues include their side effects, toxicity, and low efficacy. As a result, researchers are seeking novel classes of compounds as substitutes for synthetic drugs, aiming for minimal side effects, no toxicity, and high efficacy. Essential oils have shown promising antimicrobial activity against skin-associated pathogens. This review presents essential knowledge and scientific information regarding essential oil's antimicrobial capabilities against microorganisms that cause skin infections. Essential oils mechanisms against different pathogens have also been explored. Many essential oils exhibit promising activity against various microbes, which has been qualitatively assessed using the agar disc diffusion experiment, followed by determining the minimum inhibitory concentration for quantitative evaluation. It has been observed that Staphylococcus aureus and Candida albicans have been extensively researched in the context of skin-related infections and their antimicrobial activity, including established modes of action. In contrast, other skin pathogens such as Staphylococcus epidermidis, Streptococcus pyogens, Propionibacterium acnes, and Malassezia furfur have received less attention or neglected. This review report provides an updated understanding of the mechanisms of action of various essential oils with antimicrobial properties. This review explores the anti-infectious activity and mode of action of essential against distinct skin pathogens. Such knowledge can be valuable in treating skin infections and related ailments.
Collapse
Affiliation(s)
- Md Waquar Imam
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India.
| |
Collapse
|
148
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
149
|
Pavela R, Novák M. Insecticidal Activity of Some Major Essential Oil Components against Metopolophium dirhodum and Its Predators. PLANTS (BASEL, SWITZERLAND) 2024; 13:1863. [PMID: 38999701 PMCID: PMC11244020 DOI: 10.3390/plants13131863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Essential oils (EOs) are plant metabolites with important insecticidal effects. Nevertheless, information on the efficacy of the major substances on aphids and their natural enemies is still missing. The objective of this paper is, therefore, to identify the efficacy of selected EO majority substances-β-citronellol, carvacrol, isoeugenol, and linalool, including their binary mixtures-on the mortality and fertility of the aphid Metopolophium dirhodum, an important cereal pest. The best efficacy was proven for the binary mixture of β-citronellol and linalool (1:1 ratio), for which the estimated LC50(90) is 0.56(1.58) mL L-1. This binary mixture applied in sublethal concentrations significantly reduced aphid fertility. It was found that the phenomenon can be attributed to β-citronellol, as the females treated with LC30 laid 45.9% fewer nymphs, on average, compared to the control. Although β-citronellol and linalool, including their 1:1 mixture, showed very good efficacy on aphid mortality, they were, on the other hand, very friendly to the larvae of Aphidoletes aphidimyza and Chrysoperla carnea, which are important aphid predators. Based on our results, the newly discovered synergically acting binary mixture β-citronellol/linalool can be recommended as an efficient substance suitable for the further development of botanical insecticides used against aphids.
Collapse
Affiliation(s)
- Roman Pavela
- Crop Research Institute, 161 06 Prague, Czech Republic;
- Department of Plant Protection, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Matěj Novák
- Crop Research Institute, 161 06 Prague, Czech Republic;
- Department of Plant Protection, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| |
Collapse
|
150
|
Visan AI, Negut I. Coatings Based on Essential Oils for Combating Antibiotic Resistance. Antibiotics (Basel) 2024; 13:625. [PMID: 39061307 PMCID: PMC11273621 DOI: 10.3390/antibiotics13070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
In the current era of widespread antimicrobial resistance, the utilization of essential oils (EOs) derived from plants has emerged as a promising alternative in combating pathogens that have developed resistance to antibiotics. This review explores the therapeutic potential of essential oils as valuable tools in restoring the efficacy of antibiotics, highlighting their unique ability to affect bacteria in multiple ways and target various cellular systems. Despite the challenge of elucidating their precise mode of action, EOs have shown remarkable results in rigorous testing against a diverse range of bacteria. This review explores the multifaceted role of EOs in combating bacterial microorganisms, emphasizing their extraction methods, mechanisms of action, and comparative efficacy against synthetic antibiotics. Key findings underscore the unique strategies EOs deploy to counter bacteria, highlighting significant differences from conventional antibiotics. The review extends to advanced coating solutions for medical devices, exploring the integration of EO formulations into these coatings. Challenges in developing effective EO coatings are addressed, along with various innovative approaches for their implementation. An evaluation of these EO coatings reveals their potential as formidable alternatives to traditional antibacterial agents in medical device applications. This renaissance in exploring natural remedies emphasizes the need to combine traditional wisdom with modern scientific advancements to address the urgent need for effective antimicrobial solutions in the post-antibiotic era.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania;
| |
Collapse
|