101
|
Średnicka P, Juszczuk-Kubiak E, Wójcicki M, Akimowicz M, Roszko MŁ. Probiotics as a biological detoxification tool of food chemical contamination: A review. Food Chem Toxicol 2021; 153:112306. [PMID: 34058235 DOI: 10.1016/j.fct.2021.112306] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Nowadays, people are exposed to diverse environmental and chemical pollutants produced by industry and agriculture. Food contaminations such as persistent organic pollutants (POPs), heavy metals, and mycotoxins are a serious concern for global food safety with economic and public health implications especially in the newly industrialized countries (NIC). Mounting evidence indicates that chronic exposure to food contaminants referred to as xenobiotics exert a negative effect on human health such as inflammation, oxidative stress, and intestinal disorders linked with perturbation of the composition and metabolic profile of the gut microflora. Although the physicochemical technologies for food decontamination are utilized in many cases but require adequate conditions which are often not feasible to be met in many industrial sectors. At present, one promising approach to reduce the risk related to the presence of xenobiotics in foodstuffs is a biological detoxification done by probiotic strains and their enzymes. Many studies confirmed that probiotics are an effective, feasible, and inexpensive tool for preventing xenobiotic-induced dysbiosis and alleviating their toxicity. This review aims to summarize the current knowledge of the direct mechanisms by which probiotics can influence the detoxification of xenobiotics. Moreover, probiotic-xenobiotic interactions with the gut microbiota and the host response were also discussed.
Collapse
Affiliation(s)
- Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, Warsaw, Poland.
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Marek Ł Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland.
| |
Collapse
|
102
|
Whitlock B. Telomere Length and Arsenic: Improving Animal Models of Toxicity by Choosing Mice With Shorter Telomeres. Int J Toxicol 2021; 40:211-217. [PMID: 34008434 DOI: 10.1177/10915818211009844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arsenic is both a chemotherapeutic drug and an environmental toxicant that affects hundreds of millions of people each year. Arsenic exposure in drinking water has been called the worst poisoning in human history. How arsenic is handled in the body is frequently studied using rodent models to investigate how arsenic both causes and treats disease. These models, used in a variety of arsenic-related testing, from tumor formation to drug toxicity monitoring, have virtually always been developed from animals with telomeres that are unnaturally long, likely because of accidental artificial selective pressures. Mice that have been bred in captivity in laboratory conditions, often for over 100 years, are the standard in creating animal models for this research. Using these mice introduces challenges to any work that can be affected by the length of telomeres and the related capacities for tissue repair and cancer resistance. However, arsenic research is particularly susceptible to the misuse of such animal models due to the multiple and various interactions between arsenic and telomeres. Researchers in the field commonly find mouse models and humans behaving very differently upon exposure to acute and chronic arsenic, including drug therapies which seem safe in mice but are toxic in humans. Here, some complexities and apparent contradictions of the arsenic carcinogenicity and toxicity research are reconciled by an explanatory model that involves telomere length explained by the evolutionary pressures in laboratory mice. A low-risk hypothesis is proposed which has the power to determine whether researchers can easily develop more powerful and accurate mouse models by simply avoiding mouse lineages that are very old and have strangely long telomeres. Swapping in newer mouse lineages for the older, long-telomere mice may vastly improve our ability to research arsenic toxicity with virtually no increase in cost or difficulty of research.
Collapse
Affiliation(s)
- Brayden Whitlock
- University of Alberta Health Accelerator, Edmonton, Alberta, Canada.,Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
103
|
Deng F, Zeng F, Chen G, Feng X, Riaz A, Wu X, Gao W, Wu F, Holford P, Chen ZH. Metalloid hazards: From plant molecular evolution to mitigation strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124495. [PMID: 33187800 DOI: 10.1016/j.jhazmat.2020.124495] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 05/25/2023]
Abstract
Metalloids such as boron and silicon are key elements for plant growth and crop productivity. However, toxic metalloids such as arsenic are increasing in the environment due to inputs from natural sources and human activities. These hazardous metalloids can cause serious health risks to humans and animals if they enter the food chain. Plants have developed highly regulated mechanisms to alleviate the toxicity of metalloids during their 500 million years of evolution. A better understanding the molecular mechanisms underlying the transport and detoxification of toxic metalloids in plants will shed light on developing mitigation strategies. Key transporters and regulatory proteins responsive to toxic metalloids have been identified through evolutionary and molecular analyses. Moreover, knowledge of the regulatory proteins and their pathways can be used in the breeding of crops with lower accumulation of metalloids. These findings can also assist phytoremediation by the exploration of plants such as fern species that hyperaccumulate metalloids from soils and water, and can be used to engineer plants with elevated uptake and storage capacity of toxic metalloids. In summary, there are solutions to remediate contamination due to toxic metalloids by combining the research advances and industrial technologies with agricultural and environmental practices.
Collapse
Affiliation(s)
- Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guang Chen
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xue Feng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Adeel Riaz
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaojian Wu
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Feibo Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| |
Collapse
|
104
|
Majumdar A, Upadhyay MK, Giri B, Srivastava S, Srivastava AK, Jaiswal MK, Bose S. Arsenic dynamics and flux assessment under drying-wetting irrigation and enhanced microbial diversity in paddy soils: A four year study in Bengal delta plain. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124443. [PMID: 33191021 DOI: 10.1016/j.jhazmat.2020.124443] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/02/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) assessment in agricultural soils and corresponding crops is necessary from the global health safety perspective. To the best of our knowledge, we are reporting for the first time, As flux determining parametric equations for paddy field with seasonal rice cultivation under conventional flooding and dry-wet irrigation approaches. Rigorous field experiments and measuring quantitative parameters, flushed out or percolated into the deeper soil As flux was assessed. A wintery (boro)-monsoonal (aman) study from 2016 to 2019 has been conducted showing the efficiency of dry-wet irrigation on reduction of soil As bioavailability. The reduction in boro was 52.4% in 2016 to 64.8% in 2019 while in aman, it was 61% in 2016 to 74.9% in 2019. Low bioavailability was correlated to plant's internal vascular structure that was found more rigid and firm in dry-wet field grown plants. Observed soil physico-chemical parameters clearly influenced As bioavailability as well as soil microbial community. Assessment of microbial diversity using metagenomics under altered water regime was done by population analysis, relative abundance, species richness, Krona chart comparison. Dry-wet field was found to be more diverse and enriched in microbial community than that of the flooded soil indicating an affective reduction of As bioavailability under biotic-abiotic factors.
Collapse
Affiliation(s)
- Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Munish Kumar Upadhyay
- Plant Stress Biology Laboratory, Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Biswajit Giri
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Manoj Kumar Jaiswal
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Sutapa Bose
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
105
|
Srivastava AK, Pandey M, Ghate T, Kumar V, Upadhyay MK, Majumdar A, Sanjukta AK, Agrawal AK, Bose S, Srivastava S, Suprasanna P. Chemical intervention for enhancing growth and reducing grain arsenic accumulation in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116719. [PMID: 33640652 DOI: 10.1016/j.envpol.2021.116719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) is a ubiquitous environmental carcinogen that enters the human food chain mainly through rice grains. In the present study, we evaluated the potential of thiourea (TU; non-physiological reactive oxygen species scavenger) in mitigating the negative effects of arsenic (As) stress in indica rice variety IR64, with the overall aim to reduce grain As accumulation. At seedling stage, As + TU treatment induced the formation of more numerous and longer crown roots compared with As alone. The As accumulation in main root, crown root, lower leaf and upper leaf was significantly reduced to 0.1-, 0.14-, 0.16-, 0.14-fold, respectively in As + TU treated seedlings compared with those of As alone. This reduced As accumulation was also coincided with light-dependent suppression in the expression levels of aquaporins and photosynthesis-related genes in As + TU treated roots. In addition, the foliar-supplemented TU under As-stress maintained reducing redox conditions which decreased the rate of As accumulation in flag leaves and, eventually grain As by 0.53-fold compared with those of As treatment. The agronomic feasibility of TU was validated under naturally As contaminated sites of Nadia (West Bengal, India). The tiller numbers and crop productivity (kg seed/ha) of TU-sprayed plants were increased by 1.5- and 1.18-fold, respectively; while, grain As accumulation was reduced by 0.36-fold compared with those of water-sprayed control. Thus, this study established TU application as a sustainable solution for cultivating rice in As-contaminated field conditions.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400 085, India; Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Manish Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400 085, India
| | - Tejashree Ghate
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400 085, India
| | - Vikash Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400 085, India
| | - Munish Kumar Upadhyay
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Abhay Kumar Sanjukta
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400 085, India
| | - Ashish Kumar Agrawal
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400 085, India
| | - Sutapa Bose
- Department of Earth Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400 085, India; Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
106
|
Modareszadeh M, Bahmani R, Kim D, Hwang S. Decreases in arsenic accumulation by the plasma membrane intrinsic protein PIP2;2 in Arabidopsis and yeast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116646. [PMID: 33561751 DOI: 10.1016/j.envpol.2021.116646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) is a toxic pollutant that mainly enters the human body via plants. Therefore, understanding the strategy for reducing arsenic accumulation in plants is important to human health and the environment. Aquaporins are ubiquitous water channel proteins that bidirectionally transport water across cell membranes and play a role in the transportation of other molecules, such as glycerol, ammonia, boric acid, and arsenic acid. Previously, we observed that Arabidopsis PIP2;2, encoding a plasma membrane intrinsic protein, is highly expressed in NtCyc07-expressing Arabidopsis, which shows a higher tolerance to arsenite (As(III)). In this study, we report that the overexpression of AtPIP2;2 enhanced As(III) tolerance and reduced As(III) levels in yeast. Likewise, AtPIP2;2-overexpressing Arabidopsis exhibited improved As(III) tolerance and lower accumulation of As(III). In contrast, atpip2;2 knockout Arabidopsis showed reduced As(III) tolerance but no significant change in As(III) levels. Interestingly, the AtPIP2;2 transcript and protein levels were increased in roots and shoots of Arabidopsis in response to As(III). Furthermore, As(III) efflux was enhanced and As(III) influx/accumulation was reduced in AtPIP2;2-expressing plants. The expression of AtPIP2;2 rescued the As(III)-sensitive phenotype of acr3 mutant yeast by reducing As levels and slightly reduced the As(III)-tolerant phenotype of fps1 mutant yeast by enhancing As content, suggesting that AtPIP2; 2 functions as a bidirectional channel of As(III), while the As(III) exporter activity is higher than the As(III) importer activity. All these results indicate that AtPIP2;2 expression promotes As(III) tolerance by decreasing As(III) accumulation through enhancing As(III) efflux in Arabidopsis. This finding can be applied to the generation of low arsenic crops for human health.
Collapse
Affiliation(s)
- Mahsa Modareszadeh
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea
| | - Ramin Bahmani
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea
| | - DongGwan Kim
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea
| | - Seongbin Hwang
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea.
| |
Collapse
|
107
|
Manuka R, Saddhe AA, Srivastava AK, Kumar K, Penna S. Overexpression of rice OsWNK9 promotes arsenite tolerance in transgenic Arabidopsis plants. J Biotechnol 2021; 332:114-125. [PMID: 33864842 DOI: 10.1016/j.jbiotec.2021.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/03/2021] [Accepted: 04/11/2021] [Indexed: 12/25/2022]
Abstract
Protein kinases are involved in the transfer of phosphate group to serine, threonine, and tyrosine residues of a target protein. With No Lysine (WNK) kinase is a member of the serine/threonine protein kinase family, which has conserved catalytic lysine (K) residue in subdomain I instead of being in subdomain II.The WNKs family members in plants are stress inducible and have been validated for their role in abiotic stress tolerance. In the present study, we have characterized Arabidopsis overexpressed lines of OsWNK9 regulated by the constitutive promoter under arsenite stress. Moreover, we have performed In silico expression analysis of OsWNK9 under nutrient deficiency and heavy metal stress. Three independent transgenic Arabidopsis (OsWNK9-OX T11, T12,andT13) lines showed tolerance to arsenite stress compared to wild-type (WT) plants. Under arsenite stress, transgenic lines T11, T12 and T13 showed 56.46, 57.8 and 51.66 % increased biomass respectively, as compared to WT plants. All three ArabidopsisOsWNK9-OX lines exhibited higher proline content, increased antioxidant enzyme activities and lower hydrogen peroxide levels under arsenite stress. Besides, the total antioxidant capacity in terms of DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging percentage was increased by 8-15 % in three independent OsWNK9-OX lines compared with those of WT plants. Protein-protein interaction analysis of OsWNK9 predicted interaction partners with protein kinase and oxidative stress-responsive protein. Co-expression analysis of OsWNK9 in phosphate deficiency and arsenate stress condition predicted various proteins including membrane transporter and transcription factors. Taken together, our results, for the first time, provide evidence that OsWNK9 could positively mediate arsenite stress tolerance in plants.
Collapse
Affiliation(s)
- Rakesh Manuka
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400084, India; Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India; Department of Biological Sciences and Biotechnology, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, 382426, India
| | - Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India; Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400084, India
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India.
| | - Suprasanna Penna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400084, India.
| |
Collapse
|
108
|
Upadhyay MK, Majumdar A, Barla A, Bose S, Srivastava S. Thiourea supplementation mediated reduction of grain arsenic in rice (Oryza sativa L.) cultivars: A two year field study. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124368. [PMID: 33153787 DOI: 10.1016/j.jhazmat.2020.124368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The present study delineates the interactions of arsenic (As), a carcinogenic metalloid, and thiourea (TU), a non-physiological reactive oxygen species (ROS) scavenger, in rice plants grown in As contaminated fields in West Bengal, India. The study was performed for four consecutive seasons (two boro and two aman) in 2016 and 2017 with two local rice cultivars; Gosai and Satabdi (IET-4786) in a control and two As contaminated experimental fields. Thiourea (0.05% wt/vol) treatment was given in the form of seed priming and foliar spray. Thiourea significantly improved growth and yield of rice plants and reduced As concentration in root, shoot, husk and grains in both cultivars and fields. The reduction in As concentration ranged from 10.3% to 27.5% in four seasons in different fields. The average (four seasons) increase in yield was recorded about ~8.1% and ~11.5% in control, ~20.2% and ~18.6% in experimental field 1, and ~16.2% and ~24.1% in experimental field 2, for gosai and satabdi, respectively. Mean hazard quotient (HQ) and incremental lifetime cancer risk (ILCR) values of As reduced upon TU supplementation for both cultivars as compared to that of non-TU plants. Hence, TU can be effectively used to cultivate rice safely in As contaminated fields.
Collapse
Affiliation(s)
- Munish Kumar Upadhyay
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, West Bengal, India
| | - Anil Barla
- Department of Earth Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, West Bengal, India
| | - Sutapa Bose
- Department of Earth Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, West Bengal, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
109
|
Yao Y, Zhou H, Yan XL, Yang X, Huang KW, Liu J, Li LJ, Zhang JY, Gu JF, Zhou Y, Liao BH. The Fe 3O 4-modified biochar reduces arsenic availability in soil and arsenic accumulation in indica rice (Oryza sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18050-18061. [PMID: 33410055 DOI: 10.1007/s11356-020-11812-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Arsenic (As)-contaminated paddy soil could result in elevated levels of As in rice plants and sequentially harm human health. The Fe3O4-modified biochar (NBC-Fe) prepared by the coprecipitation method was applied in a pot experiment to investigate its effect on mobility and bioavailability of As in soil and to reduce As accumulation in rice tissues (brown rice, husks, spikelets, leaves, stems, and roots). Compared with non-application (CK), application of NBC-Fe significantly increased the cation exchange capacity (CEC), decreased As availability, and raised the As concentration of crystalline hydrous oxide-bound fraction in the soil. The addition of 0.05-1.6% (w/w) NBC-Fe significantly reduced the As concentrations in brown rice by 9.4-47.3%, which was lower than the level set by the National Food Safety Standards of China (0.2 mg/kg). The NBC-Fe treatment decreased As concentrations in iron plaque (DCB-As), and the DCB-As had the very significant correlations (P < 0.01) with the As concentrations in different rice tissues (brown rice, husks, spikelets, leaves, stems, and roots). The NBC-Fe immobilized As to decrease As availability in soil and increased the amount and thickness of iron plaque to sequester As on the surfaces of rice root. This study demonstrates that NBC-Fe is a promising soil amendment for the remediation of As-contaminated soil, therefore reducing As accumulation in rice plant and safety risks for rice consumption.
Collapse
Affiliation(s)
- Yao Yao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Xiu-Lan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kang-Wen Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Juan Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Li-Juan Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jing-Yi Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiao-Feng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Yaoyu Zhou
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Bo-Han Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| |
Collapse
|
110
|
Arsenic uptake and toxicity in wheat (Triticum aestivum L.): A review of multi-omics approaches to identify tolerance mechanisms. Food Chem 2021; 355:129607. [PMID: 33799259 DOI: 10.1016/j.foodchem.2021.129607] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022]
Abstract
Arsenic (As) due to its widespread has become a primary concern for sustainable food production, especially in Southeast Asian countries. In that context, the present review presented a comprehensive detail of the available literature marking an assortment of As-induced impacts on wheat. The conclusive findings of past research suggest that As tends to grossly affect the germination, elongation, biomass, grain yield, and induce oxidative stress. Several human studies are suggestive of higher cancer risks (>1 × 10-6) due to the ingestion of wheat grains. However, the body of proof is limited and the scarcity of information limited understanding about tolerance mechanism in wheat against As. Therefore, the paper provided a reference from tolerance mechanism based studies in other crops like rice and maize. The generated knowledge of arsenomics would pave the way for plant breeders to develop resistant varieties for As to ensure sustainable food production.
Collapse
|
111
|
Zhang XY, Wang B, Xu S, Wang J, Gao L, Song YP, Lv JW, Xu FX, Li J, Chen J, Cui AQ, Zhang C, Wang H, Xu DX. Reactive oxygen species-evoked genotoxic stress mediates arsenic-induced suppression of male germ cell proliferation and decline in sperm quality. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124768. [PMID: 33310327 DOI: 10.1016/j.jhazmat.2020.124768] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/25/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate whether genotoxic stress mediates arsenic (As)-induced decline in sperm quality. Mice drank ultrapure water containing NaAsO2 (15 mg/L) for 70 days. The mature seminiferous tubules and epididymal sperm count were reduced in As-exposed mice. Cell proliferation, determined by immunostaining with Ki67, was suppressed in As-exposed seminiferous tubules and GC-1 cells. PCNA, a proliferation marker, was reduced in As-exposed mouse testes. Cell growth index was decreased in As-exposed GC-1 cells. Flow analysis showed that As-exposed GC-1 cells were retarded at G2/M phase. CDK1 and cyclin B1 were reduced in As-exposed GC-1 cells and mouse testes. Additional experiment revealed that p-ATR, a marker of genotoxic stress, was elevated in As-exposed mouse testes and GC-1 cells. Accordingly, p-p53 and p21, two downstream molecules of ATR, were increased in As-exposed GC-1 cells. Excess reactive oxygen species (ROS), measured by immunofluorescence, and DNA-strand break, determined by Comet assay, were observed in As-exposed GC-1 cells. γH2AX, a marker of DNA-strand break, was elevated in As-exposed seminiferous tubules and GC-1 cells. NAC alleviated As-evoked DNA damage, genotoxic stress, cell proliferation inhibition and sperm count reduction. In conclusion, ROS-evoked genotoxic stress mediates As-induced germ cell proliferation inhibition and decline in sperm quality.
Collapse
Affiliation(s)
- Xiao-Yi Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Bo Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Shen Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; The Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Jing Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Fei-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jian Li
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jing Chen
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - An-Qi Cui
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| |
Collapse
|
112
|
Zhang Z, Lin H, Ma C, Zhang L, Zelevinsky J, Xia M, Xu Y, White JC, Tyson J, He L. Integrating the Gutzeit method with X-Ray fluorescence spectroscopy for rapid quantification of inorganic arsenic in selected beverages. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
113
|
Menon M, Dong W, Chen X, Hufton J, Rhodes EJ. Improved rice cooking approach to maximise arsenic removal while preserving nutrient elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143341. [PMID: 33153748 DOI: 10.1016/j.scitotenv.2020.143341] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 05/27/2023]
Abstract
Inorganic arsenic (iAs) is a group 1 carcinogen, and consumption of rice can be a significant pathway of iAs exposure in the food chain. Although there are regulations in place to control iAs for marketed rice in some countries, additional measures are explored to remove arsenic from rice. Due to the surface-bound and soluble nature of iAs, previous studies have shown that it can be removed to a significant extent using different cooking methods. Towards this goal we modified and tested the absorption method in combination with four home-friendly cooking treatments (UA = unwashed and absorbed, WA = washed and absorbed, PSA = pre-soaked and absorbed, and PBA = parboiled and absorbed) using both brown and white rice (3 types each). The nutrient elements were measured using ICP-MS and arsenic speciation was carried out using LC-ICP-MS. Overall, our results show that PBA was the optimum approach assessed, removing 54% and 73% of inorganic arsenic (iAs) for brown and white rice respectively, raising the margin of exposure (MOE) by 3.7 for white rice and 2.2 times for brown rice, thus allowing the consumption of rice more safely for infants, children and adults. Other cooking treatments were effective in reducing the iAs concentration from white rice only. Here we also report changes in selected nutrient elements (P, K, Mg, Zn and Mn) which are relatively abundant in rice. In general, the treatments retained more nutrients in brown rice than white rice. No significant loss of Zn was observed from both rice types and the loss of other nutrients was similar or less than in comparison to reported losses from rice cooked in excess water in the literature. We conclude that PBA is a promising technique and further research is needed by including different regional rice types and water quality levels.
Collapse
Affiliation(s)
- Manoj Menon
- Department of Geography, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
| | - Wanrong Dong
- The School of Health and Related Research, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Xumin Chen
- The School of Health and Related Research, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Joseph Hufton
- Department of Geography, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Edward J Rhodes
- Department of Geography, University of Sheffield, Sheffield, S10 2TN, United Kingdom; Earth, Planetary, and Space Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
114
|
Identification and Characterization of Arsenic Transforming Bacillus Species from Abandoned Mining Regions of Madhya Pradesh and Jharkhand. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arsenic (As) comprehensiveness in nature has aggravated the expansion of arsenic fortification and detoxification components in microorganisms. Many microorganisms discovered today with ability to oxidize arsenite (As3+) into arsenate (As5+) or reduce As5+ to As3+. In this study, two bacterial strains designated 3AB3 and 5AB2 was isolated from the soil samples collected from abandoned mining region of Madhya Pradesh and Jharkhand, India and arsenic concentration has been determined in both water and soil samples. Enrichment culturing method was employed for isolating bacteria and further they are screened for their redox ability. The isolated strains exhibited maximum growth at 30°C, at pH 7.0 in arsenic stressed Luria Bertani broth, checked through UV-Vis spectrophotometer at OD-620nm. Biochemical characterization of isolated strains was performed with various confirmation tests. Phylogenetic analysis of selected bacterial strains through MEGA-X confirmed their relationship to the genus Bacillus. Further, they are tested for transformation ability of arsenic (MSA method) and gene identification was done in selected isolated strains (PCR method). The result of this study shows that, even after abandoning the mining activities, concentration of arsenic increases in ground water by reducing ability of bacterial strains. PCR analysis depicted the presence of genes arsR, arsB and arsC in the strain 3AB3 and gene aoxB in 5AB2 respectively.
Collapse
|
115
|
Mondal D, Rahman MM, Suman S, Sharma P, Siddique AB, Rahman MA, Bari ASMF, Kumar R, Bose N, Singh SK, Ghosh A, Polya DA. Arsenic exposure from food exceeds that from drinking water in endemic area of Bihar, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142082. [PMID: 32919317 DOI: 10.1016/j.scitotenv.2020.142082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Extensive evidence of elevated arsenic (As) in the food-chain, mainly rice, wheat and vegetables exists. Nevertheless, the importance of exposure from food towards total As exposure and associated health risks in areas with natural occurring As in drinking water is still often neglected, and accordingly mitigations are largely focused on drinking water only. In this study, the contribution of food over drinking water to overall As exposure was estimated for As exposed populations in Bihar, India. Increased lifetime cancer risk was predicted using probabilistic methods with input parameters based on detailed dietary assessment and estimation of As in drinking water, cooked rice, wheat flour and potato collected from 91 households covering 19 villages. Median total exposure was 0.83 μg/kgBW/day (5th and 95th percentiles were 0.21 and 11.1 μg/kgBW/day) and contribution of food (median = 49%) to overall exposure was almost equal to that from drinking water (median = 51%). More importantly and contrary to previous studies, food was found to contribute more than drinking water to As exposure, even when drinking water As was above the WHO provisional guide value of 10 μg/L. Median and 95th percentile excess lifetime cancer risks from food intake were 1.89 × 10-4 and 7.32 × 10-4 respectively when drinking water As was below 10 μg/L and 4.00 × 10-4 and 1.83 × 10-3 respectively when drinking water As was above 10 μg/L. Our results emphasise the importance of food related exposure in As-endemic areas, and, perhaps surprisingly, particularly in areas with high As concentrations in drinking water - this being partly ascribed to increases in food As due to cooking in high As water. These findings are timely to stress the importance of removing As from the food chain and not just drinking water in endemic areas.
Collapse
Affiliation(s)
- Debapriya Mondal
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK.
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Sidharth Suman
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK; Mahavir Cancer Institute and Research Center, Patna, India; Department of Environment and Water Management, A.N. College, Patna, India
| | - Pushpa Sharma
- Mahavir Cancer Institute and Research Center, Patna, India; Department of Environment and Water Management, A.N. College, Patna, India
| | - Abu Bakkar Siddique
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Aminur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - A S M Fazle Bari
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ranjit Kumar
- Mahavir Cancer Institute and Research Center, Patna, India
| | - Nupur Bose
- Department of Geography, A.N. College, Patna, India
| | | | - Ashok Ghosh
- Mahavir Cancer Institute and Research Center, Patna, India
| | - David A Polya
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
116
|
Osuna-Martínez CC, Armienta MA, Bergés-Tiznado ME, Páez-Osuna F. Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142062. [PMID: 33207489 DOI: 10.1016/j.scitotenv.2020.142062] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
We reviewed over 226 studies dealing with arsenic (As) in water bodies (124 sites or regions; 5,834 samples), soils (44; 2,700), sediments (56; 765), rocks (6; 85), mine waste (25; 582), continental plants (17 (77 species); 571), continental animals (10 (32 species); 3,525) and aquatic organisms (27 (100 species) 2,417) in Mexico. In general, higher As concentrations were associated with specific regions in the states of Hidalgo (21 sites), San Luis Potosi (SLP) (19), Baja California Sur (15), Zacatecas (5), and Morelos (4). High As levels have been detected in drinking water in certain locations of Coahuila (up to 435 μg L-1) and Sonora (up to 1004 μg L-1); in continental surficial water in Puebla (up to 780 μg L-1) and Matehuala, SLP (up to 8684 μg L-1); in groundwater in SLP (up to 16,000 μg L-1) and Morelia, Michoacán (up to 1506,000 μg L-1); in soils in Matehuala, SLP (up to 27,945 μg g-1) and the Xichú mining area, Guanajuato (up to 62,302 μg g-1); and in sediments in Zimapán, Hidalgo (up to 11,810 μg g-1) and Matehuala, SLP (up to 28,600 μg g-1). In contaminated arid and semi-arid areas, the plants P. laevigata and A. farnesiana exhibit the highest As levels. These findings emphasize the human and environmental risks associated with the presence of As in such regions. A synthesis of the available techniques for the removal of As in water and the remediation technologies for As contaminated soils and sediments is given. The As occurrence, origin (geogenic, thermal, mining and anthropogenic) and evolution in specific regions is summarized. Also, the mobilization and mechanisms to explain the As variability in continental environments are concisely given. For future research, a stratified regional sampling is proposed which prioritizes critical sites for waters, soils and sediments, and biota, considering the subpopulation of foods from agriculture, livestock, and seafood. It is concluded that more detailed and comprehensive studies concerning pollution levels, as well as As trends, transfer, speciation, and toxic effects are still required.
Collapse
Affiliation(s)
- C Cristina Osuna-Martínez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n Col. Centro, Mazatlán 82000, Sinaloa, Mexico
| | - María Aurora Armienta
- Universidad Nacional Autónoma de México, Instituto de Geofísica, Ciudad Universitaria, Delegación Coyoacán, 04360 México, D.F., Mexico; Member of El Colegio de Sinaloa, Antonio Rosales 435 Poniente, Culiacán, Sinaloa, Mexico
| | | | - Federico Páez-Osuna
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, P.O. Box 811, Mazatlán 82000, Sinaloa, Mexico; Member of El Colegio de Sinaloa, Antonio Rosales 435 Poniente, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
117
|
Application of Immobilization Techniques in Heavy Metal and Metalloid Remediation. IMMOBILIZATION STRATEGIES 2021. [DOI: 10.1007/978-981-15-7998-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
118
|
Abstract
Following an official request to EFSA from the European Commission, EFSA assessed the chronic dietary exposure to inorganic arsenic (iAs) in the European population. A total of 13,608 analytical results on iAs were considered in the current assessment (7,623 corresponding to drinking water and 5,985 to different types of food). Samples were collected across Europe between 2013 and 2018. The highest mean dietary exposure estimates at the lower bound (LB) were in toddlers (0.30 μg/kg body weight (bw) per day), and in both infants and toddlers (0.61 μg/kg bw per day) at the upper bound (UB). At the 95th percentile, the highest exposure estimates (LB-UB) were 0.58 and 1.20 μg/kg bw per day in toddlers and infants, respectively. In general, UB estimates were two to three times higher than LB estimates. The mean dietary exposure estimates (LB) were overall below the range of benchmark dose lower confidence limit (BMDL 01) values of 0.3-8 μg/kg bw per day established by the EFSA Panel on Contaminants in the Food Chain in 2009. However, for the 95th percentile dietary exposure (LB), the maximum estimates for infants, toddlers and other children were within this range of BMDL 01 values. Across the different age classes, the main contributors to the dietary exposure to iAs (LB) were 'Rice', 'Rice-based products', 'Grains and grain-based products (no rice)' and 'Drinking water'. Different ad hoc exposure scenarios (e.g. consumption of rice-based formulae) showed dietary exposure estimates in average and for high consumers close to or within the range of BMDL 01 values. The main uncertainties associated with the dietary exposure estimations refer to the impact of using the substitution method to treat the left-censored data (LB-UB differences), to the lack of information (consumption and occurrence) on some iAs-containing ingredients in specific food groups, and to the effect of food preparation on the iAs levels. Recommendations were addressed to improve future dietary exposure assessments to iAs.
Collapse
|
119
|
Pteris vittata Arsenic Accumulation Only Partially Explains Soil Arsenic Depletion during Field-Scale Phytoextraction. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4040071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Soil arsenic heterogeneity complicates our understanding of phytoextraction rates during arsenic phytoextraction with Pteris vittata, including in response to rate stimulation with nutrient treatments. In a 58-week arsenic phytoextraction field study, we determined the effects of soil arsenic concentrations, fertilizer application, and mycorrhizal fungi inoculation on P. vittata arsenic uptake rates, soil arsenic depletion, and arsenic soil–plant mass balances. Initial soil arsenic concentrations were positively correlated with arsenic uptake rates. Soil inoculation with mycorrhizal fungus Funneliformis mosseae led to 1.5–2 times higher fern aboveground biomass. Across all treatments, ferns accumulated a mean of 3.6% of the initial soil arsenic, and mean soil arsenic concentrations decreased by up to 44%. At depths of 0–10 cm, arsenic accumulation in P. vittata matched soil arsenic depletion. However, at depths of 0–20 cm, fern arsenic accumulation could not account for 61.5% of the soil arsenic depletion, suggesting that the missing arsenic could have been lost to leaching. A higher fraction of arsenic (III) (12.8–71.5%) in the rhizosphere compared to bulk soils suggests that the rhizosphere is a distinct geochemical environment featuring processes that could solubilize arsenic. To our knowledge, this is the first mass balance relating arsenic accumulation in P. vittata to significant decreases in soil arsenic concentrations under field conditions.
Collapse
|
120
|
Occurrence, speciation analysis and health risk assessment of arsenic in Chinese mitten crabs (Eriocheir sinensis) collected from China. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
121
|
Hu L, Wang X, Wu D, Zhang B, Fan H, Shen F, Liao Y, Huang X, Gao G. Effects of organic selenium on absorption and bioaccessibility of arsenic in radish under arsenic stress. Food Chem 2020; 344:128614. [PMID: 33208238 DOI: 10.1016/j.foodchem.2020.128614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/17/2020] [Accepted: 11/08/2020] [Indexed: 01/02/2023]
Abstract
Arsenic (As) exposure poses a serious threat to human health. The present study investigated the effects of organic Se on As accumulation, migration, and As bioaccessibility in As-stressed radish. The results showed that organic Se can effectively block the accumulation of As in radish, reduce As bioaccessibility, and promote the conversion of As from inorganic to organic form. The total As content decreased with increasing Se application in raw radish roots, the gastric fraction and the gastrointestinal fraction. Compared to the control (CK) group, the As bioaccessibility in the 24Se treatment of the yeast Se and malt Se groups decreased by 26% and 37%, respectively. These findings provide new comprehensive information for the application of organic Se to alleviate the toxicological effects of As and reduce the health risks of As in edible plants. In the future, it is necessary to carry out a deeper study of the interaction between Se and As through advanced analytical methods.
Collapse
Affiliation(s)
- Liang Hu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Xianglian Wang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China; Key Laboratory of Poyang Lake Environment and Resource Utilization of the Ministry of Education, School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of the Ministry of Education, School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Baojun Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang 330006, China.
| | - Houbao Fan
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Fangfang Shen
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Yingchun Liao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Xueping Huang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Guiqing Gao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| |
Collapse
|
122
|
de Almeida Sampaio Guido Y, Fonseca G, de Farias Soares A, da Silva ECN, Gonçalves Ostanik PA, Perobelli JE. Food-triad: An index for sustainable consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140027. [PMID: 32563875 DOI: 10.1016/j.scitotenv.2020.140027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
This study proposes an index for food labeling in order to promote sustainable consumption. The index is calculated by ranking multiple features from the environmental, health and nutritional dimensions of the target product in relation to a pre-set reference value; the obtained scores from each dimension are plotted in a radar chart resulting in a triangular area. An increase in area represents a greater impact. As examples, tuna and the potato-based foods at three different processing levels (in natura or minimally processed, processed and ultra-processed) were analyzed. For both cases, the index increases according to the processing grades and has proved to be capable of expressing in numbers and graphically a wide range of environmental, nutritional and health issues.
Collapse
Affiliation(s)
- Yasmin de Almeida Sampaio Guido
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| | - Gustavo Fonseca
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil.
| | - Alvaro de Farias Soares
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| | - Esther Cecília Nunes da Silva
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| | - Pedro Augusto Gonçalves Ostanik
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| | - Juliana Elaine Perobelli
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| |
Collapse
|
123
|
Islam MM, Takeyama N. Inorganic arsenic administration suppresses human neutrophil function in vitro. Hum Exp Toxicol 2020; 40:725-734. [PMID: 33063558 DOI: 10.1177/0960327120966040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arsenic, a major environmental toxicant and pollutant, is a global public health concern. Among its many adverse effects, arsenic is immunotoxic, but its effects on human neutrophil functions are not yet well-defined. In this study, we aimed to evaluate the in vitro effects of acute low-dose NaAsO2 exposure on human polymorphonuclear neutrophils (PMNs) for 12 h on the following innate defense mechanisms: formation of neutrophil extracellular traps (NETs), production of reactive oxygen species (ROS), and phagocytosis. Phorbol myristate acetate (PMA) was added to induce NETs formation, which was quantified by measuring cell-free extracellular DNA (cf-DNA), myeloperoxidase-conjugated (MPO)-DNA and neutrophil elastase-conjugated (NE)-DNA, and confirmed by immunofluorescence labeling and imaging. Extracellular bactericidal activity by NETs was evaluated by co-culturing Escherichia coli and PMNs in the presence of a phagocytic inhibitor. Levels of NETs in the culture medium after PMA stimulation was significantly lower in PMNs pre-exposed to arsenic than those not exposed to arsenic. Immunofluorescence staining and extracellular bactericidal activity by NETs revealed similar results. Phagocytosis and ROS production by PMNs were also significantly reduced by arsenic pre-exposure. Together, our findings provide new insights in arsenic immunotoxicity and suggest how it increases susceptibility to infectious diseases in humans.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Emergency and Critical Care Medicine, 12703Aichi Medical University, Nagakute, Aichi, Japan
| | - Naoshi Takeyama
- Department of Emergency and Critical Care Medicine, 12703Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
124
|
Arsenic speciation and elemental composition of rice samples from the Slovenian market. Food Chem 2020; 342:128348. [PMID: 33077276 DOI: 10.1016/j.foodchem.2020.128348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/18/2023]
Abstract
A survey of highly toxic arsenic compounds, together with some other elements was carried out on 40 polished rice samples (white, basmati and parboiled) and 10 brown rice samples from the Slovenian market. The average total As concentration was 157 ± 60 μg kg-1; highest levels were found in parboiled and brown rice and lowest in basmati. The average inorganic As concentration was 90 ± 35 μg kg-1. Dimethylarsinic acid and monomethylarsonic acid, which also exhibit high toxicity levels in some cases constitute >50% of total arsenic and might deserve more attention. Contrary to other foods, the total arsenic concentration in rice may even be a better health hazard indicator than the inorganic arsenic concentration. Elemental analysis of rice revealed large differences between polished and brown rice, especially for Mg, Mn, P, Fe and K, which were 2-4 times higher in brown rice than in polished rice.
Collapse
|
125
|
Elemental (As, Zn, Fe and Cu) analysis and health risk assessment of rice grains and rice based food products collected from markets from different cities of Gangetic basin, India. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
126
|
Bocca B, Pino A, Brumatti LV, Rosolen V, Ronfani L, D'Aversa J, Ruggieri F, Petrucci F, Calamandrei G, Barbone F, Alimonti A. Children exposure to inorganic and organic arsenic metabolites: A cohort study in Northeast Italy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114826. [PMID: 32454361 DOI: 10.1016/j.envpol.2020.114826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to provide urinary levels of total arsenic (TAs) and As species as arsenobetaine (AsB), arsenocholine (AsC), inorganic As (i.e., [As(III)+As(V)]), methylarsonic acid (MMA) and dimethylarsinic acid (DMA) in 7 year-old-children (n = 200) enrolled in the Northern Adriatic Cohort II (NACII), a prospective cohort in a coastal area of Northeast Italy. TAs was determined by sector field-inductively coupled plasma mass spectrometry (SF-ICP-MS) and AsB, AsC, As(III), As(V), MMA and DMA by ion chromatography coupled to ICP-MS (IC-ICP-MS). The geometric mean (GM) for TAs was 12.9 μg/L and for [iAs + MMA + DMA] was 4.26 μg/L. The species AsB (GM of 5.09 μg/L) and DMA (GM of 3.20 μg/L) had the greatest percentage contribution to TAs levels; a greater percentage contribution from AsB is seen at TAs >10 μg/L and from DMA at TAs <10 μg/L. Urinary [iAs + MMA] levels were positively associated with [iAs + MMA + DMA] and DMA with AsB levels. Fish, shellfish and crustaceans consumption increased the AsB and TAs levels, while rice intake, mothers' education level and selenium (Se) concentration influenced the DMA concentration. Children have a high capacity to metabolize and detoxify the iAs because of the higher secondary methylation index (ratio DMA/MMA) with respect to primary methylation index (ratio MMA/iAs). In addition, the median level of [iAs + MMA + DMA] in the whole population of children was lower than the Biomonitoring Equivalent (BE) value for non-cancer endpoints. Also the Margin of Safety (MOS) value based on the population median was greater than 1, thus the exposure to the toxicologically relevant As species was not likely to be of concern.
Collapse
Affiliation(s)
| | - Anna Pino
- Istituto Superiore di Sanità, Rome, Italy
| | | | - Valentina Rosolen
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Luca Ronfani
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | | | | | | | | | - Fabio Barbone
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | | |
Collapse
|
127
|
|
128
|
Finke H, Wandt VK, Ebert F, Guttenberger N, Glabonjat RA, Stiboller M, Francesconi KA, Raber G, Schwerdtle T. Toxicological assessment of arsenic-containing phosphatidylcholines in HepG2 cells. Metallomics 2020; 12:1159-1170. [PMID: 32459268 DOI: 10.1039/d0mt00073f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Arsenolipids include a wide range of organic arsenic species that occur naturally in seafood and thereby contribute to human arsenic exposure. Recently arsenic-containing phosphatidylcholines (AsPCs) were identified in caviar, fish, and algae. In this first toxicological assessment of AsPCs, we investigated the stability of both the oxo- and thioxo-form of an AsPC under experimental conditions, and analyzed cell viability, indicators of genotoxicity and biotransformation in human liver cancer cells (HepG2). Precise toxicity data could not be obtained owing to the low solubility in the cell culture medium of the thioxo-form, and the ease of hydrolysis of the oxo-form, and to a lesser degree the thioxo-form. Hydrolysis resulted amongst others in the respective constituent arsenic-containing fatty acid (AsFA). Incubation of the cells with oxo-AsPC resulted in a toxicity similar to that determined for the hydrolysis product oxo-AsFA alone, and there were no indices for genotoxicity. Furthermore, the oxo-AsPC was readily taken up by the cells resulting in high cellular arsenic concentrations (50 μM incubation: 1112 ± 146 μM As cellular), whereas the thioxo-AsPC was substantially less bioavailable (50 μM incubation: 293 ± 115 μM As cellular). Speciation analysis revealed biotransformation of the AsPCs to a series of AsFAs in the culture medium, and, in the case of the oxo-AsPC, to as yet unidentified arsenic species in cell pellets. The results reveal the difficulty of toxicity studies of AsPCs in vitro, indicate that their toxicity might be largely governed by their arsenic fatty acid content and suggest a multifaceted human metabolism of food derived complex arsenolipids.
Collapse
Affiliation(s)
- Hannah Finke
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany.
| | - Viktoria K Wandt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany. and TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany.
| | - Nikolaus Guttenberger
- Institute of Chemistry - Analytical Chemistry, NAWI Graz, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Ronald A Glabonjat
- Institute of Chemistry - Analytical Chemistry, NAWI Graz, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Michael Stiboller
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany. and Institute of Chemistry - Analytical Chemistry, NAWI Graz, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Kevin A Francesconi
- Institute of Chemistry - Analytical Chemistry, NAWI Graz, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Georg Raber
- Institute of Chemistry - Analytical Chemistry, NAWI Graz, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany. and TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| |
Collapse
|
129
|
Safa M, O'Carroll D, Mansouri N, Robinson B, Curline G. Investigating arsenic impact of ACC treated timbers in compost production (A case study in Christchurch, New Zealand). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114218. [PMID: 32126437 DOI: 10.1016/j.envpol.2020.114218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 02/05/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
The arsenic concentration is an important issue in compost production. The main inputs of a compost factory, including kerbsides, green wastes, food industry wastes, and river weeds are investigated in this study. Also, this study investigated how treated timbers, ashes, and other contamination can impact arsenic concentration in compost production. The results showed that most treated timbers and all ashes of treated and untreated timbers contained significant amounts of arsenic. These results revealed that the presence of a small amount of treated timber ashes can significantly increase the arsenic concentration in composts. The results of the study show the arsenic concentration in compost increase during cold months, and it dropped during summer, which would be mostly because of high arsenic concentration in ashes of log burners. This study shows ashes of burning timbers can impact arsenic contamination mostly because of using Copper-Chrome-Arsenic wood preservatives (CCA). Also, the lab results show the arsenic level even in ashes of untreated timber is around 96 ppm. The ashes of H3, H4, and H5 treated timbers contain approximately 133,000, 155,000, and 179,000 ppm of arsenic, which one kg of them can increase arsenic concentration around 10 ppm in 13.3, 15.5 and 17.9 tons of dry compost products. The main problem is many people look at ashes and treated timber as organic materials; however, ashes of treated and untreated timbers contained high concentrations of arsenic. Therefore, it was necessary to warn people about the dangers of putting any ashes in organic waste bins.
Collapse
Affiliation(s)
- Majeed Safa
- Department of Land Management and Systems, Lincoln University, New Zealand.
| | | | - Nazanin Mansouri
- Department of Land Management and Systems, Lincoln University, New Zealand
| | - Brett Robinson
- School of Physical & Chemical Sciences, University of Canterbury, New Zealand
| | - Greg Curline
- Department of Soil and Physical Sciences, Lincoln University, New Zealand
| |
Collapse
|
130
|
Gong Y, Qu Y, Yang S, Tao S, Shi T, Liu Q, Chen Y, Wu Y, Ma J. Status of arsenic accumulation in agricultural soils across China (1985-2016). ENVIRONMENTAL RESEARCH 2020; 186:109525. [PMID: 32330770 DOI: 10.1016/j.envres.2020.109525] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Based on 1677 published studies, 1648 sites across China collected from 1985 to 2016 were used to research the concentrations of arsenic in agricultural soils. In order to understand the status of arsenic pollution in agricultural soils in China over the past three decades, and to learn about the arsenic stocks in agricultural soils in various regions, and compared the relationship with annual arsenic emissions in China, and finally evaluated the potential ecological risks and human health risks. The median arsenic concentration in the surface agricultural soils of China was 10.40 mg Kg-1, and it ranged from 0.4 mg Kg-1 to 175.8 mg Kg-1. The inventory of arsenic in Chinese agricultural surface soils was estimated to be 3.71 × 106 t. In this study, the arsenic concentrations were found to be higher in Central, South, and Southwest China than those in other regions. The trend of arsenic pollution in agricultural soils has gradually increased over the past three decades. However, the growth rate of arsenic concentrations pollution in farmlands agricultural in China slowed during 2012-2016. The ecological risk index and geoaccumulation index revealed that arsenic in Chinese agricultural soil poses a low risk to the ecosystem. For human health assessment, the dietary pathway was the main pathway of exposure to arsenic in farmland soil of China. However, children's soil intake also contributed 34.48% to the exposure to arsenic, owing to their behavior. This study can provide a reference for the management of arsenic agricultural pollution in farmland soils in China.
Collapse
Affiliation(s)
- Yiwei Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajing Qu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shuhui Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shiyang Tao
- South China Institute of Environmental Sciences, MEE, Guangzhou, 510655, China
| | - Taoran Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qiyuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yixiang Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yihang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
131
|
Yang X, Zhao H, Wang Y, Liu J, Guo M, Fei D, Mu M, Xing M. The Activation of Heat-Shock Protein After Copper(II) and/or Arsenic(III)-Induced Imbalance of Homeostasis, Inflammatory Response in Chicken Rectum. Biol Trace Elem Res 2020; 195:613-623. [PMID: 31473897 DOI: 10.1007/s12011-019-01871-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/18/2019] [Indexed: 11/24/2022]
Abstract
Arsenic and copper, two toxic pollutants, are powerful inducers of oxidative stress. Exposure to copper and arsenic can cause intestinal injury in cockerel. This study was carried out to investigate the effects of these two pollutants on the gastrointestinal tract of cockerels. Experimental results showed that the activity of antioxidant enzymes (catalase and glutathione peroxidase) was inhibited and the ionic balance was destroyed after exposure to copper sulfate (300 mg/kg) and/or arsenic trioxide (30 mg/kg). However, the expression of pro-inflammatory cytokines (nuclear factor kappa-B, cyclooxygenase-2, tumor necrosis factor-α, and prostaglandin E2 synthases) increased markedly. Damages to the biofilm structure and inflammatory cell infiltration were simultaneously observed during histological examination. Heat-shock proteins were also expressed in large quantities after exposure to the poisons. Collectively, exposure to arsenite and/or Cu2+ can cause rectal damage in cockerels, inducing inflammation and an imbalance in immune system responses. Sometimes, exposure to both pollutants can produce even more toxic effects. Heat-shock proteins can protect the tissue from the exotoxins but the specific mechanisms require exploration. After oral ingestion of toxins, the rectum can still be damaged, necessitating attention to the safety of poultry breeding, human food safety, and environmental protection.
Collapse
Affiliation(s)
- Xin Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Juanjuan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Dongxue Fei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
132
|
González de las Torres AI, Giráldez I, Martínez F, Palencia P, Corns WT, Sánchez-Rodas D. Arsenic accumulation and speciation in strawberry plants exposed to inorganic arsenic enriched irrigation. Food Chem 2020; 315:126215. [DOI: 10.1016/j.foodchem.2020.126215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
|
133
|
Upadhyay MK, Majumdar A, Suresh Kumar J, Srivastava S. Arsenic in Rice Agro-Ecosystem: Solutions for Safe and Sustainable Rice Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
134
|
Abstract
Arsenic (As) is widely used in the modern industry, especially in the production of pesticides, herbicides, wood preservatives, and semiconductors. The sources of As such as contaminated water, air, soil, but also food, can cause serious human diseases. The complex mechanism of As toxicity in the human body is associated with the generation of free radicals and the induction of oxidative damage in the cell. One effective strategy in reducing the toxic effects of As is the usage of chelating agents, which provide the formation of inert chelator–metal complexes with their further excretion from the body. This review discusses different aspects of the use of metal chelators, alone or in combination, in the treatment of As poisoning. Consideration is given to the therapeutic effect of thiol chelators such as meso-2,3-dimercaptosuccinic acid, sodium 2,3-dimercapto-1-propanesulfonate, 2,3-dimercaptopropanol, penicillamine, ethylenediaminetetraacetic acid, and other recent agents against As toxicity. The review also considers the possible role of flavonoids, trace elements, and herbal drugs as promising natural chelating and detoxifying agents.
Collapse
|
135
|
Liu M, Han Z. Distribution and Bioavailability of Heavy Metals in Soil Aggregates from the Fenhe River Basin, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:532-537. [PMID: 32232507 DOI: 10.1007/s00128-020-02810-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Accumulation, bioavailability and potential ecological risk of seven heavy metals - chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) - have been analyzed in agricultural soil aggregates with particle size of > 1 mm, 0.25-1 mm, 0.05-0.25 mm, and < 0.05 mm from the Fenhe River Basin (FRB). Accumulation factor (AF) analysis demonstrated that heavy metals tend to be enriched in < 0.05 mm soil aggregate. The bioavailability to plants of Cu, Zn, and Cd was higher than that of other metals and increased with the decrease in soil aggregate particle sizes. Risk assessment code (RAC) of Ni, Cu, Zn and Cd were 13.84%-21.08%, 7.13%-13.74%, 32.08%-51.82% and 29.38%-43.82%, indicating that Cu, Zn, Cd and Ni had a low to very high risk to other ecosystems, and the smaller the particle size (0.05-0.25 mm and < 0.05 mm), the greater ecological risk.
Collapse
Affiliation(s)
- Minxia Liu
- College of Forestry, Shanxi Agricultural University, No.1 Mingxian Street, Taigu County, 030801, Shanxi, China.
| | - Zhiqiang Han
- Periodical Press of Shanxi, Agricultural University, Taigu, 030801, China
| |
Collapse
|
136
|
Bi Z, Zhang Q, Fu Y, Wadgaonkar P, Zhang W, Almutairy B, Xu L, Rice M, Qiu Y, Thakur C, Chen F. Nrf2 and HIF1α converge to arsenic-induced metabolic reprogramming and the formation of the cancer stem-like cells. Theranostics 2020; 10:4134-4149. [PMID: 32226544 PMCID: PMC7086359 DOI: 10.7150/thno.42903] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/06/2020] [Indexed: 01/02/2023] Open
Abstract
In this report, we demonstrated that inorganic arsenic (iAs) induces generation of the cancer stem-like cells (CSCs) through Nrf2-dependent HIF1α activation, and the subsequent metabolic reprogramming from mitochondrial oxidative phosphorylation to glycolysis in epithelial cells. Methods: Genome-wide ChIP-seq analysis was performed to investigate the global binding of Nrf2 and/or HIF1α on the genome in the cells treated with iAs. Both untargeted metabolomics and UDP-13C-glucose flux were applied to determine metabolic reprogramming in the iAs-induced CSCs. The role of Nrf2 on iAs-induced HIF1α and other stemness gene expression was validated by lentiviral transfection of Nrf2 inhibitor Keap1 and CRISPR-Cas9-mediated Nrf2 gene knockout, respectively. Results: The CSCs induced by iAs exhibit a diminished mitochondrial oxidative phosphorylation and an enhanced glycolysis that is actively shunted to the hexosamine biosynthetic pathway (HBP) and serine/glycine pathway. ChIP-seq data revealed that treatment of the cells with iAs amplified Nrf2 enrichment peaks in intergenic region, promoter and gene body. In contrast, a shift of the HIF1α peaks from distal intergenic region to gene promoter and the first exon was noted. Both Nrf2 and HIF1α are responsible for the iAs-induced expression of the glycolytic genes and the genes important for the stemness of the CSCs. Intriguingly, we also discovered a mutual transcriptional regulation between Nrf2 and HIF1α. Inhibition of Nrf2 by lentiviral infection of Keap1, or knockout of Nrf2 by CRISPR-Cas9 gene editing, not only blocked iAs-induced HIF1α activation, but reduced the expression of the key stemness genes for the formation of CSCs also. Conclusion: We demonstrated that Nrf2 activation is an initiating signal for iAs-induced HIF1α activation, and Nrf2 and HIF1α played a concerted role on inducing metabolic reprogramming and the CSCs.
Collapse
Affiliation(s)
- Zhuoyue Bi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, 8 Zhudaoquanbei Road, Wuhan 430079, China
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yao Fu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Wenxuan Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- College of Pharmacy, Al-Dawadmi Campus, Shaqra University, P.O.Box 11961, Riyadh, Kingdom of Saudi Arabia
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - M'Kya Rice
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yiran Qiu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| |
Collapse
|
137
|
Chen X, Zeng XC, Kawa YK, Wu W, Zhu X, Ullah Z, Wang Y. Microbial reactions and environmental factors affecting the dissolution and release of arsenic in the severely contaminated soils under anaerobic or aerobic conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109946. [PMID: 31759742 DOI: 10.1016/j.ecoenv.2019.109946] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
The soils near the abandoned Shimen Realgar Mine are characterized by containing extremely high contents of total and soluble arsenic. To determine the microbial reactions and environmental factors affecting the mobilization and release of arsenic from soils phase into pore water, we collected 24 soil samples from the representative points around the abandoned Shimen Realgar Mine. They contained 8310.84 mg/kg total arsenic and 703.21 mg/kg soluble arsenic in average. The soluble arsenic in the soils shows significant positive and negative correlations with environmental SO42-/TOC/pH/PO43-, and Fe/Mn, respectively. We found that diverse dissimilatory As(V)-respiring prokaryotes (DARPs) and As(III)-oxidizing bacteria (AOB) exist in all the examined soil samples. The activities of DARPs led to 65-1275% increase of soluble As(III) in the examined soils after 21.0 days of anaerobic incubation, and the microbial dissolution and releases of arsenic show significant positive and negative correlations with the environmental pH/TN and NH4+/PO43-, respectively. In comparison, the activities of AOB led to 24-346% inhibition of the dissolved oxygen-mediated dissolution of arsenic in the soils, and the AOB-mediated releases of As(V) show significant positive and negative correlations with the environmental SO42- and pH/NH4+, respectively. The microbial communities of 24 samples contain 54 phyla of bacteria that show extremely high diversities. Total arsenic, TOC, NO3- and pH are the key environmental factors that indirectly controlled the mobilization and release of arsenic via influencing the structures of the microbial communities in the soils. This work gained new insights into the mechanism for how microbial communities catalyze the dissolution and releases of arsenic from the soils with extremely high contents of arsenic.
Collapse
Affiliation(s)
- Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China.
| | - Yahaya Kudush Kawa
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Weiwei Wu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Xianbin Zhu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| |
Collapse
|
138
|
Shrivastava A, Barla A, Majumdar A, Singh S, Bose S. Arsenic mitigation in rice grain loading via alternative irrigation by proposed water management practices. CHEMOSPHERE 2020; 238:124988. [PMID: 31645266 DOI: 10.1016/j.chemosphere.2019.124988] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Over the past three decades, the occurrence of high concentrations of arsenic (As) in drinking-water and its subsequent poisoning in rice has been recognized as a major public-health concern globally, especially in Ganga Delta Plain with more than 80 million peoples in serious As exposure far beyond than its allowable limit. An extensive field study was conducted for consecutive four years viz. 2013 to 2016, introducing a process of intermittent irrigation pattern comparing to the conventional practice of rice cultivation in India. The practice provides a combination of aerobic and anaerobic irrigation resulting better rice productivity with lesser arsenic mobility and accumulation in rice grains. This present research finding clearly points out to the marked reduction of arsenic load from average 1.6 mg/kg to 0.5 mg/kg in rice grain, much closer to FAO/WHO prescribed safe limit and in the continuous practice of proposed agricultural strategy resulting in a gradual decrease of 15% bioavailable arsenic in each year. Total productivity (in kg/hectare) also increased by 540 kg/year in boro and 340 kg/year in amon subsequently achieving the prescribed safe limit of As in grain.
Collapse
Affiliation(s)
- Anamika Shrivastava
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India, 741246
| | - Anil Barla
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India, 741246
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India, 741246
| | - Surjit Singh
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India, 741246
| | - Sutapa Bose
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India, 741246.
| |
Collapse
|
139
|
Rong Z, Tang X, Wu L, Chen X, Dang W, Li X, Huang L, Wang Y. The effect of precursor speciation on the growth of scorodite in an atmospheric scorodite synthesis. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191619. [PMID: 32218981 PMCID: PMC7029892 DOI: 10.1098/rsos.191619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
In this study, we propose a growth pathway of scorodite in an atmospheric scorodite synthesis. Scorodite is a non-direct product, which is derived from the transformation of its precursor. Different precursor speciation leads to different crystallinity and morphology of synthesized scorodite. At 10 and 20 g l-1 initial arsenic concentration, the precursor of scorodite is identified as ferrihydrite. At 10 g l-1 initial arsenic concentration, low arsenic concentration is unfavourable to the complex between arsenate and ferrihydrite, inhibiting the transformation of ferrihydrite into scorodite. The synthesized scorodite is 1-3 µm in size. At 20 g l-1 initial arsenic concentration, higher arsenic concentration favours the complex between arsenate and ferrihydrite. The transformation process is accessible. Large scorodite in the particle size of 5-20 µm with excellent crystallinity is obtained. However, the increasing initial arsenic concentration is not always a positive force for the growth of scorodite. When initial arsenic concentration increases to 30 g l-1, Fe(O,OH)6 octahedron preferentially connects to As(O,OH)4 tetrahedron to form Fe H 2 As O 4 2 + or FeHAs O 4 + ion. Fe-As complex ions accumulate in solution. Once the supersaturation exceeds the critical value, the Fe-As complex ions deprotonate and form poorly crystalline ferric arsenate. Even poorly crystalline ferric arsenate can also transform to crystalline scorodite, its transformation process is much slower than ferrihydrite. Therefore, incomplete developed scorodite with poor crystallinity is obtained.
Collapse
Affiliation(s)
| | - Xincun Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| | | | | | | | | | | | - Yang Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
140
|
Ventura M, Cardoso C, Bandarra NM, Delgado I, Coelho I, Gueifão S, Martins M, Costa MH, Castanheira I. Effect of season and proximate composition on the Br, As, Cd and Pb contents in different kinds of key foods consumed in Portugal. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marta Ventura
- Food and Nutrition Department National Health Institute Doutor Ricardo Jorge (INSA, IP) Av. Padre Cruz 1649‐016 Lisbon Portugal
- MARE ‐ Marine and Environmental Sciences Centre Department of Sciences and Environmental Engineering Nova School of Science and Technology (FCT Nova) 2829-516 Caparica Portugal
| | - Carlos Cardoso
- Division of Aquaculture and Upgrading Portuguese Institute for the Sea and Atmosphere IPMA Avenida de Brasília 1449‐006 Lisboa Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Rua dos Bragas 289 4050‐123 Porto Portugal
| | - Narcisa Maria Bandarra
- Division of Aquaculture and Upgrading Portuguese Institute for the Sea and Atmosphere IPMA Avenida de Brasília 1449‐006 Lisboa Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Rua dos Bragas 289 4050‐123 Porto Portugal
| | - Inês Delgado
- Food and Nutrition Department National Health Institute Doutor Ricardo Jorge (INSA, IP) Av. Padre Cruz 1649‐016 Lisbon Portugal
- Chemical Engineering Department Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais, 1 1049‐001 Lisboa Portugal
| | - Inês Coelho
- Food and Nutrition Department National Health Institute Doutor Ricardo Jorge (INSA, IP) Av. Padre Cruz 1649‐016 Lisbon Portugal
- Chemical Engineering Department Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais, 1 1049‐001 Lisboa Portugal
| | - Sandra Gueifão
- Food and Nutrition Department National Health Institute Doutor Ricardo Jorge (INSA, IP) Av. Padre Cruz 1649‐016 Lisbon Portugal
| | - Marta Martins
- MARE ‐ Marine and Environmental Sciences Centre Department of Sciences and Environmental Engineering Nova School of Science and Technology (FCT Nova) 2829-516 Caparica Portugal
| | - Maria Helena Costa
- MARE ‐ Marine and Environmental Sciences Centre Department of Sciences and Environmental Engineering Nova School of Science and Technology (FCT Nova) 2829-516 Caparica Portugal
| | - Isabel Castanheira
- Food and Nutrition Department National Health Institute Doutor Ricardo Jorge (INSA, IP) Av. Padre Cruz 1649‐016 Lisbon Portugal
| |
Collapse
|
141
|
Upadhyay MK, Majumdar A, Barla A, Bose S, Srivastava S. An assessment of arsenic hazard in groundwater-soil-rice system in two villages of Nadia district, West Bengal, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2381-2395. [PMID: 30963366 DOI: 10.1007/s10653-019-00289-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The present study measured arsenic (As) concentrations in soil, groundwater and rice grain samples in two villages, Sarapur and Chinili, under Chakdaha block, Nadia district, West Bengal, India. This study also included a survey of the two villages to understand the knowledge among villagers about the As problem. Soil and groundwater samples were collected from fields in two villages while rice grain samples were collected from villagers' houses. The results revealed the presence of As in higher concentrations than the maximum permissible limit of As in drinking water (10 µg L-1 and 50 µg L-1 by WHO and Indian standard, respectively) in groundwater [124.50 ± 1.11 µg L-1 (Sarapur) and 138.20 ± 1.34 µg L-1 (Chinili)]. The level of As in soil was found to range from 47.7 ± 0.14 to 49.3 ± 0.19 mg Kg-1 in Sarapur and from 57.5 ± 0.25 to 62.5 ± 0.44 mg Kg-1 in Chinili which are also higher than European Union maximum acceptable limit in agricultural soil (i.e. 20 mg Kg-1). The analysis of As in rice grains of five varieties, collected from residents of two villages, showed the presence of higher than recommended safe level of As in rice by FAO/WHO (0.2 mg Kg-1). The As concentration order was Gosai (0.95 ± 0.044 mg kg-1), Satabdi (0.79 ± 0.038 mg kg-1), Banskathi (0.60 ± 0.026 mg kg-1), Kunti (0.47 ± 0.018 mg kg-1) and Ranjit (0.29 ± 0.021 mg kg-1). Importantly, Gosai and Satabdi were the most popular varieties being consumed by local people. The data of consumption of rice per day in the survey was used for the measurement of average daily dose and hazard quotient. It was seen that the As hazard was negatively correlated to the age of residents. Therefore, children and toddlers were at higher risk of As exposure than elderly people. In addition, people with skin related As toxicity symptoms were also cited in the two villages. The study emphasized the severity of As problem in remote areas of West Bengal, India where people consume As tainted rice due to lack of awareness about the As problem and associated health issues.
Collapse
Affiliation(s)
- Munish Kumar Upadhyay
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development (IESD), Banaras Hindu University (BHU), Varanasi, 221005, India
| | - Arnab Majumdar
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Anil Barla
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Sutapa Bose
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development (IESD), Banaras Hindu University (BHU), Varanasi, 221005, India.
| |
Collapse
|
142
|
Sphingosine kinase and p38 MAP kinase signaling promote resistance to arsenite-induced lethality in Caenorhabditis elegan. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0045-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
143
|
Almeida Lopes ACBD, Martins AC, Urbano MR, Buzzo ML, Camargo AEI, Peixe TS, Aschner M, Barbosa F, Silva AMR, Paoliello MMB. Blood reference values for metals in a general adult population in southern Brazil. ENVIRONMENTAL RESEARCH 2019; 177:108646. [PMID: 31446091 DOI: 10.1016/j.envres.2019.108646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Ana Carolina Bertin de Almeida Lopes
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, CEP 86038-350 Londrina, PR, Brazil.
| | - Airton Cunha Martins
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirao Preto, Sao Paulo, Brazil; Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, New York, USA.
| | - Mariana Ragassi Urbano
- Department of Statistics, State University of Londrina, Rodovia Celso Garcia Cid, Km 380, s/no, Campus Universitário, CEP 86057-970 Londrina, PR, Brazil.
| | - Marcia Liane Buzzo
- Inorganic Contaminants Department, Adolfo Lutz Institute, Sao Paulo, Avenida Doutor Arnaldo, 355, CEP 01246-000, São Paulo, SP, Brazil.
| | - Alissana Ester Iakmiu Camargo
- Center of Health Sciences, Pitagoras Unopar University, Avenida Paris, 675, Jardim Piza, CEP 86083-070 Londrina, PR, Brazil.
| | - Tiago Severo Peixe
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Science, State University of Londrina, 60 Robert Koch Avenue, CEP 86038-350 Londrina, PR, Brazil.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, New York, USA.
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Ana Maria Rigo Silva
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, CEP 86038-350 Londrina, PR, Brazil.
| | - Monica Maria Bastos Paoliello
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, CEP 86038-350 Londrina, PR, Brazil; Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, New York, USA.
| |
Collapse
|
144
|
Majumdar A, Upadhyay MK, Kumar JS, Barla A, Srivastava S, Jaiswal MK, Bose S. Ultra-structure alteration via enhanced silicon uptake in arsenic stressed rice cultivars under intermittent irrigation practices in Bengal delta basin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:770-779. [PMID: 31154202 DOI: 10.1016/j.ecoenv.2019.05.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/02/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
The study implements a periodical intermittent water cycle during rice cultivation providing insight potential in minimizing soil bio-available arsenic. Soil As concentrations were 34 ± 0.49 and 72.03 ± 0.54 mg kg-1 As respectively in two selected fields with rice cultivars gosai and satabdi, in comparison to 42.26 ± 0.37 and 83.69 ± 0.48 mg kg-1 in continuously flooded field soil, determined through ICP-MS. The study found higher translocation of silicon from soil to rice plant parts under intermittent irrigation having pH range of 7.6-9.4 and greater availability of soil organic content that in turn release more labile silicon from soil to aqueous phase for plant accumulation. This increased uptake of silicon strengthens rice shoots, nodes and leaf xylem-phloem integrity compared to conventional continuously flooded rice cultivation approach, suppressing the arsenic translocation, as observed under FE-SEM real-time imaging. Fresh plants were analysed for bioaccumulation and translocation factors of arsenic and silicon to justify the enhanced silicon uptake under proposed practice. Plant stress regulator enzymes viz. malondialdehyde (MDA), total protein, superoxide dismutase (SOD), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) from both conditions and found to be better in intermittent method over conventional practice with higher productivity.
Collapse
Affiliation(s)
- Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India-741246
| | - Munish Kumar Upadhyay
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India-221005
| | - Jisha Suresh Kumar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India-741246
| | - Anil Barla
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India-741246
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India-221005
| | - Manoj Kumar Jaiswal
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India-741246
| | - Sutapa Bose
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India-741246.
| |
Collapse
|
145
|
Zhang Y, Young JL, Cai L, Tong YG, Miao L, Freedman JH. Chronic exposure to arsenic and high fat diet induces sex-dependent pathogenic effects on the kidney. Chem Biol Interact 2019; 310:108719. [PMID: 31238026 PMCID: PMC7087439 DOI: 10.1016/j.cbi.2019.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Both obesity and arsenic exposure are global public health problems that are associated with increased risk of renal disease. The effect of whole-life exposure to environmentally relevant levels of arsenic within dietary high fat diet on renal pathogenesis were examined. In this study, C57BL/6 J mice were parentally exposed to 100 ppb arsenic before conception. After weaning, both male and female offspring were maintained on 100 ppb arsenic and fed either a normal (LFD) or high fat diet (HFD). At 10 and 24 weeks of age, the offspring were sacrificed and kidneys collected. Exposure to arsenic led to an increase body-weight in LFD diet-fed female but not male mice. This response was not observed in HFD-fed female mice; however male mice showed significant increases in body weight in both As- and non-treated animals. Histological analysis shows that arsenic exposure significantly increases HFD-induced glomerular area expansion, mesangial matrix accumulation and fibrosis compared to LFD control animals. HFD alone increases renal inflammation and fibrosis; reflected by increases in IL-1β, ICAM-1 and fibronectin levels. Arsenic exposure significantly increases HFD-induced inflammatory and oxidative stress responses. In general, male mice have more severe responses than female mice to HFD or arsenic treatment. These results demonstrate that arsenic exposure causes sex-dependent alterations in HFD-induced kidney damage.
Collapse
Affiliation(s)
- Yixian Zhang
- Department of Nephrology, Second Hospital of Jilin University, Changchun, 130041, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jamie L Young
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA; Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Yong Guang Tong
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun, 130041, China.
| | - Jonathan H Freedman
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
146
|
Arsenic and antimony extraction from high arsenic smelter ash with alkaline pressure oxidative leaching followed by Na2S leaching. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
147
|
Jia X, Yang X, Zhao W, Hu Y, Cheng H. A method for rapid determination of arsenic species in vegetables using microwave‐assisted extraction followed by detection with HPLC hyphenated to inductively coupled plasma‐mass spectrometry. J Sep Sci 2019; 42:2957-2967. [DOI: 10.1002/jssc.201900282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Xintong Jia
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| | - Xiaoyue Yang
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| | - Wei Zhao
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and EvolutionSchool of Water Resources and EnvironmentChina University of Geosciences (Beijing) Beijing P. R. China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| |
Collapse
|
148
|
Peng X, Wang Z. Ultrasensitive Determination of Selenium and Arsenic by Modified Helium Atmospheric Pressure Glow Discharge Optical Emission Spectrometry Coupled with Hydride Generation. Anal Chem 2019; 91:10073-10080. [DOI: 10.1021/acs.analchem.9b02006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaoxu Peng
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
149
|
Ji Y, Luo W, Lu G, Fan C, Tao X, Ye H, Xie Y, Shi Z, Yi X, Dang Z. Effect of phosphate on amorphous iron mineral generation and arsenic behavior in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:644-656. [PMID: 30677931 DOI: 10.1016/j.scitotenv.2018.12.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Arsenic (As) contamination was detected in paddy soils of Guangdong, China due to mining and weathering processes. Furthermore, As may be released into the soil and irrigation water during the application of phosphate (P). In this study, As behavior was assessed in three paddy soils (S6, S8 and TR) along the Hengshi river using batch and circular flow experiments with different phosphate application doses (0, 1, 5, 10, 50, 100 mg/L). The results indicate that pH variation (3-7) and higher phosphate concentrations in solution, can induce the release of As, with total As release ranked in the order: S6 > S8 > TR. In addition, AsV was the main state affected by phosphate in the circular soil solution. In particular, after 7 days of P10 application, the highest As concentration in S6, S8 and TR soil solutions reached 2298.4, 829.9 and 153.9 μg/L respectively, with the AsV state accounting for 93%, 97% and 18% of As. Some minerals were found to be generated in the middle container, most of which were amorphous iron or aluminum oxides and hydroxides, as confirmed by XRD. With mineral generation, the As concentration in soil solutions decreased to 314.2, 98.1 and 34.1 μg/L. The SEM results indicate that the minerals became more fine (<100 nm) when more P was applied. In addition, XPS, SEM-eds and elemental analysis results also revealed that As distribution was closely associated with iron minerals. Along with soil depth, P influenced the state and distribution of iron minerals and As in the topsoil, while phosphate increased the available As and reduced the amorphous iron mineral content in the soil. Therefore, it is essential to evaluate As behavior in paddy soils, to monitor and avoid potential food security risks.
Collapse
Affiliation(s)
- Yanping Ji
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Weiqi Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| | - Cong Fan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueqin Tao
- College of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Han Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yingying Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Zhenqing Shi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
150
|
Budzyńska S, Goliński P, Niedzielski P, Gąsecka M, Mleczek M. Arsenic content in two-year-old Acer platanoides L. and Tilia cordata Miller seedlings growing under dimethylarsinic acid exposure-model experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6877-6889. [PMID: 30632046 PMCID: PMC6428799 DOI: 10.1007/s11356-018-04121-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/28/2018] [Indexed: 04/11/2023]
Abstract
The presence of cacodylic acid (dimethylarsinic acid, DMA) can be an important factor in limiting the abilities of young tree seedlings to adapt to unfavorable environmental conditions. For this reason, the aim of the study was to estimate the influence of different DMA additions (from 0.01 to 0.6 mM) to modified Knop solution to arsenic (As) and selected forms of this metalloid (As(III), As(V), DMA) phytoextraction by two-year-old Acer platanoides L. and Tilia cordata Miller seedlings. Additionally, the biomass and other elements important in As transport in plants were analyzed. Seedlings of both tree species were able to grow in all experimental systems except the one with the highest DMA concentration (0.6 mM). Exposure of tree seedlings was related to a general decrease in plant biomass. Phytoextraction of As in roots, stems, and leaves increased with a rise of DMA concentration in solution to the highest content of As in A. platanoides and T. cordata roots growing under 0.3 mM (135 ± 13 and 116 ± 14 mg kg-1 dry weight). Arsenic was accumulated mainly in roots, thereby confirming bioconcentration factor values BCF > 1 for all tree seedlings treated with DMA. Exposure of plants to low DMA concentrations (0.01 and 0.03 mM) was related to the transport of this element to aboveground parts, while increased DMA concentration in other experimental systems led to the limitation of As transport to stems, as confirmed by translocation factor values TF < 1. Changes in many other elements such as boron, silicon, phosphorus, or sulfur concentration indicated the possible influence of DMA on the transport of As from roots to leaves. The obtained results show that DMA can be an important factor in modulating As phytoextraction in the studied tree species.
Collapse
Affiliation(s)
- Sylwia Budzyńska
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland.
| | - Piotr Goliński
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | | | - Monika Gąsecka
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Mirosław Mleczek
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| |
Collapse
|