101
|
Chen L, Na R, Boldt E, Ran Q. NLRP3 inflammasome activation by mitochondrial reactive oxygen species plays a key role in long-term cognitive impairment induced by paraquat exposure. Neurobiol Aging 2015; 36:2533-43. [PMID: 26119225 DOI: 10.1016/j.neurobiolaging.2015.05.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/05/2015] [Accepted: 05/29/2015] [Indexed: 11/25/2022]
Abstract
Exposure to environmental toxins such as pesticides is implicated in increasing Alzheimer's disease risk. In this study, we investigated the long-term effects of paraquat exposure on cognition of Alzheimer's disease animal model APP/PS1 mice and wild-type (WT) mice. Our results showed that APP/PS1 mice had exacerbated cognition impairment and elevated Aβ levels at 5 months after paraquat exposure, and that WT mice had cognition impairment at 5 and 16 months after paraquat exposure. In addition, increased mitochondrial oxidative stress and augmented brain inflammation were observed in both paraquat-exposed APP/PS1 mice and WT mice. Interestingly, activation of NLRP3 inflammasome, which triggers inflammation in response to mitochondrial stress, was enhanced in paraquat-exposed mice. Moreover, transgenic mice overexpressing Prdx3, a key enzyme in detoxifying mitochondrial H2O2, had suppressed NLRP3 inflammasome activation, reduced brain inflammation, and attenuated cognition impairment after paraquat exposure. Together, our results indicate that NLRP3 inflammasome activation induced by mitochondrial reactive oxygen species plays a key role in mediating paraquat-induced long-term cognition decline by elevating brain inflammation.
Collapse
Affiliation(s)
- Liuji Chen
- Department of Cellular and Structural Biology; University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ren Na
- Department of Cellular and Structural Biology; University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Erin Boldt
- Department of Cellular and Structural Biology; University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Qitao Ran
- Department of Cellular and Structural Biology; University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
102
|
Controlled and Impaired Mitochondrial Quality in Neurons: Molecular Physiology and Prospective Pharmacology. Pharmacol Res 2015; 99:410-24. [DOI: 10.1016/j.phrs.2015.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/27/2015] [Accepted: 03/27/2015] [Indexed: 01/08/2023]
|
103
|
Comparative Proteomic Analysis of Carbonylated Proteins from the Striatum and Cortex of Pesticide-Treated Mice. PARKINSONS DISEASE 2015; 2015:812532. [PMID: 26345149 PMCID: PMC4546751 DOI: 10.1155/2015/812532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/27/2015] [Accepted: 05/30/2015] [Indexed: 01/28/2023]
Abstract
Epidemiological studies indicate exposures to the herbicide paraquat (PQ) and fungicide maneb (MB) are associated with increased risk of Parkinson's disease (PD). Oxidative stress appears to be a premier mechanism that underlies damage to the nigrostriatal dopamine system in PD and pesticide exposure. Enhanced oxidative stress leads to lipid peroxidation and production of reactive aldehydes; therefore, we conducted proteomic analyses to identify carbonylated proteins in the striatum and cortex of pesticide-treated mice in order to elucidate possible mechanisms of toxicity. Male C57BL/6J mice were treated biweekly for 6 weeks with saline, PQ (10 mg/kg), MB (30 mg/kg), or the combination of PQ and MB (PQMB). Treatments resulted in significant behavioral alterations in all treated mice and depleted striatal dopamine in PQMB mice. Distinct differences in 4-hydroxynonenal-modified proteins were observed in the striatum and cortex. Proteomic analyses identified carbonylated proteins and peptides from the cortex and striatum, and pathway analyses revealed significant enrichment in a variety of KEGG pathways. Further analysis showed enrichment in proteins of the actin cytoskeleton in treated samples, but not in saline controls. These data indicate that treatment-related effects on cytoskeletal proteins could alter proper synaptic function, thereby resulting in impaired neuronal function and even neurodegeneration.
Collapse
|
104
|
He XJ, Uchida K, Megumi C, Tsuge N, Nakayama H. Dietary curcumin supplementation attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in C57BL mice. J Toxicol Pathol 2015; 28:197-206. [PMID: 26538809 PMCID: PMC4604129 DOI: 10.1293/tox.2015-0020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/26/2015] [Indexed: 02/02/2023] Open
Abstract
Studies in vivo and in vitro suggest that curcumin is a neuroprotective agent. Experiments were conducted to determine whether dietary supplementation with curcumin has neuroprotective effects in a mouse model of Parkinson’s disease (PD). Treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) significantly induced the loss of dopaminergic cells in the substantia nigra and deletion of dopamine in the striatum, which was attenuated by long-term (7 weeks) dietary supplementation with curcumin at a concentration of 0.5% or 2.0% (w/w). Although curcumin did not prevent the MPTP-induced apoptosis of neuroblasts in the subventricular zone (SVZ), it promoted the regeneration of neuroblasts in the anterior part of the SVZ (SVZa) at 3 days after MPTP treatment. Furthermore, curcumin enhanced the MPTP-induced activation of microglia and astrocytes in the striatum and increased the expression of glial cell line-derived neurotrophic factor (GDNF) and transforming growth factor-β1 (TGFβ1) in the striatum and SVZ. GDNF and TGFβ1 are thought to play an important role in protecting neurons from injury in the central and peripheral nervous systems. These results suggest that long-term administration of curcumin blocks the neurotoxicity of MPTP in the nigrostriatal dopaminergic system of the mouse and that the neuroprotective effect might be correlated with the increased expression of GDNF and TGFβ1. Curcumin may be effective in preventing or slowing the progression of PD.
Collapse
Affiliation(s)
- Xi-Jun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 People's Republic of China ; Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi,Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi,Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chiaki Megumi
- Somatech Center, House Foods Corporation, 1-4 Takanodai, Yotsukaido, Chiba 284-0033, Japan
| | - Nobuaki Tsuge
- Somatech Center, House Foods Corporation, 1-4 Takanodai, Yotsukaido, Chiba 284-0033, Japan
| | - Hiroyuki Nakayama
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi,Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
105
|
Gao B, Chang C, Zhou J, Zhao T, Wang C, Li C, Gao G. Pycnogenol Protects Against Rotenone-Induced Neurotoxicity in PC12 Cells Through Regulating NF-κB-iNOS Signaling Pathway. DNA Cell Biol 2015. [PMID: 26203556 DOI: 10.1089/dna.2015.2953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by dopaminergic neurons degeneration and oxidative damage may underlie this process. However, there are still no efficient drugs to cure the disease. Pycnogenol (PYC) isolated from the procyanidin-rich French maritime pine (Pinus maritime) bark has shown various antioxidant activities in previous studies. In this study, we explored its effect against rotenone (Rot)-induced neurotoxicity and the underlying mechanisms in PC12 cells. Using Rot-induced cell model of PD, we found that PYC treatment significantly increased cell viability and decreased cell apoptosis in Rot-treated PC12 cells in a dose-dependent manner. Furthermore, data showed that PYC markedly reduced inducible nitric oxide synthase (iNOS)-nitric oxide (NO) signaling in Rot-treated PC12 cells. Pretreatment with the iNOS-specific inhibitor significantly attenuated Rot-induced neurotoxicity. Moreover, PYC was found to be capable of reducing Rot-induced NF-κB activation. Blocking NF-κB signaling with its inhibitor mimicked the biological effect of PYC on Rot-induced iNOS and NO expression levels, as well as neurotoxicity in PC12 cells, suggesting that the NF-κB-iNOS signaling pathway was likely to participate in the PYC-mediated protective progress. Our results suggest that PYC protects against Rot-induced neurotoxicity in PC12 cells, and the mechanism may be associated with the downregulation of NF-κB-iNOS signaling pathway.
Collapse
Affiliation(s)
- Bo Gao
- 1 Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University , Xi'an, People's Republic of China
| | - Chongwang Chang
- 1 Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University , Xi'an, People's Republic of China
| | - Jie Zhou
- 2 Department of Neurosurgery, Lanzhou Military Region General Hospital , Lanzhou, People's Republic of China
| | - Tianzhi Zhao
- 1 Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University , Xi'an, People's Republic of China
| | - Chao Wang
- 1 Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University , Xi'an, People's Republic of China
| | - Chen Li
- 1 Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University , Xi'an, People's Republic of China
| | - Guodong Gao
- 1 Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University , Xi'an, People's Republic of China
| |
Collapse
|
106
|
Charli A, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Alterations in mitochondrial dynamics induced by tebufenpyrad and pyridaben in a dopaminergic neuronal cell culture model. Neurotoxicology 2015; 53:302-313. [PMID: 26141520 DOI: 10.1016/j.neuro.2015.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/09/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Tebufenpyrad and pyridaben are two agro-chemically important acaricides that function like the known mitochondrial toxicant rotenone. Although these two compounds have been commonly used to kill populations of mites and ticks in commercial greenhouses, their neurotoxic profiles remain largely unknown. Therefore, we investigated the effects of these two pesticides on mitochondrial structure and function in an in vitro cell culture model using the Seahorse bioanalyzer and confocal fluorescence imaging. The effects were compared with rotenone. Exposing rat dopaminergic neuronal cells (N27 cells) to tebufenpyrad and pyridaben for 3h induced dose-dependent cell death with an EC50 of 3.98μM and 3.77μM, respectively. Also, tebufenpyrad and pyridaben (3μM) exposure induced reactive oxygen species (ROS) generation and m-aconitase damage, suggesting that the pesticide toxicity is associated with oxidative damage. Morphometric image analysis with the MitoTracker red fluorescent probe indicated that tebufenpyrad and pyridaben, as well as rotenone, caused abnormalities in mitochondrial morphology, including reduced mitochondrial length and circularity. Functional bioenergetic experiments using the Seahorse XF96 analyzer revealed that tebufenpyrad and pyridaben very rapidly suppressed the basal mitochondrial oxygen consumption rate similar to that of rotenone. Further analysis of bioenergetic curves also revealed dose-dependent decreases in ATP-linked respiration and respiratory capacity. The luminescence-based ATP measurement further confirmed that pesticide-induced mitochondrial inhibition of respiration is accompanied by the loss of cellular ATP. Collectively, our results suggest that exposure to the pesticides tebufenpyrad and pyridaben induces neurotoxicity by rapidly initiating mitochondrial dysfunction and oxidative damage in dopaminergic neuronal cells. Our findings also reveal that monitoring the kinetics of mitochondrial respiration with Seahorse could be used as an early neurotoxicological high-throughput index for assessing the risk that pesticides pose to the dopaminergic neuronal system.
Collapse
Affiliation(s)
- Adhithiya Charli
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
107
|
Lopert P, Patel M. Mitochondrial mechanisms of redox cycling agents implicated in Parkinson's disease. J Neural Transm (Vienna) 2015; 123:113-23. [PMID: 25749885 DOI: 10.1007/s00702-015-1386-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/20/2015] [Indexed: 12/21/2022]
Abstract
Environmental agents have been implicated in Parkinson's disease (PD) based on epidemiological studies and the ability of toxicants to replicate features of PD. However, the precise mechanisms by which toxicants induce dopaminergic toxicity observed in the idiopathic form of PD remain to be fully understood. The roles of ROS and mitochondria are strongly suggested in the mechanisms by which these toxicants exert dopaminergic toxicity. There are marked differences and similarities shared by the toxicants in increasing steady-state levels of mitochondrial ROS. Furthermore, toxicants increase steady-state mitochondrial ROS levels by stimulating the production, inhibiting the antioxidant pathways of both. This review will focus on the role of mitochondria and ROS in PD associated with environmental exposures to redox-based toxicants.
Collapse
Affiliation(s)
- Pamela Lopert
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manisha Patel
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
108
|
Johnson WM, Wilson-Delfosse AL, Chen SG, Mieyal JJ. The roles of redox enzymes in Parkinson's disease: Focus on glutaredoxin. THERAPEUTIC TARGETS FOR NEUROLOGICAL DISEASES 2015; 2:e790. [PMID: 26097894 PMCID: PMC4474481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Parkinson's disease (PD) results from the loss of dopaminergic neurons in the substantia nigra portion of the midbrain, and represents the second most common neurodegenerative disease in the world. Although the etiology of PD is currently unclear, oxidative stress and redox dysfunction are generally understood to play key roles in PD pathogenesis and progression. Aging and environmental factors predispose cells to adverse effects of redox changes. In addition to these factors, genetic mutations linked to PD have been observed to disrupt the redox balance. Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with autosomal dominant PD, and several of these mutations have also been shown to increase the levels of reactive oxygen species in cells. Anti-oxidant proteins are necessary to restore the redox balance and maintain cell viability. Over the past decade studies have started to demonstrate the critical importance for redox proteins mediating neuronal protection in models of PD. This commentary briefly describes some of the factors hypothesized to contribute to PD, specifically regarding the redox changes that occur in PD. Dysregulation of redox proteins in PD is highlighted by some of the work detailing the roles of peroxiredoxin-3 and thioredoxin-1 in models of PD. In an attempt to generate novel therapies for PD, several potent inhibitors of LRRK2 have been developed. The use of these compounds, both as tools to understand the biology of LRRK2 and as potential therapeutic strategies is also discussed. This mini-review then provides a historical prospective on the discovery and characterization of glutaredoxin (Grx1), and briefly describes current understanding of the role of Grx1 in PD. The review concludes by highlighting our recent publication describing the novel role for Grx1 in mediating dopaminergic neuronal protection both in vitro and in vivo.
Collapse
Affiliation(s)
- William M. Johnson
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Shu G. Chen
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - John J. Mieyal
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Louis B. Stokes Veterans Affairs Medical Research Center, Cleveland, OH 44106, USA
| |
Collapse
|
109
|
Melin V, Henríquez A, Freer J, Contreras D. Reactivity of catecholamine-driven Fenton reaction and its relationships with iron(III) speciation. Redox Rep 2014; 20:89-96. [PMID: 25496478 DOI: 10.1179/1351000214y.0000000119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Fenton reaction is the main source of free radicals in biological systems. The reactivity of this reaction can be modified by several factors, among these iron ligands are important. Catecholamine (dopamine, epinephrine, and norepinephrine) are able to form Fe(III) complexes whose extension in the coordination number depends upon the pH. Fe(III)-catecholamine complexes have been related with the development of several pathologies. METHODS In this work, the ability of catecholamines to enhance the oxidative degradation of an organic substrate (veratryl alcohol, VA) through Fenton and Fenton-like reactions was studied. The initial VA degradation rate at different pH values and its relationship to the different iron species present in solution were determined. Furthermore, the oxidative degradation of VA after 24 hours of reaction and its main oxidation products were also determined. RESULTS The catecholamine-driven Fenton and Fenton-like systems showed higher VA degradation compared to unmodified Fenton or Fenton-like systems, which also showed an increase in the oxidation state of the VA degradation product. All of this oxidative degradation takes place at pH values lower than 5.50, where the primarily responsible species would be the Fe(III) mono-complex. CONCLUSION The presence of Fe(III) mono-complex is essential in the ability of catecholamines to increase the oxidative capacity of Fenton systems.
Collapse
|
110
|
Liu Y, Zeng X, Hui Y, Zhu C, Wu J, Taylor DH, Ji J, Fan W, Huang Z, Hu J. Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: implications for Parkinson's disease. Neuropharmacology 2014; 91:87-96. [PMID: 25486621 DOI: 10.1016/j.neuropharm.2014.11.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 12/31/2022]
Abstract
Astrocytes have been implicated in the immune responses associated with Parkinson's disease (PD). Inhibition of astrocyte apoptosis is a novel strategy for the treatment of PD. Recent studies suggest that α7 nicotinic acetylcholine receptors (α7-nAChRs) expressed in glial cells are critical links between inflammation and neurodegeneration in PD. However, little is known about their contribution to astrocyte apoptosis during the development of this disorder. In the present study, we showed that nicotine exerts a protective effect on H2O2-induced astrocyte apoptosis and glial cell-derived neurotrophic factor (GDNF) downregulation, and this effect was abolished by an α7-nAChR-selective antagonist. The underlying mechanisms might involve alleviation of mitochondrial membrane potential loss, stabilization of the Bax/Bcl-2 balance, and inhibition of cleaved caspase-9 activity through α7-nAChR activation. Systemic administration of nicotine dramatically alleviated MPTP-induced symptoms, protected dopaminergic neurons against degeneration, inhibited astrocytes and microglia activation in the substantia nigra pars compacta (SNpc) and blocked the decrease of GDNF in the striatum by activating α7-nAChRs. Taken together these findings demonstrate, for the first time, that nicotine suppresses H2O2-induced astrocyte apoptosis via the mitochondrial pathway through the stimulation of α7-nAChRs. Targeting α7-nAChRs expressed in astrocytes may be a novel therapeutic strategy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoning Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yujian Hui
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenlei Zhu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jie Wu
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Devin H Taylor
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Juan Ji
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weimin Fan
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zuhu Huang
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Hu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
111
|
Farias CCD, Bonifácio KL, Matsumoto AK, Higachi L, Casagrande R, Moreira EG, Barbosa DS. Comparison of the antioxidant potential of antiparkinsonian drugs in different in vitro models. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502014000400017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. Furthermore, oxidative stress plays a role in PD, causing or contributing to the neurodegenerative process. Currently PD has only symptomatic treatment and still nothing can be done to stop the degenerative process of the disease. This study aimed to comparatively evaluate the antioxidant capacity of pramipexole, selegeline and amantadine in different in vitrostudies and to offer possible explanations on the molecular antioxidant mechanisms of these drugs. In vitro, the antioxidant capacity of the drugs was assessed by the ability of antiparkinsonian drugs to decrease or scavenge ROS in the neutrophil respiratory burst, ability of antiparkinsonian drugs to donate hydrogen and stabilize the free radical 2,2-diphenyl-1-picryl-hydrazyl (DPPH•), to scavenge 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid (ABTS+) and evaluation of the ferric reducing antioxidant power (FRAP). This study demonstrated that both pramipexole and selegiline, but not amantadine, have antioxidant effects in vitro by scavenging superoxide anion on the respiratory burst, donating electron in the ABTS+ assay and presenting ferric reduction antioxidant power. This chemical structure-related antioxidant capacity suggests a possible neuroprotective mechanism of these drugs beyond their already recognized mechanism of action.
Collapse
Affiliation(s)
| | | | | | | | - Rúbia Casagrande
- State University of Londrina, Brazil; State University of Londrina, Brazil
| | | | | |
Collapse
|
112
|
Zhou Q, Liu C, Liu W, Zhang H, Zhang R, Liu J, Zhang J, Xu C, Liu L, Huang S, Chen L. Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis. Toxicol Sci 2014; 143:81-96. [PMID: 25304210 DOI: 10.1093/toxsci/kfu211] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rotenone, a common pesticide and inhibitor of mitochondrial complex I, induces loss of dopaminergic neurons and consequential aspects of Parkinson's disease (PD). However, the exact mechanism of rotenone neurotoxicity is not fully elucidated. Here, we show that rotenone induced reactive oxygen species (ROS), leading to apoptotic cell death in PC12 cells and primary neurons. Pretreatment with catalase (CAT), a hydrogen peroxide-scavenging enzyme, attenuated rotenone-induced ROS and neuronal apoptosis, implying hydrogen peroxide (H₂O₂) involved, which was further verified by imaging intracellular H₂O₂ using a peroxide-selective probe H2DCFDA. Using thenoyltrifluoroacetone (TTFA), antimycin A, or Mito-TEMPO, we further demonstrated rotenone-induced mitochondrial H₂O₂-dependent neuronal apoptosis. Rotenone dramatically inhibited mTOR-mediated phosphorylation of S6K1 and 4E-BP1, which was also attenuated by CAT in the neuronal cells. Of interest, ectopic expression of wild-type mTOR or constitutively active S6K1, or downregulation of 4E-BP1 partially prevented rotenone-induced H₂O₂ and cell apoptosis. Furthermore, we noticed that rotenone-induced H₂O₂ was linked to the activation of caspase-3 pathway. This was evidenced by the finding that pretreatment with CAT partially blocked rotenone-induced cleavages of caspase-3 and poly (ADP-ribose) polymerase. Of note, zVAD-fmk, a pan caspase inhibitor, only partially prevented rotenone-induced apoptosis in PC12 cells and primary neurons. Expression of mTOR-wt, S6K1-ca, or silencing 4E-BP1 potentiated zVAD-fmk protection against rotenone-induced apoptosis in the cells. The results indicate that rotenone induction of H₂O₂ inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, resulting in caspase-dependent and -independent apoptosis in neuronal cells. Our findings suggest that rotenone-induced neuronal loss in PD may be prevented by activating mTOR signaling and/or administering antioxidants.
Collapse
Affiliation(s)
- Qian Zhou
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Chunxiao Liu
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Wen Liu
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Hai Zhang
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Ruijie Zhang
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Jia Liu
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Jinfei Zhang
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Chong Xu
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Lei Liu
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Shile Huang
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932 *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Long Chen
- *Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China, Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| |
Collapse
|
113
|
Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases—A mechanistic approach. Toxicol Lett 2014; 230:85-103. [PMID: 24503016 DOI: 10.1016/j.toxlet.2014.01.039] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/06/2013] [Accepted: 01/27/2014] [Indexed: 12/12/2022]
|
114
|
Narayanasamy SK, Simpson DC, Martin I, Grotewiel M, Gronert S. Paraquat exposure and Sod2 knockdown have dissimilar impacts on the Drosophila melanogaster carbonylated protein proteome. Proteomics 2014; 14:2566-77. [PMID: 25091824 DOI: 10.1002/pmic.201400192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/07/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022]
Abstract
Exposure to Paraquat and RNA interference knockdown of mitochondrial superoxide dismutase (Sod2) are known to result in significant lifespan reduction, locomotor dysfunction, and mitochondrial degeneration in Drosophila melanogaster. Both perturbations increase the flux of the progenitor ROS, superoxide, but the molecular underpinnings of the resulting phenotypes are poorly understood. Improved understanding of such processes could lead to advances in the treatment of numerous age-related disorders. Superoxide toxicity can act through protein carbonylation. Analysis of carbonylated proteins is attractive since carbonyl groups are not present in the 20 canonical amino acids and are amenable to labeling and enrichment strategies. Here, carbonylated proteins were labeled with biotin hydrazide and enriched on streptavidin beads. On-bead digestion was used to release carbonylated protein peptides, with relative abundance ratios versus controls obtained using the iTRAQ MS-based proteomics approach. Western blotting and biotin quantitation assay approaches were also investigated. By both Western blotting and proteomics, Paraquat exposure, but not Sod2 knockdown, resulted in increased carbonylated protein relative abundance. For Paraquat exposure versus control, the median carbonylated protein relative abundance ratio (1.53) determined using MS-based proteomics was in good agreement with that obtained using a commercial biotin quantitation kit (1.36).
Collapse
|
115
|
Lim JL, Wilhelmus MMM, de Vries HE, Drukarch B, Hoozemans JJM, van Horssen J. Antioxidative defense mechanisms controlled by Nrf2: state-of-the-art and clinical perspectives in neurodegenerative diseases. Arch Toxicol 2014; 88:1773-86. [DOI: 10.1007/s00204-014-1338-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
|
116
|
Cassar M, Issa AR, Riemensperger T, Petitgas C, Rival T, Coulom H, Iché-Torres M, Han KA, Birman S. A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila. Hum Mol Genet 2014; 24:197-212. [PMID: 25158689 DOI: 10.1093/hmg/ddu430] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Long-term exposure to environmental oxidative stressors, like the herbicide paraquat (PQ), has been linked to the development of Parkinson's disease (PD), the most frequent neurodegenerative movement disorder. Paraquat is thus frequently used in the fruit fly Drosophila melanogaster and other animal models to study PD and the degeneration of dopaminergic neurons (DNs) that characterizes this disease. Here, we show that a D1-like dopamine (DA) receptor, DAMB, actively contributes to the fast central nervous system (CNS) failure induced by PQ in the fly. First, we found that a long-term increase in neuronal DA synthesis reduced DAMB expression and protected against PQ neurotoxicity. Secondly, a striking age-related decrease in PQ resistance in young adult flies correlated with an augmentation of DAMB expression. This aging-associated increase in oxidative stress vulnerability was not observed in a DAMB-deficient mutant. Thirdly, targeted inactivation of this receptor in glutamatergic neurons (GNs) markedly enhanced the survival of Drosophila exposed to either PQ or neurotoxic levels of DA, whereas, conversely, DAMB overexpression in these cells made the flies more vulnerable to both compounds. Fourthly, a mutation in the Drosophila ryanodine receptor (RyR), which inhibits activity-induced increase in cytosolic Ca(2+), also strongly enhanced PQ resistance. Finally, we found that DAMB overexpression in specific neuronal populations arrested development of the fly and that in vivo stimulation of either DNs or GNs increased PQ susceptibility. This suggests a model for DA receptor-mediated potentiation of PQ-induced neurotoxicity. Further studies of DAMB signaling in Drosophila could have implications for better understanding DA-related neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Marlène Cassar
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Abdul-Raouf Issa
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Riemensperger
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Céline Petitgas
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Rival
- Genetics and Physiopathology of Neurotransmission, Developmental Biology Institute of Marseille-Luminy, CNRS, Université de la Méditerranée, 13009 Marseille, France and
| | - Hélène Coulom
- Genetics and Physiopathology of Neurotransmission, Developmental Biology Institute of Marseille-Luminy, CNRS, Université de la Méditerranée, 13009 Marseille, France and
| | - Magali Iché-Torres
- Genetics and Physiopathology of Neurotransmission, Developmental Biology Institute of Marseille-Luminy, CNRS, Université de la Méditerranée, 13009 Marseille, France and
| | - Kyung-An Han
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France Genetics and Physiopathology of Neurotransmission, Developmental Biology Institute of Marseille-Luminy, CNRS, Université de la Méditerranée, 13009 Marseille, France and
| |
Collapse
|
117
|
Roede JR, Uppal K, Park Y, Tran V, Jones DP. Transcriptome-metabolome wide association study (TMWAS) of maneb and paraquat neurotoxicity reveals network level interactions in toxicologic mechanism. Toxicol Rep 2014; 1:435-444. [PMID: 27722094 PMCID: PMC5053767 DOI: 10.1016/j.toxrep.2014.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A combination of the herbicide paraquat (PQ) and fungicide maneb (MB) has been linked to Parkinson's disease. Previous studies show that this involves an additive toxicity with at least two different mechanisms. However, detailed understanding of mixtures is often difficult to elucidate because of the multiple ways by which toxic agents can interact. In the present study, we used a combination of transcriptomics and metabolomics to investigate mechanisms of toxicity of PQ and MB in a neuroblastoma cell line. Conditions were studied with concentrations of PQ and MB that each individually caused 20% cell death and together caused 50% cell death. Transcriptomic and metabolomic samples were collected at time points prior to significant cell death. Statistical and bioinformatic methods were applied to the resulting 30,869 transcripts and 1358 metabolites. Results showed that MB significantly changed more transcripts and metabolites than PQ, and combined PQ + MB impacted more than MB alone. Transcriptome-metabolome-wide association study (TMWAS) showed that significantly changed transcripts and metabolites mapped to two network substructures, one associating with significant effects of MB and the other included features significantly associated with PQ + MB. The latter contained 4 clusters of genes and associated metabolites, with one containing genes for two cation transporters and a cation transporter regulatory protein also recognized as a pro-apoptotic protein. Other clusters included stress response genes and transporters linked to cytoprotective mechanisms. MB also had a significant network structure linked to cell proliferation. Together, the results show that the toxicologic mechanism of the combined neurotoxicity of PQ and MB involves network level interactions and that TMWAS provides an effective approach to investigate such complex mechanisms.
Collapse
Affiliation(s)
- James R Roede
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Karan Uppal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, United States; Clinical Biomarkers Laboratory, Emory University, Atlanta, GA 30322, United States; School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Youngja Park
- College of Pharmacy, Korea University, Sejong City, Republic of Korea
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Emory University, Atlanta, GA 30322, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, United States; Clinical Biomarkers Laboratory, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
118
|
Doorn JA, Florang VR, Schamp JH, Vanle BC. Aldehyde dehydrogenase inhibition generates a reactive dopamine metabolite autotoxic to dopamine neurons. Parkinsonism Relat Disord 2014; 20 Suppl 1:S73-5. [PMID: 24262193 DOI: 10.1016/s1353-8020(13)70019-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neurotransmitter dopamine (DA) is important for numerous biological functions, including control of movement. Oxidation of DA to highly toxic and reactive species has been hypothesized to contribute to the selective neurodegeneration observed in Parkinson's disease (PD). DA catabolism is initiated by oxidative deamination via monoamine oxidase to yield 3,4-dihydroxyphenylacetaldehyde (DOPAL). Such metabolism can be problematic as it greatly increases the toxicity of DA by production of DOPAL, known to be a toxic and reactive intermediate. DOPAL undergoes carbonyl metabolism primarily via aldehyde dehydrogenase (ALDH) enzymes to a less toxic acid product. Previous studies from our laboratory have shown that cellular ALDH enzymes are sensitive towards products of oxidative stress and lipid peroxidation, which are thought to be elevated during PD pathogenesis. Inhibition of ALDH and the resulting accumulation of DOPAL are concerning as DOPAL is toxic to dopaminergic cells, readily modifies proteins and causes protein aggregation. In addition, pesticides with association between exposure and PD incidence can interfere with DA metabolism and trafficking and/or ALDH activity, directly or indirectly, yielding elevation of DOPAL. Therefore, impairment of carbonyl metabolism is a potential mechanistic link between cellular insult and generation of a toxic and reactive intermediate endogenous to dopamine neurons.
Collapse
Affiliation(s)
- Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
119
|
Patel VP, Chu CT. Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: implications for Parkinson's disease. Exp Neurol 2014; 257:170-81. [PMID: 24792244 PMCID: PMC4141566 DOI: 10.1016/j.expneurol.2014.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 12/31/2022]
Abstract
The microtubule (MT) system is important for many aspects of neuronal function, including motility, differentiation, and cargo trafficking. Parkinson's disease (PD) is associated with increased oxidative stress and alterations in the integrity of the axodendritic tree. To study dynamic mechanisms underlying the neurite shortening phenotype observed in many PD models, we employed the well-characterized oxidative parkinsonian neurotoxin, 6-hydroxydopamine (6OHDA). In both acute and chronic sub-lethal settings, 6OHDA-induced oxidative stress elicited significant alterations in MT dynamics, including reductions in MT growth rate, increased frequency of MT pauses/retractions, and increased levels of tubulin acetylation. Interestingly, 6OHDA decreased the activity of tubulin deacetylases, specifically sirtuin 2 (SIRT2), through more than one mechanism. Restoration of tubulin deacetylase function rescued the changes in MT dynamics and prevented neurite shortening in neuron-differentiated, 6OHDA-treated cells. These data indicate that impaired tubulin deacetylation contributes to altered MT dynamics in oxidatively-stressed cells, conferring key insights for potential therapeutic strategies to correct MT-related deficits contributing to neuronal aging and disease.
Collapse
Affiliation(s)
- Vivek P Patel
- Department of Pathology, Division of Neuropathology, 3550 Terrace St., University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Charleen T Chu
- Department of Pathology, Division of Neuropathology, 3550 Terrace St., University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, USA; The Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA.
| |
Collapse
|
120
|
Selenium supplementation shows protective effects against patulin-induced brain damage in mice via increases in GSH-related enzyme activity and expression. Life Sci 2014; 109:37-43. [DOI: 10.1016/j.lfs.2014.05.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 11/17/2022]
|
121
|
Stern AH. Hazard identification of the potential for dieldrin carcinogenicity to humans. ENVIRONMENTAL RESEARCH 2014; 131:188-214. [PMID: 24727642 DOI: 10.1016/j.envres.2014.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/08/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Although dieldrin׳s use in the U.S. was partially banned in the 1970s and its use was completely eliminated in 1987, dieldrin continues to be a common contaminant at hazardous waste sites. The USEPA׳s current cancer potency estimate for dieldrin was derived in 1987 and is based on the production of mouse liver tumors. Because of its environmental persistence and its relatively high USEPA cancer potency estimate, dieldrin functions as a cleanup "driver" in many hazardous site remediations. Since 1987, new risk assessment perspectives and new data on dieldrin׳s carcinogenic potential have arisen. This review presents a reassessment of dielrin׳s human cancer potential in light of these new data and new perspectives. Based on this reassessment, dieldrin may be carcinogenic through multiple modes of action. These modes of action may operate within the same tissue, or may be specific to individual tissues. Of the several possible carcinogenic modes of action for dieldrin, one or more may be more relevant to human cancer risk than others, but the relative importance of each is unknown. In addition, neither the details of the possible modes of action, nor the shape of the tumor dose-response curves associated with each are sufficiently well known to permit quantitative cancer dose-response modeling. Thus, the mouse liver tumor data used by the USEPA in its 1987 assessment remain the only quantitative data available for cancer dose-response modeling.
Collapse
Affiliation(s)
- Alan H Stern
- New Jersey Department of Environmental Protection - NJDEP, Office of Science, P.O. Box 420, MC 428-01, Trenton, NJ 08626, United States.
| |
Collapse
|
122
|
Roede JR, Jones DP. Thiol-reactivity of the fungicide maneb. Redox Biol 2014; 2:651-5. [PMID: 24936438 PMCID: PMC4052523 DOI: 10.1016/j.redox.2014.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 01/26/2023] Open
Abstract
Maneb (MB) is a manganese-containing ethylene bis-dithiocarbamate fungicide that is implicated as an environmental risk factor for Parkinson's disease, especially in combination with paraquat (PQ). Dithiocarbamates inhibit aldehyde dehydrogenases, but the relationship of this to the combined toxicity of MB + PQ is unclear because PQ is an oxidant and MB activates Nrf2 and increases cellular GSH without apparent oxidative stress. The present research investigated the direct reactivity of MB with protein thiols using recombinant thioredoxin-1 (Trx1) as a model protein. The results show that MB causes stoichiometric loss of protein thiols, reversibly dimerizes the protein and inhibits its enzymatic activity. MB reacted at similar rates with low-molecular weight, thiol-containing chemicals. Together, the data suggest that MB can potentiate neurotoxicity of multiple agents by disrupting protein thiol functions in a manner analogous to that caused by oxidative stress, but without GSH depletion. Maneb adducts free thiols. Maneb can modify protein bound thiols. Maneb adduction can result in protein cross-linking. Slow rate of reaction with thiols may act as a cellular sink for maneb.
Collapse
Affiliation(s)
- James R Roede
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322, USA ; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dean P Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| |
Collapse
|
123
|
Oikawa S, Kobayashi H, Kitamura Y, Zhu H, Obata K, Minabe Y, Dazortsava M, Ohashi K, Tada-Oikawa S, Takahashi H, Yata K, Murata M, Yamashima T. Proteomic analysis of carbonylated proteins in the monkey substantia nigra after ischemia-reperfusion. Free Radic Res 2014; 48:694-705. [DOI: 10.3109/10715762.2014.901509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Yuki Kitamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hong Zhu
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Kumi Obata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Yoshio Minabe
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Maryia Dazortsava
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Kyoko Ohashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Saeko Tada-Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata,
Niigata, Japan
| | - Kenichiro Yata
- Department of Neurology, Mie University Graduate School of Medicine,
Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Tetsumori Yamashima
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| |
Collapse
|
124
|
Sun Y, Li YS, Yang JW, Yu J, Wu YP, Li BX. Exposure to atrazine during gestation and lactation periods: toxicity effects on dopaminergic neurons in offspring by downregulation of Nurr1 and VMAT2. Int J Mol Sci 2014; 15:2811-25. [PMID: 24552878 PMCID: PMC3958883 DOI: 10.3390/ijms15022811] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 01/25/2023] Open
Abstract
High atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) contents in the environment threaten the health conditions of organisms. We examined the effects of ATR exposure on Sprague-Dawley rats during gestation and on the dopaminergic neurons of offspring during lactation. Pregnant dams were orally treated with 0 mg/kg/day to 50 mg/kg/day of ATR from gestational day 5 to postnatal day 22. Afterward, neither offspring nor dams received ATR. Dopamine (DA) content was examined in striatum samples by HPLC-FL; the mRNA expressions of tyrosine hydroxylase (TH), orphan nuclear hormone (Nurr1), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) in the ventral midbrain samples were examined by fluorescence PCR when the offspring reached one year of age. After the pregnant rats were exposed to ATR, the DA concentrations and mRNA levels of Nurr1 were decreased in their offspring. Decreased Nurr1 levels were also accompanied by changes in the mRNA levels of VMAT2, which controls the transport and reuptake of DA.
Collapse
Affiliation(s)
- Yan Sun
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Yan-Shu Li
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Jun-Wei Yang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Jia Yu
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Yan-Ping Wu
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Bai-Xiang Li
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
125
|
Janda E, Parafati M, Aprigliano S, Carresi C, Visalli V, Sacco I, Ventrice D, Mega T, Vadalá N, Rinaldi S, Musolino V, Palma E, Gratteri S, Rotiroti D, Mollace V. The antidote effect of quinone oxidoreductase 2 inhibitor against paraquat-induced toxicity in vitro and in vivo. Br J Pharmacol 2014; 168:46-59. [PMID: 22289031 DOI: 10.1111/j.1476-5381.2012.01870.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE The mechanisms of paraquat (PQ)-induced toxicity are poorly understood and PQ poisoning is often fatal due to a lack of effective antidotes. In this study we report the effects of N-[2-(2-methoxy-6H-dipyrido{2,3-a:3,2-e}pyrrolizin-11-yl)ethyl]-2-furamide (NMDPEF), a melatonin-related inhibitor of quinone oxidoreductase2 (QR2) on the toxicity of PQ in vitro & in vivo. EXPERIMENTAL APPROACH Prevention of PQ-induced toxicity was tested in different cells, including primary pneumocytes and astroglial U373 cells. Cell death and reactive oxygen species (ROS) were analysed by flow cytometry and fluorescent probes. QR2 silencing was achieved by lentiviral shRNAs. PQ (30 mg·kg(-1)) and NMDPEF were administered i.p. to Wistar rats and animals were monitored for 28 days. PQ toxicity in the substantia nigra (SN) was tested by a localized microinfusion and electrocorticography. QR2 activity was measured by fluorimetry of N-benzyldihydronicotinamide oxidation. KEY RESULTS NMDPEF potently antagonized non-apoptotic PQ-induced cell death, ROS generation and inhibited cellular QR2 activity. In contrast, the cytoprotective effect of melatonin and apocynin was limited and transient compared with NMDPEF. Silencing of QR2 attenuated PQ-induced cell death and reduced the efficacy of NMDPEF. Significantly, NMDPEF (4.5 mg·kg(-1)) potently antagonized PQ-induced systemic toxicity and animal mortality. Microinfusion of NMDPEF into SN prevented severe behavioural and electrocortical effects of PQ which correlated with inhibition of malondialdehyde accumulation in cells and tissues. CONCLUSIONS AND IMPLICATIONS NMDPEF protected against PQ-induced toxicity in vitro and in vivo, suggesting a key role for QR2 in the regulation of oxidative stress.
Collapse
Affiliation(s)
- Elzbieta Janda
- Department of Health Sciences, University 'Magna Graecia', Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Weinreb O, Mandel S, Youdim MBH, Amit T. Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators. Free Radic Biol Med 2013; 62:52-64. [PMID: 23376471 DOI: 10.1016/j.freeradbiomed.2013.01.017] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
Brain iron accumulation has been implicated in a host of chronic neurological diseases, including Parkinson's disease (PD). The elevated iron levels observed in the substantia nigra of PD subjects have been suggested to incite the generation of reactive oxygen species and intracellular α-synuclein aggregation, terminating in the oxidative neuronal destruction of this brain area. Thus, elucidation of the molecular mechanisms involved in iron dysregulation and oxidative stress-induced neurodegeneration is a crucial step in deciphering PD pathology and in developing novel iron-complexing compounds aimed at restoring brain iron homeostasis and attenuating neurodegeneration. This review discusses the involvement of dysregulation of brain iron homeostasis in PD pathology, with an emphasis on the potential effectiveness of naturally occurring compounds and novel iron-chelating/antioxidant therapeutic hybrid molecules, exerting a spectrum of neuroprotective interrelated activities: antioxidant/monoamine oxidase inhibition, activation of the hypoxia-inducible factor (HIF)-1 signaling pathway, induction of HIF-1 target iron-regulatory and antioxidative genes, and inhibition of α-synuclein accumulation and aggregation.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | - Silvia Mandel
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Moussa B H Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Tamar Amit
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
127
|
Siddiqui MA, Ahmad J, Farshori NN, Saquib Q, Jahan S, Kashyap MP, Ahamed M, Musarrat J, Al-Khedhairy AA. Rotenone-induced oxidative stress and apoptosis in human liver HepG2 cells. Mol Cell Biochem 2013; 384:59-69. [PMID: 23963993 DOI: 10.1007/s11010-013-1781-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/09/2013] [Indexed: 02/06/2023]
Abstract
Rotenone, a commonly used pesticide, is well documented to induce selective degeneration in dopaminergic neurons and motor dysfunction. Such rotenone-induced neurodegenration has been primarily suggested through mitochondria-mediated apoptosis and reactive oxygen species (ROS) generation. But the status of rotenone induced changes in liver, the major metabolic site is poorly investigated. Thus, the present investigation was aimed to study the oxidative stress-induced cytotoxicity and apoptotic cell death in human liver cells-HepG2 receiving experimental exposure of rotenone (12.5-250 μM) for 24 h. Rotenone depicted a dose-dependent cytotoxic response in HepG2 cells. These cytotoxic responses were in concurrence with the markers associated with oxidative stress such as an increase in ROS generation and lipid peroxidation as well as a decrease in the glutathione, catalase, and superoxide dismutase levels. The decrease in mitochondrial membrane potential also confirms the impaired mitochondrial activity. The events of cytotoxicity and oxidative stress were found to be associated with up-regulation in the expressions (mRNA and protein) of pro-apoptotic markers viz., p53, Bax, and caspase-3, and down-regulation of anti-apoptotic marker Bcl-2. The data obtain in this study indicate that rotenone-induced cytotoxicity in HepG2 cells via ROS-induced oxidative stress and mitochondria-mediated apoptosis involving p53, Bax/Bcl-2, and caspase-3.
Collapse
Affiliation(s)
- M A Siddiqui
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia,
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Tyurina YY, Winnica DE, Kapralova VI, Kapralov AA, Tyurin VA, Kagan VE. LC/MS characterization of rotenone induced cardiolipin oxidation in human lymphocytes: implications for mitochondrial dysfunction associated with Parkinson's disease. Mol Nutr Food Res 2013; 57:1410-22. [PMID: 23650208 PMCID: PMC3810210 DOI: 10.1002/mnfr.201200801] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 02/06/2023]
Abstract
SCOPE Rotenone is a toxicant believed to contribute to the development of Parkinson's disease. METHODS AND RESULTS Using human peripheral blood lymphocytes we demonstrated that exposure to rotenone resulted in disruption of electron transport accompanied by the production of reactive oxygen species, development of apoptosis and elevation of peroxidase activity of mitochondria. Employing LC/MS-based lipidomics/oxidative lipidomics we characterized molecular species of cardiolipin (CL) and its oxidation/hydrolysis products formed early in apoptosis and associated with the rotenone-induced mitochondrial dysfunction. CONCLUSION The major oxidized CL species - tetra-linoleoyl-CL - underwent oxidation to yield epoxy-C18:2 and dihydroxy-C18:2 derivatives predominantly localized in sn-1 and sn-2 positions, respectively. In addition, accumulation of mono-lyso-CL species and oxygenated free C18:2 were detected in rotenone-treated lymphocytes. These oxidation/hydrolysis products may be useful for the development of new biomarkers of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Daniel E. Winnica
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valentina I. Kapralova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Alexandr A. Kapralov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
129
|
Zargoosh K, Ghayeb Y, Azmoon B, Qandalee M. Simple and fast PO-CL method for the evaluation of antioxidant capacity of hydrophilic and hydrophobic antioxidants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 112:1-6. [PMID: 23665483 DOI: 10.1016/j.saa.2013.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/19/2013] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
A simple and fast procedure is described for evaluating the antioxidant activity of hydrophilic and hydrophobic compounds by using the peroxyoxalate-chemiluminescence (PO-CL) reaction of Bis(2,4,6-trichlorophenyl) oxalate (TCPO) with hydrogen peroxide in the presence of di(tert-butyl)2-(tert-butylamino)-5-[(E)-2-phenyl-1-ethenyl]3,4-furandicarboxylate as a highly fluorescent fluorophore. The IC50 values of the well-known antioxidants were calculated and the results were expressed as gallic equivalent antioxidant capacity (GEAC). It was found that the proposed method is free of physical quenching and oxidant interference, for this reason, proposed method is able to determine the accurate scavenging activity of the antioxidants to the free radicals. Finally, the proposed method was applied to the evaluation of antioxidant activity of complex real samples such as soybean oil and sunflower oil (as hydrophobic samples) and honey (as hydrophilic sample). To the best of our knowledge, this is the first time that total antioxidant activity can be determined directly in soybean oil, sunflower oil and honey (not in their extracts) using PO-CL reactions.
Collapse
Affiliation(s)
- Kiomars Zargoosh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | | | | | | |
Collapse
|
130
|
Nigrostriatal damage after systemic rotenone and/or lipopolysaccharide and the effect of cannabis. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s00580-013-1788-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
131
|
Liddell JR, Obando D, Liu J, Ganio G, Volitakis I, Mok SS, Crouch PJ, White AR, Codd R. Lipophilic adamantyl- or deferasirox-based conjugates of desferrioxamine B have enhanced neuroprotective capacity: implications for Parkinson disease. Free Radic Biol Med 2013; 60:147-56. [PMID: 23391576 DOI: 10.1016/j.freeradbiomed.2013.01.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 01/22/2013] [Accepted: 01/29/2013] [Indexed: 02/03/2023]
Abstract
Parkinson disease (PD) is a neurodegenerative disease characterized by death of dopaminergic neurons in the substantia nigra region of the brain. Iron content is also elevated in this region in PD and is implicated in the pathobiology of the disease. Desferrioxamine B (DFOB) is a high-affinity iron chelator and has shown efficacy in animal models of Parkinson disease. The high water solubility of DFOB, however, attenuates its ability to enter the brain. In this study, we have conjugated DFOB to derivatives of adamantane or the clinical iron chelator deferasirox to produce lipophilic compounds designed to increase the bioavailability of DFOB to brain cells. We found that the novel compounds are highly effective in preventing iron-mediated paraquat and hydrogen peroxide toxicity in neuronal-like BE2-M17 dopaminergic cells, primary neurons, and iron-loaded or glutathione-depleted primary astrocytes. The compounds also alleviated paraquat toxicity in BE2-M17 cells that express the PD-causing A30P mutation of α-synuclein. This protection was ∼66-fold more potent than DFOB alone and also more effective than other cell-permeative metal chelators, clioquinol and phenanthroline. These results demonstrate that increasing the bioavailability of DFOB through the conjugation of lipophilic fragments greatly enhances its protective capacity. These novel compounds have potential as therapeutics for the treatment of PD and other conditions of Fe dyshomeostasis.
Collapse
Affiliation(s)
- Jeffrey R Liddell
- Department of Pathology, University of Melbourne, and Mental Health Research Institute, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Moretto A, Colosio C. The role of pesticide exposure in the genesis of Parkinson's disease: Epidemiological studies and experimental data. Toxicology 2013; 307:24-34. [DOI: 10.1016/j.tox.2012.11.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/04/2012] [Accepted: 11/17/2012] [Indexed: 12/21/2022]
|
133
|
Funke C, Schneider SA, Berg D, Kell DB. Genetics and iron in the systems biology of Parkinson’s disease and some related disorders. Neurochem Int 2013; 62:637-52. [DOI: 10.1016/j.neuint.2012.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/19/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
|
134
|
Fahim MA, Shehab S, Nemmar A, Adem A, Dhanasekaran S, Hasan MY. Daily subacute paraquat exposure decreases muscle function and substantia nigra dopamine level. Physiol Res 2013; 62:313-21. [PMID: 23489189 DOI: 10.33549/physiolres.932386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The use of the herbicide paraquat (1,1'-dimethyl-4,4'-bipyridylium dichloride; PQ) which is widely used in agriculture is known to cause dopaminergic neurotoxicity. However, the mechanisms underlying this effect are not fully understood. This present study investigated the behavioral manifestations, motor coordination, and dopaminergic neurodegeneration following exposure to PQ. Male rats were injected with PQ (10 mg/kg i.p.) daily for three weeks. Rotarod systems were used for measuring locomotor activity and motor coordination. The effects of PQ on dorsiflexor, electrophysiologically-induced muscle contraction were studied. Dopamine concentrations in the ventral mesencephalon were measured by high performance liquid chromatography and the number of dopaminergic neurons in substantia nigra pars compacta was estimated by tyrosine hydroxylase immunohistochemistry. PQ induced difficulty in movement and significant reduction in motor activity and twitch tension at the dorsiflexor skeletal muscle. The number of tyrosine hydroxylase positive neurons was significantly less in the substantia nigra pars compacta and nigral dopamine level was significantly reduced in PQ treated animals (20.4+/-3.4 pg/mg) when compared with control animals (55.0+/-2.4 pg/mg wet tissue). Daily treatment of PQ for three weeks induces selective dopaminergic neuronal loss in the substantia nigra and significant behavioral and peripheral motor deficit effects.
Collapse
Affiliation(s)
- M A Fahim
- Faculty of Medicine, UAE University, Al Ain, United Arab Emirates.
| | | | | | | | | | | |
Collapse
|
135
|
Llorente-Folch I, Sahún I, Contreras L, Casarejos MJ, Grau JM, Saheki T, Mena MA, Satrústegui J, Dierssen M, Pardo B. AGC1-malate aspartate shuttle activity is critical for dopamine handling in the nigrostriatal pathway. J Neurochem 2013; 124:347-62. [PMID: 23216354 DOI: 10.1111/jnc.12096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/09/2012] [Accepted: 11/05/2012] [Indexed: 12/21/2022]
Abstract
The mitochondrial transporter of aspartate-glutamate Aralar/AGC1 is a regulatory component of the malate-aspartate shuttle. Aralar deficiency in mouse and human causes a shutdown of brain shuttle activity and global cerebral hypomyelination. A lack of neurofilament-labeled processes is detected in the cerebral cortex, but whether different types of neurons are differentially affected by Aralar deficiency is still unknown. We have now found that Aralar-knockout (Aralar-KO) post-natal mice show hyperactivity, anxiety-like behavior, and hyperreactivity with a decrease of dopamine (DA) in terminal-rich regions. The striatum is the brain region most affected in terms of size, amino acid and monoamine content. We find a decline in vesicular monoamine transporter-2 (VMAT2) levels associated with increased DA metabolism through MAO activity (DOPAC/DA ratio) in Aralar-KO striatum. However, no decrease in DA or in the number of nigral tyrosine hydroxylase-positive cells was detected in Aralar-KO brainstem. Adult Aralar-hemizygous mice presented also increased DOPAC/DA ratio in striatum and enhanced sensitivity to amphetamine. Our results suggest that Aralar deficiency causes a fall in GSH/GSSG ratio and VMAT2 in striatum that might be related to a failure to produce mitochondrial NADH and to an increase of reactive oxygen species (ROS) in the cytosol. The results indicate that the nigrostriatal dopaminergic system is a target of Aralar deficiency.
Collapse
Affiliation(s)
- Irene Llorente-Folch
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, and CIBER de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Taetzsch T, Block ML. Pesticides, microglial NOX2, and Parkinson's disease. J Biochem Mol Toxicol 2013; 27:137-49. [PMID: 23349115 DOI: 10.1002/jbt.21464] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/03/2012] [Indexed: 12/11/2022]
Abstract
Accumulating evidence indicates that pesticide exposure is associated with an increased risk for developing Parkinson's disease (PD). Several pesticides known to damage dopaminergic (DA) neurons, such as paraquat, rotenone, lindane, and dieldrin also demonstrate the ability to activate microglia, the resident innate immune cell in the brain. While each of these environmental toxicants may impact microglia through unique mechanisms, they all appear to converge on a common final pathway of microglial activation: NADPH oxidase 2 (NOX2) activation. This review will detail the role of microglia in selective DA neurotoxicity, highlight what is currently known about the mechanism of microglial NOX2 activation in these key pesticides, and describe the importance for DA neuron survival and PD etiology.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA 23298, USA
| | | |
Collapse
|
137
|
Luchtman DW, Meng Q, Wang X, Shao D, Song C. ω-3 fatty acid eicosapentaenoic acid attenuates MPP+-induced neurodegeneration in fully differentiated human SH-SY5Y and primary mesencephalic cells. J Neurochem 2013; 124:855-68. [PMID: 23106698 DOI: 10.1111/jnc.12068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/27/2022]
Abstract
Eicosapentaenoic acid (EPA), a neuroactive omega-3 fatty acid, has been demonstrated to exert neuroprotective effects in experimental models of Parkinson's disease (PD), but the cellular mechanisms of protection are unknown. Here, we studied the effects of EPA in fully differentiated human SH-SY5Y cells and primary mesencephalic neurons treated with MPP(+) . In both in-vitro models of PD, EPA attenuated an MPP(+) -induced reduction in cell viability. EPA also prevented the presence of electron-dense cytoplasmic inclusions in SH-SY5Y cells. Then, possible mechanisms of the neuroprotection were studied. In primary neurons, EPA attenuated an MPP(+) -induced increase in Tyrosine-related kinase B (TrkB) receptors. In SH-SY5Y cells, EPA down-regulated reactive oxygen species and nitric oxide. This antioxidant effect of EPA may have been mediated by its inhibition of neuronal NADPH oxidase and cyclo-oxygenase-2 (COX-2), as MPP(+) increased the expression of these enzymes. Furthermore, EPA prevented an increase in cytosolic phospholipase A2 (cPLA2), an enzyme linked with COX-2 in the potentially pro-inflammatory arachidonic acid cascade. Lastly, EPA attenuated an increase in the bax:bcl-2 ratio, and cytochrome c release. However, EPA did not prevent mitochondrial enlargement or a decrease in mitochondrial membrane potential. This study demonstrated cellular mechanisms by which EPA provided neuroprotective effects in experimental PD.
Collapse
Affiliation(s)
- Dirk W Luchtman
- National Research Institute for Nutrisciences and Health and Department of Biomedical Science, University of Prince Edward Island, Charlottetown, Canada
| | | | | | | | | |
Collapse
|
138
|
Fujii HG, Sato-Akaba H, Emoto MC, Itoh K, Ishihara Y, Hirata H. Noninvasive mapping of the redox status in septic mouse by in vivo electron paramagnetic resonance imaging. Magn Reson Imaging 2013; 31:130-8. [DOI: 10.1016/j.mri.2012.06.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/19/2012] [Indexed: 12/21/2022]
|
139
|
Lo KY, Zhu Y, Tsai HF, Sun YS. Effects of shear stresses and antioxidant concentrations on the production of reactive oxygen species in lung cancer cells. BIOMICROFLUIDICS 2013; 7:64108. [PMID: 24396542 PMCID: PMC3862592 DOI: 10.1063/1.4836675] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/16/2013] [Indexed: 05/16/2023]
Abstract
Reactive oxygen species (ROS) are known to be a key factor in the development of cancer, and many exogenous sources are supposed to be related to the formation of ROS. In this paper, a microfluidic chip was developed for studying the production of ROS in lung cancer cells under different chemical and physical stimuli. This chip has two unique features: (1) five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 are achieved in the culture regions; (2) a shear stress gradient is produced inside each of the five culture areas. Lung cancer cells were seeded inside this biocompatible chip for investigating their response to different concentrations of H2O2, a chemical stimulus known to increase the production of ROS. Then the effect of shear stress, a physical stimulus, on lung cancer cells was examined, showing that the production of ROS was increased in response to a larger shear stress. Finally, two antioxidants, α-tocopherol and ferulic acid, were used to study their effects on reducing ROS. It was found that high-dose α-tocopherol was not able to effectively eliminate the ROS produced inside cells. This counter effect was not observed in cells cultured in a traditional chamber slide, where no shear stress was present. This result suggests that the current microfluidic chip provides an in vitro platform best mimicking the physiological condition where cells are under circulating conditions.
Collapse
Affiliation(s)
- Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Yun Zhu
- Department of Agricultural Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Hsieh-Fu Tsai
- Research Center for Applied Sciences, Academia Sinica, Taipei City 11529, Taiwan
| | - Yung-Shin Sun
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
140
|
Rodriguez-Rocha H, Garcia Garcia A, Zavala-Flores L, Li S, Madayiputhiya N, Franco R. Glutaredoxin 1 protects dopaminergic cells by increased protein glutathionylation in experimental Parkinson's disease. Antioxid Redox Signal 2012; 17:1676-93. [PMID: 22816731 PMCID: PMC3474191 DOI: 10.1089/ars.2011.4474] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Chronic exposure to environmental toxicants, such as paraquat, has been suggested as a risk factor for Parkinson's disease (PD). Although dopaminergic cell death in PD is associated with oxidative damage, the molecular mechanisms involved remain elusive. Glutaredoxins (GRXs) utilize the reducing power of glutathione to modulate redox-dependent signaling pathways by protein glutathionylation. We aimed to determine the role of GRX1 and protein glutathionylation in dopaminergic cell death. RESULTS In dopaminergic cells, toxicity induced by paraquat or 6-hydroxydopamine (6-OHDA) was inhibited by GRX1 overexpression, while its knock-down sensitized cells to paraquat-induced cell death. Dopaminergic cell death was paralleled by protein deglutathionylation, and this was reversed by GRX1. Mass spectrometry analysis of immunoprecipitated glutathionylated proteins identified the actin binding flightless-1 homolog protein (FLI-I) and the RalBP1-associated Eps domain-containing protein 2 (REPS2/POB1) as targets of glutathionylation in dopaminergic cells. Paraquat induced the degradation of FLI-I and REPS2 proteins, which corresponded with the activation of caspase 3 and cell death progression. GRX1 overexpression reduced both the degradation and deglutathionylation of FLI-I and REPS2, while stable overexpression of REPS2 reduced paraquat toxicity. A decrease in glutathionylated proteins and REPS2 levels was also observed in the substantia nigra of mice treated with paraquat. INNOVATION We have identified novel protein targets of glutathionylation in dopaminergic cells and demonstrated the protective role of GRX1-mediated protein glutathionylation against paraquat-induced toxicity. CONCLUSIONS These results demonstrate a protective role for GRX1 and increased protein glutathionylation in dopaminergic cell death induced by paraquat, and identify a novel protective role for REPS2.
Collapse
|
141
|
Herraiz T. Evaluation of the oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to toxic pyridinium cations by monoamine oxidase (MAO) enzymes and its use to search for new MAO inhibitors and protective agents. J Enzyme Inhib Med Chem 2012; 27:810-7. [PMID: 21992679 DOI: 10.3109/14756366.2011.616946] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Monoamine oxidase (MAO) enzymes catalyze the oxidative deamination of amines and neurotransmitters and inhibitors of MAO are useful as neuroprotectants. This work evaluates the human MAO-catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a dopaminergic neurotoxin, to the directly-acting neurotoxic metabolites, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP(+)) and 1-methyl-4-phenylpyridinium (MPP(+)) measured by High-Performance Liquid Chromatography (HPLC), and this approach is subsequently used as a new method for screening of MAO inhibitors and protective agents. Oxidation of MPTP by human MAO-B was more efficient than by MAO-A. R-Deprenyl, a known neuroprotectant, norharman (β-carboline), 5-nitroindazole and menadione (vitamin K3) inhibited MAO-B and reduced the formation of toxic pyridinium cations. Clorgyline and the β-carbolines, harman and norharman, inhibited the oxidation of MPTP by MAO-A. Cigarette smoke, as well as the naturally occurring β-carbolines (norharman and harman) isolated from smoke and coffee inhibited the oxidation of MPTP by MAO-B and/or MAO-A, suggesting protective effects against MPTP. The results show the suitability of the approach used to search for new MAO inhibitors with eventual neuroprotective activity.
Collapse
Affiliation(s)
- Tomás Herraiz
- Spanish National Research Council, (CSIC), Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Madrid, Spain.
| |
Collapse
|
142
|
Blanc-Lapierre A, Bouvier G, Garrigou A, Canal-Raffin M, Raherison C, Brochard P, Baldi I. Effets chroniques des pesticides sur le système nerveux central : état des connaissances épidémiologiques. Rev Epidemiol Sante Publique 2012; 60:389-400. [DOI: 10.1016/j.respe.2012.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 02/23/2012] [Accepted: 03/26/2012] [Indexed: 12/14/2022] Open
|
143
|
de Gracia Lux C, Joshi-Barr S, Nguyen T, Mahmoud E, Schopf E, Fomina N, Almutairi A. Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J Am Chem Soc 2012; 134:15758-64. [PMID: 22946840 PMCID: PMC3478073 DOI: 10.1021/ja303372u] [Citation(s) in RCA: 435] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative stress is caused predominantly by accumulation of hydrogen peroxide and distinguishes inflamed tissue from healthy tissue. Hydrogen peroxide could potentially be useful as a stimulus for targeted drug delivery to diseased tissue. However, current polymeric systems are not sensitive to biologically relevant concentrations of H(2)O(2) (50-100 μM). Here we report a new biocompatible polymeric capsule capable of undergoing backbone degradation and thus release upon exposure to such concentrations of hydrogen peroxide. Two polymeric structures were developed differing with respect to the linkage between the boronic ester group and the polymeric backbone: either direct (1) or via an ether linkage (2). Both polymers are stable in aqueous solution at normal pH, and exposure to peroxide induces the removal of the boronic ester protecting groups at physiological pH and temperature, revealing phenols along the backbone, which undergo quinone methide rearrangement to lead to polymer degradation. Considerably faster backbone degradation was observed for polymer 2 over polymer 1 by NMR and GPC. Nanoparticles were formulated from these novel materials to analyze their oxidation triggered release properties. While nanoparticles formulated from polymer 1 only released 50% of the reporter dye after exposure to 1 mM H(2)O(2) for 26 h, nanoparticles formulated from polymer 2 did so within 10 h and were able to release their cargo selectively in biologically relevant concentrations of H(2)O(2). Nanoparticles formulated from polymer 2 showed a 2-fold enhancement of release upon incubation with activated neutrophils, while controls showed a nonspecific response to ROS producing cells. These polymers represent a novel, biologically relevant, and biocompatible approach to biodegradable H(2)O(2)-triggered release systems that can degrade into small molecules, release their cargo, and should be easily cleared by the body.
Collapse
Affiliation(s)
- Caroline de Gracia Lux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and of Materials Science and Engineering, University of California at San Diego, La Jolla, California 92093
| | - Shivanjali Joshi-Barr
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and of Materials Science and Engineering, University of California at San Diego, La Jolla, California 92093
| | - Trung Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and of Materials Science and Engineering, University of California at San Diego, La Jolla, California 92093
| | - Enas Mahmoud
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and of Materials Science and Engineering, University of California at San Diego, La Jolla, California 92093
| | - Eric Schopf
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and of Materials Science and Engineering, University of California at San Diego, La Jolla, California 92093
| | - Nadezda Fomina
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and of Materials Science and Engineering, University of California at San Diego, La Jolla, California 92093
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and of Materials Science and Engineering, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
144
|
Neuroprotective effects of tert-butylhydroquinone on paraquat-induced dopaminergic cell degeneration in C57BL/6 mice and in PC12 cells. Arch Toxicol 2012; 86:1729-40. [DOI: 10.1007/s00204-012-0935-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/28/2012] [Indexed: 12/21/2022]
|
145
|
Hoffman L, Hardej D. Ethylene bisdithiocarbamate pesticides cause cytotoxicity in transformed and normal human colon cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:556-573. [PMID: 22824503 DOI: 10.1016/j.etap.2012.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
The effects of the fungicides Maneb, Mancozeb, and Zineb were investigated in transformed colon cells, HT-29, Caco2 and non-transformed cells, CCD-18Co. Significant decreases in viability were observed with Maneb and Mancozeb in HT-29 and CCD-18Co (80-260μM), and Caco2 cells (40-180μM). No significant decreases in viability were observed in all cell types up to 800μM with Zineb. MnCl(2) and ZnCl(2) exposure produced no loss of viability in all cell types up to 400μM. Light microscopy confirmed viability analysis. Lipid peroxidation was observed with Maneb and Mancozeb in cell types tested (60-200μM). Caspase 3/7, 8, and 9 activities were observed with Maneb and Mancozeb in cell types tested (40-200μM). Maneb and Mancozeb treated HT-29 and Caco2 cells demonstrated increases in manganese and zinc concentrations (20-200μM). The lack of toxicity observed with Zineb, MnCl(2), and ZnCl(2) suggests that both the metal moiety and the organic portion of these fungicides together contribute to toxicity.
Collapse
Affiliation(s)
- Lisa Hoffman
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, NY 11439, USA
| | - Diane Hardej
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, NY 11439, USA.
| |
Collapse
|
146
|
Niranjan R, Rajasekar N, Nath C, Shukla R. The effect of guggulipid and nimesulide on MPTP-induced mediators of neuroinflammation in rat astrocytoma cells, C6. Chem Biol Interact 2012; 200:73-83. [PMID: 22940226 DOI: 10.1016/j.cbi.2012.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 11/18/2022]
Abstract
Oxidative stress plays an important role in the pathophysiology of Parkinson's disease (PD) but its mechanism is still not properly explored. Cyclooxygenase-2 (COX-2) inhibition has also been known a major neuroprotective strategy in the various 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP) induced models of Parkinson's disease (PD) but its role in astrocytes is still not properly understood. The present study demonstrated that, guggulipid and nimesulide (preferentially selective COX-2 inhibitor) treatment of rat astrocytoma cells, C6 for 24 h significantly decreased MPTP (400 μM) induced nitrative and oxidative stress and intracellular calcium ion (Ca(2+)) level. Guggulipid and nimesulide also deactivated MPTP-induced P-p38 MAPK (Phosphorylated p38 mitogen-activated protein kinase) and down regulated expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and CHOP (C/EBP, homologous protein 10). At transcriptional level of inflammatory cytokine genes, guggulipid and nimesulide down regulated MPTP-induced tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) mRNA expressions with up regulations in interleukin-6 (IL-6) and interleukin-1α (IL-1α) mRNA expressions. In addition to this, guggulipid and nimesulide inhibited translocation of nuclear factor kappa-B (NF-κB) from cytosol to nucleus. In conclusion, our findings elucidated the potential antioxidant and anti-neuroinflammatory effect of guggulipid and nimesulide in rat astrocytoma cells C6, which may suggest the use of these drugs in the management of neuroinflammation associated pathophysiology of PD.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Division of Pharmacology, Central Drug Research Institute, CSIR, Lucknow 226001, UP, India
| | | | | | | |
Collapse
|
147
|
Janda E, Isidoro C, Carresi C, Mollace V. Defective autophagy in Parkinson's disease: role of oxidative stress. Mol Neurobiol 2012; 46:639-61. [PMID: 22899187 DOI: 10.1007/s12035-012-8318-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/30/2012] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a paradigmatic example of neurodegenerative disorder with a critical role of oxidative stress in its etiopathogenesis. Genetic susceptibility factors of PD, such as mutations in Parkin, PTEN-induced kinase 1, and DJ-1 as well as the exposure to pesticides and heavy metals, both contribute to altered redox balance and degeneration of dopaminergic neurons in the substantia nigra. Dysregulation of autophagy, a lysosomal-driven process of self degradation of cellular organelles and protein aggregates, is also implicated in PD and PD-related mutations, and environmental toxins deregulate autophagy. However, experimental evidence suggests a complex and ambiguous role of autophagy in PD since either impaired or abnormally upregulated autophagic flux has been shown to cause neuronal loss. Finally, it is generally believed that oxidative stress is a strong proautophagic stimulus. However, some evidence coming from neurobiology as well as from other fields indicate an inhibitory role of reactive oxygen species and reactive nitrogen species on the autophagic machinery. This review examines the scientific evidence supporting different concepts on how autophagy is dysregulated in PD and attempts to reconcile apparently contradictory views on the role of oxidative stress in autophagy regulation. The complex relationship between autophagy and oxidative stress is also considered in the context of the ongoing search for a novel PD therapy.
Collapse
Affiliation(s)
- Elzbieta Janda
- Department of Health Sciences, University Magna Graecia, Edificio Bioscienze, viale Europa, Campus Salvatore Venuta, Germaneto, 88100 Catanzaro, Italy.
| | | | | | | |
Collapse
|
148
|
Patel VP, Defranco DB, Chu CT. Altered transcription factor trafficking in oxidatively-stressed neuronal cells. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1773-82. [PMID: 22902725 DOI: 10.1016/j.bbadis.2012.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/26/2012] [Accepted: 08/03/2012] [Indexed: 12/31/2022]
Abstract
Age-related neurodegenerative diseases are associated with alterations in gene expression in affected neurons. One of the mechanisms that could account for this is altered subcellular localization of transcription factors, which has been observed in human post-mortem brains of each of the major neurodegenerative diseases, including Parkinson's disease (PD). The specific mechanisms are yet to be elucidated; however a potential mechanism involves alterations in nuclear transport. In this study, we examined the nucleocytoplasmic trafficking of select transcription factors in response to a PD-relevant oxidative injury, 6-hydroxydopamine (6OHDA). Utilizing a well-established model of ligand-regulated nucleocytoplasmic shuttling, the glucocorticoid receptor, we found that 6OHDA selectively impaired nuclear import through an oxidative mechanism without affecting nuclear export or nuclear retention. Interestingly, impaired nuclear import was selective as Nrf2 (nuclear factor E2-related factor 2) nuclear localization remained intact in 6OHDA-treated cells. Thus, oxidative stress specifically impacts the subcellular localization of some but not all transcription factors, which is consistent with observations in post-mortem PD brains. Our data further implicate a role for altered microtubule dependent trafficking in the differential effects of 6OHDA on transcription factor import. Oxidative disruption of microtubule-dependent nuclear transport may contribute to selective declines in transcriptional responses of aging or diseased dopaminergic cells.
Collapse
Affiliation(s)
- Vivek P Patel
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
149
|
Mitocans, Mitochondria-Targeting Anticancer Drugs. ACTA ACUST UNITED AC 2012. [DOI: 10.1201/b12308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
150
|
Niranjan R, Nath C, Shukla R. Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radic Res 2012; 46:1167-77. [PMID: 22656125 DOI: 10.3109/10715762.2012.697626] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Melatonin has been known to affect a variety of astrocytes functions in many neurological disorders but its mechanism of action on neuroinflammatory cascade and alpha-7 nicotinic acetylcholine receptor (α7-nAChR) expression are still not properly understood. Present study demonstrated that treatment of C6 cells with melatonin for 24 hours significantly decreased lipopolysaccharide (LPS) induced nitrative and oxidative stress, expressions of cyclooxigenase-2 (COX-2), inducible nitric-oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP). Melatonin also modulated LPS-induced mRNA expressions of α7-nAChR and inflammatory cytokine genes. Furthermore, melatonin reversed LPS-induced changes in C/EBP homologous protein 10 (CHOP), microsomal prostaglandin E synthase-1(mPGES-1) and phosphorylated p38 mitogen activated protein kinase (P-p38). Treatment with pyrrolidine dithiocarbamate (PDTC) inhibited α7-nAChR mRNA expression in LPS-induced C6 cells. Our findings explored anti-neuroinflammatory action of melatonin, which may suggests its beneficial roles in the neuroinflammation associated disorders.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|