101
|
Goutman SA, Boss J, Guo K, Alakwaa FM, Patterson A, Kim S, Savelieff MG, Hur J, Feldman EL. Untargeted metabolomics yields insight into ALS disease mechanisms. J Neurol Neurosurg Psychiatry 2020; 91:1329-1338. [PMID: 32928939 PMCID: PMC7677469 DOI: 10.1136/jnnp-2020-323611] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To identify dysregulated metabolic pathways in amyotrophic lateral sclerosis (ALS) versus control participants through untargeted metabolomics. METHODS Untargeted metabolomics was performed on plasma from ALS participants (n=125) around 6.8 months after diagnosis and healthy controls (n=71). Individual differential metabolites in ALS cases versus controls were assessed by Wilcoxon rank-sum tests, adjusted logistic regression and partial least squares-discriminant analysis (PLS-DA), while group lasso explored sub-pathway-level differences. Adjustment parameters included sex, age and body mass index (BMI). Metabolomics pathway enrichment analysis was performed on metabolites selected by the above methods. Finally, machine learning classification algorithms applied to group lasso-selected metabolites were evaluated for classifying case status. RESULTS There were no group differences in sex, age and BMI. Significant metabolites selected were 303 by Wilcoxon, 300 by logistic regression, 295 by PLS-DA and 259 by group lasso, corresponding to 11, 13, 12 and 22 enriched sub-pathways, respectively. 'Benzoate metabolism', 'ceramides', 'creatine metabolism', 'fatty acid metabolism (acyl carnitine, polyunsaturated)' and 'hexosylceramides' sub-pathways were enriched by all methods, and 'sphingomyelins' by all but Wilcoxon, indicating these pathways significantly associate with ALS. Finally, machine learning prediction of ALS cases using group lasso-selected metabolites achieved the best performance by regularised logistic regression with elastic net regularisation, with an area under the curve of 0.98 and specificity of 83%. CONCLUSION In our analysis, ALS led to significant metabolic pathway alterations, which had correlations to known ALS pathomechanisms in the basic and clinical literature, and may represent important targets for future ALS therapeutics.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Fadhl M Alakwaa
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam Patterson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sehee Kim
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
102
|
Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5021694. [PMID: 33274002 PMCID: PMC7683149 DOI: 10.1155/2020/5021694] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease or Charcot disease, is a fatal neurodegenerative disease that affects motor neurons (MNs) and leads to death within 2–5 years of diagnosis, without any effective therapy available. Although the pathological mechanisms leading to ALS are still unknown, a wealth of evidence indicates that an excessive reactive oxygen species (ROS) production associated with an inefficient antioxidant defense represents an important pathological feature in ALS. Substantial evidence indicates that oxidative stress (OS) is implicated in the loss of MNs and in mitochondrial dysfunction, contributing decisively to neurodegeneration in ALS. Although the modulation of OS represents a promising approach to protect MNs from degeneration, the fact that several antioxidants with beneficial effects in animal models failed to show any therapeutic benefit in patients raises several questions that should be analyzed. Using specific queries for literature search on PubMed, we review here the role of OS-related mechanisms in ALS, including the involvement of altered mitochondrial function with repercussions in neurodegeneration. We also describe antioxidant compounds that have been mostly tested in preclinical and clinical trials of ALS, also describing their respective mechanisms of action. While the description of OS mechanism in the different mutations identified in ALS has as principal objective to clarify the contribution of OS in ALS, the description of positive and negative outcomes for each antioxidant is aimed at paving the way for novel opportunities for intervention. In conclusion, although antioxidant strategies represent a very promising approach to slow the progression of the disease, it is of utmost need to invest on the characterization of OS profiles representative of each subtype of patient, in order to develop personalized therapies, allowing to understand the characteristics of antioxidants that have beneficial effects on different subtypes of patients.
Collapse
|
103
|
Petrovic S, Arsic A, Ristic-Medic D, Cvetkovic Z, Vucic V. Lipid Peroxidation and Antioxidant Supplementation in Neurodegenerative Diseases: A Review of Human Studies. Antioxidants (Basel) 2020; 9:1128. [PMID: 33202952 PMCID: PMC7696060 DOI: 10.3390/antiox9111128] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023] Open
Abstract
Being characterized by progressive and severe damage in neuronal cells, neurodegenerative diseases (NDDs) are the major cause of disability and morbidity in the elderly, imposing a significant economic and social burden. As major components of the central nervous system, lipids play important roles in neural health and pathology. Disturbed lipid metabolism, particularly lipid peroxidation (LPO), is associated with the development of many NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), all of which show elevated levels of LPO products and LPO-modified proteins. Thus, the inhibition of neuronal oxidation might slow the progression and reduce the severity of NDD; natural antioxidants, such as polyphenols and antioxidant vitamins, seem to be the most promising agents. Here, we summarize current literature data that were derived from human studies on the effect of natural polyphenols and vitamins A, C, and E supplementation in patients with AD, PD, and ALS. Although these compounds may reduce the severity and slow the progression of NDD, research gaps remain in antioxidants supplementation in AD, PD, and ALS patients, which indicates that further human studies applying antioxidant supplementation in different forms of NDDs are urgently needed.
Collapse
Affiliation(s)
- Snjezana Petrovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| | - Aleksandra Arsic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| | - Danijela Ristic-Medic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| | - Zorica Cvetkovic
- Department of Hematology, Clinical Hospital Center Zemun, 11000 Belgrade, Serbia;
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Vucic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| |
Collapse
|
104
|
Wen J, Li S, Zheng C, Wang F, Luo Y, Wu L, Cao J, Guo B, Yu P, Zhang G, Li S, Sun Y, Yang X, Zhang Z, Wang Y. Tetramethylpyrazine nitrone improves motor dysfunction and pathological manifestations by activating the PGC-1α/Nrf2/HO-1 pathway in ALS mice. Neuropharmacology 2020; 182:108380. [PMID: 33152451 DOI: 10.1016/j.neuropharm.2020.108380] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/11/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of upper and lower motor neurons that results in skeletal muscle atrophy, weakness and paralysis. Oxidative stress plays a key role in the pathogenesis of ALS, including familial forms of the disease arising from mutation of the gene coding for superoxide dismutase (SOD1). We have used the SOD1G93A ALS mouse model to investigate the efficacy of 2-[[(1,1-dimethylethyl)oxidoimino]-methyl]-3,5,6-trimethylpyrazine (TBN), a novel tetramethylpyrazine derivative armed with a powerful free-radical scavenging nitrone moiety. TBN was administered to mice by intraperitoneal or intragastric injection after the onset of motor deficits. TBN slowed the progression of motor neuron disease as evidenced by improved motor performance, reduced spinal motor neuron loss and the associated glial response, and decreased skeletal muscle fiber denervation and fibrosis. TBN treatment activated mitochondrial antioxidant activity through the PGC-1α/Nrf2/HO-1 pathway and decreased the expression of human SOD1. These findings suggest that TBN holds promise as a therapeutic agent for ALS.
Collapse
Affiliation(s)
- Jing Wen
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Shangming Li
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Chengyou Zheng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fengjiao Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Yangwen Luo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Liangmiao Wu
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Jie Cao
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Baojian Guo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Pei Yu
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yewei Sun
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China.
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, 518055, China.
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China.
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| |
Collapse
|
105
|
Adani G, Filippini T, Garuti C, Malavolti M, Vinceti G, Zamboni G, Tondelli M, Galli C, Costa M, Vinceti M, Chiari A. Environmental Risk Factors for Early-Onset Alzheimer's Dementia and Frontotemporal Dementia: A Case-Control Study in Northern Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7941. [PMID: 33138082 PMCID: PMC7663191 DOI: 10.3390/ijerph17217941] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Background: Early-onset dementia (EOD) is defined as dementia with symptom onset before 65 years. The role of environmental risk factors in the etiology of EOD is still undefined. We aimed at assessing the role of environmental risk factors in EOD etiology, taking into account its different clinical types. Methods: Using a case-control study, we recruited all EOD cases referred to Modena hospitals from 2016 to 2019, while the referent population was drawn from cases' caregivers. We investigated residential history, occupational and environmental exposures to chemicals and lifestyle behaviors through a self-administered questionnaire. We computed the odds ratios of EOD risk (overall and restricting to the Alzheimer's dementia (AD) or frontotemporal dementia (FTD) diagnoses) and the corresponding 95% confidence intervals using an unconditional logistic regression model. Results: Fifty-eight EOD patients (19 FTD and 32 AD) and 54 controls agreed to participate. Most of the investigated exposures, such as occupational exposure to aluminum, pesticides, dyes, paints or thinners, were associated with an increased odds ratio (OR) for FTD but not for AD. Long-term use of selenium-containing dietary supplements was associated with increased OR for EOD and, particularly, for FTD. For both EOD forms, smoking and playing football showed an increased odds ratio, while cycling was associated with increased risk only in FTD. Overall sports practice appeared to be a protective factor for both types. Conclusions: Our results suggest a role of environmental and behavioral risk factors such as some chemical exposures and professional sports in EOD etiology, in particular with reference to FTD. Overall sports practice may be associated with a reduced EOD risk.
Collapse
Affiliation(s)
- Giorgia Adani
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.A.); (T.F.); (C.G.); (M.M.)
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.A.); (T.F.); (C.G.); (M.M.)
| | - Caterina Garuti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.A.); (T.F.); (C.G.); (M.M.)
| | - Marcella Malavolti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.A.); (T.F.); (C.G.); (M.M.)
| | - Giulia Vinceti
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (G.V.); (G.Z.)
- Neurology Unit, Modena Policlinico-University Hospital, 41126 Modena, Italy; (M.T.); (C.G.); (A.C.)
| | - Giovanna Zamboni
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (G.V.); (G.Z.)
- Neurology Unit, Modena Policlinico-University Hospital, 41126 Modena, Italy; (M.T.); (C.G.); (A.C.)
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Manuela Tondelli
- Neurology Unit, Modena Policlinico-University Hospital, 41126 Modena, Italy; (M.T.); (C.G.); (A.C.)
- Primary Care Department, Modena Local Health Authority, 41124 Modena, Italy
| | - Chiara Galli
- Neurology Unit, Modena Policlinico-University Hospital, 41126 Modena, Italy; (M.T.); (C.G.); (A.C.)
- Primary Care Department, Modena Local Health Authority, 41124 Modena, Italy
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NeuroFARBA), University of Florence, 50139 Florence, Italy
| | - Manuela Costa
- Neurology Unit of Carpi Hospital, Modena Local Health Authority, 41012 Carpi, Italy;
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.A.); (T.F.); (C.G.); (M.M.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Annalisa Chiari
- Neurology Unit, Modena Policlinico-University Hospital, 41126 Modena, Italy; (M.T.); (C.G.); (A.C.)
| |
Collapse
|
106
|
The Role of Exosomal microRNAs and Oxidative Stress in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3232869. [PMID: 33193999 PMCID: PMC7641266 DOI: 10.1155/2020/3232869] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases including Alzheimer's disease and Parkinson's disease are aging-associated diseases with irreversible damage of brain tissue. Oxidative stress is commonly detected in neurodegenerative diseases and related to neuronal injury and pathological progress. Exosome, one of the extracellular vesicles, is demonstrated to carry microRNAs (miRNAs) and build up a cell-cell communication in neurons. Recent research has found that exosomal miRNAs regulate the activity of multiple physiological pathways, including the oxidative stress response, in neurodegenerative diseases. Here, we review the role of exosomal miRNAs and oxidative stress in neurodegenerative diseases. Firstly, we explore the relationship between oxidative stress and neurodegenerative diseases. Secondly, we introduce the characteristics of exosomes and roles of exosome-related miRNAs. Thirdly, we summarized the crosstalk between exosomal miRNAs and oxidative stress in neurodegenerative diseases. Fourthly, we discuss the potential of exosomes to be a biomarker in neurodegenerative diseases. Finally, we summarize the advantages of exosome-based delivery and present situation of research on exosome-based delivery of therapeutic miRNA. Our work is aimed at probing and reinforcing the recognition of the pathomechanism of neurodegenerative diseases and providing the basis for novel strategies of clinical diagnosis and treatment.
Collapse
|
107
|
Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements.
Collapse
|
108
|
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD + metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther 2020; 5:227. [PMID: 33028824 PMCID: PMC7539288 DOI: 10.1038/s41392-020-00311-7] [Citation(s) in RCA: 486] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its metabolites function as critical regulators to maintain physiologic processes, enabling the plastic cells to adapt to environmental changes including nutrient perturbation, genotoxic factors, circadian disorder, infection, inflammation and xenobiotics. These effects are mainly achieved by the driving effect of NAD+ on metabolic pathways as enzyme cofactors transferring hydrogen in oxidation-reduction reactions. Besides, multiple NAD+-dependent enzymes are involved in physiology either by post-synthesis chemical modification of DNA, RNA and proteins, or releasing second messenger cyclic ADP-ribose (cADPR) and NAADP+. Prolonged disequilibrium of NAD+ metabolism disturbs the physiological functions, resulting in diseases including metabolic diseases, cancer, aging and neurodegeneration disorder. In this review, we summarize recent advances in our understanding of the molecular mechanisms of NAD+-regulated physiological responses to stresses, the contribution of NAD+ deficiency to various diseases via manipulating cellular communication networks and the potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Peter Ernst Huber
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
109
|
PET Imaging for Oxidative Stress in Neurodegenerative Disorders Associated with Mitochondrial Dysfunction. Antioxidants (Basel) 2020; 9:antiox9090861. [PMID: 32937849 PMCID: PMC7554831 DOI: 10.3390/antiox9090861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress based on mitochondrial dysfunction is assumed to be the principal molecular mechanism for the pathogenesis of many neurodegenerative disorders. However, the effects of oxidative stress on the neurodegeneration process in living patients remain to be elucidated. Molecular imaging with positron emission tomography (PET) can directly evaluate subtle biological changes, including the redox status. The present review focuses on recent advances in PET imaging for oxidative stress, in particular the use of the Cu-ATSM radioligand, in neurodegenerative disorders associated with mitochondrial dysfunction. Since reactive oxygen species are mostly generated by leakage of excess electrons from an over-reductive state due to mitochondrial respiratory chain impairment, PET with 62Cu-ATSM, the accumulation of which depends on an over-reductive state, is able to image oxidative stress. 62Cu-ATSM PET studies demonstrated enhanced oxidative stress in the disease-related brain regions of patients with mitochondrial disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, the magnitude of oxidative stress increased with disease severity, indicating that oxidative stress based on mitochondrial dysfunction contributes to promoting neurodegeneration in these diseases. Oxidative stress imaging has improved our insights into the pathological mechanisms of neurodegenerative disorders, and is a promising tool for monitoring further antioxidant therapies.
Collapse
|
110
|
Patti F, Fiore M, Chisari CG, D'Amico E, Lo Fermo S, Toscano S, Copat C, Ferrante M, Zappia M. CSF neurotoxic metals/metalloids levels in amyotrophic lateral sclerosis patients: comparison between bulbar and spinal onset. ENVIRONMENTAL RESEARCH 2020; 188:109820. [PMID: 32615355 DOI: 10.1016/j.envres.2020.109820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of the central nervous system (CNS) that causes progressive and irreversible damage in motor neurons. Different causal hypotheses include genetic, viral, traumatic and environmental mechanisms, such as exposure to heavy metals. The aim of this study was to compare metal/metalloid levels in cerebro-spinal fluid of ALS subtypes (spinal vs bulbar clinical onset). MATERIAL AND METHODS This observational study consecutively screened all ALS patients referring to the Neurology Clinic of the University of Catania (Italy). Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify magnesium (Mg), cuprum (Cu), selenium (Se), iron (Fe), manganese (Mn), vanadium (V), zinc (Zn), alluminium (Al), arsenic (As), cobalt (Co), nickel (Ni), mercury (Hg), lead (Pb), cadmium (Cd) and palladium (Pd) levels. RESULTS Thirty-seven patients were enrolled (62.2% females), median age of 65 years (IQR: 59-71 years). Thirty-one (83.8%) patients had a spinal onset and 6 (16.2%) a bulbar onset. Se and As levels were higher compared to the reference values (RV) both in spinal and bulbar onset, while Cu was higher than RV only in bulbar onset. Moreover, Cu (129.8 μg/L vs 29.8 μg/L), Fe (54.5 μg/L vs 33.3 μg/L), Mn (3.4 μg/L vs 1.8 μg/L), Zn (46.1 μg/L vs 35.7 μg/L), Al (12.2 μg/L vs 6.7 μg/L), Ni (2.80 μg/L vs 1.40 μg/L), and Pb (0.60 μg/L vs 0.30 μg/L) levels were higher in bulbar than in spinal onset, conversely As was slightly higher in spinal than in bulbar onset (1.40 μg/L vs 1.10 μg/L). Overall, Cu (129 μg/L vs 31 μg/L), Fe (92.2 μg/L vs 32.9 μg/L), Mn (3.35 μg/L vs 1.80 μg/L), Zn (56.5 μg/L vs 35.2 μg/L), Al (14.45 μg/L vs 6.70 μg/L), and Cd (0.40 μg/L vs 0.08 μg/L) levels were higher in patients with disease duration less than 19 months. CONCLUSION Our results supported the hypothesis that metals/metalloids with neurotoxic effects could be involved in the etiology of ALS, showing higher levels of Cu, Se and As. Relevant differences in Cu and Mn levels were found between bulbar and spinal onset patients.
Collapse
Affiliation(s)
- Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy.
| | - Maria Fiore
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123, Catania, Italy
| | - Clara G Chisari
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Emanuele D'Amico
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Salvatore Lo Fermo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Simona Toscano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Chiara Copat
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123, Catania, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123, Catania, Italy
| | - Mario Zappia
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| |
Collapse
|
111
|
Association of Paraoxonase1 enzyme and its genetic single nucleotide polymorphisms with cardio-metabolic and neurodegenerative diseases. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
112
|
Decreased Mitochondrial Function, Biogenesis, and Degradation in Peripheral Blood Mononuclear Cells from Amyotrophic Lateral Sclerosis Patients as a Potential Tool for Biomarker Research. Mol Neurobiol 2020; 57:5084-5102. [PMID: 32840822 PMCID: PMC7541388 DOI: 10.1007/s12035-020-02059-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial and progressive neurodegenerative disease of unknown etiology. Due to ALS’s unpredictable onset and progression rate, the search for biomarkers that allow the detection and tracking of its development and therapeutic efficacy would be of significant medical value. Considering that alterations of energy supply are one of ALS’s main hallmarks and that a correlation has been established between gene expression in human brain tissue and peripheral blood mononuclear cells (PBMCs), the present work investigates whether changes in mitochondrial function could be used to monitor ALS. To achieve this goal, PBMCs from ALS patients and control subjects were used; blood sampling is a quite non-invasive method and is cost-effective. Different parameters were evaluated, namely cytosolic calcium levels, mitochondrial membrane potential, oxidative stress, and metabolic compounds levels, as well as mitochondrial dynamics and degradation. Altogether, we observed lower mitochondrial calcium uptake/retention, mitochondria depolarization, and redox homeostasis deregulation, in addition to a decrease in critical metabolic genes, a diminishment in mitochondrial biogenesis, and an augmentation in mitochondrial fission and autophagy-related gene expression. All of these changes can contribute to the decreased ATP and pyruvate levels observed in ALS PBMCs. Our data indicate that PBMCs from ALS patients show a significant mitochondrial dysfunction, resembling several findings from ALS’ neural cells/models, which could be exploited as a powerful tool in ALS research. Our findings can also guide future studies on new pharmacological interventions for ALS since assessments of brain samples are challenging and represent a relevant limited strategy. Graphical abstract ![]()
Collapse
|
113
|
Foster AD, Downing P, Figredo E, Polain N, Stott A, Layfield R, Rea SL. ALS-associated TBK1 variant p.G175S is defective in phosphorylation of p62 and impacts TBK1-mediated signalling and TDP-43 autophagic degradation. Mol Cell Neurosci 2020; 108:103539. [PMID: 32835772 DOI: 10.1016/j.mcn.2020.103539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations affecting SQSTM1 coding for p62 and TANK-Binding Kinase 1 (TBK1) have been implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TBK1 is a serine-threonine kinase that regulates p62's activity as an autophagy receptor via phosphorylation and also has roles in neuroinflammatory signalling pathways. The mechanisms underlying ALS and FTLD pathogenesis as a result of TBK1 mutations are incompletely understood, however, loss of TBK1 function can lead to dysregulated autophagy and mitophagy. Here, we report that an ALS-associated TBK1 variant affecting the kinase domain, p.G175S, is defective in phosphorylation of p62 at Ser-403, a modification critical for regulating its ubiquitin-binding function, as well as downstream phosphorylation at Ser-349. Consistent with these findings, expression of p.G175S TBK1 was associated with decreased induction of autophagy compared to wild type and reduced degradation of the ALS-linked protein TDP-43. Expression of wild type TBK1 increased NF-κB signalling ~300 fold in comparison to empty vector cells, whereas p.G175S TBK1 was unable to promote NF-κB signalling above levels observed in empty vector transfected cells. We also noted a hitherto unknown role for TBK1 as a suppressor of oxidative stress (Nrf2) signalling and show that p.G175S TBK1 expressing cells lose this inhibitory function. Our data suggest that TBK1 ALS mutations may broadly impair p62-mediated cell signalling, which ultimately may reduce neuronal survival, in addition TDP-43 was not efficiently degraded, together these effects may contribute to TBK1 mutation associated ALS and FTLD pathogenesis.
Collapse
Affiliation(s)
- A D Foster
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, Australia
| | - P Downing
- School of Health Sciences, Notre Dame University, Fremantle, Western Australia, Australia
| | - E Figredo
- School of Health Sciences, Notre Dame University, Fremantle, Western Australia, Australia
| | - N Polain
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, Australia
| | - A Stott
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - R Layfield
- School of Health Sciences, Notre Dame University, Fremantle, Western Australia, Australia; School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - S L Rea
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, Australia.
| |
Collapse
|
114
|
Bianchi VE, Rizzi L, Bresciani E, Omeljaniuk RJ, Torsello A. Androgen Therapy in Neurodegenerative Diseases. J Endocr Soc 2020; 4:bvaa120. [PMID: 33094209 PMCID: PMC7568521 DOI: 10.1210/jendso/bvaa120] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington disease, are characterized by the loss of neurons as well as neuronal function in multiple regions of the central and peripheral nervous systems. Several studies in animal models have shown that androgens have neuroprotective effects in the brain and stimulate axonal regeneration. The presence of neuronal androgen receptors in the peripheral and central nervous system suggests that androgen therapy might be useful in the treatment of neurodegenerative diseases. To illustrate, androgen therapy reduced inflammation, amyloid-β deposition, and cognitive impairment in patients with AD. As well, improvements in remyelination in MS have been reported; by comparison, only variable results are observed in androgen treatment of PD. In ALS, androgen administration stimulated motoneuron recovery from progressive damage and regenerated both axons and dendrites. Only a few clinical studies are available in human individuals despite the safety and low cost of androgen therapy. Clinical evaluations of the effects of androgen therapy on these devastating diseases using large populations of patients are strongly needed.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, Falciano, San Marino
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
115
|
Suk TR, Rousseaux MWC. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener 2020; 15:45. [PMID: 32799899 PMCID: PMC7429473 DOI: 10.1186/s13024-020-00397-1] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Since its discovery as a primary component in cytoplasmic aggregates in post-mortem tissue of patients with Amyotrophic Lateral Sclerosis (ALS), TAR DNA Binding Protein 43 kDa (TDP-43) has remained a central focus to understand the disease. TDP-43 links both familial and sporadic forms of ALS as mutations are causative for disease and cytoplasmic aggregates are a hallmark of nearly all cases, regardless of TDP-43 mutational status. Research has focused on the formation and consequences of cytosolic protein aggregates as drivers of ALS pathology through both gain- and loss-of-function mechanisms. Not only does aggregation sequester the normal function of TDP-43, but these aggregates also actively block normal cellular processes inevitably leading to cellular demise in a short time span. Although there may be some benefit to therapeutically targeting TDP-43 aggregation, this step may be too late in disease development to have substantial therapeutic benefit. However, TDP-43 pathology appears to be tightly linked with its mislocalization from the nucleus to the cytoplasm, making it difficult to decouple the consequences of nuclear-to-cytoplasmic mislocalization from protein aggregation. Studies focusing on the effects of TDP-43 mislocalization have demonstrated both gain- and loss-of-function consequences including altered splicing regulation, over responsiveness to cellular stressors, increases in DNA damage, and transcriptome-wide changes. Additionally, mutations in TARDBP confer a baseline increase in cytoplasmic TDP-43 thus suggesting that small changes in the subcellular localization of TDP-43 could in fact drive early pathology. In this review, we bring forth the theme of protein mislocalization as a key mechanism underlying ALS, by highlighting the importance of maintaining subcellular proteostasis along with the gain- and loss-of-functional consequences when TDP-43 localization is dysregulated. Additional research, focusing on early events in TDP-43 pathogenesis (i.e. to the protein mislocalization stage) will provide insight into disease mechanisms, therapeutic targets, and novel biomarkers for ALS.
Collapse
Affiliation(s)
- Terry R. Suk
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Maxime W. C. Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
116
|
Koza LA, Winter AN, Holsopple J, Baybayon-Grandgeorge AN, Pena C, Olson JR, Mazzarino RC, Patterson D, Linseman DA. Protocatechuic Acid Extends Survival, Improves Motor Function, Diminishes Gliosis, and Sustains Neuromuscular Junctions in the hSOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis. Nutrients 2020; 12:nu12061824. [PMID: 32570926 PMCID: PMC7353311 DOI: 10.3390/nu12061824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disorder characterized by motor neuron apoptosis and subsequent skeletal muscle atrophy caused by oxidative and nitrosative stress, mitochondrial dysfunction, and neuroinflammation. Anthocyanins are polyphenolic compounds found in berries that possess neuroprotective and anti-inflammatory properties. Protocatechuic acid (PCA) is a phenolic acid metabolite of the parent anthocyanin, kuromanin, found in blackberries and bilberries. We explored the therapeutic effects of PCA in a transgenic mouse model of ALS that expresses mutant human Cu, Zn-superoxide dismutase 1 with a glycine to alanine substitution at position 93. These mice display skeletal muscle atrophy, hindlimb weakness, and weight loss. Disease onset occurs at approximately 90 days old and end stage is reached at approximately 120 days old. Daily treatment with PCA (100 mg/kg) by oral gavage beginning at disease onset significantly extended survival (121 days old in untreated vs. 133 days old in PCA-treated) and preserved skeletal muscle strength and endurance as assessed by grip strength testing and rotarod performance. Furthermore, PCA reduced astrogliosis and microgliosis in spinal cord, protected spinal motor neurons from apoptosis, and maintained neuromuscular junction integrity in transgenic mice. PCA lengthens survival, lessens the severity of pathological symptoms, and slows disease progression in this mouse model of ALS. Given its significant preclinical therapeutic effects, PCA should be further investigated as a treatment option for patients with ALS.
Collapse
Affiliation(s)
- Lilia A. Koza
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
- Knoebel Institute for Healthy Aging, Engineering Computer Science, Suite 579, University of Denver, 2155 E. Wesley Ave, Denver, CO 80208, USA
| | - Aimee N. Winter
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
| | - Jessica Holsopple
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
| | - Angela N. Baybayon-Grandgeorge
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
| | - Claudia Pena
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
- Knoebel Institute for Healthy Aging, Engineering Computer Science, Suite 579, University of Denver, 2155 E. Wesley Ave, Denver, CO 80208, USA
| | - Jeffrey R. Olson
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
- Knoebel Institute for Healthy Aging, Engineering Computer Science, Suite 579, University of Denver, 2155 E. Wesley Ave, Denver, CO 80208, USA
| | - Randall C. Mazzarino
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
- Knoebel Institute for Healthy Aging, Engineering Computer Science, Suite 579, University of Denver, 2155 E. Wesley Ave, Denver, CO 80208, USA
| | - David Patterson
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
- Knoebel Institute for Healthy Aging, Engineering Computer Science, Suite 579, University of Denver, 2155 E. Wesley Ave, Denver, CO 80208, USA
- Eleanor Roosevelt Institute, University of Denver, 2101 E. Wesley Ave, Denver, CO 80210, USA
| | - Daniel A. Linseman
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
- Knoebel Institute for Healthy Aging, Engineering Computer Science, Suite 579, University of Denver, 2155 E. Wesley Ave, Denver, CO 80208, USA
- Eleanor Roosevelt Institute, University of Denver, 2101 E. Wesley Ave, Denver, CO 80210, USA
- Correspondence: ; Tel.: +1-(303)-871-4663
| |
Collapse
|
117
|
Zhu Y, Liu Y, Yang F, Chen W, Jiang J, He P, Jiang S, Li M, Xu R. All-Trans Retinoic Acid Exerts Neuroprotective Effects in Amyotrophic Lateral Sclerosis-Like Tg (SOD1*G93A)1Gur Mice. Mol Neurobiol 2020; 57:3603-3615. [PMID: 32548665 DOI: 10.1007/s12035-020-01973-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
All-trans retinoic acid (ATRA), a ligand of retinoic acid receptors, could regulate various biological processes by activating retinoic acid signals. Recent studies suggested that ATRA displays multiple neuroprotective effects and thereby alleviates the disease progression in a variety of neurological diseases. Our previous studies found that the impaired retinoic acid signal decreased ALDH1A2, an essential synthetase of ATRA, in the spinal cord of ALS mice. Here, we evaluated the neuroprotective and neurorestorative effects of ATRA in a SOD1-G93A transgenic mice model of ALS. We administrated ATRA(3 mg/kg) daily from the onset stage to the progression stage for 5 weeks. Behavioral tests showed that ATRA improved the forelimb grip strength in ALS mice and may slow the disease progression, but not the body weight. ATRA could completely reverse the impaired retinoic acid receptor alpha (RARα) signal in the spinal cord of ALS mice. This effect was accompanied by enhancing the degradation of misfolded proteins via the ubiquitin-proteasome system, regulating the oxidative stress, inhibiting the astrocyte activation, and promoting the neurotrophic signal recovery. Our findings are the first to indicate that the damaged retinoic acid signal is involved in the pathogenesis of ALS, and ATRA could induce the functional neuroprotection via repairing the damaged retinoic acid signal.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Neurology, Affiliated People's Hospital of Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China.,Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yue Liu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Fang Yang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenzhi Chen
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianxian Jiang
- Department of Neurology, Affiliated People's Hospital of Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China.,Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Pei He
- Department of Neurology, Affiliated People's Hospital of Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China.,Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Affiliated People's Hospital of Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China.,Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Menhua Li
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, Affiliated People's Hospital of Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
118
|
Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology 2020; 167:107986. [DOI: 10.1016/j.neuropharm.2020.107986] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
|
119
|
Opie-Martin S, Jones A, Iacoangeli A, Al-Khleifat A, Oumar M, Shaw PJ, Shaw CE, Morrison KE, Wootton RE, Davey-Smith G, Pearce N, Al-Chalabi A. UK case control study of smoking and risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:222-227. [PMID: 32301340 PMCID: PMC7261396 DOI: 10.1080/21678421.2019.1706580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Susceptibility to amyotrophic lateral sclerosis (ALS) is associated with smoking in some studies, but it is not clear which aspect of smoking behavior is related. Using detailed records of lifetime smoking we investigated the relationship between smoking and ALS in a UK population. Methods: In this retrospective case-control study, smoking status was collected using environmental questionnaires from people diagnosed with ALS between 2008 and 2013 and from age, sex and geographically matched controls. Categorical measures of smoking behavior were: smoking at the time of survey and smoking initiation; continuous measures were intensity (cigarettes per day), duration (years from starting to stopping or time of survey), cigarette pack years, and comprehensive smoking index (CSI), a measure of lifetime smoking. We used logistic regression to assess the risk of ALS with different combinations of smoking variables adjusted for age at survey, gender, level of education, smoking status and alcohol initiation, selecting the best model using the Akaike Information Criterion. Results: There were 388 records with full smoking history. The best-fitting model used CSI and smoking status at the time of survey. We found a weak association between current smoking and risk of ALS, OR 3.63 (95% CI 1.02-13.9) p value 0.05. Increase in CSI score did not increase risk of ALS: OR 0.81 (95% CI 0.58-1.11) p value 0.2.Conclusion: There is weak evidence of a positive effect of current smoking on the risk of ALS which does not show dose-dependence with higher levels of lifetime smoking and maybe a false positive result.
Collapse
Affiliation(s)
- Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Ashley Jones
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Ahmad Al-Khleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Mohamed Oumar
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Chris E Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Karen E Morrison
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Robyn E Wootton
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, United Kingdom.,School of Psychological Science, University of Bristol, Bristol, United Kingdom.,NIHR Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, United Kingdom
| | - George Davey-Smith
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, United Kingdom
| | - Neil Pearce
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ammar Al-Chalabi
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
120
|
Mitsumoto H, Garofalo DC, Santella RM, Sorenson EJ, Oskarsson B, Fernandes JAM, Andrews H, Hupf J, Gilmore M, Heitzman D, Bedlack RS, Katz JS, Barohn RJ, Kasarskis EJ, Lomen-Hoerth C, Mozaffar T, Nations SP, Swenson AJ, Factor-Litvak P. Plasma creatinine and oxidative stress biomarkers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:263-272. [PMID: 32276554 DOI: 10.1080/21678421.2020.1746810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: To determine the associations between plasma creatinine (PCr), plasma uric acid (PUA), and urinary oxidative stress (OS) biomarkers with the ALSFRS-R at baseline and survival in a large epidemiological cohort study (ALS COSMOS) with a well-phenotyped patient population (N = 355).Methods: Fasting plasma and first void urine samples were obtained. PCr, PUA, urinary 8-oxo-deoxy guanosine (8-oxodG), and 15-F2t-isoprostane (IsoP) were analyzed at baseline, near the midpoint of follow-up, and at the final blood draw (before death or withdrawal from study). We estimated associations between these biomarkers and the ALSFRS-R at baseline and survival.Results: At baseline, PCr correlated with ALSFRS-R (Spearman r = 0.30), percent (%) FVC (r = 0.20), PUA (r = 0.37), and 8-oxodG (r = -0.13, all p < 0.05). Baseline PCr significantly predicted survival (adjusted hazard ratio 0.28, p < 0.001). Time to death from baseline was shortest for those in the lowest two PCr quartiles relative to the highest two quartiles. PCr and ALSFRS-R values were significantly correlated at all three time points (baseline: r = 0.29, midpoint: r = 0.23, final: r = 0.38, all p < 0.001). PCr and PUA significantly declined over time, whereas OS biomarkers significantly increased over time.Conclusions: To date, PCr predicted survival the best, compared to PUA, 8-oxodG, and IsoP. Although PCr represents the degree of muscle mass, it may also represent complex biochemical changes in ALS. Because the field has no reliable prognostic biomarkers, the importance of PCr warrants further investigation through clinical studies in ALS.
Collapse
Affiliation(s)
- Hiroshi Mitsumoto
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Diana C Garofalo
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | | | | | - J Americo M Fernandes
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard Andrews
- Data Coordinating Center (DCC), Mailman School of Public Health Biostatistics Department, Columbia University Irving Medical Center, New York State Psychiatric Institute & Department of Psychiatry, Columbia University
| | - Jonathan Hupf
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Madison Gilmore
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Jonathan S Katz
- Forbes Norris ALS Center, California Pacific Medical Center, San Francisco, CA, USA
| | - Richard J Barohn
- Department of Neurology, University of Kansas, San Francisco, CA, USA
| | | | | | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, CA, USA
| | - Sharon P Nations
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA, and
| | | | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
121
|
Peng B, Yang Q, B Joshi R, Liu Y, Akbar M, Song BJ, Zhou S, Wang X. Role of Alcohol Drinking in Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21072316. [PMID: 32230811 PMCID: PMC7177420 DOI: 10.3390/ijms21072316] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS), increase as the population ages around the world. Environmental factors also play an important role in most cases. Alcohol consumption exists extensively and it acts as one of the environmental factors that promotes these neurodegenerative diseases. The brain is a major target for the actions of alcohol, and heavy alcohol consumption has long been associated with brain damage. Chronic alcohol intake leads to elevated glutamate-induced excitotoxicity, oxidative stress and permanent neuronal damage associated with malnutrition. The relationship and contributing mechanisms of alcohol with these three diseases are different. Epidemiological studies have reported a reduction in the prevalence of Alzheimer’s disease in individuals who drink low amounts of alcohol; low or moderate concentrations of ethanol protect against β-amyloid (Aβ) toxicity in hippocampal neurons; and excessive amounts of ethanol increase accumulation of Aβ and Tau phosphorylation. Alcohol has been suggested to be either protective of, or not associated with, PD. However, experimental animal studies indicate that chronic heavy alcohol consumption may have dopamine neurotoxic effects through the induction of Cytochrome P450 2E1 (CYP2E1) and an increase in the amount of α-Synuclein (αSYN) relevant to PD. The findings on the association between alcohol consumption and ALS are inconsistent; a recent population-based study suggests that alcohol drinking seems to not influence the risk of developing ALS. Additional research is needed to clarify the potential etiological involvement of alcohol intake in causing or resulting in major neurodegenerative diseases, which will eventually lead to potential therapeutics against these alcoholic neurodegenerative diseases.
Collapse
Affiliation(s)
- Bin Peng
- Departments of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye 435100, China
| | - Rachna B Joshi
- Departments of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Internal Medicine, Stafford Medical, PA. 1364 NJ-72, Manahawkin, NJ 08050, USA
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye 435100, China
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
| | - Shuanhu Zhou
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (S.Z.); (X.W.); Tel.: 1-617-732-5398 (S.Z.); 1-617-732-4186 (X.W.)
| | - Xin Wang
- Departments of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (S.Z.); (X.W.); Tel.: 1-617-732-5398 (S.Z.); 1-617-732-4186 (X.W.)
| |
Collapse
|
122
|
Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. Int J Mol Sci 2020; 21:ijms21031115. [PMID: 32046139 PMCID: PMC7036760 DOI: 10.3390/ijms21031115] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
The intricate relationships between innate immunity and brain diseases raise increased interest across the wide spectrum of neurodegenerative and neuropsychiatric disorders. Barriers, such as the blood–brain barrier, and innate immunity cells such as microglia, astrocytes, macrophages, and mast cells are involved in triggering disease events in these groups, through the action of many different cytokines. Chronic inflammation can lead to dysfunctions in large-scale brain networks. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are associated with a substrate of dysregulated immune responses that impair the central nervous system balance. Recent evidence suggests that similar phenomena are involved in psychiatric diseases, such as depression, schizophrenia, autism spectrum disorders, and post-traumatic stress disorder. The present review summarizes and discusses the main evidence linking the innate immunological response in neurodegenerative and psychiatric diseases, thus providing insights into how the responses of innate immunity represent a common denominator between diseases belonging to the neurological and psychiatric sphere. Improved knowledge of such immunological aspects could provide the framework for the future development of new diagnostic and therapeutic approaches.
Collapse
|
123
|
Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E. Antioxidant Alternatives in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review. Front Physiol 2020; 11:63. [PMID: 32116773 PMCID: PMC7016185 DOI: 10.3389/fphys.2020.00063] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that produces a selective loss of the motor neurons of the spinal cord, brain stem and motor cortex. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain has been shown to be a factor that contributes to neurodegeneration and plays a potential role in the pathogenesis of ALS. The regions of the central nervous system affected have high levels of reactive oxygen species (ROS) and reduced antioxidant defenses. Scientific studies propose treatment with antioxidants to combat the characteristic OS and the regeneration of nicotinamide adenine dinucleotide (NAD+) levels by the use of precursors. This review examines the possible roles of nicotinamide riboside and pterostilbene as therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Doctoral Degree’s School, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
- Department of Nutrition and Dietetics, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Carlos Barrios
- Institute for Research on Musculoskeletal Disorders, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | | | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| |
Collapse
|
124
|
Tan X, Yang Y, Xu J, Zhang P, Deng R, Mao Y, He J, Chen Y, Zhang Y, Ding J, Li H, Shen H, Li X, Dong W, Chen G. Luteolin Exerts Neuroprotection via Modulation of the p62/Keap1/Nrf2 Pathway in Intracerebral Hemorrhage. Front Pharmacol 2020; 10:1551. [PMID: 32038239 PMCID: PMC6985769 DOI: 10.3389/fphar.2019.01551] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Upregulation of neuronal oxidative stress is involved in the progression of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). In this study, we investigated the potential effects and underlying mechanisms of luteolin on ICH-induced SBI. Autologous blood and oxyhemoglobin (OxyHb) were used to establish in vivo and in vitro models of ICH, respectively. Luteolin treatment effectively alleviated brain edema and ameliorated neurobehavioral dysfunction and memory loss in vivo. Also, in vivo, we found that luteolin promoted the activation of the sequestosome 1 (p62)/kelch‐like enoyl-coenzyme A hydratase (ECH)‐associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by enhancing autophagy and increasing the translocation of Nrf2 to the nucleus. Meanwhile, luteolin inhibited the ubiquitination of Nrf2 and increased the expression levels of downstream antioxidant proteins, such as heme oxygenase-1 (HO-1) and reduced nicotinamide adenine dinucleotide phosphate (NADPH): quinine oxidoreductase 1 (NQO1). This effect of luteolin was also confirmed in vitro, which was reversed by the autophagy inhibitor, chloroquine (CQ). Additionally, we found that luteolin inhibited the production of neuronal mitochondrial superoxides (MitoSOX) and alleviated neuronal mitochondrial injury in vitro, as indicated via tetrachloro-tetraethylbenzimidazol carbocyanine-iodide (JC-1) staining and MitoSOX staining. Taken together, our findings demonstrate that luteolin enhances autophagy and anti-oxidative processes in both in vivo and in vitro models of ICH, and that activation of the p62-Keap1-Nrf2 pathway, is involved in such luteolin-induced neuroprotection. Hence, luteolin may represent a promising candidate for the treatment of ICH-induced SBI.
Collapse
Affiliation(s)
- Xin Tan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Yang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianguo Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiguang Mao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia He
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yibin Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
125
|
Lewis KEA, Bennett W, Blizzard CL, West AK, Chung RS, Chuah MI. The influence of metallothionein treatment and treadmill running exercise on disease onset and survival in SOD1 G93A amyotrophic lateral sclerosis mice. Eur J Neurosci 2020; 52:3223-3241. [PMID: 31954073 DOI: 10.1111/ejn.14682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 11/27/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterised by the degeneration of motor neurons innervating skeletal muscle. The mechanisms underlying neurodegeneration in ALS are not yet fully elucidated, and with current therapeutics only able to extend lifespan by a matter of months there is a clear need for novel therapies to increase lifespan and patient quality of life. Here, we evaluated whether moderate-intensity treadmill exercise and/or treatment with metallothionein-2 (MT2), a neuroprotective protein, could improve survival, behavioural or neuropathological outcomes in SOD1G93A familial ALS mice. Six-week-old female SOD1G93A mice were allocated to one of four treatment groups: MT2 injection, i.m.; moderate treadmill exercise; neither MT2 nor exercise; or both MT2 and exercise. MT2-treated mice survived around 3% longer than vehicle-treated mice, with this mild effect reaching statistical significance in Cox proportional hazards analysis once adjusted for potential confounders. Mixed model body weight trajectories over time indicated that MT2-treated mice, with or without exercise, reached maximum body weight at a later age, suggesting a delay in disease onset of around 4% compared to saline-treated mice. Exercise alone did not significantly increase survival or delay disease onset, and neither exercise nor MT2 substantially ameliorated gait abnormalities or muscle strength loss. We conclude that neither exercise nor MT2 treatment was detrimental in female SOD1G93A mice, and further study could determine whether the mild effect of peripheral MT2 administration on disease onset and survival could be improved via direct administration of MT2 to the central nervous system.
Collapse
Affiliation(s)
- Katherine E A Lewis
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - William Bennett
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | | | - Adrian K West
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Roger S Chung
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Meng Inn Chuah
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
126
|
Vennam S, Georgoulas S, Khawaja A, Chua S, Strouthidis NG, Foster PJ. Heavy metal toxicity and the aetiology of glaucoma. Eye (Lond) 2020; 34:129-137. [PMID: 31745328 PMCID: PMC7002597 DOI: 10.1038/s41433-019-0672-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/06/2019] [Indexed: 11/09/2022] Open
Abstract
Despite recent advances, our understanding of the aetiological mechanisms underlying glaucoma remains incomplete. Heavy metals toxicity has been linked to the development of neurodegenerative diseases and various ocular pathologies. Given the similarities in pathophysiology between glaucoma and some neurodegenerative disorders, it is plausible that heavy metal toxicity may play a role in the development of glaucoma. Heavy metal exposure may be occupational, or through water or dietary contamination. In this report, we review mechanisms for systemic and neurotoxicity for arsenic, cadmium, chromium, cobalt, lead, mercury, and manganese, and weigh the evidence for an association between glaucoma and the accumulation of heavy metals either in ocular tissues or in the central nervous system.
Collapse
Affiliation(s)
- Sarath Vennam
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9E, UK
| | - Stelios Georgoulas
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9E, UK
- Glaucoma Service, Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Anthony Khawaja
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9E, UK
- Glaucoma Service, Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Sharon Chua
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9E, UK
| | - Nicholas G Strouthidis
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9E, UK
- Glaucoma Service, Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Paul J Foster
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9E, UK.
- Glaucoma Service, Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK.
| |
Collapse
|
127
|
Alessenko A, Gutner U, Nebogatikov V, Shupik M, Ustyugov A. The role of lipids in the pathogenesis of lateral amyotrophic sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:108-117. [DOI: 10.17116/jnevro2020120101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
128
|
Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Adv Ther 2020; 37:113-139. [PMID: 31782132 PMCID: PMC6979458 DOI: 10.1007/s12325-019-01148-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 12/21/2022]
Abstract
Introduction Neurodegeneration is the term describing the death of neurons both in the central nervous system and periphery. When affecting the central nervous system, it is responsible for diseases like Alzheimer’s disease, Parkinson’s disease, Huntington’s disorders, amyotrophic lateral sclerosis, and other less frequent pathologies. There are several common pathophysiological elements that are shared in the neurodegenerative diseases. The common denominators are oxidative stress (OS) and inflammatory responses. Unluckily, these conditions are difficult to treat. Because of the burden caused by the progression of these diseases and the simultaneous lack of efficacious treatment, therapeutic approaches that could target the interception of development of the neurodegeneration are being widely investigated. This review aims to highlight the most recent proposed novelties, as most of the previous approaches have failed. Therefore, older approaches may currently be used by healthcare professionals and are not being presented. Methods This review was based on an electronic search of existing literature, using PubMed as primary source for important review articles, and important randomized clinical trials, published in the last 5 years. Reference lists from the most recent reviews, as well as additional sources of primary literature and references cited by relevant articles, were used. Results Eighteen natural pharmaceutical substances and 24 extracted or recombinant products, and artificial agents that can be used against OS, inflammation, and neurodegeneration were identified. After presenting the most common neurodegenerative diseases and mentioning some of the basic mechanisms that lead to neuronal loss, this paper presents up to date information that could encourage the development of better therapeutic strategies. Conclusions This review shares the new potential pharmaceutical and not pharmaceutical options that have been recently introduced regarding OS and inflammatory responses in neurodegenerative diseases.
Collapse
|
129
|
TDP-43-Mediated Toxicity in HEK293T Cells: A Fast and Reproducible Protocol To Be Employed in the Search of New Therapeutic Options against Amyotrophic Lateral Sclerosis. Cells 2019; 9:cells9010068. [PMID: 31888078 PMCID: PMC7016571 DOI: 10.3390/cells9010068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023] Open
Abstract
Cytoplasmic TDP-43 aggregates are a hallmark of amyotrophic lateral sclerosis (ALS). Today, only two drugs are available for ALS treatment, and their modest effect prompts researchers to search for new therapeutic options. TDP-43 represents one of the most promising targets for therapeutic intervention, but reliable and reproducible in vitro protocols for TDP-43-mediated toxicity are lacking. Here, we used HEK293T cells transfected with increasing concentrations of TDP-43-expressing plasmid to evaluate different parameters of toxicity and alterations in cellular metabolism. Overexpression of TDP-43 induced aggregates occurrence followed by the detection of 25- and 35-kDa forms of TDP-43. TDP-43 overexpression decreased cell viability and increased cells arrested at G2/M phase and nuclear fragmentation. Analysis of the energetic metabolism showed a tendency to decrease oxidative phosphorylation and increase glycolysis, but no statistical differences were observed. Metabolomics revealed alterations in different metabolites (mainly sphingolipids and glycerophospholipids) in cells overexpressing TDP-43. Our data reveal the main role of TDP-43 aggregation in cellular death and highlight novel insight into the mechanism of cellular toxicity induced by TDP-43. Here, we provide a simple, sensitive, and reliable protocol in a human-derived cell line to be used in high-throughput screenings of potential therapeutic molecules for ALS treatment.
Collapse
|
130
|
Vinceti M, Filippini T, Malagoli C, Violi F, Mandrioli J, Consonni D, Rothman KJ, Wise LA. Amyotrophic lateral sclerosis incidence following exposure to inorganic selenium in drinking water: A long-term follow-up. ENVIRONMENTAL RESEARCH 2019; 179:108742. [PMID: 31629180 DOI: 10.1016/j.envres.2019.108742] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Some studies have reported an association between overexposure to selenium and risk of amyotrophic lateral sclerosis (ALS), a rare degenerative disease of motor neurons. From 1986 through 2015, we followed a cohort in Northern Italy that had been inadvertently consuming tap water with unusually high concentrations of inorganic hexavalent selenium from 1974 to 1985. We had previously documented an excess incidence of ALS in this cohort during 1986-1994. Here, we report extended follow-up of the cohort for an additional 21 years, encompassing 50,100 person-years of the exposed cohort and 2,233,963 person-years of the unexposed municipal cohort. We identified 7 and 112 incident ALS cases in the exposed and unexposed cohorts, respectively, yielding crude incidence rates of 14 and 5 cases per 100,000 person-years. A Poisson regression analysis, adjusting for age, sex and calendar year, produced an overall incidence rate ratio (IRR) for ALS of 2.8 (95% confidence interval (CI) 1.3, 6), with a substantially stronger IRR in 1986-1994 (8.2, 95% CI 2.7, 24.7) than in 1995-2015 (1.5, 95% CI 0.5, 4.7), and among women (5.1, 95% CI 1.8, 14.3) than men (1.7, 95% CI 0.5, 5.4). Overall, these results indicate an association between high exposure to inorganic selenium, a recognized neurotoxicant, and ALS incidence, with declining rates after cessation of exposure and stronger effects among women.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Via Campi 287, 41125, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, United States.
| | - Tommaso Filippini
- CREAGEN - Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Via Campi 287, 41125, Modena, Italy
| | - Carlotta Malagoli
- CREAGEN - Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Via Campi 287, 41125, Modena, Italy
| | - Federica Violi
- CREAGEN - Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Via Campi 287, 41125, Modena, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, St. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Kenneth J Rothman
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, United States
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, United States
| |
Collapse
|
131
|
Bianchi VE, Herrera PF, Laura R. Effect of nutrition on neurodegenerative diseases. A systematic review. Nutr Neurosci 2019; 24:810-834. [PMID: 31684843 DOI: 10.1080/1028415x.2019.1681088] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are characterized by the progressive functional loss of neurons in the brain, causing cognitive impairment and motoneuron disability. Although multifactorial interactions are evident, nutrition plays an essential role in the pathogenesis and evolution of these diseases. A systematic literature search was performed, and the prevalence of studies evaluated the effect of the Mediterranean diet (MeDiet), nutritional support, EPA and DHA, and vitamins on memory and cognition impairment. The data showed that malnutrition and low body mass index (BMI) is correlated with the higher development of dementia and mortality. MeDiet, nutritional support, and calorie-controlled diets play a protective effect against cognitive decline, Alzheimer's disease (AD), Parkinson disease (PD) while malnutrition and insulin resistance represent significant risk factors. Malnutrition activates also the gut-microbiota-brain axis dysfunction that exacerbate neurogenerative process. Omega-3 and -6, and the vitamins supplementation seem to be less effective in protecting neuron degeneration. Insulin activity is a prevalent factor contributing to brain health while malnutrition correlated with the higher development of dementia and mortality.
Collapse
Affiliation(s)
| | - Pomares Fredy Herrera
- Director del Centro de Telemedicina, Grupo de investigación en Atención Primaria en salud/Telesalud, Doctorado en Medicina /Neurociencias, University of Cartagena, Colombia
| | - Rizzi Laura
- Molecular Biology, School of Medicine and Surgery, University of Milano-Bicocca, Monza Brianza, Italy
| |
Collapse
|
132
|
Tang C, Zhu L, Zhou Q, Li M, Zhu Y, Xu Z, Lu Y, Xu R. Altered Features of Vimentin-containing Cells in Cerebrum of Tg(SOD1*G93A)1Gur Mice: A Preliminary Study on Cerebrum Endogenous Neural Precursor Cells in Amyotrophic Lateral Sclerosis. Int J Biol Sci 2019; 15:2830-2843. [PMID: 31853221 PMCID: PMC6909959 DOI: 10.7150/ijbs.33461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Vimentin-containing cells (VCCs) are potential neural precursor cells in central nervous systems, Thus, we studied the alteration of VCCs proliferation, differentiation and migration in the cerebrum during different stages of Tg(SOD1*G93A)1Gur mice. It aims to search potential ways regulating the proliferation, differentiation and migration of endogenous VCCs, to enhance their neural repair function and to cure or prevent from the development of ALS. We observed and analyzed the proliferation, differentiation and migration of VCCs in different anatomic regions and cell types of cerebrum at different stages including the pre-onset (60-70 days), onset (90-100 days) and progression (120-130 days) of wild-type (WT) and Tg(SOD1*G93A)1Gur mice using the fluorescent immunohistochemical technology. Results showed that VCCs in the cerebrum were mostly distributed in the ventricular system, periventricular structures, the hippocampus and the cerebral cortex in WT mice. VCCs significantly reduced in the motor cortex and the cingulate cortex in Tg(SOD1*G93A)1Gur mice. All vimentin expressed in the extranuclear and almost all VCCs were astrocytes in WT mice and Tg(SOD1*G93A)1Gur mice. There were no significant difference in the number of Brdu and nestin positive cells in left and right brains of WT mice and Tg(SOD1*G93A)1Gur mice in the period of 60-130 days. Our data suggested that there existed extensively NPCs in the cerebrum of adult mice. In ALS-like Tg(SOD1*G93A)1Gur mice, VCCs in the motor cortex, the olfactory cortex and the cingulate cortex showed that no any proliferation and redistribution in neural cells of VCCs in the cerebrum occurred in all stages of ALS, might migrate to damaged regions.
Collapse
Affiliation(s)
- Chunyan Tang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Lei Zhu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Qi Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Menghua Li
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Yu Zhu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Zhenzhen Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Yi Lu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
133
|
Tellone E, Galtieri A, Russo A, Ficarra S. Protective Effects of the Caffeine Against Neurodegenerative Diseases. Curr Med Chem 2019; 26:5137-5151. [DOI: 10.2174/0929867324666171009104040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Abstract
Background:
Recent studies and increased interest of the scientific community helped to
clarify the neurological health property of caffeine, one of the pharmacologically active substances
most consumed in the world.
Methods:
This article is a review search to provide an overview on the current state of understanding
neurobiochemical impact of caffeine, focusing on the ability of the drug to effectively counteract several
neurodegenerative disorders such as Alzheimer’s, Parkinson’s, Huntington’s diseases, Multiple
sclerosis and Amyotrophic lateral sclerosis.
Results:
Data collection shown in this review provide a significant therapeutic and prophylactic potentiality
of caffeine which acts on human brain through several pathways because of its antioxidant activity
combined with multiple molecular targets. However, the need to adjust the CF dosage to individuals,
because some people are more sensitive to drugs than others, may constituted a limit to the CF effectiveness.
Conclusion:
What emerges from the complex of clinical and epidemiological studies is a significant CF
potential impact against all neurological disorders. Although, further studies are needed to fully elucidate
the several mechanisms of drug action which in part are still elusive.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Annamaria Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
134
|
Hoang TT, Johnson DA, Raines RT, Johnson JA. Angiogenin activates the astrocytic Nrf2/antioxidant-response element pathway and thereby protects murine neurons from oxidative stress. J Biol Chem 2019; 294:15095-15103. [PMID: 31431502 DOI: 10.1074/jbc.ra119.008491] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/15/2019] [Indexed: 12/30/2022] Open
Abstract
The angiogenin (ANG) gene is mutated frequently in individuals with amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Delivering human ANG to mice that display ALS-like symptoms extends their lifespan and improves motor function. ANG is a secretory vertebrate RNase that enters neuronal cells and cleaves a subset of tRNAs, leading to the inhibition of translation initiation and the assembly of stress granules. Here, using murine neuronal and astrocytic cell lines, we find that ANG triggers the activation of the Nrf2 (nuclear factor erythroid 2-related factor 2) pathway, which provides a critical cellular defense against oxidative stress. This activation, which occurred in astrocytes but not in neurons, promoted the survival of proximal neurons that had oxidative injury. These findings extend the role of ANG as a neuroprotective agent and underscore its potential utility in ALS management.
Collapse
Affiliation(s)
- Trish T Hoang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Delinda A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 .,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jeffrey A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
135
|
Lévy E, El Banna N, Baïlle D, Heneman-Masurel A, Truchet S, Rezaei H, Huang ME, Béringue V, Martin D, Vernis L. Causative Links between Protein Aggregation and Oxidative Stress: A Review. Int J Mol Sci 2019; 20:ijms20163896. [PMID: 31405050 PMCID: PMC6719959 DOI: 10.3390/ijms20163896] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/17/2023] Open
Abstract
Compelling evidence supports a tight link between oxidative stress and protein aggregation processes, which are noticeably involved in the development of proteinopathies, such as Alzheimer’s disease, Parkinson’s disease, and prion disease. The literature is tremendously rich in studies that establish a functional link between both processes, revealing that oxidative stress can be either causative, or consecutive, to protein aggregation. Because oxidative stress monitoring is highly challenging and may often lead to artefactual results, cutting-edge technical tools have been developed recently in the redox field, improving the ability to measure oxidative perturbations in biological systems. This review aims at providing an update of the previously known functional links between oxidative stress and protein aggregation, thereby revisiting the long-established relationship between both processes.
Collapse
Affiliation(s)
- Elise Lévy
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Nadine El Banna
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Dorothée Baïlle
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Amélie Heneman-Masurel
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Sandrine Truchet
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Human Rezaei
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Meng-Er Huang
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Vincent Béringue
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Davy Martin
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Laurence Vernis
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
136
|
Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1949-1967. [DOI: 10.1016/j.bbadis.2018.11.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
|
137
|
Gentile F, Scarlino S, Falzone YM, Lunetta C, Tremolizzo L, Quattrini A, Riva N. The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Front Neurosci 2019; 13:601. [PMID: 31293369 PMCID: PMC6603245 DOI: 10.3389/fnins.2019.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) has been considered as a disorder of the motor neuron (MN) cell body, recent evidences show the non-cell-autonomous pathogenic nature of the disease. Axonal degeneration, loss of peripheral axons and destruction of nerve terminals are early events in the disease pathogenic cascade, anticipating MN degeneration, and the onset of clinical symptoms. Therefore, although ALS and peripheral axonal neuropathies should be differentiated in clinical practice, they also share damage to common molecular pathways, including axonal transport, RNA metabolism and proteostasis. Thus, an extensive evaluation of the molecular events occurring in the peripheral nervous system (PNS) could be fundamental to understand the pathogenic mechanisms of ALS, favoring the discovery of potential disease biomarkers, and new therapeutic targets.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Scarlino
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucio Tremolizzo
- Neurology Unit, ALS Clinic, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
138
|
Ueda T, Ito T, Kurita H, Inden M, Hozumi I. p-Coumaric Acid Has Protective Effects against Mutant Copper-Zinc Superoxide Dismutase 1 via the Activation of Autophagy in N2a Cells. Int J Mol Sci 2019; 20:ijms20122942. [PMID: 31208129 PMCID: PMC6628046 DOI: 10.3390/ijms20122942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/13/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons. In previous our study, an ethanol extract of Brazilian green propolis (EBGP) prevented mutant copper-zinc superoxide dismutase 1 (SOD1mut)-induced neurotoxicity. This paper aims to reveal the effects of p-coumaric acid (p-CA), an active ingredient contained in EBGP, against SOD1mut-induced neurotoxicity. We found that p-CA reduced the accumulation of SOD1mut subcellular aggregation and prevented SOD1mut-associated neurotoxicity. Moreover, p-CA attenuated SOD1mut-induced oxidative stress and endoplasmic reticulum stress, which are significant features in ALS pathology. To examine the mechanism of neuroprotective effects, we focused on autophagy, and we found that p-CA induced autophagy. Additionally, the neuroprotective effects of p-CA were inhibited by chloroquine, an autophagy inhibiter. Therefore, these results obtained in this paper suggest that p-CA prevents SOD1mut-induced neurotoxicity through the activation of autophagy and provides a potential therapeutic approach for ALS.
Collapse
Affiliation(s)
- Tomoyuki Ueda
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Taisei Ito
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| |
Collapse
|
139
|
Aberrations in Oxidative Stress Markers in Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1712323. [PMID: 31281567 PMCID: PMC6590548 DOI: 10.1155/2019/1712323] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
Abstract
Oxidative stress has been reported to be involved in the onset and development of amyotrophic lateral sclerosis (ALS). Data from clinical studies have highlighted increased peripheral blood oxidative stress markers in patients with ALS, but results are inconsistent. Therefore, we quantitatively pooled data on levels of blood oxidative stress markers in ALS patients from the literature using a meta-analytic technique. A systematic search was performed on PubMed and Web of Science, and we included studies analyzing blood oxidative stress marker levels in patients with ALS and normal controls. We included 41 studies with 4,588 ALS patients and 6,344 control subjects, and 15 oxidative stress marker levels were subjected to random-effects meta-analysis. The results demonstrated that malondialdehyde (Hedges' g, 1.168; 95% CI, 0.812 to 1.523; P < 0.001), 8-hydroxyguanosine (Hedges' g, 2.194; 95% CI, 0.554 to 3.835; P = 0.009), and Advanced Oxidation Protein Product (Hedges' g, 0.555; 95% CI, 0.317 to 0.792; P < 0.001) levels were significantly increased in patients with ALS when compared with control subjects. Uric acid (Hedges' g, -0.798; 95% CI, -1.117 to -0.479; P < 0.001) and glutathione (Hedges' g, -1.636; 95% CI, -3.020 to -0.252; P = 0.02) levels were significantly reduced in ALS patients. In contrast, blood Cu, superoxide dismutase, glutathione peroxidase, ceruloplasmin, triglycerides, total cholesterol, low-density lipoprotein, high-density lipoprotein, coenzyme-Q10, and transferrin levels were not significantly different between cases and controls. Taken together, our results showed significantly increased blood levels of 8-hydroxyguanosine, malondialdehyde, and Advanced Oxidation Protein Product and decreased glutathione and uric acid levels in the peripheral blood of ALS patients. This meta-analysis helps to clarify the oxidative stress marker profile in ALS patients, supporting the hypothesis that oxidative stress is a central component underpinning ALS pathogenesis.
Collapse
|
140
|
Risk Factors and Emerging Therapies in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2019; 20:ijms20112616. [PMID: 31141951 PMCID: PMC6600314 DOI: 10.3390/ijms20112616] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease characterized by a permanent degeneration of both upper and lower motor neurons. Many different genes and pathophysiological processes contribute to this disease, however its exact cause remains unclear. Therefore, it is necessary to understand this heterogeneity to find effective treatments. In this review, we focus on selected environmental and genetic risk factors predisposing to ALS and highlight emerging treatments in ALS therapy. Of numerous defective genes associated with ALS, we focus on four principal genes that have been identified as definite causes of ALS: the SOD1 gene, C9orf72, TDP-43, as well as the recently identified TBK1. We also provide up-to-date information on selected environmental factors that have historically been considered as key players in ALS development and pathogenesis. In parallel to our survey of known risk factors, we also discuss emerging ALS stem cell therapies and experimental medicines currently undergoing phase II and III clinical trials.
Collapse
|
141
|
Verber NS, Shepheard SR, Sassani M, McDonough HE, Moore SA, Alix JJP, Wilkinson ID, Jenkins TM, Shaw PJ. Biomarkers in Motor Neuron Disease: A State of the Art Review. Front Neurol 2019; 10:291. [PMID: 31001186 PMCID: PMC6456669 DOI: 10.3389/fneur.2019.00291] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Motor neuron disease can be viewed as an umbrella term describing a heterogeneous group of conditions, all of which are relentlessly progressive and ultimately fatal. The average life expectancy is 2 years, but with a broad range of months to decades. Biomarker research deepens disease understanding through exploration of pathophysiological mechanisms which, in turn, highlights targets for novel therapies. It also allows differentiation of the disease population into sub-groups, which serves two general purposes: (a) provides clinicians with information to better guide their patients in terms of disease progression, and (b) guides clinical trial design so that an intervention may be shown to be effective if population variation is controlled for. Biomarkers also have the potential to provide monitoring during clinical trials to ensure target engagement. This review highlights biomarkers that have emerged from the fields of systemic measurements including biochemistry (blood, cerebrospinal fluid, and urine analysis); imaging and electrophysiology, and gives examples of how a combinatorial approach may yield the best results. We emphasize the importance of systematic sample collection and analysis, and the need to correlate biomarker findings with detailed phenotype and genotype data.
Collapse
Affiliation(s)
- Nick S Verber
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Stephanie R Shepheard
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Harry E McDonough
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Sophie A Moore
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - James J P Alix
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Iain D Wilkinson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Tom M Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
142
|
Sarkar T, Patro N, Patro IK. Cumulative multiple early life hits- a potent threat leading to neurological disorders. Brain Res Bull 2019; 147:58-68. [DOI: 10.1016/j.brainresbull.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
|
143
|
Zhang F, Liu M, Li Q, Song FX. Exploration of attractor modules for sporadic amyotrophic lateral sclerosis via systemic module inference and attract method. Exp Ther Med 2019; 17:2575-2580. [PMID: 30906448 PMCID: PMC6425136 DOI: 10.3892/etm.2019.7264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/01/2019] [Indexed: 12/01/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (SALS) is a devastating neurodegenerative disorder. However, the understanding of SALS is still poor. This research aimed to excavate attractor modules for SALS by integrating the systemic module inference and attract method. To achieve this, gene expression data and protein-protein data were recruited and preprocessed. Then, based on the Spearman's correlation coefficient (SCC) of the interactions under these two conditions, two PPI networks separately with 870 nodes (979 interactions) in normal control group and 601 nodes (777 interactions) in SALS group were built. Systemic module inference method was performed to identify the modules, and attract method was used to identify attractor modules. Finally, pathway enrichment analysis was performed to disclose the functional enrichment of these attractor modules. In total 44 and 118 modules were identified for normal control and SALS groups, respectively. Among them, 6 modules were with similar gene composition between the two groups, and all 6 modules were considered as the attractor module via attract method. These attractor modules might be potential biomarkers for early diagnosis and therapy of SALS, which could provide insight into the disease biology and suggest possible directions for drug screening programs.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Rehabilitation, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Mei Liu
- Department of Rehabilitation, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Qun Li
- Department of Rehabilitation, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Fei-Xue Song
- Department of Oncology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
144
|
The protective effect of non-invasive low intensity pulsed electric field and fucoidan in preventing oxidative stress-induced motor neuron death via ROCK/Akt pathway. PLoS One 2019; 14:e0214100. [PMID: 30889218 PMCID: PMC6424404 DOI: 10.1371/journal.pone.0214100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
With the expansion of the aged population, it is predicted that neurodegenerative diseases (NDDs) will become a major threat to public health worldwide. However, existing therapies can control the symptoms of the diseases at best, rather than offering a fundamental cure. As for the complex pathogenesis, clinical and preclinical researches have indicated that oxidative stress, a central role in neuronal degeneration, is a possible therapeutic target in the development of novel remedies. In this study, the motor neuron-like cell line NSC-34 was employed as an experimental model in probing the effects induced by the combination of non-invasive low intensity pulsed electric field (LIPEF) and fucoidan on the H2O2-induced neuron damage. It was found that single treatment of the LIPEF could protect the NSC-34 cells from oxidative stress, and the protective effect was enhanced by combining the LIPEF and fucoidan. Notably, it was observed that single treatment of the LIPEF obviously suppressed the H2O2-enhanced expression of ROCK protein and increased the phosphorylation of Akt in the H2O2-treated NSC-34 cells. Moreover, the LIPEF can be easily modified to concentrate on a specific area. Accordingly, this technique can be used as an advanced remedy for ROCK inhibition without the drawback of drug metabolism. Therefore, we suggest the LIPEF would be a promising strategy as a treatment for motor neurodegeneration and warrant further probe into its potential in treating other neuronal degenerations.
Collapse
|
145
|
Chew S, Atassi N. Positron Emission Tomography Molecular Imaging Biomarkers for Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:135. [PMID: 30881332 PMCID: PMC6405430 DOI: 10.3389/fneur.2019.00135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with limited treatment options. Despite decades of therapeutic development, only two modestly efficacious disease-modifying drugs-riluzole and edaravone-are available to ALS patients. Biomarkers that can facilitate ALS diagnosis, aid in prognosis, and measure drug pharmacodynamics are needed to accelerate therapeutic development for patients with ALS. Positron emission tomography (PET) imaging has promise as a biomarker for ALS because it permits visualization of central nervous system (CNS) pathology in individuals living with ALS. The availability of PET radioligands that target a variety of potential pathophysiological mechanisms-including cerebral metabolism, neuroinflammation, neuronal dysfunction, and oxidative stress-has enabled dynamic interrogation of molecular changes in ALS, in both natural history studies and human clinical trials. PET imaging has potential as a diagnostic biomarker that can establish upper motor neuron (UMN) pathology in ALS patients without overt UMN symptoms, as a prognostic biomarker that might help stratify patients for clinical trials, and as a pharmacodynamic biomarker that measures the biological effect of investigational drugs in the brain and spinal cord. In this Review, we discuss progress made with 30 years of PET imaging studies in ALS and consider future research needed to establish PET imaging biomarkers for ALS therapeutic development.
Collapse
Affiliation(s)
- Sheena Chew
- Department of Neurology, Harvard Medical School, Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA, United States
| | - Nazem Atassi
- Department of Neurology, Harvard Medical School, Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
146
|
Anti-Neuroinflammatory Effect of Jaeumganghwa-Tang in an Animal Model of Amyotrophic Lateral Sclerosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1893526. [PMID: 30891075 PMCID: PMC6390261 DOI: 10.1155/2019/1893526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is considered a critical factor in the pathologic mechanisms of amyotrophic lateral sclerosis (ALS). This study examined the levels of neuroinflammatory proteins in the spinal cord of JGT-treated hSOD1G93A transgenic mice to determine the effect of Jaeumganghwa-Tang (JGT) on neuroinflammation. Twelve 8-week-old male experimental mice were randomly allocated to three groups: a non-transgenic group, a hSOD1G93A transgenic group, and a hSOD1G93A transgenic group that received JGT 1 mg/g orally once daily for 6 weeks. After 6 weeks, the spinal cord tissues were analyzed for inflammatory proteins (Iba-1, toll-like receptor 4, and tumor necrosis factor-α) and oxidative stress-related proteins (transferrin, ferritin, HO1, and NQO1) by Western blot analysis. Administration of JGT significantly delayed motor function impairment and reduced oxidative stress in hSOD1G93A transgenic mice. JGT effectively ameliorated neuroinflammation mechanisms by downregulating TLR4-related signaling proteins and improving iron homeostasis in the spinal cord of hSOD1G93A mice. JGT could help to decrease neuroinflammation and protect neuronal cells by strengthening the immune response in the central nervous system. This is the first study to demonstrate the role of JGT in neuroinflammation in an animal model of ALS.
Collapse
|
147
|
Zhang C, Yang Y, Liang W, Wang T, Wang S, Wang X, Wang Y, Jiang H, Feng H. Neuroprotection by urate on the mutant hSOD1-related cellular and Drosophila models of amyotrophic lateral sclerosis: Implication for GSH synthesis via activating Akt/GSK3β/Nrf2/GCLC pathways. Brain Res Bull 2019; 146:287-301. [PMID: 30690059 DOI: 10.1016/j.brainresbull.2019.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022]
Abstract
Oxidative stress has been considered as a principal mechanism of motor neuron death in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease which could be caused by dominant mutations in an antioxidant enzyme superoxide dismutase-1 (SOD1). The aim of the present study was to investigate the potential neuroprotective effects and mechanisms of urate, an important endogenous antioxidant and a biomarker of favorable ALS progression rates, in the mutant human SOD1-related cellular and Drosophila models of ALS. Our results showed that urate treatment provided neuroprotective effects as confirmed by enhanced survival, attenuated motor impairments, reduced oxidative damage and increased antioxidant defense in hSOD1-G85R-expressing Drosophila models of ALS. In vitro studies, we demonstrated that urate protected motor neurons (NSC-34 cells) against hSOD1-G93A-induced cell damage and apoptosis by decreasing reactive oxygen specials (ROS) production and oxidative damage. Moreover, urate markedly increased the expression and activation of nuclear factor erythroid 2-related factor 2 (Nrf2), stimulated Nrf2-targeted antioxidant gene glutathione cysteine ligase catalytic subunit (GCLC) expression and glutathione (GSH) synthesis by upregulating Akt/GSK3β pathway. Furthermore, the inhibition of Akt pathway with LY294002 abolished urate-mediated elevation of GSH synthesis and neuroprotective effects both in vivo and in vitro. Overall, these results suggested that, in addition to its direct scavenging of ROS, urate markedly enhanced GSH expression by activating Akt/GSK3β/Nrf2/GCLC pathway, and thus offering neuroprotective effects on motor neurons against oxidative stress.
Collapse
Affiliation(s)
- Chunting Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, PR China
| | - Yueqing Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, PR China
| | - Weiwei Liang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, PR China
| | - Tianhang Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, PR China
| | - Shuyu Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, PR China
| | - Xudong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, PR China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, PR China
| | - Hongquan Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, PR China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, PR China.
| |
Collapse
|
148
|
Petillon C, Hergesheimer R, Puy H, Corcia P, Vourc'h P, Andres C, Karim Z, Blasco H. The Relevancy of Data Regarding the Metabolism of Iron to Our Understanding of Deregulated Mechanisms in ALS; Hypotheses and Pitfalls. Front Neurosci 2019; 12:1031. [PMID: 30697143 PMCID: PMC6341213 DOI: 10.3389/fnins.2018.01031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the loss of motor neurons. Its etiology remains unknown, but several pathophysiological mechanisms are beginning to explain motor neuronal death, as well as oxidative stress. Iron accumulation has been observed in both sporadic and familial forms of ALS, including mouse models. Therefore, the dysregulation of iron metabolism could play a role in the pathological oxidative stress in ALS. Several studies have been undertaken to describe iron-related metabolic markers, in most cases focusing on metabolites in the bloodstream due to few available data in the central nervous system. Reports of accumulation of iron, high serum ferritin, and low serum transferrin levels in ALS patients have encouraged researchers to consider dysregulated iron metabolism as an integral part of ALS pathophysiology. However, it appears complicated to suggest a general mechanism due to the diversity of models and iron markers studied, including the lack of consensus among all of the studies. Regarding clinical study reports, most of them do not take into account confusion biases such as inflammation, renal dysfunction, and nutritional status. Furthermore, the iron regulatory pathways, particularly involving hepcidin, have not been thoroughly explored yet within the pathogenesis of iron overload in ALS. In this sense, it is also essential to explore the relation between iron overload and other ALS-related events, such as neuro-inflammation, protein aggregation, and iron-driven cell death, termed ferroptosis. In this review, we point out limits of the designs of certain studies that may prevent the understanding of the role of iron in ALS and discuss the relevance of the published data regarding the pathogenic impact of iron metabolism deregulation in this disease and the therapeutics targeting this pathway.
Collapse
Affiliation(s)
| | | | - Hervé Puy
- Centre de Recherches sur l'Inflammation, Equipe "Hème, Fer et Maladies Inflammatoires", UMR 1149/ERL CNRS 8252, Université Paris Diderot Paris 7, UFR de Médecine Site Bichat, Paris, France
| | - Philippe Corcia
- INSERM, U1253, Université de Tours, Tours, France.,Centre SLA, Service de Neurologie, CHRU de Tours, Tours, France
| | - Patrick Vourc'h
- Laboratoire de Biochimie, CHRU de Tours, Tours, France.,INSERM, U1253, Université de Tours, Tours, France
| | - Christian Andres
- Laboratoire de Biochimie, CHRU de Tours, Tours, France.,INSERM, U1253, Université de Tours, Tours, France
| | - Zoubida Karim
- Centre de Recherches sur l'Inflammation, Equipe "Hème, Fer et Maladies Inflammatoires", UMR 1149/ERL CNRS 8252, Université Paris Diderot Paris 7, UFR de Médecine Site Bichat, Paris, France
| | - Hélène Blasco
- Laboratoire de Biochimie, CHRU de Tours, Tours, France.,INSERM, U1253, Université de Tours, Tours, France
| |
Collapse
|
149
|
Keisham B, Seksenyan A, Denyer S, Kheirkhah P, Arnone GD, Avalos P, Bhimani AD, Svendsen C, Berry V, Mehta AI. Quantum Capacitance Based Amplified Graphene Phononics for Studying Neurodegenerative Diseases. ACS APPLIED MATERIALS & INTERFACES 2019; 11:169-175. [PMID: 30468382 DOI: 10.1021/acsami.8b15893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease (MND) characterized by a rapid loss of upper and lower motor neurons resulting in patient death from respiratory failure within 3-5 years of initial symptom onset. Although at least 30 genes of major effect have been reported, the pathobiology of ALS is not well understood. Compounding this is the lack of a reliable laboratory test which can accurately diagnose this rapidly deteriorating disease. Herein, we report on the phonon vibration energies of graphene as a sensitive measure of the composite dipole moment of the interfaced cerebrospinal fluid (CSF) that includes a signature-composition specific to the patients with ALS disease. The second-order overtone of in-plane phonon vibration energy (2D peak) of graphene shifts by 3.2 ± 0.5 cm-1 for all ALS patients studied in this work. Further, the amount of n-doping-induced shift in the phonon energy of graphene, interfaced with CSF, is specific to the investigated neurodegenerative disease (ALS, multiple sclerosis, and MND). By removing a severe roadblock in disease detection, this technology can be applied to study diagnostic biomarkers for researchers developing therapeutics and clinicians initiating treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Bijentimala Keisham
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago 60607 , Illinois , United States
| | - Akop Seksenyan
- Department of Neurosurgery , University of Illinois at Chicago , Chicago 60612 , Illinois , United States
- Chicago Medical School , Rosalind Franklin University of Medicine and Science , North Chicago 60064 , Illinois , United States
| | - Steven Denyer
- Department of Neurosurgery , University of Illinois at Chicago , Chicago 60612 , Illinois , United States
| | - Pouyan Kheirkhah
- Department of Neurosurgery , University of Illinois at Chicago , Chicago 60612 , Illinois , United States
| | - Gregory D Arnone
- Department of Neurosurgery , University of Illinois at Chicago , Chicago 60612 , Illinois , United States
| | - Pablo Avalos
- Regenerative Medicine Institute , Cedars-Sinai Medical Center , Los Angeles 90048 , California , United States
| | - Abhiraj D Bhimani
- Department of Neurosurgery , University of Illinois at Chicago , Chicago 60612 , Illinois , United States
| | - Clive Svendsen
- Regenerative Medicine Institute , Cedars-Sinai Medical Center , Los Angeles 90048 , California , United States
| | - Vikas Berry
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago 60607 , Illinois , United States
| | - Ankit I Mehta
- Department of Neurosurgery , University of Illinois at Chicago , Chicago 60612 , Illinois , United States
| |
Collapse
|
150
|
Nicholson K, Chan J, Macklin EA, Levine‐Weinberg M, Breen C, Bakshi R, Grasso DL, Wills A, Jahandideh S, Taylor AA, Beaulieu D, Ennist DL, Andronesi O, Ratai E, Schwarzschild MA, Cudkowicz M, Paganoni S. Pilot trial of inosine to elevate urate levels in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2018; 5:1522-1533. [PMID: 30564619 PMCID: PMC6292193 DOI: 10.1002/acn3.671] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To test the safety, tolerability, and urate-elevating capability of the urate precursor inosine taken orally or by feeding tube in people with amyotrophic lateral sclerosis (ALS). METHODS This was a pilot, open-label trial in 25 participants with ALS. Treatment duration was 12 weeks. The dose of inosine was titrated at pre-specified time points to elevate serum urate levels to 7-8 mg/dL. Primary outcomes were safety (as assessed by the occurrence of adverse events [AEs]) and tolerability (defined as the ability to complete the 12-week study on study drug). Secondary outcomes included biomarkers of oxidative stress and damage. As an exploratory analysis, observed outcomes were compared with a virtual control arm built using prediction algorithms to estimate ALSFRS-R scores. RESULTS Twenty-four out of 25 participants (96%) completed 12 weeks of study drug treatment. One participant was unable to comply with study visits and was lost to follow-up. Serum urate rose to target levels in 6 weeks. No serious AEs attributed to study drug and no AEs of special concern, such as urolithiasis and gout, occurred. Selected biomarkers of oxidative stress and damage had significant changes during the study period. Observed changes in ALSFRS-R did not differ from baseline predictions. INTERPRETATION Inosine appeared safe, well tolerated, and effective in raising serum urate levels in people with ALS. These findings, together with epidemiological observations and preclinical data supporting a neuroprotective role of urate in ALS models, provide the rationale for larger clinical trials testing inosine as a potential disease-modifying therapy for ALS.
Collapse
Affiliation(s)
- Katharine Nicholson
- Neurological Clinical Research Institute (NCRI)Massachusetts General Hospital (MGH)BostonMassachusetts
| | - James Chan
- MGH Biostatistics CenterBostonMassachusetts
| | | | - Mark Levine‐Weinberg
- Neurological Clinical Research Institute (NCRI)Massachusetts General Hospital (MGH)BostonMassachusetts
| | - Christopher Breen
- Neurological Clinical Research Institute (NCRI)Massachusetts General Hospital (MGH)BostonMassachusetts
| | - Rachit Bakshi
- MassGeneral Institute for Neurodegenerative DiseaseBostonMassachusetts
| | - Daniela L. Grasso
- Neurological Clinical Research Institute (NCRI)Massachusetts General Hospital (MGH)BostonMassachusetts
| | - Anne‐Marie Wills
- Neurological Clinical Research Institute (NCRI)Massachusetts General Hospital (MGH)BostonMassachusetts
| | | | | | | | | | - Ovidiu Andronesi
- MGH Department of RadiologyA. A. Martinos Center for Biomedical ImagingBostonMassachusetts
| | - Eva‐Maria Ratai
- MGH Department of RadiologyA. A. Martinos Center for Biomedical ImagingBostonMassachusetts
| | | | - Merit Cudkowicz
- Neurological Clinical Research Institute (NCRI)Massachusetts General Hospital (MGH)BostonMassachusetts
| | - Sabrina Paganoni
- Neurological Clinical Research Institute (NCRI)Massachusetts General Hospital (MGH)BostonMassachusetts
- Spaulding Rehabilitation HospitalBostonMassachusetts
| |
Collapse
|