101
|
EL-Ghazaly MA, Nada AS, EL-Hazek RM, Khayyal MT. Effect of selective COX-2 inhibitor, celecoxib on adjuvant-induced arthritis model in irradiated rats. Int J Radiat Biol 2010; 86:1079-87. [DOI: 10.3109/09553002.2010.501839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
102
|
Rithidech KN, Reungpatthanaphong P, Honikel L, Rusek A, Simon SR. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:405-419. [PMID: 20508943 DOI: 10.1007/s00411-010-0295-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 05/11/2010] [Indexed: 05/29/2023]
Abstract
The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-kappaB) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min(-1), the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of (137)Cs gamma rays (10 mGy min(-1)). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or (137)Cs gamma rays, delivered at 10 mGy min(-1), was similar. Although statistically significant levels of NF-kappaB activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or <0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min(-1) induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.
Collapse
|
103
|
Chung SW, Kim JM, Kim DH, Kim JY, Lee EK, Anton S, Jeong KS, Lee J, Yoo MA, Kim YJ, Yu BP, Chung HY. Molecular delineation of gamma-ray-induced NF-kappaB activation and pro-inflammatory genes in SMP30 knockout mice. Radiat Res 2010; 173:629-34. [PMID: 20426662 DOI: 10.1667/rr1629.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to gamma radiation causes a wide variety of biological damages and alterations, including oxidative stress. Among the key cellular components that are exquisitely sensitive to oxidative stress is the transcription factor nuclear factor (NF)-kappaB, which plays a central role in the activation of various pro-inflammatory genes. Recently, senescence marker protein 30 (SMP30), which has been used as an aging marker, was shown to have an antioxidant property. In the current study, using SMP30 knockout (SMP30(-/-)) mice that are vitamin C-deficient, we explored the effect of radiation on the activation of NF-kappaB and several key pro-inflammatory genes. Six groups of mice were studied. Group 1 mice were not irradiated and were supplemented with vitamin C (2.5 mg/kg/day). Group 2 mice were irradiated and were not supplemented with vitamin C. Group 3, 4 and 5 mice were irradiated with 1, 3 and 5 Gy of gamma radiation ((60)Co), respectively, without vitamin C supplementation. The wild-type mice (SMP30(+/+)) in group 6 were not irradiated or supplemented. At 24 h after irradiation, mice were killed humanely and the kidneys were removed analysis. The results showed that gamma radiation induced oxidative stress with corresponding NF-kappaB activation; this activated NF-kappaB led to the up-regulation of several major pro-inflammatory mediators such as COX-2, iNOS, VCAM1, ICAM1 and E-selectin in irradiated groups with no vitamin C supplementation. Our data provide molecular insights into mechanisms through which gamma radiation enhances oxidative stress-induced inflammation by showing the activation of NF-kappaB signaling pathway in vitamin C-deficient SMP30(-/-) mice. In addition, our present study produced evidence that gamma radiation exerts its deleterious action by activating the inflammatory process that are known to be a major risk factor for many chronic diseases. Furthermore, our data revealed vitamin C may play an important protective role in attenuating the adverse gamma-radiation-induced adverse effects by suppressing adverse oxidative effects and pro-inflammatory mediators.
Collapse
Affiliation(s)
- Sang Woon Chung
- Department of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Garg S, Boerma M, Wang J, Fu Q, Loose DS, Kumar KS, Hauer-Jensen M. Influence of sublethal total-body irradiation on immune cell populations in the intestinal mucosa. Radiat Res 2010; 173:469-78. [PMID: 20334519 PMCID: PMC2863351 DOI: 10.1667/rr1742.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The intestinal immune system is the largest in the body. This study analyzed changes in intestinal immune cell populations, cytokine protein levels, and transcript profiles after total-body irradiation (TBI) in CD2F1 mice. A single dose of 8.0 Gy gamma radiation caused negligible 30-day lethality but induced significant histological damage in jejunal mucosa that was maximal at 3.5 days and that had seemingly recovered by day 21 after irradiation. These changes were accompanied by decreased numbers of mucosal macrophages, neutrophils, and B and T lymphocytes, mostly coinciding with similar reductions in peripheral blood cell counts. Recovery of mucosal macrophages occurred within 1 week, whereas mucosal granulocytes and lymphocytes remained low until 3 weeks after TBI. Maximal suppression of T-helper cell (T(H))-related transcripts occurred at 3.5 days, but there was no obvious T(H)1 or T(H)2 bias. Genome-wide transcriptional profiling revealed a preponderance of differentially regulated genes involved in cell cycle control, cell death and DNA repair between 4 h and 3.5 days after irradiation. Genes involved in tissue recovery predominated from day 7 onward. We conclude that the intestinal immune system undergoes profound changes after sublethal TBI and that these changes likely contribute to postirradiation pathophysiological manifestations.
Collapse
Affiliation(s)
- Sarita Garg
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Junru Wang
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Qiang Fu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - David S. Loose
- Department of Integrative Biology and Pharmacology, University of Texas Health Sciences Center, Houston, Texas
| | - K. Sree Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland
| | - Martin Hauer-Jensen
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Surgery Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
105
|
Du SS, Qiang M, Zeng ZC, Ke AW, Ji Y, Zhang ZY, Zeng HY, Liu Z. Inactivation of kupffer cells by gadolinium chloride protects murine liver from radiation-induced apoptosis. Int J Radiat Oncol Biol Phys 2010; 76:1225-1234. [PMID: 20206021 DOI: 10.1016/j.ijrobp.2009.09.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/01/2009] [Accepted: 09/28/2009] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. MATERIALS AND METHODS A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. RESULTS The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. CONCLUSION Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage.
Collapse
Affiliation(s)
- Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Mihaescu A, Santen S, Jeppsson B, Thorlacius H. p38 Mitogen-activated protein kinase signalling regulates vascular inflammation and epithelial barrier dysfunction in an experimental model of radiation-induced colitis. Br J Surg 2010; 97:226-34. [PMID: 20034051 DOI: 10.1002/bjs.6811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND : Microvascular injury and epithelial barrier dysfunction are rate-limiting aspects in radiation enteropathy. This study examined the role of p38 mitogen-activated protein kinase (p38 MAPK) signalling in radiation-induced colitis in an experimental model. METHODS : The p38 MAPK inhibitor SB239063 was administered to mice immediately before exposure to 20 Gy radiation. Leucocyte- and platelet-endothelium interactions in the colonic microcirculation were assessed by intravital microscopy. Levels of myeloperoxidase (MPO) and CXC chemokines (macrophage inflammatory protein (MIP) 2 and cytokine-induced neutrophil chemoattractant (KC)), and albumin leakage were quantified 16 h after irradiation. RESULTS : Irradiation induced an increase in leucocyte and platelet recruitment, MPO activity, CXC chemokine levels and intestinal leakage. Inhibition of p38 MAPK by SB239063 decreased radiation-induced leucocyte and platelet recruitment (leucocyte rolling and adhesion by 70 and 90 per cent, both P < 0.001; that of platelets by 70 and 74 per cent, both P < 0.001). It also reduced radiation-provoked increases in colonic MPO activity by 88 per cent (P < 0.001), formation of MIP-2 and KC by 72 and 74 per cent respectively (P = 0.003 and P < 0.001), and intestinal leakage by 81 per cent (P < 0.001). CONCLUSION : p38 MAPK is an important signalling pathway in radiation-induced colitis.
Collapse
Affiliation(s)
- A Mihaescu
- Department of Surgery, Malmö University Hospital, Lund University, 205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
107
|
Soucy KG, Lim HK, Attarzadeh DO, Santhanam L, Kim JH, Bhunia AK, Sevinc B, Ryoo S, Vazquez ME, Nyhan D, Shoukas AA, Berkowitz DE. Dietary inhibition of xanthine oxidase attenuates radiation-induced endothelial dysfunction in rat aorta. J Appl Physiol (1985) 2010; 108:1250-8. [PMID: 20167676 DOI: 10.1152/japplphysiol.00946.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Radiation exposure is associated with the development of various cardiovascular diseases. Although irradiation is known to cause elevated oxidant stress and chronic inflammation, both of which are detrimental to vascular function, the molecular mechanisms remain incompletely understood. We previously demonstrated that radiation causes endothelial dysfunction and increased vascular stiffness by xanthine oxidase (XO) activation. In this study, we investigated whether dietary inhibition of XO protects against radiation-induced vascular injury. We exposed 4-mo-old rats to a single dose of 0 or 5 Gy gamma radiation. These rats received normal drinking water or water containing 1 mM oxypurinol, an XO inhibitor. We measured XO activity and superoxide production in rat aorta and demonstrated that both were significantly elevated 2 wk after radiation exposure. However, oxypurinol treatment in irradiated rats prevented aortic XO activation and superoxide elevation. We next investigated endothelial function through fluorescent measurement of nitric oxide (NO) and vascular tension dose responses. Radiation reduced endothelium-dependent NO production in rat aorta. Similarly, endothelium-dependent vasorelaxation in the aorta of irradiated rats was significantly attenuated compared with the control group. Dietary XO inhibition maintained NO production at control levels and prevented the development of endothelial dysfunction. Furthermore, pulse wave velocity, a measure of vascular stiffness, increased by 1 day postirradiation and remained elevated 2 wk after irradiation, despite unchanged blood pressures. In oxypurinol-treated rats, pulse wave velocities remained unchanged from baseline throughout the experiment, signifying preserved vascular health. These findings demonstrate that XO inhibition can offer protection from radiation-induced endothelial dysfunction and cardiovascular complications.
Collapse
Affiliation(s)
- Kevin G Soucy
- Department of Biomedical Engineering, Johns Hopkins Medical Institutions, 600 N. Wolfe St., Tower 711, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Lee WH, Sonntag WE, Mitschelen M, Yan H, Lee YW. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int J Radiat Biol 2010; 86:132-44. [PMID: 20148699 PMCID: PMC2827151 DOI: 10.3109/09553000903419346] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Pro-inflammatory environments in the brain have been implicated in the onset and progression of neurological disorders. In the present study, we investigate the hypothesis that brain irradiation induces regionally specific alterations in cytokine gene and protein expression. MATERIALS AND METHODS Four month old F344 x BN rats received either whole brain irradiation with a single dose of 10 Gy gamma-rays or sham-irradiation, and were maintained for 4, 8, and 24 h following irradiation. The mRNA and protein expression levels of pro-inflammatory mediators were analysed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining. To elucidate the molecular mechanisms of irradiation-induced brain inflammation, effects of irradiation on the DNA-binding activity of pro-inflammatory transcription factors were also examined. RESULTS A significant and marked up-regulation of mRNA and protein expression of pro-inflammatory mediators, including tumour necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and monocyte chemoattractant protein-1 (MCP-1), was observed in hippocampal and cortical regions isolated from irradiated brain. Cytokine expression was regionally specific since TNF-alpha levels were significantly elevated in cortex compared to hippocampus (57% greater) and IL-1beta levels were elevated in hippocampus compared to cortical samples (126% greater). Increases in cytokine levels also were observed after irradiation of mouse BV-2 microglial cells. A series of electrophoretic mobility shift assays (EMSA) demonstrated that irradiation significantly increased activation of activator protein-1 (AP-1), nuclear factor-kappaB (NF-kappaB), and cAMP response element-binding protein (CREB). CONCLUSION The present study demonstrated that whole brain irradiation induces regionally specific pro-inflammatory environments through activation of AP-1, NF-kappaB, and CREB and overexpression of TNF-alpha, IL-1beta, and MCP-1 in rat brain and may contribute to unique pathways for the radiation-induced impairments in tissue function.
Collapse
Affiliation(s)
- Won Hee Lee
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia 24061, USA.
| | | | | | | | | |
Collapse
|
109
|
Felfly H, Trudel M. Successful correction of murine sickle cell disease with reduced stem cell requirements reinforced by fractionated marrow infusions. Br J Haematol 2010; 148:646-58. [DOI: 10.1111/j.1365-2141.2009.07985.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
110
|
Jacob A, Shah KG, Wu R, Wang P. Ghrelin as a novel therapy for radiation combined injury. Mol Med 2010; 16:137-43. [PMID: 20101281 DOI: 10.2119/molmed.2009.00154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/15/2010] [Indexed: 02/02/2023] Open
Abstract
The threat of nuclear terrorism has led to growing worldwide concern about exposure to radiation. Acute radiation syndrome, or radiation sickness, develops after whole-body or a partial-body irradiation with a high dose of radiation. In the terrorist radiation exposure scenario, however, radiation victims likely suffer from additional injuries such as trauma, burns, wounds or sepsis. Thus, high-dose radiation injuries and appropriate therapeutic interventions must be studied. Despite advances in our understanding of the pathophysiology of radiation injury, very little information is available on the therapeutic approaches to radiation combined injury. In this review, we describe briefly the pathological consequences of ionizing radiation and provide an overview of the animal models of radiation combined injury. We highlight the combined radiation and sepsis model we recently established and suggest the use of ghrelin, a novel gastrointestinal hormone, as a potential therapy for radiation combined injury.
Collapse
Affiliation(s)
- Asha Jacob
- Laboratory of Surgical Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America and Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Great Neck, New York, United States of America
| | | | | | | |
Collapse
|
111
|
PPARs in Irradiation-Induced Gastrointestinal Toxicity. PPAR Res 2009; 2010:528327. [PMID: 20037741 PMCID: PMC2796461 DOI: 10.1155/2010/528327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/06/2009] [Accepted: 11/02/2009] [Indexed: 12/21/2022] Open
Abstract
The use of radiation therapy to treat cancer inevitably involves exposure of normal tissues. Although the benefits of this treatment are well established, many patients experience distressing complications due to injury to normal tissue. These side effects are related to inflammatory processes, and they decrease therapeutic benefit by increasing the overall treatment time. Emerging evidence indicates that PPARs and their ligands are important in the modulation of immune and inflammatory reactions. This paper discusses the effects of abdominal irradiation on PPARs, their role and functions in irradiation toxicity, and the possibility of using their ligands for radioprotection.
Collapse
|
112
|
Shah KG, Wu R, Jacob A, Blau SA, Ji Y, Dong W, Marini CP, Ravikumar TS, Coppa GF, Wang P. Human ghrelin ameliorates organ injury and improves survival after radiation injury combined with severe sepsis. Mol Med 2009; 15:407-14. [PMID: 19779631 DOI: 10.2119/molmed.2009.00100] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 09/18/2009] [Indexed: 11/06/2022] Open
Abstract
In the terrorist radiation exposure scenario, radiation victims are likely to suffer from additional injuries such as sepsis. Our previous studies have shown that ghrelin is protective in sepsis. However, it remains unknown whether ghrelin ameliorates sepsis-induced organ injury and mortality after radiation exposure. The purpose of this study is to determine whether human ghrelin attenuates organ injury and improves survival in a rat model of radiation combined injury (RCI) and, if so, the potential mechanism responsible for the benefit. To study this, adult male rats were exposed to 5-Gy whole body irradiation followed by cecal ligation and puncture (CLP, a model of sepsis) 48 h thereafter. Human ghrelin (30 nmol/rat) or vehicle (saline) was infused intravenously via an osmotic minipump immediately after radiation exposure. Blood and tissue samples were collected at 20 h after RCI (68 h after irradiation or 20 h after CLP) for various measurements. To determine the longterm effect of human ghrelin after RCI, the gangrenous cecum was removed at 5 h after CLP and 10-d survival was recorded. In addition, vagotomy or sham vagotomy was performed in sham and RCI animals immediately prior to ghrelin administration, and various measurements were performed at 20 h after RCI. Our results showed that serum levels of ghrelin and its gene expression in the stomach were decreased markedly at 20 h after RCI. Administration of human ghrelin attenuated tissue injury markedly, reduced proinflammatory cytokine levels, decreased tissue myeloperoxidase activity, and improved survival after RCI. Furthermore, elevated plasma levels of norepinephrine (NE) after RCI were reduced significantly by ghrelin. However, vagotomy prevented ghrelin's beneficial effects after RCI. In conclusion, human ghrelin is beneficial in a rat model of RCI. The protective effect of human ghrelin appears to be attributed to re-balancing the dysregulated sympathetic/parasympathetic nervous systems.
Collapse
Affiliation(s)
- Kavin G Shah
- The Feinstein Institute for Medical Research and Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset, New York 11030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Effects of genistein following fractionated lung irradiation in mice. Radiother Oncol 2009; 92:500-10. [DOI: 10.1016/j.radonc.2009.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 03/07/2009] [Accepted: 04/06/2009] [Indexed: 11/18/2022]
|
114
|
Calveley VL, Khan MA, Yeung IWT, Vandyk J, Hill RP. Partial volume rat lung irradiation: Temporal fluctuations of in-field and out-of-field DNA damage and inflammatory cytokines following irradiation. Int J Radiat Biol 2009; 81:887-99. [PMID: 16524844 DOI: 10.1080/09553000600568002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE The current study investigated the early activation of inflammatory cytokines and macrophages in different regions of the lung following partial volume irradiation. We examined temporal fluctuations in DNA damage, cytokine expression and macrophage activation during 16 weeks post-irradiation. MATERIALS AND METHODS We irradiated the lower lung of Sprague-Dawley rats with 10 Gy. A micronucleus assay was used to examine DNA damage. Real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was used to analyse the RNA expression of Interleukin-1 alpha (IL-1a), Interleukin-1 beta (IL-1ss), Interleukin-6 (IL-6), Tumour Necrosis Factor alpha (TNF-a) and Transforming Growth Factor beta (TGF-ss) relative to Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH). The activation of macrophages was determined using the antibody ED-1 for immunohistochemical analysis. RESULTS The expression of DNA damage, the activation of macrophages and the expression of inflammatory cytokines all fluctuated in a cyclic pattern. The initial induction of cytokine expression and the activation of macrophages occurred at very early times (1 h) following irradiation. Waves of cytokine expression and macrophage activation were also seen at later times (up to 16 weeks) following irradiation. DNA damage also occurred in a cyclic pattern though this was less pronounced out-of-field. The levels of cytokines and activated macrophages were elevated to a similar degree both in- and out-of-field, whereas there was a greater micronuclei yield in-field than out-of-field. CONCLUSIONS An inflammatory response triggered by the partial volume irradiation occurs in the whole rat lung at very early times following irradiation and is maintained in a cyclic pattern to later times when the onset of functional symptoms is expected. We hypothesize that Reactive Oxygen Species (ROS) induced by this response play an important role in the induction of both in-field and out-of-field DNA damage.
Collapse
Affiliation(s)
- Victoria L Calveley
- Research Division, Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto, Canada
| | | | | | | | | |
Collapse
|
115
|
Lee EK, Chung SW, Kim JY, Kim JM, Heo HS, Lim HA, Kim MK, Anton S, Yokozawa T, Chung HY. Allylmethylsulfide Down-Regulates X-Ray Irradiation-Induced Nuclear Factor-kappaB Signaling in C57/BL6 Mouse Kidney. J Med Food 2009; 12:542-51. [PMID: 19627202 PMCID: PMC6469522 DOI: 10.1089/jmf.2008.1073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 02/10/2009] [Indexed: 01/18/2023] Open
Abstract
Allylmethylsulfide (AMS), a volatile organosulfur derivative from garlic, has been shown to have radioprotective effects in radiation-challenged cell and animal models, but the mechanism of radioprotection is not well understood. To determine the mechanism of radioprotection in an in vivo model, we first verified the antioxidant capacity of AMS using 2,2'-azobis(2-amidinopropane) dihydrochloride-induced human embryonic kidney 293T cells by measuring reactive oxygen species generation, reduced glutathione, protein tyrosine kinase/protein tyrosine phosphatase balance, and nuclear factor-kappaB (NF-kappaB) protein levels. We then investigated the protective effects of AMS (55 and 275 micromol/kg, intraperitoneal treatment) on 15 Gy X-ray-irradiated mouse kidney. The results showed that AMS decreased the free radical-induced lipid peroxidation in mice exposed to X-rays. Moreover, the antioxidative AMS suppressed the activation of NF-kappaB and its dependent genes such as vascular cell adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2 through inhibition of IkappaBalpha phosphorylation and activation of IkappaB kinase alpha/beta and mitogen-activated protein kinases (MAPKs). Based on these results, AMS may be a useful radioprotective agent by down-regulating the MAPKs and NF-kappaB signaling pathway that can be induced via X-ray irradiation.
Collapse
Affiliation(s)
- Eun Kyeong Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sang Woon Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ji Young Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ji Min Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hyoung-Sam Heo
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hyun Ae Lim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Mi Kyung Kim
- Longevity Life Science and Technology Institutes, Pusan National University, Busan, Republic of Korea
| | - Stephen Anton
- Department of Aging and Geriatrics, Division of Biology of Aging, Genomics and Biomarkers Core of the Institute on Aging, University of Florida, Gainesville, Florida
| | - Takako Yokozawa
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
- Longevity Life Science and Technology Institutes, Pusan National University, Busan, Republic of Korea
- Department of Aging and Geriatrics, Division of Biology of Aging, Genomics and Biomarkers Core of the Institute on Aging, University of Florida, Gainesville, Florida
| |
Collapse
|
116
|
Garg S, Nichols JR, Esen N, Liu S, Phulwani NK, Syed MM, Wood WH, Zhang Y, Becker KG, Aldrich A, Kielian T. MyD88 expression by CNS-resident cells is pivotal for eliciting protective immunity in brain abscesses. ASN Neuro 2009; 1:e00007. [PMID: 19570030 PMCID: PMC2695586 DOI: 10.1042/an20090004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 02/06/2023] Open
Abstract
MyD88 KO (knockout) mice are exquisitely sensitive to CNS (central nervous system) infection with Staphylococcus aureus, a common aetiological agent of brain abscess, exhibiting global defects in innate immunity and exacerbated tissue damage. However, since brain abscesses are typified by the involvement of both activated CNS-resident and infiltrating immune cells, in our previous studies it has been impossible to determine the relative contribution of MyD88-dependent signalling in the CNS compared with the peripheral immune cell compartments. In the present study we addressed this by examining the course of S. aureus infection in MyD88 bone marrow chimaera mice. Interestingly, chimaeras where MyD88 was present in the CNS, but not bone marrow-derived cells, mounted pro-inflammatory mediator expression profiles and neutrophil recruitment equivalent to or exceeding that detected in WT (wild-type) mice. These results implicate CNS MyD88 as essential in eliciting the initial wave of inflammation during the acute response to parenchymal infection. Microarray analysis of infected MyD88 KO compared with WT mice revealed a preponderance of differentially regulated genes involved in apoptotic pathways, suggesting that the extensive tissue damage characteristic of brain abscesses from MyD88 KO mice could result from dysregulated apoptosis. Collectively, the findings of the present study highlight a novel mechanism for CNS-resident cells in initiating a protective innate immune response in the infected brain and, in the absence of MyD88 in this compartment, immunity is compromised.
Collapse
Key Words
- bone marrow chimaera mice
- brain abscess
- central nervous system
- myd88
- staphylococcus aureus
- toll-like receptor
- cfu, colony forming unit
- cns, central nervous system
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- gfp, green fluorescent protein
- ier3/iex, immediate early response 3
- il, interleukin
- il-1r etc., il-1 receptor
- ko, knockout
- lcn2, lipocalin-2
- nf-κb, nuclear factor κb
- pacsin3, protein kinase c and casein kinase substrate in neurons 3
- pfc, complement factor properdin
- qrt-pcr, quantitative real-time rt (reverse transcriptase)-pcr
- ros, reactive oxygen species
- socs3, suppressor of cytokine signalling 3
- tlr, toll-like receptor
- tnf-α, tumour necrosis factor-α
- wt, wild-type
Collapse
Affiliation(s)
- Sarita Garg
- *Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, U.S.A
| | - Jessica R Nichols
- †Department of Pediatrics, Arkansas Children's Hospital, Little Rock, AR 72205, U.S.A
| | - Nilufer Esen
- ‡Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48109, U.S.A
| | - Shuliang Liu
- §Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, U.S.A
| | - Nirmal K Phulwani
- §Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, U.S.A
| | - Mohsin Md. Syed
- §Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, U.S.A
| | - William H Wood
- ∥Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, U.S.A
| | - Yongqing Zhang
- ∥Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, U.S.A
| | - Kevin G Becker
- ∥Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, U.S.A
| | - Amy Aldrich
- ¶Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Tammy Kielian
- ¶Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| |
Collapse
|
117
|
Wu CT, Chen WC, Lin PY, Liao SK, Chen MF. Androgen deprivation modulates the inflammatory response induced by irradiation. BMC Cancer 2009; 9:92. [PMID: 19320990 PMCID: PMC2667536 DOI: 10.1186/1471-2407-9-92] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 03/25/2009] [Indexed: 12/14/2022] Open
Abstract
Background The aim of this study was to determine whether radiation (RT)-induced inflammatory responses and organ damage might be modulated by androgen deprivation therapies. Methods The mRNA and tissue sections obtained from the lungs, intestines and livers of irradiated mice with or without androgen deprivation were analyzed by real-time PCR and histological analysis. Activation of NF-kappa B was examined by measuring nuclear protein levels in the intestine and lung 24 h after irradiation. We also examined the levels of cyclooxygenase-2 (COX-2), TGF-β1 and p-AKT to elucidate the related pathway responsible to irradiation (RT) -induced fibrosis. Results We found androgen deprivation by castration significantly augmented RT-induced inflammation, associated with the increase NF-κB activation and COX-2 expression. However, administration of flutamide had no obvious effect on the radiation-induced inflammation response in the lung and intestine. These different responses were probably due to the increase of RT-induced NF-κB activation and COX-2 expression by castration or lupron treatment. In addition, our data suggest that TGF-β1 and the induced epithelial-mesenchymal transition (EMT) via the PI3K/Akt signaling pathway may contribute to RT-induced fibrosis. Conclusion When irradiation was given to patients with total androgen deprivation, the augmenting effects on the RT-induced inflammation and fibrosis should take into consideration for complications associated with radiotherapy.
Collapse
Affiliation(s)
- Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital, Linko, Taiwan.
| | | | | | | | | |
Collapse
|
118
|
Grémy O, Benderitter M, Linard C. Acute and persisting Th2-like immune response after fractionated colorectal gamma-irradiation. World J Gastroenterol 2008; 14:7075-7085. [PMID: 19084914 PMCID: PMC2776837 DOI: 10.3748/wjg.14.7075] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/14/2008] [Accepted: 11/21/2008] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate if an immune imbalance may account for the development and progression of chronic radiation enteritis. We analyzed the Th1/Th2 immune response profile early and 6 mo after fractionated colorectal irradiation. METHODS A rat model of fractionated colorectal gamma-irradiation (4-Gy fractions, 3 fractions per week) was designed to investigate the effects of cumulative dose on inflammatory mediators (cytokines and chemokines) and immune response (Th1/Th2 profile and immunosuppressive mediator IL-10) during acute (early) response and 6 mo after the end of fractionated irradiation (chronic response). Analyses were performed 1 d after the cumulative doses of 16 Gy and 36 Gy and 1 d, 3 d, and 26 wk after the cumulative dose of 52 Gy. RESULTS Without causing histological damage, fractionated radiation induced elevated expression of IL-1beta, TNFalpha, MCP-1, and iNOS in distal colonic mucosa during the early post-irradiation phase. At that time, a Th2 profile was confirmed by expression of both the Th2-specific transcription factor GATA-3 and the chemokine receptor CCR4 and by suppression of the Th1 cytokine IFNgamma/IP-10 throughout the irradiation protocol. After 6 mo, despite the 2-fold reduction of iNOS and MCP-1 levels, the Th2 profile persisted, as shown by a 50% reduction in the expression of the Th1 transcription factor T-bet, the chemokine receptor CCXCR3, and the IFNgamma/STAT1 pathway. At the same time-point, the immunosuppressive IL-10/STAT3 pathway, known to regulate the Th1/Th2 balance, was expressed, in irradiated rats, at approximately half its level as compared to controls. This suppression was associated with an overexpression of SOCS3, which inhibits the feedback of the Th1 polarization and regulates IL-10 production. CONCLUSION Colorectal irradiation induces Th2 polarization, defective IL-10/STAT3 pathway activation and SOCS3 overexpression. These changes, in turn, maintain a immunological imbalance that persists in the long term.
Collapse
|
119
|
Abstract
Cancer-related fatigue (CRF) is influenced and modulated by a number of critical factors, and the mechanism that is both necessary and sufficient to induce development of severe fatigue in patients with cancer has not yet been identified. Specific research efforts to understand the factors that may contribute to CRF development have been made, including studies of the direct effects of tumor burden, the effects of cancer treatment, and other pathophysiologic and psychosocial conditions. Compelling new hypotheses regarding CRF pathophysiology have been proposed, such as the pro-inflammatory hypothesis, the serotonin hypothesis, the vagal-afferent-activation hypothesis, the anemia hypothesis, and the adenosine triphosphate hypothesis; some of these have been tested in both animal models and humans and some in animals only. Gaining an understanding of the specific mechanisms related to the development of fatigue in patients with cancer and survivors requires further investigation. Pathophysiologic research in CRF could be applied in the clinic to improve CRF diagnosis and to enable administration of mechanism-driven interventions. A targeted intervention study with CRF as a primary end point also would be useful.
Collapse
Affiliation(s)
- Xin Shelley Wang
- Department of Symptom Research, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
120
|
Kim KT, Chae HS, Kim JS, Kim HK, Cho YS, Choi W, Choi KY, Rho SY, Kang SJ. Thalidomide effect in endothelial cell of acute radiation proctitis. World J Gastroenterol 2008; 14:4779-4783. [PMID: 18720539 PMCID: PMC2739340 DOI: 10.3748/wjg.14.4779] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/20/2008] [Accepted: 07/27/2008] [Indexed: 02/06/2023] Open
Abstract
AIM To determine whether thalidomide prevents microvascular injury in acute radiation proctitis in white rats. METHODS Fourteen female Wistar rats were used: six in the radiation group, six in the thalidomide group, and two in normal controls. The radiation and thalidomide groups were irradiated at the pelvic area using a single 30 Gy exposure. The thalidomide (150 mg/kg) was injected into the peritoneum for 7 d from the day of irradiation. All animals were sacrificed and the rectums were removed on day 8 after irradiation. The microvessels of resected specimens were immunohistochemically stained with thrombomodulin (TM), von Willebrand Factor (vWF), and vascular endothelial growth factor (VEGF). RESULTS The microscopic scores did not differ significantly between the radiation and thalidomide groups, but both were higher than in the control group. Expression of TM was significantly lower in the endothelial cells (EC) of the radiation group than in the control and thalidomide groups (P<0.001). The number of capillaries expressing vWF in the EC was higher in the radiation group (15.3+/-6.8) than in the control group (3.7+/-1.7), and the number of capillaries expressing vWF was attenuated by thalidomide (10.8+/-3.5, P<0.001). The intensity of VEGF expression in capillaries was greater in the radiation group than in the control group and was also attenuated by thalidomide (P=0.003). CONCLUSION The mechanisms of acute radiation-induced proctitis in the rats are related to endothelial cell injury of microvessel, which may be attenuated with thalidomide.
Collapse
|
121
|
Pall ML. Post-radiation syndrome as a NO/ONOO- cycle, chronic fatigue syndrome-like disease. Med Hypotheses 2008; 71:537-41. [PMID: 18667279 DOI: 10.1016/j.mehy.2008.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 05/09/2008] [Accepted: 05/12/2008] [Indexed: 01/08/2023]
Abstract
Post-radiation syndrome is proposed to be chronic fatigue syndrome (CFS) or a chronic fatigue syndrome-like illness, initiated by exposure to ionizing radiation. This view is supported by the nitric oxide/peroxynitrite (NO/ONOO-) cycle mechanism, the putative etiologic mechanism for CFS and related illnesses. Ionizing radiation may initiate illness by increasing nitric oxide levels via increased activity of the transcription factor NF-kappaB and consequent increased synthesis of the inducible nitric oxide synthase. Two types of components of the nitric oxide/peroxynitrite cycle have been studied in post-radiation syndrome patients and shown to be elevated. The symptoms and signs of post-radiation syndrome and its chronicity are similar or identical to those of chronic fatigue syndrome and can be explained as being a consequence of nitric oxide/peroxynitrite cycle etiology. While the data available to test this view are limited, it provides for the first time a comprehensive explanation for post-radiation syndrome.
Collapse
Affiliation(s)
- Martin L Pall
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, USA.
| |
Collapse
|
122
|
Albertini R, Villaverde AB, Aimbire F, Bjordal J, Brugnera A, Mittmann J, Silva JA, Costa M. Cytokine mRNA expression is decreased in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low-level laser therapy. Photomed Laser Surg 2008; 26:19-24. [PMID: 18248157 DOI: 10.1089/pho.2007.2119] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The objective of this work was to investigate the anti-inflammatory effects of low-level laser therapy, applied at different wavelengths (660 and 684 nm), on cytokine mRNA expression after carrageenan-induced acute inflammation in rat paw. BACKGROUND DATA Low-level laser therapy (LLLT) has been observed to reduce pain in inflammatory disorders. However, little is known about the mechanisms behind this effect or whether it is wavelength-specific. MATERIALS AND METHODS The test sample consisted of 32 rats divided into four groups: A(1) (control-saline), A(2) (carrageenan-only), A(3) (carrageenan + 660 nm laser therapy), and A(4) (carrageenan + 684 nm laser therapy). The animals from groups A(3) and A(4) were irradiated 1 h after induction of inflammation by carrageenan injection. Continuous-wave red lasers with wavelengths of 660 and 684 nm and dose of 7.5 J/cm(2) were used. RESULTS Both the 660 nm and 684 nm laser groups had 30%-40% lower mRNA expression for cytokines TNF-alpha, IL-1beta, and IL-6 in the paw muscle tissue than the carrageenan-only control group. Cytokine measurements were made 3 h after laser irradiation of the paw muscle, and all cytokine differences between the carrageenan-only control group and the LLLT groups were statistically significant (p < 0.001). CONCLUSIONS LLLT at the 660-nm and 684-nm wavelengths administered to inflamed rat paw tissue at a dose of 7.5 J/cm(2) reduce cytokine mRNA expression levels within 3 h in the laser-irradiated tissue.
Collapse
Affiliation(s)
- Regiane Albertini
- Instituto de Pesquisa and Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Fredin MF, Hultin L, Hyberg G, Rehnström E, Hultgren Hörnquist E, Melgar S, Jansson L. Predicting and monitoring colitis development in mice by micro-computed tomography. Inflamm Bowel Dis 2008; 14:491-9. [PMID: 18161841 DOI: 10.1002/ibd.20343] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Computed tomography (CT) has been developed as a tool for monitoring human inflammatory bowel disease (IBD). The aim of this study was to evaluate colon wall thickness as a noninvasive marker in the dextran sodium sulfate (DSS) mouse model of colitis using micro-CT. METHODS Mice were examined by micro-CT 1, 2, or 4 times between day 0 (d0) and d26 after induction of colitis to document the kinetics of changes in colon wall thickness and its relation to colitis development. RESULTS DSS-treated mice displayed a significantly thicker colon wall at all timepoints (days 5, 8, 12, 19, and 26) investigated compared to healthy controls. Colon wall thickness showed a good correlation to the macroscopic grading of colitis (r = 0.81). The increase in colon wall thickness occurred mainly during the acute phase of colitis (between days 5 and 12) and did not progress much further in the chronic phase of colitis (d26). Colon wall thickness at d26 was thereby predicted by measurements at d12. All mice did not respond equally to DSS and this difference was manifest during the first 2 weeks of colitis, providing an important tool in stratifying responders from nonresponders. CONCLUSIONS While the potential impact of handling and anesthesia should be considered on repeated micro-CT, irradiation exposure during repeated micro-CT did not affect the development of colitis. Thus, the results suggest that micro-CT can be used for monitoring and prediction of the inflammatory response in mouse colitis in future therapeutic studies.
Collapse
Affiliation(s)
- Maria Fritsch Fredin
- Department of Integrative Pharmacology, AstraZeneca R&D Mölndal, Mölndal, Sweden.
| | | | | | | | | | | | | |
Collapse
|
124
|
Swennen ELR, Dagnelie PC, Van den Beucken T, Bast A. Radioprotective effects of ATP in human blood ex vivo. Biochem Biophys Res Commun 2007; 367:383-7. [PMID: 18164682 DOI: 10.1016/j.bbrc.2007.12.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 11/19/2022]
Abstract
Damage to healthy tissue is a major limitation of radiotherapy treatment of cancer patients, leading to several side effects and complications. Radiation-induced release of pro-inflammatory cytokines is thought to be partially responsible for the radiation-associated complications. The aim of the present study was to investigate the protective effects of extracellular ATP on markers of oxidative stress, radiation-induced inflammation and DNA damage in irradiated blood ex vivo. ATP inhibited radiation-induced TNF-alpha release and increased IL-10 release. The inhibitory effect of ATP on TNF- alpha release was completely reversed by adenosine 5'-O-thiomonophosphate, indicating a P2Y(11) mediated effect. Furthermore, ATP attenuated radiation-induced DNA damage immediate, 3 and 6h after irradiation. Our study indicates that ATP administration alleviates radiation-toxicity to blood cells, mainly by inhibiting radiation-induced inflammation and DNA damage.
Collapse
Affiliation(s)
- Els L R Swennen
- Department of Epidemiology, NUTRIM Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|
125
|
Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 2007; 10:1544-53. [PMID: 18026096 DOI: 10.1038/nn2015] [Citation(s) in RCA: 849] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 10/25/2007] [Indexed: 12/24/2022]
Abstract
Microglia are crucially important myeloid cells in the CNS and constitute the first immunological barrier against pathogens and environmental insults. The factors controlling microglia recruitment from the blood remain elusive and the direct circulating microglia precursor has not yet been identified in vivo. Using a panel of bone marrow chimeric and adoptive transfer experiments, we found that circulating Ly-6C(hi)CCR2(+) monocytes were preferentially recruited to the lesioned brain and differentiated into microglia. Notably, microglia engraftment in CNS pathologies, which are not associated with overt blood-brain barrier disruption, required previous conditioning of brain (for example, by direct tissue irradiation). Our results identify Ly-6C(hi)CCR2(+) monocytes as direct precursors of microglia in the adult brain and establish the importance of local factors in the adult CNS for microglia engraftment.
Collapse
|
126
|
Abstract
Radiation induces an important inflammatory response in the irradiated organs, characterized by leukocyte infiltration and vascular changes that are the main limiting factor in the application of this therapeutic modality for the treatment of cancer. Recently, a considerable investigative effort has been directed at determining the molecular mechanisms by which radiation induces leukocyte recruitment, in order to create strategies to prevent intestinal inflammatory damage. In these review, we consider current available evidence on the factors governing the process of leukocyte recruitment in irradiated organs, mainly derived from experimental studies, with special attention to adhesion molecules, and their value as therapeutic targets.
Collapse
Affiliation(s)
- Meritxell Molla
- Radioncology Department, Instituto Oncologico Teknon, c/Vilana 12, 08022 Barcelona, Spain.
| | | |
Collapse
|
127
|
Sims AH, Finnon P, Miller CJ, Bouffler SD, Howell A, Scott D, Clarke RB. TPD52 and NFKB1 gene expression levels correlate with G2 chromosomal radiosensitivity in lymphocytes of women with and at risk of hereditary breast cancer. Int J Radiat Biol 2007; 83:409-20. [PMID: 17487680 DOI: 10.1080/09553000701317366] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE To evaluate a transcriptomic approach to identify healthy women at increased risk of breast cancer due to G2-radiosensitivity and look at transcripts that are differentially expressed between individuals. MATERIALS AND METHODS We perform the first study to assess the association of G2 radiosensitivity with basal gene expression in cultured T-lymphocytes from 11 women with breast cancer and 12 healthy female relatives using Affymetrix GeneChips. RESULTS Transcripts associated with radiosensitivity and breast cancer risk were predominantly involved in innate immunity and inflammation, such as interleukins and chemokines. Genes differentially expressed in radiosensitive individuals were more similarly expressed in close family members than in un-related individuals, suggesting heritability of the trait. The expression of tumour protein D52 (TPD52), a gene implicated in cell proliferation, apoptosis, and vesicle trafficking was the most strongly correlated with G2 score while nuclear factor (kappa)-B (NFKB1) was highly inversely correlated with G2 score. NFKB1 is known to be activated by irradiation and its inhibition has been previously shown to increase radiosensitivity. CONCLUSIONS Gene expression analysis of lymphocytes may provide a quantitative measure of radiation response potential and is a promising marker of breast cancer susceptibility.
Collapse
Affiliation(s)
- A H Sims
- Breast Biology Group, Paterson Institute for Cancer Research, University of Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
128
|
Yildiz M, Cicek E, Cerci SS, Cerci C, Oral B, Koyu A. Influence of Electromagnetic Fields and Protective Effect of CAPE on Bone Mineral Density in Rats. Arch Med Res 2006; 37:818-21. [PMID: 16971219 DOI: 10.1016/j.arcmed.2006.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Most mobile phones emit electromagnetic radiation at 900 MHz or 1800 MHz. An electromagnetic field has some biological effects on the behavior of the cell population of bone. The aim of this work is to evaluate the effects of the radiation emitted by mobile phones on bone mineral density (BMD). The effects of caffeic acid phenethyl ester (CAPE) on the radiation-induced changes were also investigated. METHODS In the study, 48 Sprague Dawley rats were used. Rats were divided into five groups as follows: control, irradiated with 900 MHz, irradiated with 900 MHz and treatment, irradiated with 1800 MHz, irradiated with 1800 MHz and treatment groups. The rats in the control group (first group) were left within the experimental setup during 30 min/day for 28 days without radiation exposure. Nine hundred-MHz radiation group was exposed to irradiate both second and third groups for 28 days (30 min/day); 1800-MHz radiation group was exposed to irradiate both fourth and fifth groups for 28 days (30 min/day). Third and fifth groups were also treated by CAPE for 28 days. Treatment groups received 10 microml/kg/day CAPE i.p. before the irradiation. Bone mineral densities were determined in all groups. RESULTS BMD was found to be decreased in the irradiated groups and to be increased in the treatment groups. CONCLUSIONS The changes were not significant (p >0.05).
Collapse
Affiliation(s)
- Mustafa Yildiz
- Department of Nuclear Medicine, Suleyman Demirel University, School of Medicine, Isparta, Turkey.
| | | | | | | | | | | |
Collapse
|
129
|
Huang XW, Yang J, Dragovic AF, Zhang H, Lawrence TS, Zhang M. Antisense oligonucleotide inhibition of tumor necrosis factor receptor 1 protects the liver from radiation-induced apoptosis. Clin Cancer Res 2006; 12:2849-55. [PMID: 16675580 DOI: 10.1158/1078-0432.ccr-06-0360] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Liver damage by radiation limits its efficacy in cancer treatment. As radiation can generate apoptotic signals, we wished to examine the potential to protect the liver by inhibiting apoptosis through two key mediators, FAS and tumor necrosis factor receptor 1 (TNFR1). EXPERIMENTAL DESIGN Radiation-induced liver damage was assessed by serum aspartate aminotransferase and alanine aminotransferase, hepatocyte micronucleus formation, and apoptosis assays (terminal nucleotidyl transferase-mediated nick end labeling and caspase-3 cleavage) in mice. Protection was evaluated by pretreating mice with antisense oligonucleotides (ASO) for FAS or TNFR1 prior to radiation. TNF-alpha production in liver and in Kupffer cells were determined by ELISA. RESULTS Radiation increased liver FAS and TNFR1 transcription in a dose- and time-dependent manner (maximized at 25 Gy and 8 hours postirradiation). Pretreatment with ASOs for FAS and TNFR1 resulted in the inhibition of liver FAS and TNFR1 by 78% and 59%, respectively. Inductions of serum aspartate aminotransferase and alanine aminotransferase were observed at 2 hours after radiation and could be reduced by pretreating mice with ASO for TNFR1 but not FAS or control oligonucleotide. Radiation-induced liver apoptosis (terminal nucleotidyl transferase-mediated nick end labeling staining and caspase-3 activation on Western blot) and hepatocyte micronucleus formation were reduced by pretreatment with ASO for TNFR1. In addition, radiation stimulated TNF-alpha production both in irradiated liver and in cultured Kupffer cells by >50% and 100%, respectively. CONCLUSION This study suggests that ionizing radiation activates apoptotic signaling through TNFR1 in the liver, and thus provides a rationale for anti-TNFR1 apoptotic treatment to prevent radiation-induced liver injury.
Collapse
Affiliation(s)
- Xiao W Huang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
130
|
Langan AR, Khan MA, Yeung IWT, Van Dyk J, Hill RP. Partial volume rat lung irradiation: the protective/mitigating effects of Eukarion-189, a superoxide dismutase-catalase mimetic. Radiother Oncol 2006; 79:231-8. [PMID: 16675053 DOI: 10.1016/j.radonc.2006.03.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 03/24/2006] [Accepted: 03/28/2006] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE The purpose of the current study was to elucidate the protective/mitigating effects of a SOD-catalase mimetic, Eukarion-189 (EUK-189), on DNA damage in rat lung following irradiation. The particular focus of these studies was the efficacy of EUK-189 when given after irradiation (mitigation). PATIENTS AND METHODS We exposed whole or lower lungs of female Sprague-Dawley rats to doses ranging from 10 to 20.5 Gray (Gy) of (60)Co gamma rays. Animals in the EUK-189 treated groups received 2 or 30 mg/kg intraperitoneally (i.p.) at various times postirradiation (PI). A micronucleus assay was used to examine DNA damage at various times up to 16 weeks PI. RESULTS Our results indicated that EUK-189 administration after irradiation is effective at reducing micronucleus formation in lung fibroblasts at various times following radiation exposure. Treatment with EUK-189 in the first 3 days after thoracic irradiation did not, however, modify the dose required to cause severe morbidity at 2-3 months after irradiation. CONCLUSIONS The protection produced when Eukarion-189 was given shortly after irradiation suggests that DNA damage observed in the lung may be caused by chronic production of ROS induced by a chronic inflammatory response initiated by the radiation treatment. We speculate that our failure to observe protection against severe morbidity at 2-3 months may be because our treatment regime only blocked the initial wave of ROS production and that treatment needs to be more prolonged to suppress the effects of a chronic inflammatory response.
Collapse
Affiliation(s)
- Aimée R Langan
- Research Division, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ont., Canada
| | | | | | | | | |
Collapse
|
131
|
Magné N, Toillon RA, Bottero V, Didelot C, Houtte PV, Gérard JP, Peyron JF. NF-kappaB modulation and ionizing radiation: mechanisms and future directions for cancer treatment. Cancer Lett 2006; 231:158-68. [PMID: 16399220 DOI: 10.1016/j.canlet.2005.01.022] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 01/19/2005] [Indexed: 01/04/2023]
Abstract
NF-kappaB transcription factor regulates important cellular processes ranging from establishment of the immune and inflammatory responses to regulation of cell proliferation or apoptosis, through the induction of a large array of target genes. NF-kappaB is now considered as an important actor in the tumorigenic process mainly because it exerts strong anti-apoptotic functions in cancer cells. NF-kappaB is triggered by chimio- and radio-therapeutic strategies that are intended to eliminate cancerous cells through induction of apoptosis. Numerous studies have demonstrated that inhibition of NF-kappaB by different means increased sensitivity of cancer cells to the apoptotic action of diverses effectors such as TNFalpha or chemo- or radio-therapies. From these studies as emerged the concept that NF-kappaB blockade could be associated to conventional therapies in order to increase their efficiency. This review focuses on the current knowledge on NF-kappaB regulation and discusses the therapeutic potential of targeting NF-kappaB in cancer in particular during radiotherapy.
Collapse
Affiliation(s)
- Nicolas Magné
- Département de Radiothérapie, Institut Jules Bordet, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgique.
| | | | | | | | | | | | | |
Collapse
|
132
|
Chen MF, Keng PC, Lin PY, Yang CT, Liao SK, Chen WC. Caffeic acid phenethyl ester decreases acute pneumonitis after irradiation in vitro and in vivo. BMC Cancer 2005; 5:158. [PMID: 16336675 PMCID: PMC1325253 DOI: 10.1186/1471-2407-5-158] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 12/09/2005] [Indexed: 12/20/2022] Open
Abstract
Background Lung cancer is relatively resistant to radiation treatment and radiation pneumonitis is a major obstacle to increasing the radiation dose. We previously showed that Caffeic acid phenethyl ester (CAPE) induces apoptosis and increases radiosensitivity in lung cancer. To determine whether CAPE, an antioxidant and an inhibitor of NF-kappa B, could be a useful adjuvant agent for lung cancer treatment, we examine the effects of CAPE on irradiated normal lung tissue in this study. Methods We compared the effects of CAPE on cytotoxicity and intracellular oxidative stress in normal lung fibroblast and a lung cancer cell line. For in vivo analysis, whole thorax radiation (single dose 10 Gy and 20 Gy) was delivered to BALB/c male mice with or without CAPE pretreatment. NF- kappaB activation and the expression levels of acute inflammatory cytokines were evaluated in mice after irradiation. Results The in vitro studies showed that CAPE cause no significant cytotoxicity in normal lung as compared to lung cancer cells. This is probably due to the differential effect on the expression of NF-kappa B between normal and malignant lung cells. The results from in vivo study showed that CAPE treatment decreased the expression of inflammatory cytokines including IL-1 alpha and beta, IL-6, TNF-alpha and TGF- beta, after irradiation. Moreover, histological and immunochemical data revealed that CAPE decreased radiation- induced interstitial pneumonitis and TGF-beta expression. Conclusion This study suggests that CAPE decreases the cascade of inflammatory responses induced by thoracic irradiation without causing toxicity in normal lung tissue. This provides a rationale for combining CAPE and thoracic radiotherapy for lung cancer treatment in further clinical studies.
Collapse
Affiliation(s)
- Miao-Fen Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chia-Yi, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University, Toyuan, Taiwan
| | - Peter C Keng
- Department of Radiation Oncology, Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Paul-Yang Lin
- Department of Pathology, Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Cheng-Ta Yang
- Department of Internal medicine, Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Shuen-Kuei Liao
- Graduate Institute of Clinical Medical Science, Chang Gung University, Toyuan, Taiwan
| | - Wen-Cheng Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| |
Collapse
|
133
|
Garg AK, Buchholz TA, Aggarwal BB. Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal 2005; 7:1630-47. [PMID: 16356126 DOI: 10.1089/ars.2005.7.1630] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The treatment of cancer with chemotherapeutic agents and radiation has two major problems: time-dependent development of tumor resistance to therapy (chemoresistance and radioresistance) and nonspecific toxicity toward normal cells. Many plant-derived polyphenols have been studied intently for their potential chemopreventive properties and are pharmacologically safe. These compounds include genistein, curcumin, resveratrol, silymarin, caffeic acid phenethyl ester, flavopiridol, emodin, green tea polyphenols, piperine, oleandrin, ursolic acid, and betulinic acid. Recent research has suggested that these plant polyphenols might be used to sensitize tumor cells to chemotherapeutic agents and radiation therapy by inhibiting pathways that lead to treatment resistance. These agents have also been found to be protective from therapy-associated toxicities. How these polyphenols protect normal cells and sensitize tumor cells to treatment is discussed in this review.
Collapse
Affiliation(s)
- Amit K Garg
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
134
|
Linard C, Marquette C, Clarençon D, Galonnier M, Mathieu J, Pennequin A, Benderitter M, Gourmelon P. Acute ileal inflammatory cytokine response induced by irradiation is modulated by subdiaphragmatic vagotomy. J Neuroimmunol 2005; 168:83-95. [PMID: 16095725 DOI: 10.1016/j.jneuroim.2005.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/11/2005] [Indexed: 12/22/2022]
Abstract
Neural involvement plays a role in the genesis of the peripheral inflammatory process that contributes to the irradiation intestinal disorders. However, little is known about the role of vagus nerve in modulating inflammatory process in rat. Here, we have shown that the NF-kappaB activation was consistent with the acute overexpression of pro-inflammatory cytokines (IL- 1beta, TNF-alpha, IL-6) at 3, 6, and 12 h induced by whole-body irradiation (8 Gy). Subdiaphragmatic vagotomy reduced NF-kappaB activation and cytokine transcription in the early period post-irradiation. In contrast, vagotomy amplified overexpression of irradiation-induced anti-cytokines (IL-10, IL-1Ra) and of receptors involved in anti-inflammatory effects (IL- 1RII, TNFRII). These results show that the vagus nerve is a pro-inflammatory pathway in early irradiation-induced intestinal inflammation.
Collapse
Affiliation(s)
- Christine Linard
- Institute for Radioprotection and Nuclear Safety, IRSN, B.P. no17, F-92262 Fontenay-aux- Roses Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Hart JP, Broadwater G, Rabbani Z, Moeller BJ, Clough R, Huang D, Sempowski GA, Dewhirst M, Pizzo SV, Vujaskovic Z, Anscher MS. Cytokine profiling for prediction of symptomatic radiation-induced lung injury. Int J Radiat Oncol Biol Phys 2005; 63:1448-54. [PMID: 16115739 DOI: 10.1016/j.ijrobp.2005.05.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 01/21/2023]
Abstract
PURPOSE To analyze plasma cytokine profiles before the initiation of radiation therapy to define a cytokine phenotype that correlates with risk of developing symptomatic radiation-induced lung injury (SRILI). METHODS AND MATERIALS Symptomatic radiation-induced lung injury was evaluated in 55 patients (22 with SRILI and 33 without SRILI), according to modified National Cancer Institute common toxicity criteria. These plasma samples were analyzed by the multiplex suspension bead array system (Bio-Rad Laboratories; Hercules, CA), which included the following cytokines: interleukin (IL)-1beta, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-17, granulocyte/macrophage colony-stimulating factor, interferon-gamma, monocyte chemotactic protein 1, macrophage inflammatory protein 1beta, tumor necrosis factor alpha, and granulocyte colony-stimulating factor. RESULTS Significant differences in the median values of IL-8 were observed between patients with and without SRILI. Patients who did not develop SRILI had approximately fourfold elevated levels of IL-8 as compared with patients who did subsequently develop SRILI. Significant correlations were not found for any other cytokine in this study, including transforming growth factor beta1. CONCLUSIONS Patients with lower levels of plasma IL-8 before radiation therapy might be at increased risk for developing SRILI. Further studies are necessary to determine whether IL-8 levels are predictive of SRILI in a prospective trial and whether this marker might be used to determine patient eligibility for dose escalation.
Collapse
Affiliation(s)
- Justin P Hart
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Li J, Shan Z, Ou G, Liu X, Zhang C, Baum BJ, Wang S. Structural and functional characteristics of irradiation damage to parotid glands in the miniature pig. Int J Radiat Oncol Biol Phys 2005; 62:1510-6. [PMID: 16029813 DOI: 10.1016/j.ijrobp.2005.04.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/13/2005] [Accepted: 04/21/2005] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate the effects of a solitary megadose protocol of ionizing radiation (IR) on the structure and function of the miniature pig (minipig) parotid gland. METHODS AND MATERIALS Fourteen minipigs were subjected to either 15 or 20 Gy to one parotid gland with a linear accelerator, whereas another four minipigs served as non-IR controls. Salivary flow rates and salivary chemistries were measured pre-IR and 4 and 16 weeks post-IR. A quantitative assessment of gland weight and acinar area and detailed serum chemistry and hematologic analyses were also performed. RESULTS Parotid flow rates decreased by approximately 50% either with 20 Gy at 4 weeks, or 15 Gy at 16 weeks post-IR. In the 20 Gy group, salivary flow rates were reduced by approximately 80% at 16 weeks post-IR. A significant decrease in salivary calcium and amylase and an increase of salivary potassium levels were found in both IR groups. There were also transient alterations in serum chemistry and hematology parameters post-IR. Parotid gland weights were significantly decreased (-50%) in the 15 and 20 Gy groups at 4 and 16 weeks post-IR. Additionally, the acinar cell area in glands of both IR groups was significantly reduced from that in control glands at both the 4 and 16 weeks time points. CONCLUSION Structural changes in salivary gland parenchyma occurred relatively early after IR, whereas the alterations in salivary output were relatively delayed. Further, reductions in salivary flow were not proportional to acinar cell area loss. Together, these findings suggest that nonparenchymal IR damage likely contributes to IR-induced salivary hypofunction.
Collapse
Affiliation(s)
- Jun Li
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy, Faculty of Stomatology, Capital University of Medical Sciences, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
137
|
Chi KH, Liu SJ, Li CP, Kuo HP, Wang YS, Chao Y, Hsieh SL. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother 2005; 28:129-35. [PMID: 15725956 DOI: 10.1097/01.cji.0000154248.74383.5e] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A phase 1 study was conducted to assess the safety and immunologic response induced by direct injection of autologous immature dendritic cells (DCs) into tumor under radiotherapy in advanced hepatoma patients. Patients with advanced/metastatic stage hepatoma not suitable for surgery or transarterial embolization were enrolled. Groups of patients received two vaccinations. Each vaccination consisted of intratumoral injections of autologous immature DCs in four dose cohorts of 5 x 10(6), 1.5 x 10(7), 3 x 10(7), and 5 x 10(7) cells 2 days after a single fraction of conformal radiotherapy of 8 Gy. The second vaccination was performed 3 weeks later. Of the 14 patients entered, 12 completed two cycles of vaccination. The treatment was well tolerated at any of the dose levels. Six patients had mild transient fever (grade 1-2) with chill reactions, three patients developed grade 1 fatigue, and one patient developed mild myalgia and arthralgia after DC injections. There was no evidence of clinically manifested autoimmune disease. There were two partial responses and four minor responses. A decrease in the alpha-fetoprotein (AFP) level of more than 50% was found in three patients. Ten patients had completed immunologic response evaluation 2 weeks after the second cycle of vaccination. The AFP-specific immune response was evident in eight patients examined by cytokine release assay and in seven patients by ELISPOT assay. Six patients showed an increased NK cell cytotoxic activity after vaccination. These data suggest that the combination of intratumoral injection of DCs and conformal radiotherapy is safe and can induce tumor-specific and innate immunity.
Collapse
Affiliation(s)
- Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
138
|
Bourguignon MH, Gisone PA, Perez MR, Michelin S, Dubner D, Giorgio MD, Carosella ED. Genetic and epigenetic features in radiation sensitivity. Eur J Nucl Med Mol Imaging 2005; 32:229-46. [PMID: 15657757 DOI: 10.1007/s00259-004-1730-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent progress especially in the field of gene identification and expression has attracted greater attention to genetic and epigenetic susceptibility to cancer, possibly enhanced by ionising radiation. It has been proposed that the occurrence and severity of the adverse reactions to radiation therapy are also influenced by such genetic susceptibility. This issue is especially important for radiation therapists since hypersensitive patients may suffer from adverse effects in normal tissues following standard radiation therapy, while normally sensitive patients could receive higher doses of radiation offering a better likelihood of cure for malignant tumours. This paper, the first of two parts, reviews the main mechanisms involved in cell response to ionising radiation. DNA repair machinery and cell signalling pathways are considered and their role in radiosensitivity is analysed. The implication of non-targeted and delayed effects in radiosensitivity is also discussed.
Collapse
Affiliation(s)
- Michel H Bourguignon
- Direction Générale de la Sûreté Nucléaire et de la Radioprotection (DGSNR), 6 Place du Colonel Bourgoin, 75572, Paris Cedex 12, France.
| | | | | | | | | | | | | |
Collapse
|
139
|
Fan R, Tenner AJ. Differential regulation of Abeta42-induced neuronal C1q synthesis and microglial activation. J Neuroinflammation 2005; 2:1. [PMID: 15642121 PMCID: PMC545941 DOI: 10.1186/1742-2094-2-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 01/10/2005] [Indexed: 11/26/2022] Open
Abstract
Expression of C1q, an early component of the classical complement pathway, has been shown to be induced in neurons in hippocampal slices, following accumulation of exogenous Aβ42. Microglial activation was also detected by surface marker expression and cytokine production. To determine whether C1q induction was correlated with intraneuronal Aβ and/or microglial activation, D-(-)-2-amino-5-phosphonovaleric acid (APV, an NMDA receptor antagonist) and glycine-arginine-glycine-aspartic acid-serine-proline peptide (RGD, an integrin receptor antagonist), which blocks and enhances Aβ42 uptake, respectively, were assessed for their effect on neuronal C1q synthesis and microglial activation. APV inhibited, and RGD enhanced, microglial activation and neuronal C1q expression. However, addition of Aβ10–20 to slice cultures significantly reduced Aβ42 uptake and microglial activation, but did not alter the Aβ42-induced neuronal C1q expression. Furthermore, Aβ10–20 alone triggered C1q production in neurons, demonstrating that neither neuronal Aβ42 accumulation, nor microglial activation is required for neuronal C1q upregulation. These data are compatible with the hypothesis that multiple receptors are involved in Aβ injury and signaling in neurons. Some lead to neuronal C1q induction, whereas other(s) lead to intraneuronal accumulation of Aβ and/or stimulation of microglia.
Collapse
Affiliation(s)
- Rong Fan
- Department of Molecular Biology and Biochemistry, Institute of Brain Aging and Dementia, University of California, Irvine, Irvine, CA 92697 USA
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, Institute of Brain Aging and Dementia, University of California, Irvine, Irvine, CA 92697 USA
| |
Collapse
|
140
|
Oral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2004; 25:442-6. [PMID: 15499038 DOI: 10.1161/01.atv.0000148404.24271.fc] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Caffeic acid phenethyl ester (CAPE), a natural flavonoid, specifically blocks activation of nuclear factor-kappaB (NF-kappaB). We examined the effects of oral CAPE supplementation on atherogenesis in apolipoprotein E-deficient (apoE-/-) mice. METHODS AND RESULTS Ten-week-old male apoE-/- mice were supplemented orally with CAPE (30 mg/kg body weight) for 12 weeks. At the end of administration, atherosclerosis progression, NF-kappaB activity, gene expression profiling by microarray analysis, and oxidative stress were studied. Treatment of apoE-/- mice with CAPE significantly reduced aortic atherosclerosis, NF-kappaB activity, and expression of NF-kappaB-related genes in the aorta. Moreover, expression of other gene clusters such as basic transcription factors, growth factors, cytokines, cell adhesion proteins, and extracellular matrix were also significantly reduced by treatment with CAPE. Plasma isoprostane level in apoE-/- mice was also significantly reduced by CAPE. CONCLUSIONS In apoE-/- mice, oral CAPE supplementation attenuates the atherosclerotic process. This may be attributable to direct inhibition of NF-kappaB in the lesion and reduction of systemic oxidative stress. In apoE-/- mice, oral caffeic acid phenethyl ester (CAPE) supplementation attenuates the atherosclerotic process and reduces NF-kappaB activity and expression of NF-kappaB-related genes in the aorta. This may be attributable to direct inhibition of NF-kappaB in the lesion and reduction of systemic oxidative stress.
Collapse
|
141
|
Wehrhan F, Rödel F, Grabenbauer GG, Amann K, Brückl W, Schultze-Mosgau S. Transforming growth factor beta 1 dependent regulation of Tenascin-C in radiation impaired wound healing. Radiother Oncol 2004; 72:297-303. [PMID: 15450728 DOI: 10.1016/j.radonc.2004.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 06/26/2004] [Accepted: 06/28/2004] [Indexed: 01/22/2023]
Abstract
BACKGROUND Following preoperative radiotherapy prior to ablative surgery of squamous epithelial cell carcinomas of the head and neck region fibrocontractive wound healing disorders occur. Tenascin-C is significantly increased in fibrotic tissue conditions and can be stimulated by the transcription factor NF kappa B p65. Previous studies showed a reduction of irradiation induced fibrosis during the wound healing process by anti-TGF beta(1)-treatment. The aim of the study was to clarify the question whether Tenascin-C expression is elevated in radiation impaired wounds and whether anti-TGF beta(1)-treatment is capable to influence Tenascin-C and NF kappa B expression. MATERIAL AND METHODS Wistar rats (male, weight 300-500 g) underwent preoperative irradiation of the head and neck region with 40 Gy, fractionated four times 10 Gy (16 animals), whereas 8 non-irradated animals served as a control. Four weeks after irradiation a free myocutaneous gracilis flap taken from the groin was transplanted to the neck. Eight animals additionally received 5 microg anti-TGF beta(1) into the graft bed by intradermal injection prior to each fraction of irradiation and on days 1-7 post-operation. On day 14 and 28 following surgery immunohistochemistry (ABC-POX method) was performed assessing the cytoplasmic NF kappa B and Tenascin-C staining in the transition area between transplant and graft bed. For quantitative considerations the labeling index (ratio: positive cells/total cells) was determined. RESULTS A significantly altered expression of Tenascin-C in the preirradiated tissue was observed following anti-TGF beta(1)-treatment. NF kappa B protein was upregulated in irradiated animals and was significantly reduced in the anti-TGF beta(1) treated group on day 28 after transplantation. CONCLUSIONS Tenascin-C expression is prolonged in irradiated animals as compared to non-irradiated tissue. Tenascin-C seems to be regulated by TGF beta(1) as the application of TGF beta(1)-neutralizing antibodies reduces Tenascin-C expression. Tenascin-C is a potentially useful marker for tissue remodeling due to its restricted distribution in adult and healthy tissue and a hallmark for developing fibrosis.
Collapse
Affiliation(s)
- Falk Wehrhan
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | |
Collapse
|
142
|
Kundu JK, Surh YJ. [A rare cause of neonatal exudative enteropathy: congenital Langerhans cell histiocytosis (histiocytosis X)]. Mutat Res 1992; 591:123-46. [PMID: 16102784 DOI: 10.1016/j.mrfmmm.2005.04.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 01/09/2023]
Abstract
A case of Langerhans cell histiocytosis is reported in a neonate. Intestinal involvement was especially diffuse and severe, presenting as a protein-losing enteropathy secondary to massive mucosal infiltration by histiocytic cells. The infant died at the age of 3 1/2 months despite therapy with corticosteroids and vinblastine then etoposide and interferon. Such an outcome confirmed the severity of forms with neonatal onset and digestive involvement.
Collapse
Affiliation(s)
- Joydeb Kumar Kundu
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-gu, Seoul 151-742, South Korea
| | | |
Collapse
|