101
|
Renga G, Oikonomou V, Moretti S, Stincardini C, Bellet MM, Pariano M, Bartoli A, Brancorsini S, Mosci P, Finocchi A, Rossi P, Costantini C, Garaci E, Goldstein AL, Romani L. Thymosin β4 promotes autophagy and repair via HIF-1α stabilization in chronic granulomatous disease. Life Sci Alliance 2019; 2:2/6/e201900432. [PMID: 31719116 PMCID: PMC6851533 DOI: 10.26508/lsa.201900432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
This study demonstrates that thymosin β4 stabilizes HIF-1a to promote autophagy and up-regulate genes involved in tissue and mucosal barrier protection in chronic granulomatous disease. Chronic granulomatous disease (CGD) is a genetic disorder of the NADPH oxidase characterized by increased susceptibility to infections and hyperinflammation associated with defective autophagy and increased inflammasome activation. Herein, we demonstrate that thymosin β4 (Tβ4), a g-actin sequestering peptide with multiple and diverse intracellular and extracellular activities affecting inflammation, wound healing, fibrosis, and tissue regeneration, promoted in human and murine cells noncanonical autophagy, a form of autophagy associated with phagocytosis and limited inflammation via the death-associated protein kinase 1. We further show that the hypoxia inducible factor-1 (HIF-1)α was underexpressed in CGD but normalized by Tβ4 to promote autophagy and up-regulate genes involved in mucosal barrier protection. Accordingly, inflammation and granuloma formation were impaired and survival increased in CGD mice with colitis or aspergillosis upon Tβ4 treatment or HIF-1α stabilization. Thus, the promotion of endogenous pathways of inflammation resolution through HIF-1α stabilization is druggable in CGD by Tβ4.
Collapse
Affiliation(s)
- Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Silvia Moretti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Marina M Bellet
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Andrea Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Paolo Mosci
- Internal Medicine, Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Andrea Finocchi
- Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Paolo Rossi
- Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Enrico Garaci
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Rome, Italy
| | - Allan L Goldstein
- Department of Biochemistry and Molecular Medicine, the George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
102
|
Kumar V. Sepsis roadmap: What we know, what we learned, and where we are going. Clin Immunol 2019; 210:108264. [PMID: 31655168 DOI: 10.1016/j.clim.2019.108264] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/02/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Sepsis is a life-threatening condition originating as a result of systemic blood infection causing, one or more organ damage due to the dysregulation of the immune response. In 2017, the world health organization (WHO) declared sepsis as a disease of global health priority, needing special attention due to its high prevalence and mortality around the world. Most of the therapeutics targeting sepsis have failed in the clinics. The present review highlights the history of the sepsis, its immunopathogenesis, and lessons learned after the failure of previously used immune-based therapies. The subsequent section, where to go describes in details the importance of the complement system (CS), autophagy, inflammasomes, and microbiota along with their targeting to manage sepsis. These systems are interconnected to each other, thus targeting one may affect the other. We are in an urgent need for a multi-targeting therapeutic approach for sepsis.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
103
|
Group A Streptococcus Induces LAPosomes via SLO/β1 Integrin/NOX2/ROS Pathway in Endothelial Cells That Are Ineffective in Bacterial Killing and Suppress Xenophagy. mBio 2019; 10:mBio.02148-19. [PMID: 31575768 PMCID: PMC6775456 DOI: 10.1128/mbio.02148-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our previous reports showed that the LC3-associated GAS-containing single membrane vacuoles are inefficient for bacterial clearance in endothelial cells, which may result in bacteremia. However, the characteristics and the induction mechanisms of these LC3-positive vacuoles are still largely unknown. Here we provide the first evidence that these LC3-positive GAS-containing single membrane compartments appear to be LAPosomes, which are induced by NOX2 and ROS. Through NOX2- and ROS-mediated signaling, GAS preferentially induces LAP and inhibits bacteriostatic xenophagy in endothelial cells. We also provide the first demonstration that β1 integrin acts as the receptor for LAP induction through GAS-produced SLO stimulation in endothelial cells. Our findings reveal the underlying mechanisms of LAP induction and autophagy evasion for GAS multiplication in endothelial cells. Group A streptococcus (GAS) is an important human pathogen which can cause fatal diseases after invasion into the bloodstream. Although antibiotics and immune surveillance are the main defenses against GAS infection, GAS utilizes internalization into cells as a major immune evasion strategy. Our previous findings revealed that light chain 3 (LC3)-associated single membrane GAS-containing vacuoles in endothelial cells are compromised for bacterial clearance due to insufficient acidification after fusion with lysosomes. However, the characteristics and the activation mechanisms of these LC3-positive compartments are still largely unknown. In the present study, we demonstrated that the LC3-positive GAS is surrounded by single membrane and colocalizes with NADPH oxidase 2 (NOX2) complex but without ULK1, which are characteristics of LC3-associated phagocytosis (LAP). Inhibition of NOX2 or reactive oxygen species (ROS) significantly reduces GAS multiplication and enhances autolysosome acidification in endothelial cells through converting LAP to conventional xenophagy, which is revealed by enhancement of ULK1 recruitment, attenuation of p70s6k phosphorylation, and formation of the isolation membrane. We also clarify that the inactivation of mTORC1, which is the initiation signal of autophagy, is inhibited by NOX2- and ROS-activated phosphatidylinositol 3-kinase (PI3K)/AKT and MEK/extracellular signal-regulated kinase (ERK) pathways. In addition, streptolysin O (SLO) of GAS is identified as a crucial inducer of ROS for β1 integrin-mediated LAP induction. After downregulation of β1 integrin, GAS multiplication is reduced, accompanied with LAP inhibition and xenophagy induction. These results demonstrate that GAS infection preferentially induces ineffective LAP to evade xenophagic killing in endothelial cells through the SLO/β1 integrin/NOX2/ROS pathway.
Collapse
|
104
|
Galais M, Pradel B, Vergne I, Robert-Hebmann V, Espert L, Biard-Piechaczyk M. [LAP (LC3-associated phagocytosis): phagocytosis or autophagy?]. Med Sci (Paris) 2019; 35:635-642. [PMID: 31532375 DOI: 10.1051/medsci/2019129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phagocytosis and macroautophagy, named here autophagy, are two essential mechanisms of lysosomal degradation of diverse cargos into membrane structures. Both mechanisms are involved in immune regulation and cell survival. However, phagocytosis triggers degradation of extracellular material whereas autophagy engulfs only cytoplasmic elements. Furthermore, activation and maturation of these two processes are different. LAP (LC3-associated phagocytosis) is a form of phagocytosis that uses components of the autophagy pathway. It can eliminate (i) pathogens, (ii) immune complexes, (iii) threatening neighbouring cells, dead or alive, and (iv) cell debris, such as POS (photoreceptor outer segment) and the midbody released at the end of mitosis. Cells have thus optimized their means of elimination of dangerous components by sharing some fundamental elements coming from the two main lysosomal degradation pathways.
Collapse
Affiliation(s)
- Mathilde Galais
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| | - Baptiste Pradel
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| | - Isabelle Vergne
- Institut de pharmacologie et de biologie structurale (IPBS), Université de Toulouse, CNRS, UPS, 205, route de Narbonne, 31400 Toulouse, France
| | - Véronique Robert-Hebmann
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| | - Lucile Espert
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| | - Martine Biard-Piechaczyk
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| |
Collapse
|
105
|
Wang X, Xia Y. Anti-double Stranded DNA Antibodies: Origin, Pathogenicity, and Targeted Therapies. Front Immunol 2019; 10:1667. [PMID: 31379858 PMCID: PMC6650533 DOI: 10.3389/fimmu.2019.01667] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/03/2019] [Indexed: 01/02/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by high-titer serological autoantibodies, including antibodies that bind to double-stranded DNA (dsDNA). The origin, specificity, and pathogenicity of anti-dsDNA antibodies have been studied from a wider perspective. These autoantibodies have been suggested to contribute to multiple end-organ injuries, especially to lupus nephritis, in patients with SLE. Moreover, serum levels of anti-DNA antibodies fluctuate with disease activity in patients with SLE. By directly binding to self-antigens or indirectly forming immune complexes, anti-dsDNA antibodies can accumulate in the glomerular and tubular basement membrane. These autoantibodies can also trigger the complement cascade, penetrate into living cells, modulate gene expression, and even induce profibrotic phenotypes of renal cells. In addition, the expression of suppressor of cytokine signaling 1 is reduced by anti-DNA antibodies simultaneously with upregulation of profibrotic genes. Anti-dsDNA antibodies may even participate in the pathogenesis of SLE by catalyzing hydrolysis of certain DNA molecules or peptides in cells. Recently, anti-dsDNA antibodies have been explored in greater depth as a therapeutic target in the management of SLE. A substantial amount of data indicates that blockade of pathogenic anti-dsDNA antibodies can prevent or even reverse organ damage in murine models of SLE. This review focuses on the recent research advances regarding the origin, specificity, classification, and pathogenicity of anti-dsDNA antibodies and highlights the emerging therapies associated with them.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
106
|
LC3-associated phagocytosis: host defense and microbial response. Curr Opin Immunol 2019; 60:81-90. [PMID: 31247378 DOI: 10.1016/j.coi.2019.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022]
Abstract
The innate immune system has evolved to recognize diverse microbes and destroy them. At the same time, microbial pathogens undermine immunity to cause disease. Here, we highlight recent advances in understanding an antimicrobial pathway called LC3-associated phagocytosis (LAP), which combines features of autophagy with phagocytosis. Upon phagocytosis, many microbes, including bacteria, fungi, and parasites, are sequestered in an LC3-positive, single-membrane bound compartment, a hallmark of LAP. LAP depends upon NADPH oxidase activity at the incipient phagosome and culminates in lysosomal trafficking and microbial degradation. Most often LAP is an effective host defense, but some pathogens evade LAP or replicate successfully in this microenvironment. Here, we review how LAP targets microbial pathogens and strategies pathogens employ to circumvent LAP.
Collapse
|
107
|
Lysosome motility and distribution: Relevance in health and disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1076-1087. [DOI: 10.1016/j.bbadis.2019.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
|
108
|
Kumar V. The complement system, toll-like receptors and inflammasomes in host defense: three musketeers’ one target. Int Rev Immunol 2019; 38:131-156. [PMID: 31066339 DOI: 10.1080/08830185.2019.1609962] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vijay Kumar
- Children’s Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, Australia
| |
Collapse
|
109
|
Onali S, Favale A, Fantini MC. The Resolution of Intestinal Inflammation: The Peace-Keeper's Perspective. Cells 2019; 8:cells8040344. [PMID: 30979024 PMCID: PMC6523641 DOI: 10.3390/cells8040344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
The uncontrolled activation of the immune system toward antigens contained in the gut lumen in genetically predisposed subjects is believed to be the leading cause of inflammatory bowel disease (IBD). Two not mutually exclusive hypotheses can explain the pathogenic process leading to IBD. The first and mostly explored hypothesis states that the loss of tolerance toward gut microbiota antigens generates an aberrant inflammatory response that is perpetuated by continuous and unavoidable exposure to the triggering antigens. However, the discovery that the resolution of inflammation is not the mere consequence of clearing inflammatory triggers and diluting pro-inflammatory factors, but rather an active process in which molecular and cellular elements are involved, implies that a defect in the pro-resolving mechanisms might cause chronic inflammation in different immune-mediated diseases, including IBD. Here we review data on pro-resolving and counter-regulatory mechanisms involved in the resolution of inflammation, aiming to identify their possible involvement in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Sara Onali
- Dep. of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Agnese Favale
- Dep. of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Massimo C Fantini
- Dep. of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
110
|
Münz C. Autophagy proteins influence endocytosis for MHC restricted antigen presentation. Semin Cancer Biol 2019; 66:110-115. [PMID: 30928540 DOI: 10.1016/j.semcancer.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
T cells of the adaptive immune system monitor protein degradation products via their presentation on major histocompatibility complex (MHC) molecules to recognize infected cells. Both macroautophagy and endocytosis target intra- and extracellular constituents, respectively, for lysosomal degradation. This results in antigen processing for MHC presentation and influences the trafficking of MHC molecules. This review will discuss recent evidence that the molecular machinery of macroautophagy regulates also endocytosis at the level of phagosome maturation and cell membrane internalization. These non-canonical functions of this machinery affect both MHC class I and II restricted antigen presentation to CD8+ and CD4+ T cells, respectively, and should be harnessed to improve immune responses against infectious diseases and cancer.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
111
|
Li C, Liu J, Zhang X, Wei S, Huang X, Huang Y, Wei J, Qin Q. Fish Autophagy Protein 5 Exerts Negative Regulation on Antiviral Immune Response Against Iridovirus and Nodavirus. Front Immunol 2019; 10:517. [PMID: 30941145 PMCID: PMC6433989 DOI: 10.3389/fimmu.2019.00517] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is an important biological activity that maintains homeostasis in eukaryotic cells. However, little is known about the functions of fish autophagy-related genes (Atgs). In this study, we cloned and characterized Atg5, a key gene in the autophagy gene superfamily, from orange-spotted grouper (Epinephelus coioides) (EcAtg5). EcAtg5 encoded a 275-amino acid protein that shared 94 and 81% identity to seabass (Lates calcarifer) and humans (Homo sapiens), respectively. The transcription level of EcAtg5 was significantly increased in cells infected with red-spotted grouper nervous necrosis virus (RGNNV). In cells infected with Singapore grouper iridovirus (SGIV), EcAtg5 expression declined during the early stage of infection and increased in the late stage. Fluorescence microscopy revealed that EcAtg5 mainly localized with a dot-like pattern in the cytoplasm of grouper cells. Overexpression of EcAtg5 significantly increased the replication of RGNNV and SGIV at different levels of detection, as indicated by increased severity of the cytopathic effect, transcription levels of viral genes, and levels of viral proteins. Knockdown of EcAtg5 decreased the replication of RGNNV and SGIV. Further studies showed that overexpression EcAtg5 activated autophagy, decreased expression levels of interferon related cytokines or effectors and pro-inflammatory factors, and inhibited the activation of nuclear factor κB, IFN-sensitive response element, and IFNs. In addition, ectopic expression of EcAtg5 affected cell cycle progression by hindering the G1/S transition. Taken together, our results demonstrated that fish Atg5 exerted a crucial role in virus replication by promoting autophagy, down-regulating antiviral IFN responses, and affecting the cell cycle.
Collapse
Affiliation(s)
- Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jiaxin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
112
|
Qi S, Qian J, Chen F, Zhou P, Yue J, Tang F, Zhang Y, Gong S, Shang G, Cui C, Xu Y. Expression of autophagy‑associated proteins in rat dental irreversible pulpitis. Mol Med Rep 2019; 19:2749-2757. [PMID: 30816453 PMCID: PMC6423575 DOI: 10.3892/mmr.2019.9944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 01/25/2019] [Indexed: 11/23/2022] Open
Abstract
Autophagy serves an important role in numerous diseases, as well as in infection and inflammation. Irreversible pulpitis (IP) is one of the most common inflammatory endodontic diseases, and autophagy has been reported to regulate IP in vitro. However, the level of autophagy in the IP pathogenic process in vivo remains unknown. The aim of the current study was, thus, to investigate the levels of autophagy-associated proteins in rats with IP in vivo. A rat dental IP model was successfully constructed, and five different time points (0, 1, 3, 5 and 7 days) were investigated. The levels of the autophagy-related 5 (ATG5), ATG7, light chain 3 (LC3) and Beclin-1 proteins exhibited a time-dependent increase in rats with IP, whereas the levels of mammalian target of rapamycin and p62/sequestosome 1 were decreased. In addition, the levels of ATG proteins were specifically increased in odontoblasts and microvascular endothelial cells in pulpitis tissue. Based on these findings, autophagy may serve an important role in IP, and the present study data provide a new insight into the IP pathogenesis and treatment.
Collapse
Affiliation(s)
- Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jun Qian
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fubo Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Peng Zhou
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Yue
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fengqin Tang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yiming Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shiqiang Gong
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Guangwei Shang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Chun Cui
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
113
|
Tay MZ, Wiehe K, Pollara J. Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses. Front Immunol 2019; 10:332. [PMID: 30873178 PMCID: PMC6404786 DOI: 10.3389/fimmu.2019.00332] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Antiviral activities of antibodies may either be dependent only on interactions between the antibody and cognate antigen, as in binding and neutralization of an infectious virion, or instead may require interactions between antibody-antigen immune complexes and immunoproteins or Fc receptor expressing immune effector cells. These Fc receptor-dependent antibody functions provide a direct link between the innate and adaptive immune systems by combining the potent antiviral activity of innate effector cells with the diversity and specificity of the adaptive humoral response. The Fc receptor-dependent function of antibody-dependent cellular phagocytosis (ADCP) provides mechanisms for clearance of virus and virus-infected cells, as well as for stimulation of downstream adaptive immune responses by facilitating antigen presentation, or by stimulating the secretion of inflammatory mediators. In this review, we discuss the properties of Fc receptors, antibodies, and effector cells that influence ADCP. We also provide and interpret evidence from studies that support a potential role for ADCP in either inhibiting or enhancing viral infection. Finally, we describe current approaches used to measure antiviral ADCP and discuss considerations for the translation of studies performed in animal models. We propose that additional investigation into the role of ADCP in protective viral responses, the specific virus epitopes targeted by ADCP antibodies, and the types of phagocytes and Fc receptors involved in ADCP at sites of virus infection will provide insight into strategies to successfully leverage this important immune response for improved antiviral immunity through rational vaccine design.
Collapse
Affiliation(s)
- Matthew Zirui Tay
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Justin Pollara
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
114
|
Qi YY, Zhou XJ, Zhang H. Autophagy and immunological aberrations in systemic lupus erythematosus. Eur J Immunol 2019; 49:523-533. [PMID: 30776086 DOI: 10.1002/eji.201847679] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/22/2018] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, in which immune defects can occur at multiple points of the cascading auto-aggressive immune reactions, resulting in a striking heterogeneity of clinical presentations. The clinical manifestations of such autoimmune response can be severe: common manifestations symptoms include rash and renal inflammation progressing to kidney failure. Autophagy, the cellular "self-digestion" process, is a key factor in the interplay between innate and adaptive immunity. Dysregulation of autophagy has been implicated in numerous autoimmune diseases. Several lines of evidence from genomic studies, cell culture systems, animal models, and human patients are emerging to support the role of autophagy in progression and pathogenesis of SLE. In this review, we summarize recent key findings on the aberrations of autophagy in SLE, with a special focus on how deregulated autophagy promotes autoimmunity and renal damage. We will also discuss how the observed findings may be translated into therapeutic settings.
Collapse
Affiliation(s)
- Yuan-Yuan Qi
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
| |
Collapse
|
115
|
Abstract
Classically, canonical autophagy has been considered a survival mechanism initiated in response to nutrient insufficiency. We now understand that autophagy functions in multiple scenarios where it is necessary to maintain homeostasis. Recent evidence has established that a variety of non-canonical functions for autophagy proteins are mechanistically and functionally distinct from autophagy. LC3-associated phagocytosis (LAP) is one such novel function for autophagy proteins and is a contributor to immune regulation and inflammatory responses across various cell and tissue types. Characterized by the conjugation of LC3 family proteins to phagosome membranes, LAP uses a portion of the canonical autophagy machinery, following ligation of surface receptors that recognize a variety of cargos including pathogens, dying cells, soluble ligands and protein aggregates. However, instead of affecting canonical autophagy, manipulation of the LAP pathway in vivo alters immune activation and inflammatory responses. In this Cell Science at a Glance article and the accompanying poster, we detail the divergence of this distinctive mechanism from that of canonical autophagy by comparing and contrasting shared and unique components of each pathway.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Cancer Biology Program, St. Jude Pediatric Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Cancer Biology Program, St. Jude Pediatric Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
116
|
Germic N, Frangez Z, Yousefi S, Simon HU. Regulation of the innate immune system by autophagy: monocytes, macrophages, dendritic cells and antigen presentation. Cell Death Differ 2019; 26:715-727. [PMID: 30737475 DOI: 10.1038/s41418-019-0297-6] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 12/27/2022] Open
Abstract
Autophagy is well equipped functionally to isolate microbial pathogens in autophagosomes and to carry out their clearance by dismemberment in the course of catabolic processes in the lysosome. Clearly, this is a non-metabolic function of autophagy that impacts strongly on the immune system. While in a preceding article on neutrophils, eosinophils, mast cells, and natural killer cells our focus was on the role of autophagy in regulating innate immune cell differentiation, degranulation, phagocytosis and extracellular trap formation, here we discuss monocytes/macrophages and dendritic cells, specifically, the influence of autophagy on functional cellular responses, such as phagocytosis, antigen presentation, cytokine production, control of inflammasome activation, tolerance and the consequences for overall host defense.
Collapse
Affiliation(s)
- Nina Germic
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Ziva Frangez
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland. .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.
| |
Collapse
|
117
|
Florey O, Overholtzer M. Macropinocytosis and autophagy crosstalk in nutrient scavenging. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180154. [PMID: 30967004 PMCID: PMC6304738 DOI: 10.1098/rstb.2018.0154] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Adaptive strategies used by cells to scavenge and recycle essential nutrients are important for survival in nutrient-depleted environments such as cancer tissues. Autophagy and macropinocytosis are two major mechanisms that promote nutrient recycling and scavenging, which share considerable, yet poorly understood, cross-regulation. Here we review recent findings that connect these starvation response mechanisms and discuss the implications of their crosstalk. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
118
|
Tian Y, Wang ML, Zhao J. Crosstalk between Autophagy and Type I Interferon Responses in Innate Antiviral Immunity. Viruses 2019; 11:v11020132. [PMID: 30717138 PMCID: PMC6409909 DOI: 10.3390/v11020132] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/25/2022] Open
Abstract
Autophagy exhibits dual effects during viral infections, promoting the clearance of viral components and activating the immune system to produce antiviral cytokines. However, some viruses impair immune defenses by collaborating with autophagy. Mounting evidence suggests that the interaction between autophagy and innate immunity is critical to understanding the contradictory roles of autophagy. Type I interferon (IFN-I) is a crucial antiviral factor, and studies have indicated that autophagy affects IFN-I responses by regulating IFN-I and its receptors expression. Similarly, IFN-I and interferon-stimulated gene (ISG) products can harness autophagy to regulate antiviral immunity. Crosstalk between autophagy and IFN-I responses could be a vital aspect of the molecular mechanisms involving autophagy in innate antiviral immunity. This review briefly summarizes the approaches by which autophagy regulates antiviral IFN-I responses and highlights the recent advances on the mechanisms by which IFN-I and ISG products employ autophagy against viruses.
Collapse
Affiliation(s)
- Yu Tian
- Department of Microbiology, Anhui Medical University, Hefei 230032, China.
| | - Ming-Li Wang
- Department of Microbiology, Anhui Medical University, Hefei 230032, China.
- Wuhu Interferon Bio-Products Industry Research Institute Co., Ltd., Wuhu 241000, China.
| | - Jun Zhao
- Department of Microbiology, Anhui Medical University, Hefei 230032, China.
- Wuhu Interferon Bio-Products Industry Research Institute Co., Ltd., Wuhu 241000, China.
| |
Collapse
|
119
|
Alculumbre S, Raieli S, Hoffmann C, Chelbi R, Danlos FX, Soumelis V. Plasmacytoid pre-dendritic cells (pDC): from molecular pathways to function and disease association. Semin Cell Dev Biol 2019; 86:24-35. [DOI: 10.1016/j.semcdb.2018.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/28/2017] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
|
120
|
Zhu Y, Deng J, Nan ML, Zhang J, Okekunle A, Li JY, Yu XQ, Wang PH. The Interplay Between Pattern Recognition Receptors and Autophagy in Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1209:79-108. [PMID: 31728866 DOI: 10.1007/978-981-15-0606-2_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pattern recognition receptors (PRRs) are sensors of exogenous and endogenous "danger" signals from pathogen-associated molecular patterns (PAMPs), and damage associated molecular patterns (DAMPs), while autophagy can respond to these signals to control homeostasis. Almost all PRRs can induce autophagy directly or indirectly. Toll-like receptors (TLRs), Nod-like receptors (NLRs), retinoic acid-inducible gene-I-like receptors (RLRs), and cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway can induce autophagy directly through Beclin-1 or LC3-dependent pathway, while the interactions with the receptor for advanced glycation end products (RAGE)/high mobility group box 1 (HMGB1), CD91/Calreticulin, and TLRs/HSPs are achieved by protein, Ca2+, and mitochondrial homeostasis. Autophagy presents antigens to PRRs and helps to clean the pathogens. In addition, the induced autophagy can form a negative feedback regulation of PRRs-mediated inflammation in cell/disease-specific manner to maintain homeostasis and prevent excessive inflammation. Understanding the interaction between PRRs and autophagy in a specific disease will promote drug development for immunotherapy. Here, we focus on the interactions between PRRs and autophagy and how they affect the inflammatory response.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mei-Ling Nan
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, Shandong, China
| | - Akinkunmi Okekunle
- The Postgraduate College, University of Ibadan, Ibadan, 200284, Nigeria.,Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, 200284, Nigeria
| | - Jiang-Yuan Li
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiao-Qiang Yu
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110-2499, USA
| | - Pei-Hui Wang
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, Shandong, China. .,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
121
|
Jacquin E, Fletcher K, Florey O. Imaging Noncanonical Autophagy and LC3-Associated Phagocytosis in Cultured Cells. Methods Mol Biol 2019; 1880:295-303. [PMID: 30610705 DOI: 10.1007/978-1-4939-8873-0_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Monitoring of ATG8 proteins by western blotting and immunofluorescence microscopy are the most common methods to monitor the autophagy pathway. However, it has recently been shown that ATG8 proteins can be lipidated to non-autophagosome, single-membrane compartments through a noncanonical autophagy pathway. This is commonly found to occur during macro-endocytic processes such as phagocytosis, where it has been termed LC3-associated phagocytosis, and upon lysosomotropic drug treatment. Therefore, care is required when interpreting data based on ATG8 in order to conclude whether a signal relates to the canonical or noncanonical pathway. Here we provide methods to monitor noncanonical autophagy through fluorescence microscopy.
Collapse
Affiliation(s)
- Elise Jacquin
- Signalling Programme, Babraham Institute, Cambridge, UK
- INSERM, U1231, Université de Bourgogne Franche Comté, Dijon, France
| | | | - Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge, UK.
| |
Collapse
|
122
|
Largeau C, Legouis R. Correlative Light and Electron Microscopy to Analyze LC3 Proteins in Caenorhabditis elegans Embryo. Methods Mol Biol 2019; 1880:281-293. [PMID: 30610704 DOI: 10.1007/978-1-4939-8873-0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this chapter, we present a protocol to perform correlative light and electron microscopy (CLEM) on Caenorhabditis elegans embryos. We use a specific fixation method which preserves both the GFP fluorescence and the structural integrity of the samples. Thin sections are first analyzed by light microscopy to detect GFP-tagged proteins, then by transmission electron microscopy (TEM) to characterize the ultrastructural anatomy of cells. The superimposition of light and electron images allows to determine the subcellular localization of the fluorescent protein. We have used this method to characterize the roles of autophagy in the phagocytosis of apoptotic cells in C. elegans embryos. We analyzed in apoptotic cell and phagocytic cell the localization of the two homologs of LC3/GABARAP proteins, namely, LGG-1 and LGG-2.
Collapse
Affiliation(s)
- Céline Largeau
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Renaud Legouis
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France.
| |
Collapse
|
123
|
Kwon SH, Lim CJ, Jung J, Kim HJ, Park K, Shin JW, Huh CH, Park KC, Na JI. The effect of autophagy-enhancing peptide in moisturizer on atopic dermatitis: a randomized controlled trial. J DERMATOL TREAT 2018; 30:558-564. [PMID: 30427231 DOI: 10.1080/09546634.2018.1544407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Pentasodium tetracarboxymethyl palmitoyl dipeptide-12 (PTPD-12), a newly-synthesized peptide, enhances the autophagy activity, ultimately managing inflammation. Objective: To determine the effect of a new moisturizer containing PTPD-12 as the treatment of mild-to-moderate atopic dermatitis (AD). Methods: In this double-blind, randomized, placebo-controlled trial, 43 patients with mild-to-moderate AD were randomly assigned to either the PTPD-12 or control groups. Evaluations were performed at baseline, week 2, and week 4, including SCORing Atopic Dermatitis (SCORAD) index score, corneometry, trans-epidermal water loss (TEWL), visual analog scale (VAS) for pruritus, 7-point investigator's global assessment (IGA), and collection of adverse events. Results: The PTPD-12 group showed significant improvement with respect to SCORAD score, skin hydration, TEWL, and pruritus at weeks 2 and 4 when compared with baseline. Although the control group showed significant improvement regarding the SCORAD score and skin hydration, no significant change in TEWL or pruritus was demonstrated throughout the study. The mean changes in the SCORAD index score, skin hydration, TEWL, pruritus, and number of patients with improvement in IGA were not statistically different between the two groups. Conclusion: The moisturizer with autophagy-stimulating property provides a good therapeutic option to mild-to-moderate atopic dermatitis by contributing to skin barrier restoration and control of inflammation.
Collapse
Affiliation(s)
- Soon Hyo Kwon
- a Department of Dermatology, Seoul National University College of Medicine, Seoul National University Bundang Hospital , Gyeonggi , Korea
| | | | | | | | | | - Jung Won Shin
- a Department of Dermatology, Seoul National University College of Medicine, Seoul National University Bundang Hospital , Gyeonggi , Korea
| | - Chang Hun Huh
- a Department of Dermatology, Seoul National University College of Medicine, Seoul National University Bundang Hospital , Gyeonggi , Korea
| | - Kyoung Chan Park
- a Department of Dermatology, Seoul National University College of Medicine, Seoul National University Bundang Hospital , Gyeonggi , Korea
| | - Jung Im Na
- a Department of Dermatology, Seoul National University College of Medicine, Seoul National University Bundang Hospital , Gyeonggi , Korea
| |
Collapse
|
124
|
Münz C. Non-canonical Functions of Macroautophagy Proteins During Endocytosis by Myeloid Antigen Presenting Cells. Front Immunol 2018; 9:2765. [PMID: 30542350 PMCID: PMC6277852 DOI: 10.3389/fimmu.2018.02765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/12/2018] [Indexed: 01/13/2023] Open
Abstract
Endocytosis by myeloid antigen presenting cells such as dendritic cells and macrophages regulates both antigen processing and major histocompatibility complex (MHC) molecule trafficking during antigen presentation. The molecular machinery of macroautophagy, a catabolic pathway that delivers cytoplasmic constituents to lysosomal degradation, has recently been found to modulate both MHC class I internalization and phagocytosis of antigens for efficient MHC class II presentation. In this review, I will discuss the respective studies and how these alternative pathways of macroautophagy protein usage differ from their canonical functions. A better understanding of these additional functions of the macroautophagy machinery should allow us to interpret biological effects of macroautophagy protein deficiencies more comprehensively and to therapeutically target the different pathways which utilize the molecular machinery of macroautophagy.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
125
|
Abstract
Tuberculosis (TB), which is primarily caused by the major etiologic agent Mycobacterium tuberculosis (Mtb), remains a serious infectious disease worldwide. Recently, much effort has been made to develop novel/improved therapies by modulating host responses to TB (i.e., host-directed therapy). Autophagy is an intracellular catabolic process that helps maintain homeostasis or the removal of invading pathogens via a lysosomal degradation process. The activation of autophagy by diverse drugs or agents may represent a promising treatment strategy against Mtb infection, even to drug-resistant strains. Important mediators of autophagy activation include vitamin D receptor signaling, the AMP-activated protein kinase pathway, sirtuin 1 activation, and nuclear receptors. High-throughput approaches have identified numerous natural and synthetic compounds that enhance antimicrobial defense against Mtb infection through autophagy. In this review, we discuss the current knowledge of, advancements in, and perspectives on new therapeutic strategies targeting autophagy against TB. Understanding the mechanisms and key players involved in modulating antibacterial autophagy will provide innovative improvements in anti-TB therapy via an autophagy-targeting approach. Abbreviations: TB: Tuberculosis; Mtb: Mycobacterium tuberculosis; HDT: host-directed therapy; MDR: multidrug resistant; XDR: extensively drug resistant; LAP: LC3-associated phagocytosis; ROS: reactive oxygen species; VDR: vitamin D receptor; TFEB: transcription factor EB; ERRα: estrogen-related receptor α; PGC1α: PPARγ coactivator-1 α
Collapse
Affiliation(s)
- Seungwha Paik
- a Department of Microbiology and Infection Control Convergence Research Center , Chungnam National University School of Medicine , Daejeon , Korea.,b Department of Medical Science , Chungnam National University School of Medicine , Daejeon , Korea
| | - Jin Kyung Kim
- a Department of Microbiology and Infection Control Convergence Research Center , Chungnam National University School of Medicine , Daejeon , Korea.,b Department of Medical Science , Chungnam National University School of Medicine , Daejeon , Korea
| | - Chaeuk Chung
- c Division of Pulmonary and Critical Care, Department of Internal Medicine , Chungnam National University School of Medicine , Daejeon , Korea
| | - Eun-Kyeong Jo
- a Department of Microbiology and Infection Control Convergence Research Center , Chungnam National University School of Medicine , Daejeon , Korea.,b Department of Medical Science , Chungnam National University School of Medicine , Daejeon , Korea
| |
Collapse
|
126
|
Kim EH, Wong SW, Martinez J. Programmed Necrosis and Disease:We interrupt your regular programming to bring you necroinflammation. Cell Death Differ 2018; 26:25-40. [PMID: 30349078 DOI: 10.1038/s41418-018-0179-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Compared to the tidy and immunologically silent death during apoptosis, necrosis seems like a chaotic and unorganized demise. However, we now recognize that there is a method to its madness, as many forms of necrotic cell death are indeed programmed and function beyond lytic cell death to support homeostasis and immunity. Inherently more immunogenic than their apoptotic counterpart, programmed necrosis, such as necroptosis, pyroptosis, ferroptosis, and NETosis, releases inflammatory cytokines and danger-associated molecular patterns (DAMPs), skewing the milieu to a pro-inflammatory state. Moreover, impaired clearance of dead cells often leads to inflammation. Importantly, these pathways have all been implicated in inflammatory and autoimmune diseases, therefore careful understanding of their molecular mechanisms can have long lasting effects on how we interpret their role in disease and how we translate these mechanisms into therapy.
Collapse
Affiliation(s)
- Eui Ho Kim
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Sing-Wai Wong
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.,Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
127
|
Cunha LD, Yang M, Carter R, Guy C, Harris L, Crawford JC, Quarato G, Boada-Romero E, Kalkavan H, Johnson MDL, Natarajan S, Turnis ME, Finkelstein D, Opferman JT, Gawad C, Green DR. LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor Immune Tolerance. Cell 2018; 175:429-441.e16. [PMID: 30245008 PMCID: PMC6201245 DOI: 10.1016/j.cell.2018.08.061] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/13/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
Abstract
Targeting autophagy in cancer cells and in the tumor microenvironment are current goals of cancer therapy. However, components of canonical autophagy play roles in other biological processes, adding complexity to this goal. One such alternative function of autophagy proteins is LC3-associated phagocytosis (LAP), which functions in phagosome maturation and subsequent signaling events. Here, we show that impairment of LAP in the myeloid compartment, rather than canonical autophagy, induces control of tumor growth by tumor-associated macrophages (TAM) upon phagocytosis of dying tumor cells. Single-cell RNA sequencing (RNA-seq) analysis revealed that defects in LAP induce pro-inflammatory gene expression and trigger STING-mediated type I interferon responses in TAM. We found that the anti-tumor effects of LAP impairment require tumor-infiltrating T cells, dependent upon STING and the type I interferon response. Therefore, autophagy proteins in the myeloid cells of the tumor microenvironment contribute to immune suppression of T lymphocytes by effecting LAP.
Collapse
Affiliation(s)
- Larissa D Cunha
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mao Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert Carter
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Clifford Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lacie Harris
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy C Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Halime Kalkavan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael D L Johnson
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA; BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA; Valley Fever Center for Excellence, University of Arizona, Tucson, AZ 85724, USA
| | - Sivaraman Natarajan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meghan E Turnis
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles Gawad
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
128
|
Martinez J. LAP it up, fuzz ball: a short history of LC3-associated phagocytosis. Curr Opin Immunol 2018; 55:54-61. [PMID: 30286399 DOI: 10.1016/j.coi.2018.09.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/12/2018] [Indexed: 12/23/2022]
Abstract
LC3-associated phagocytosis (LAP) exists at the crossroads of the two evolutionary pathways of phagocytosis and autophagy. When a phagocyte engulfs an extracellular particle that engages receptor signaling, components of the autophagy machinery and Rubicon are recruited to the cargo-containing phagosome or LAPosome. Formation of the LAPosome is critical for both cargo clearance as well as mediating the proper signaling cascade. Globally, LAP functions as an immunosuppressive mechanism, as LAP deficiency often results in hyperinflammation. As defects in the autophagy machinery have been long associated with aberrant immune responses and autoimmune disorders, it is vital that we now revisit these associations with forms of non-canonical autophagy, like LAP, in mind.
Collapse
Affiliation(s)
- Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC, USA.
| |
Collapse
|
129
|
Ligeon LA, Loi M, Münz C. LC3-Associated Phagocytosis and Antigen Presentation. ACTA ACUST UNITED AC 2018; 123:e60. [DOI: 10.1002/cpim.60] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laure-Anne Ligeon
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zurich; Zurich Switzerland
| | - Monica Loi
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zurich; Zurich Switzerland
| | - Christian Münz
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zurich; Zurich Switzerland
| |
Collapse
|
130
|
Jenzer C, Simionato E, Largeau C, Scarcelli V, Lefebvre C, Legouis R. Autophagy mediates phosphatidylserine exposure and phagosome degradation during apoptosis through specific functions of GABARAP/LGG-1 and LC3/LGG-2. Autophagy 2018; 15:228-241. [PMID: 30160610 DOI: 10.1080/15548627.2018.1512452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phagocytosis and macroautophagy/autophagy are 2 processes involved in lysosome-mediated clearance of extracellular and intracellular components, respectively. Recent studies have identified the recruitment of the autophagic protein LC3 during phagocytosis of apoptotic corpses in what is now called LC3-associated phagocytosis (LAP). LAP is a distinct process from autophagy but it relies on some members of the autophagy pathway to allow efficient degradation of the phagocytosed cargo. We investigated whether both LC3/LGG-2 and GABARAP/LGG-1 are involved in phagocytosis of apoptotic corpses during embryonic development of Caenorhabditis elegans. We discovered that both LGG-1 and LGG-2 are involved in the correct elimination of apoptotic corpses, but that they have different functions. lgg-1 and lgg-2 mutants present a delay in phagocytosis of apoptotic cells but genetic analyses indicate that LGG-1 and LGG-2 act upstream and downstream of the engulfment pathways, respectively. Moreover, LGG-1 and LGG-2 display different cellular localizations with enrichment in apoptotic corpses and phagocytic cells, respectively. For both LGG-1 and LGG-2, subcellular localization is vesicular and dependent on UNC-51/ULK1, BEC-1/BECN1 and the lipidation machinery, indicating that their functions during phagocytosis of apoptotic corpses mainly rely on autophagy. Finally, we show that LGG-1 is involved in the exposure of the 'eat-me signal' phosphatidylserine at the surface of the apoptotic cell to allow its recognition by the phagocytic cell, whereas LGG-2 is involved in later steps of phagocytosis to allow efficient cell corpse clearance by mediating the maturation/degradation of the phagosome.
Collapse
Affiliation(s)
- Céline Jenzer
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Elena Simionato
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Céline Largeau
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Vincent Scarcelli
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Christophe Lefebvre
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Renaud Legouis
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| |
Collapse
|
131
|
Tomasello E, Naciri K, Chelbi R, Bessou G, Fries A, Gressier E, Abbas A, Pollet E, Pierre P, Lawrence T, Vu Manh TP, Dalod M. Molecular dissection of plasmacytoid dendritic cell activation in vivo during a viral infection. EMBO J 2018; 37:embj.201798836. [PMID: 30131424 PMCID: PMC6166132 DOI: 10.15252/embj.201798836] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll-like receptors (TLRs) 7 or 9 by viral single-stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN-I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN-I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN-I downstream of the TLR9-to-MyD88-to-IRF7 signaling pathway without requiring IFN-I positive feedback, high IRF7 expression, or AP3-driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN-I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.
Collapse
Affiliation(s)
- Elena Tomasello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Karima Naciri
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Rabie Chelbi
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Gilles Bessou
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Anissa Fries
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Elise Gressier
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Abdenour Abbas
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Emeline Pollet
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Philippe Pierre
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Toby Lawrence
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Thien-Phong Vu Manh
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Marc Dalod
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
132
|
Lou H, Pickering MC. Extracellular DNA and autoimmune diseases. Cell Mol Immunol 2018; 15:746-755. [PMID: 29553134 PMCID: PMC6141478 DOI: 10.1038/cmi.2017.136] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/02/2023] Open
Abstract
Extracellular DNA is secreted from various sources including apoptotic cells, NETotic neutrophils and bacterial biofilms. Extracellular DNA can stimulate innate immune responses to induce type-I IFN production after being endocytosed. This process is central in antiviral responses but it also plays important role in the pathogenesis of a range of autoimmune diseases such as systemic lupus erythematosus. We discuss the recent advances in the understanding of the role of extracellular DNA, released from apoptotic and NETotic cells, in autoimmunity.
Collapse
Affiliation(s)
- Hantao Lou
- Molecular Immunology, Imperial College London, London, UK, W12 0NN.
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, Imperial College London, London, UK, W12 0NN
| |
Collapse
|
133
|
Yin H, Wu H, Chen Y, Zhang J, Zheng M, Chen G, Li L, Lu Q. The Therapeutic and Pathogenic Role of Autophagy in Autoimmune Diseases. Front Immunol 2018; 9:1512. [PMID: 30108582 PMCID: PMC6080611 DOI: 10.3389/fimmu.2018.01512] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a complicated cellular mechanism that maintains cellular and tissue homeostasis and integrity via degradation of senescent, defective subcellular organelles, infectious agents, and misfolded proteins. Accumulating evidence has shown that autophagy is involved in numerous immune processes, such as removal of intracellular bacteria, cytokine production, autoantigen presentation, and survival of lymphocytes, indicating an apparent and important role in innate and adaptive immune responses. Indeed, in genome-wide association studies, autophagy-related gene polymorphisms have been suggested to be associated with the pathogenesis of several autoimmune and inflammatory disorders, such as systemic lupus erythematosus, psoriasis, rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. In addition, conditional knockdown of autophagy-related genes in mice displayed therapeutic effects on several autoimmune disease models by reducing levels of inflammatory cytokines and autoreactive immune cells. However, the inhibition of autophagy accelerates the progress of some inflammatory and autoimmune diseases via promotion of inflammatory cytokine production. Therefore, this review will summarize the current knowledge of autophagy in immune regulation and discuss the therapeutic and pathogenic role of autophagy in autoimmune diseases to broaden our understanding of the etiopathogenesis of autoimmune diseases and shed light on autophagy-mediated therapies.
Collapse
Affiliation(s)
- Heng Yin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjian Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Min Zheng
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Genhui Chen
- Beijing Wenfeng Tianji Pharmaceuticals Ltd., Beijing, China
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
134
|
Abdolmaleki F, Farahani N, Gheibi Hayat SM, Pirro M, Bianconi V, Barreto GE, Sahebkar A. The Role of Efferocytosis in Autoimmune Diseases. Front Immunol 2018; 9:1645. [PMID: 30083153 PMCID: PMC6064952 DOI: 10.3389/fimmu.2018.01645] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/04/2018] [Indexed: 12/28/2022] Open
Abstract
Apoptosis happens continuously for millions of cells along with the active removal of apoptotic debris in order to maintain tissue homeostasis. In this respect, efferocytosis, i.e., the process of dead cell clearance, is orchestrated through cell exposure of a set of "find me," "eat me," and "tolerate me" signals facilitating the engulfment of dying cells through phagocytosis by macrophages and dendritic cells. The clearance of dead cells via phagocytes is of utmost importance to maintain the immune system tolerance to self-antigens. Accordingly, this biological activity prevents the release of autoantigens by dead cells, thus potentially suppressing the undesirable autoreactivity of immune cells and the appearance of inflammatory autoimmune disorders as systemic lupus erythematous and rheumatoid arthritis. In the present study, the apoptosis pathways and their immune regulation were reviewed. Moreover, efferocytosis process and its impairment in association with some autoimmune diseases were discussed.
Collapse
Affiliation(s)
- Fereshte Abdolmaleki
- Cellular and Molecular Research Center, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
135
|
Viret C, Rozières A, Faure M. Autophagy during Early Virus–Host Cell Interactions. J Mol Biol 2018; 430:1696-1713. [DOI: 10.1016/j.jmb.2018.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 01/04/2023]
|
136
|
Yu B, Egbejimi A, Dharmat R, Xu P, Zhao Z, Long B, Miao H, Chen R, Wensel TG, Cai J, Chen Y. Phagocytosed photoreceptor outer segments activate mTORC1 in the retinal pigment epithelium. Sci Signal 2018; 11:11/532/eaag3315. [PMID: 29844054 DOI: 10.1126/scisignal.aag3315] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The retinal pigment epithelium (RPE) transports nutrients and metabolites between the microvascular bed that maintains the outer retina and photoreceptor neurons. The RPE removes photoreceptor outer segments (POS) by receptor-mediated phagocytosis, a process that peaks in the morning. Uptake and degradation of POS initiates signaling cascades in the RPE. Upstream stimuli from various metabolic activities converge on mechanistic target of rapamycin complex 1 (mTORC1), and aberrant mTORC1 signaling is implicated in aging and age-related degeneration of the RPE. We measured mTORC1-mediated responses to RPE phagocytosis in vivo and in vitro. During the morning burst of POS shedding, there was transient activation of mTORC1-mediated signaling in the RPE. POS activated mTORC1 through lysosome-independent mechanisms, and engulfed POS served as a docking platform for mTORC1 assembly. The identification of POS as endogenous stimuli of mTORC1 in the RPE provides a mechanistic link underlying the photoreceptor-RPE interaction in the outer retina.
Collapse
Affiliation(s)
- Bo Yu
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anuoluwapo Egbejimi
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rachayata Dharmat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pei Xu
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zhenyang Zhao
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bo Long
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hongyu Miao
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Theodore G Wensel
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiyang Cai
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yan Chen
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA. .,Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
137
|
Gao F, Su Q, Yang W, Pang S, Wang S, Cui Y, Zhang J, Yan B. Functional variants in the LC3B gene promoter in acute myocardial infarction. J Cell Biochem 2018; 119:7339-7349. [PMID: 29761913 DOI: 10.1002/jcb.27035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/05/2018] [Indexed: 11/07/2022]
Abstract
Acute myocardial infarction (AMI) is a common disease mainly caused by atherosclerosis, for which genetic causes remain largely unknown. Recently, low frequency and rare genetic variants have been proposed as risk factors. Autophagy has been involved in many cellular processes, such as lipid metabolism and inflammation, and implicated in human diseases, including cardiovascular diseases. In previous studies, we have reported reduced levels of LC3B, a core protein and a marker for autophagy, in AMI patients. In this study, the LC3B gene promoter was genetically and functionally analyzed in large cohorts of AMI patients (n = 383) and healthy controls (n = 390). A total of 25 DNA sequence variants (DSVs) including SNPs were found. Seven DSVs and three SNPs were only identified in AMI patients. All the DSVs and SNPs (except one) significantly decreased the transcriptional activity of the LC3B gene promoter in both HEK-293 and H9c2 cells (P < 0.05). Further electrophoretic mobility shift assay suggested that the DSVs affected the binding of transcription factors. In contrast, the DSVs and SNPs found only in controls or in both AMI patients and controls did not significantly affected LC3B gene promoter activity (P > 0.05). Therefore, our data suggested that the DSVs identified in AMI patients may change LC3B level by affecting the transcriptional activity of LC3B gene promoter, contributing to the AMI development. Upregulation of the LC3B gene expression may provide a novel and potential therapy for AMI patients.
Collapse
Affiliation(s)
- Feng Gao
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qiang Su
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong, China
| | - Wentao Yang
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Shuai Wang
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yinghua Cui
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.,The Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Jinguo Zhang
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.,The Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.,The Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
138
|
Hayashi K, Taura M, Iwasaki A. The interaction between IKKα and LC3 promotes type I interferon production through the TLR9-containing LAPosome. Sci Signal 2018; 11:11/528/eaan4144. [PMID: 29717061 DOI: 10.1126/scisignal.aan4144] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toll-like receptor 9 (TLR9) recognizes DNA in endosomes and activates distinct signaling pathways to stimulate the production of proinflammatory cytokines and type I interferons (IFNs). The assembly of signaling platforms on microtubule-associated proteins 1A/1B-light chain 3 (LC3)-decorated endosomal vesicles is required to transduce TLR9 signals that stimulate the production of IFN but not interleukin-12 p40 (IL-12p40). LC3-associated phagocytosis (LAP), a form of noncanonical autophagy, is critical for the activation of interferon regulatory factor 7 (IRF7) and for IFN synthesis. We showed that after the stimulation of TLR9 by CpG oligonucleotides, the autophagy protein LC3 and the kinase IKKα were recruited to endosomes that contained TLR9. The recruitment of IKKα and LC3 to such signaling endosomes was not stimulated by catalysts of classical autophagosome formation but involved LAP formation, which required ATG5 but not FIP200. In addition, we found that the LC3-IKKα complex further associated with both TRAF3 and IRF7. We identified three putative LC3-interacting regions (LIRs) in IKKα, and mutagenesis suggested that two of these were critical for direct binding to LC3. Moreover, mutation of the same LIR sequences failed to rescue type I IFN production in IKKα-deficient dendritic cells upon reconstitution. Together, these data suggest a direct link between LAP formation and IKKα recruitment downstream of TLR9 activation that is necessary to facilitate type I IFN production.
Collapse
Affiliation(s)
- Kachiko Hayashi
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Manabu Taura
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA. .,Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
139
|
Keller CW, Loi M, Ligeon LA, Gannagé M, Lünemann JD, Münz C. Endocytosis regulation by autophagy proteins in MHC restricted antigen presentation. Curr Opin Immunol 2018; 52:68-73. [PMID: 29719275 DOI: 10.1016/j.coi.2018.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/17/2018] [Indexed: 02/01/2023]
Abstract
The macroautophagy machinery supports membrane remodeling and fusion events that lead to the engulfment of cytoplasmic constituents in autophagosomes and their degradation in lysosomes. The capacity of this machinery to regulate membrane adaptors and influence vesicle fusion with lysosomes seems to be used not only for autophagosomes, but also for endosomes. We summarize recent evidence that two aspects of endocytosis are regulated by parts of the macroautophagy machinery. These are recruitment of adaptors for the internalization of surface receptors and the fusion of phagosomes with lysosomes. Antigen processing for MHC presentation is affected by these alternative functions of the macroautophagy machinery. Primarily extracellular antigen presentation by MHC class II molecules after phagocytosis benefits from this regulation of phagosome maturation. Furthermore, MHC class I molecules are more efficiently internalized in the presence of the core macroautophagy machinery. The identification of these alternative functions of macroautophagy proteins not only complicates the interpretation of their deficiencies in biological processes, but could also be harnessed for the regulation of antigen presentation to T cells.
Collapse
Affiliation(s)
- Christian W Keller
- Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Monica Loi
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Laure-Anne Ligeon
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Monique Gannagé
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Switzerland
| | - Jan D Lünemann
- Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
140
|
Riggs JM, Hanna RN, Rajan B, Zerrouki K, Karnell JL, Sagar D, Vainshtein I, Farmer E, Rosenthal K, Morehouse C, de Los Reyes M, Schifferli K, Liang M, Sanjuan MA, Sims GP, Kolbeck R. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci Med 2018; 5:e000261. [PMID: 29644082 PMCID: PMC5890856 DOI: 10.1136/lupus-2018-000261] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 01/19/2023]
Abstract
Objective We investigated the mechanistic and pharmacological properties of anifrolumab, a fully human, effector-null, anti-type I interferon (IFN) alpha receptor 1 (IFNAR1) monoclonal antibody in development for SLE. Methods IFNAR1 surface expression and internalisation on human monocytes before and after exposure to anifrolumab were assessed using confocal microscopy and flow cytometry. The effects of anifrolumab on type I IFN pathway activation were assessed using signal transducer and activator of transcription 1 (STAT1) phosphorylation, IFN-stimulated response element-luciferase reporter cell assays and type I IFN gene signature induction. The ability of anifrolumab to inhibit plasmacytoid dendritic cell (pDC) function and plasma cell differentiation was assessed by flow cytometry and ELISA. Effector-null properties of anifrolumab were assessed in antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays with B cells. Results Anifrolumab reduced cell surface IFNAR1 by eliciting IFNAR1 internalisation. Anifrolumab blocked type I IFN-dependent STAT1 phosphorylation and IFN-dependent signalling induced by recombinant and pDC-derived type I IFNs and serum of patients with SLE. Anifrolumab suppressed type I IFN production by blocking the type I IFN autoamplification loop and inhibited proinflammatory cytokine induction and the upregulation of costimulatory molecules on stimulated pDCs. Blockade of IFNAR1 suppressed plasma cell differentiation in pDC/B cell co-cultures. Anifrolumab did not exhibit CDC or ADCC activity. Conclusions Anifrolumab potently inhibits type I IFN-dependent signalling, including the type I IFN autoamplification loop, and is a promising therapeutic for patients with SLE and other diseases that exhibit chronic dysfunctional type I IFN signalling.
Collapse
Affiliation(s)
- Jeffrey M Riggs
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Richard N Hanna
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Bhargavi Rajan
- Clinical Pharmacology and DMPK, MedImmune LLC, Mountain View, California, USA
| | - Kamelia Zerrouki
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Jodi L Karnell
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Divya Sagar
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Inna Vainshtein
- Clinical Pharmacology and DMPK, MedImmune LLC, Mountain View, California, USA
| | - Erika Farmer
- Analytical Sciences, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Kimberly Rosenthal
- Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Chris Morehouse
- Translational Medicine, MedImmune LLC, Gaithersburg, Maryland, USA
| | | | - Kevin Schifferli
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Meina Liang
- Clinical Pharmacology and DMPK, MedImmune LLC, Mountain View, California, USA
| | - Miguel A Sanjuan
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Gary P Sims
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Roland Kolbeck
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| |
Collapse
|
141
|
Autophagy in dendritic cells. Cell Mol Immunol 2018; 15:944-952. [PMID: 29578531 PMCID: PMC6207777 DOI: 10.1038/cmi.2018.2] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 12/15/2022] Open
Abstract
Autophagy and immunity share the property of being auto-protective for the organism. Autophagy is an important degradation pathway that buffers nutrient deprivation by recycling macromolecules in organisms from yeast to man. Perturbations in autophagy are associated with inflammation and cancer development. Emerging studies have characterized the molecular details regarding how autophagy is controlled by immune cells. Among these, dendritic cells (DCs) are one of the most potent professional antigen-presenting cells critical for the activation of naïve T cells to maintain immune tolerance and drive protective immunity to infection and cancer. DCs undergo functional maturation that can either lead to an immunostimulatory phenotype, as in the context of infection, or to a tolerogenic phenotype associated with immunosuppression to self-antigens, as well as to cancer. An increasing number of recent studies has characterized the involvement of autophagy in DC functions in various physiological and pathological contexts. Here, we provide a comprehensive review of these outcomes and discuss the limitation of the models used and the forefront of the knowledge concerning the crosstalk between autophagy and DC biology.
Collapse
|
142
|
Wang P, Zhu L, Sun D, Gan F, Gao S, Yin Y, Chen L. Natural products as modulator of autophagy with potential clinical prospects. Apoptosis 2018; 22:325-356. [PMID: 27988811 DOI: 10.1007/s10495-016-1335-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Natural compounds derived from living organisms are well defined for their remarkable biological and pharmacological properties likely to be translated into clinical use. Therefore, delving into the mechanisms by which natural compounds protect against diverse diseases may be of great therapeutic benefits for medical practice. Autophagy, an intricate lysosome-dependent digestion process, with implications in a wide variety of pathophysiological settings, has attracted extensive attention over the past few decades. Hitherto, accumulating evidence has revealed that a large number of natural products are involved in autophagy modulation, either inducing or inhibiting autophagy, through multiple signaling pathways and transcriptional regulators. In this review, we summarize natural compounds regulating autophagy in multifarious diseases including cancer, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and immune diseases, hoping to inspire further investigation of the underlying mechanisms of natural compounds and to facilitate their clinical use for multiple human diseases.
Collapse
Affiliation(s)
- Peiqi Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lingjuan Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feihong Gan
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Suyu Gao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuanyuan Yin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lixia Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
143
|
Cadwell K, Debnath J. Beyond self-eating: The control of nonautophagic functions and signaling pathways by autophagy-related proteins. J Cell Biol 2018; 217:813-822. [PMID: 29237720 PMCID: PMC5839790 DOI: 10.1083/jcb.201706157] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
The identification of conserved autophagy-related proteins (ATGs) that mediate bulk degradation of cytosolic material laid the foundation for breakthroughs linking autophagy to a litany of physiological processes and disease conditions. Recent discoveries are revealing that these same ATGs orchestrate processes that are related to, and yet clearly distinct from, classic autophagy. Autophagy-related functions include secretion, trafficking of phagocytosed material, replication and egress of viral particles, and regulation of inflammatory and immune signaling cascades. Here, we define common processes dependent on ATGs, and discuss the challenges in mechanistically separating autophagy from these related pathways. Elucidating the molecular events that distinguish how individual ATGs function promises to improve our understanding of the origin of diseases ranging from autoimmunity to cancer.
Collapse
Affiliation(s)
- Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
- Department of Microbiology, New York University School of Medicine, New York, NY
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| |
Collapse
|
144
|
Fletcher K, Ulferts R, Jacquin E, Veith T, Gammoh N, Arasteh JM, Mayer U, Carding SR, Wileman T, Beale R, Florey O. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J 2018; 37:e97840. [PMID: 29317426 PMCID: PMC5813257 DOI: 10.15252/embj.201797840] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 11/17/2022] Open
Abstract
A hallmark of macroautophagy is the covalent lipidation of LC3 and insertion into the double-membrane phagophore, which is driven by the ATG16L1/ATG5-ATG12 complex. In contrast, non-canonical autophagy is a pathway through which LC3 is lipidated and inserted into single membranes, particularly endolysosomal vacuoles during cell engulfment events such as LC3-associated phagocytosis. Factors controlling the targeting of ATG16L1 to phagophores are dispensable for non-canonical autophagy, for which the mechanism of ATG16L1 recruitment is unknown. Here we show that the WD repeat-containing C-terminal domain (WD40 CTD) of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Using this strategy to inhibit non-canonical autophagy specifically, we show a reduction of MHC class II antigen presentation in dendritic cells from mice lacking the WD40 CTD Further, we demonstrate activation of non-canonical autophagy dependent on the WD40 CTD during influenza A virus infection. This suggests dependence on WD40 CTD distinguishes between macroautophagy and non-canonical use of autophagy machinery.
Collapse
Affiliation(s)
| | - Rachel Ulferts
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Elise Jacquin
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Talitha Veith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Noor Gammoh
- Edinburgh Cancer Research UK Centre University of Edinburgh, Edinburgh, UK
| | | | | | - Simon R Carding
- Quadrum Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Rupert Beale
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge, UK
| |
Collapse
|
145
|
Xia F, Deng C, Jiang Y, Qu Y, Deng J, Cai Z, Ding Y, Guo Z, Wang J. IL4 (interleukin 4) induces autophagy in B cells leading to exacerbated asthma. Autophagy 2018; 14:450-464. [PMID: 29297752 PMCID: PMC5915013 DOI: 10.1080/15548627.2017.1421884] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Allergic asthma is a common airway inflammatory disease in which B cells play important roles through IgE production and antigen presentation. SNP (single nucleotide polymorphism) analysis showed that Atg (autophagy-related) allele mutations are involved in asthma. It has been demonstrated that macroautophagy/autophagy is essential for B cell survival, plasma cell differentiation and immunological memory maintenance. However, whether B cell autophagy participates in asthma pathogenesis remains to be investigated. In this report, we found that autophagy was enhanced in pulmonary B cells from asthma-prone mice. Autophagy deficiency in B cells led to attenuated immunopathological symptoms in asthma-prone mice. Further investigation showed that IL4 (interleukin 4), a key effector Th2 cytokine in allergic asthma, was critical for autophagy induction in B cells both in vivo and in vitro, which further sustained B cell survival and enhanced antigen presentation by B cells. Moreover, IL4-induced autophagy depended on JAK signaling via an MTOR-independent, PtdIns3K-dependent pathway. Together, our data indicate that B cell autophagy aggravates experimental asthma through multiple mechanisms.
Collapse
Affiliation(s)
- Fucan Xia
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Changwen Deng
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yanyan Jiang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yulan Qu
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jiewen Deng
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Ding
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Jianli Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
146
|
Qi YY, Zhou XJ, Nath SK, Sun C, Wang YN, Hou P, Mu R, Li C, Guo JP, Li ZG, Wang G, Xu HJ, Hao YJ, Zhang ZL, Yue WH, Zhang H, Zhao MH, Zhang H. A Rare Variant (rs933717) at FBXO31-MAP1LC3B in Chinese Is Associated With Systemic Lupus Erythematosus. Arthritis Rheumatol 2018; 70:287-297. [PMID: 29044928 DOI: 10.1002/art.40353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Recent evidence from genetic, cell biology, and animal model studies has suggested a pivotal role of autophagy in mediating systemic lupus erythematosus (SLE). However, the genetic basis has not yet been thoroughly examined. Therefore, the aim of the present study was to identify additional susceptibility variants in autophagy-related genes along with their functional significance. METHODS First, we performed a gene family-based genetic association analysis in SLE patients with the use of ImmunoChip arrays, and then we selected the most strongly associated polymorphisms for replication in additional cohorts. To identify regulatory clues, we analyzed publicly available blood expression quantitative trait locus data and Encyclopedia of DNA Elements data on transcription factor binding sites and cell type-specific differential expression. Functional effects were tested by luciferase reporter assays, electrophoretic mobility shift assays, and differential gene expression assays. RESULTS In 14,474 samples, we observed that the rare Chinese variant rs933717T was associated with susceptibility to SLE (0.11% in cases versus 0.87% in controls; P = 2.36 × 10-10 , odds ratio 0.13). The rs933717 risk allele C correlated with increased MAP1LC3B expression; increased MAP1LC3B messenger RNA was observed in SLE patients and in lupus-prone mice. In reporter gene constructs, the risk allele increased luciferase activity up to 2.7-3.8-fold in both HEK 293T and Jurkat cell lines, and the binding of HEK 293T and Jurkat cell nuclear extracts to the risk allele was also increased. CONCLUSION We observed a likely genetic association between light chain 3B, a widely used marker for autophagy, and susceptibility to SLE.
Collapse
Affiliation(s)
- Yuan-Yuan Qi
- Peking University First Hospital, Beijing, China
| | - Xu-Jie Zhou
- Peking University First Hospital, Beijing, China
| | | | - Celi Sun
- Oklahoma Medical Research Foundation, Oklahoma City
| | - Yan-Na Wang
- Peking University First Hospital, Beijing, China
| | - Ping Hou
- Peking University First Hospital, Beijing, China
| | - Rong Mu
- Peking University People's Hospital, Beijing, China
| | - Chun Li
- Peking University People's Hospital, Beijing, China
| | | | - Zhan-Guo Li
- Peking University People's Hospital, Beijing, China
| | - Geng Wang
- Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hu-Ji Xu
- Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yan-Jie Hao
- Peking University First Hospital, Beijing, China
| | | | - Wei-Hua Yue
- Peking University Sixth Hospital, Beijing, China
| | | | | | - Hong Zhang
- Peking University First Hospital, Beijing, China
| |
Collapse
|
147
|
Wong SW, Sil P, Martinez J. Rubicon: LC3-associated phagocytosis and beyond. FEBS J 2017; 285:1379-1388. [PMID: 29215797 DOI: 10.1111/febs.14354] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Rubicon (Rubcn) was initially identified as a component of the Class III PI3K complex and a negative regulator of canonical autophagy and endosomal trafficking. However, Rubicon has attracted the most notoriety because of its critical role in LC3-associated phagocytosis (LAP), a form of noncanonical autophagy that utilizes some components of the autophagy machinery to process extracellular cargo. Additionally, Rubicon has been identified as a key modulator of the inflammatory response and viral replication. In this review, we discuss the known functions of Rubicon in LAP and other signaling pathways and examine the disease pathologies associated with Rubicon dysfunction in animal models and humans.
Collapse
Affiliation(s)
- Sing-Wai Wong
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA.,Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - Payel Sil
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
148
|
Ettinger R, Karnell JL, Henault J, Panda SK, Riggs JM, Kolbeck R, Sanjuan MA. Pathogenic mechanisms of IgE-mediated inflammation in self-destructive autoimmune responses. Autoimmunity 2017; 50:25-36. [PMID: 28166684 DOI: 10.1080/08916934.2017.1280670] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autoantibodies of the IgG subclass are pathogenic in a number of autoimmune disorders such as systemic lupus erythomatosus. The presence of circulating IgE autoantibodies in autoimmune patients has also been known for almost 40 years. Despite their role in allergies, IgE autoantibodies are not associated with a higher rate of atopy in these patients. However, recently they have been recognized as active drivers of autoimmunity through mechanisms involving the secretion of Type I interferons by plasmacytoid dendritic cells (pDC), the recruitment of basophils to lymph nodes, and the activation of adaptive immune responses through B and T cells. Here, we will review the formation, prevalence, affinity, and roles of the IgE autoantibodies that have been described in autoimmunity. We also present novel evidence supporting that triggering of IgE receptors in pDC induces LC3-associated phagocytosis, a cellular process also known as LAP that is associated with interferon responses. The activation of pDC with immune complexes formed by DNA-specific IgE antibodies also induce potent B-cell differentiation and plasma cell formation, which further define IgE's role in autoimmune humoral responses.
Collapse
Affiliation(s)
- Rachel Ettinger
- a Department of Respiratory , Inflammation & Autoimmunity, MedImmune LLC , Gaithersburg , MD , USA
| | - Jodi L Karnell
- a Department of Respiratory , Inflammation & Autoimmunity, MedImmune LLC , Gaithersburg , MD , USA
| | - Jill Henault
- a Department of Respiratory , Inflammation & Autoimmunity, MedImmune LLC , Gaithersburg , MD , USA
| | - Santosh K Panda
- a Department of Respiratory , Inflammation & Autoimmunity, MedImmune LLC , Gaithersburg , MD , USA
| | - Jeffrey M Riggs
- a Department of Respiratory , Inflammation & Autoimmunity, MedImmune LLC , Gaithersburg , MD , USA
| | - Roland Kolbeck
- a Department of Respiratory , Inflammation & Autoimmunity, MedImmune LLC , Gaithersburg , MD , USA
| | - Miguel A Sanjuan
- a Department of Respiratory , Inflammation & Autoimmunity, MedImmune LLC , Gaithersburg , MD , USA
| |
Collapse
|
149
|
Ren C, Zhang H, Wu TT, Yao YM. Autophagy: A Potential Therapeutic Target for Reversing Sepsis-Induced Immunosuppression. Front Immunol 2017; 8:1832. [PMID: 29326712 PMCID: PMC5741675 DOI: 10.3389/fimmu.2017.01832] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/04/2017] [Indexed: 01/17/2023] Open
Abstract
Sepsis remains the leading cause of mortality in intensive care units and an intractable condition due to uncontrolled inflammation together with immune suppression. Dysfunction of immune cells is considered as a major cause for poor outcome of septic patients but with little specific treatments. Currently, autophagy that is recognized as an important self-protective mechanism for cellular survival exhibits great potential for maintaining immune homeostasis and alleviating multiple organ failure, which further improves survival of septic animals. The protective effect of autophagy on immune cells covers both innate and adaptive immune responses and refers to various cellular receptors and intracellular signaling. Multiple drugs and measures are reportedly beneficial for septic challenge by inducing autophagy process. Therefore, autophagy might be an effective target for reversing immunosuppression compromised by sepsis.
Collapse
Affiliation(s)
- Chao Ren
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Hui Zhang
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Tian-Tian Wu
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China.,State Key Laboratory of Kidney Disease, The Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
150
|
Schell SL, Soni C, Fasnacht MJ, Domeier PP, Cooper TK, Rahman ZSM. Mer Receptor Tyrosine Kinase Signaling Prevents Self-Ligand Sensing and Aberrant Selection in Germinal Centers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:4001-4015. [PMID: 29118245 DOI: 10.4049/jimmunol.1700611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/11/2017] [Indexed: 04/04/2025]
Abstract
Mer tyrosine kinase (Mer) signaling maintains immune tolerance by clearing apoptotic cells (ACs) and inducing immunoregulatory signals. We previously showed that Mer-deficient mice (Mer-/-) have increased germinal center (GC) responses, T cell activation, and AC accumulation within GCs. Accumulated ACs in GCs can undergo necrosis and release self-ligands, which may influence the outcome of a GC response and selection. In this study, we generated Mer-/- mice with a global MyD88, TLR7, or TLR9 deficiency and cell type-specific MyD88 deficiency to study the functional correlation between Mer and TLRs in the development of GC responses and autoimmunity. We found that GC B cell-intrinsic sensing of self-RNA, but not self-DNA, released from dead cells accumulated in GCs drives enhanced GC responses in Mer-/- mice. Although self-ligands directly affect GC B cell responses, the loss of Mer in dendritic cells promotes enhanced T cell activation and proinflammatory cytokine production. To study the impact of Mer deficiency on the development of autoimmunity, we generated autoimmune-prone B6.Sle1b mice deficient in Mer (Sle1bMer-/-). We observed accelerated autoimmunity development even under conditions where Sle1bMer-/- mice did not exhibit increased AC accumulation in GCs compared with B6.Sle1b mice, indicating that Mer immunoregulatory signaling in APCs regulates B cell selection and autoimmunity. We further found significant expansion, retention, and class-switching of autoreactive B cells in GCs under conditions where ACs accumulated in GCs of Sle1bMer-/- mice. Altogether, both the phagocytic and immunomodulatory functions of Mer regulate GC responses to prevent the development of autoimmunity.
Collapse
Affiliation(s)
- Stephanie L Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Chetna Soni
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Melinda J Fasnacht
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Timothy K Cooper
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| |
Collapse
|