101
|
Zhang X, Kang Z, Yin D, Gao J. Role of neutrophils in different stages of atherosclerosis. Innate Immun 2023; 29:97-109. [PMID: 37491844 PMCID: PMC10468622 DOI: 10.1177/17534259231189195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils constitute the first line of defense in human immunity and can be attracted to inflamed and infected sites by various chemokines. As essential players in immune processes, neutrophils theoretically play integral roles in the course of chronic inflammation-induced atherosclerosis. However, because neutrophils are rarely found in atherosclerotic lesions, their involvement in the pathophysiological progression of atherosclerosis has been largely underestimated or ignored. Recent research has revealed convincing evidence showing the presence of neutrophils in atherosclerotic lesions and has revealed neutrophil contributions to different atherosclerosis stages in mice and humans. This review describes the underlying mechanisms of neutrophils in different stages of atherosclerosis and highlights potential neutrophil-targeted therapeutic strategies relevant to atherosclerosis. An in-depth understanding of neutrophils' roles in atherosclerosis pathology will promote exploration of new methods for the prevention and treatment of atherogenesis and atherothrombosis.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zhanfang Kang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Dazhong Yin
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
102
|
Millán Solano MV, Salinas Lara C, Sánchez-Garibay C, Soto-Rojas LO, Escobedo-Ávila I, Tena-Suck ML, Ortíz-Butrón R, Choreño-Parra JA, Romero-López JP, Meléndez Camargo ME. Effect of Systemic Inflammation in the CNS: A Silent History of Neuronal Damage. Int J Mol Sci 2023; 24:11902. [PMID: 37569277 PMCID: PMC10419139 DOI: 10.3390/ijms241511902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/13/2023] Open
Abstract
Central nervous system (CNS) infections including meningitis and encephalitis, resulting from the blood-borne spread of specific microorganisms, provoke nervous tissue damage due to the inflammatory process. Moreover, different pathologies such as sepsis can generate systemic inflammation. Bacterial lipopolysaccharide (LPS) induces the release of inflammatory mediators and damage molecules, which are then released into the bloodstream and can interact with structures such as the CNS, thus modifying the blood-brain barrier's (BBB´s) and blood-cerebrospinal fluid barrier´s (BCSFB´s) function and inducing aseptic neuroinflammation. During neuroinflammation, the participation of glial cells (astrocytes, microglia, and oligodendrocytes) plays an important role. They release cytokines, chemokines, reactive oxygen species, nitrogen species, peptides, and even excitatory amino acids that lead to neuronal damage. The neurons undergo morphological and functional changes that could initiate functional alterations to neurodegenerative processes. The present work aims to explain these processes and the pathophysiological interactions involved in CNS damage in the absence of microbes or inflammatory cells.
Collapse
Affiliation(s)
- Mara Verónica Millán Solano
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - Citlaltepetl Salinas Lara
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Carlos Sánchez-Garibay
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Luis O. Soto-Rojas
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Itzel Escobedo-Ávila
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Martha Lilia Tena-Suck
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Rocío Ortíz-Butrón
- Laboratorio de Neurobiología, Departamento de Fisiología de ENCB, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - José Pablo Romero-López
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Estela Meléndez Camargo
- Laboratorio de Farmacología, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Manuel Luis Stampa S/N, U.P. Adolfo López Mateos, Mexico City 07738, Mexico;
| |
Collapse
|
103
|
Chu X, Xiong Y, Knoedler S, Lu L, Panayi AC, Alfertshofer M, Jiang D, Rinkevich Y, Lin Z, Zhao Z, Dai G, Mi B, Liu G. Immunomodulatory Nanosystems: Advanced Delivery Tools for Treating Chronic Wounds. RESEARCH (WASHINGTON, D.C.) 2023; 6:0198. [PMID: 37456931 PMCID: PMC10348408 DOI: 10.34133/research.0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The increasingly aging society led to a rise in the prevalence of chronic wounds (CWs), posing a significant burden to public health on a global scale. One of the key features of CWs is the presence of a maladjusted immune microenvironment characterized by persistent and excessive (hyper)inflammation. A variety of immunomodulatory therapies have been proposed to address this condition. Yet, to date, current delivery systems for immunomodulatory therapy remain inadequate and lack efficiency. This highlights the need for new therapeutic delivery systems, such as nanosystems, to manage the pathological inflammatory imbalance and, ultimately, improve the treatment outcomes of CWs. While a plethora of immunomodulatory nanosystems modifying the immune microenvironment of CWs have shown promising therapeutic effects, the literature on the intersection of immunomodulatory nanosystems and CWs remains relatively scarce. Therefore, this review aims to provide a comprehensive overview of the pathogenesis and characteristics of the immune microenvironment in CWs, discuss important advancements in our understanding of CW healing, and delineate the versatility and applicability of immunomodulatory nanosystems-based therapies in the therapeutic management of CWs. In addition, we herein also shed light on the main challenges and future perspectives in this rapidly evolving research field.
Collapse
Affiliation(s)
- Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen/Rhine, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig - Maximilian University Munich, Munich, Germany
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Zhiming Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Guandong Dai
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong 518118, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
104
|
Cavalcante-Silva LHA, Almeida FS, Andrade AGD, Comberlang FC, Cardoso LL, Vanderley SER, Keesen TSL. Mycobacterium tuberculosis in a Trap: The Role of Neutrophil Extracellular Traps in Tuberculosis. Int J Mol Sci 2023; 24:11385. [PMID: 37511144 PMCID: PMC10379580 DOI: 10.3390/ijms241411385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), a disease that causes pulmonary inflammation but can also affect other tissues. Despite macrophages having a defined role in TB immunopathogenesis, other innate immune cells, such as neutrophils, are involved in this process. These cells have high phagocytic ability and a microbial-killing machine comprised of enzymes, antimicrobial peptides, and reactive oxygen species. In the last two decades, a new neutrophil immune response, the neutrophil extracellular traps (NETs), has been intensely researched. NETs comprise DNA associated with histones, enzymes, and antimicrobial peptides. These structures are related to antimicrobial immune response and some immuno-pathogenesis mechanisms. This mini review highlights the role of NETs in tuberculosis and how they can be helpful as a diagnostic tool and/or therapeutic target.
Collapse
Affiliation(s)
- Luiz Henrique Agra Cavalcante-Silva
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernanda Silva Almeida
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Arthur Gomes de Andrade
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernando Cézar Comberlang
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Leonardo Lima Cardoso
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Tatjana S L Keesen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
105
|
Dam P, Celik M, Ustun M, Saha S, Saha C, Kacar EA, Kugu S, Karagulle EN, Tasoglu S, Buyukserin F, Mondal R, Roy P, Macedo MLR, Franco OL, Cardoso MH, Altuntas S, Mandal AK. Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv 2023; 13:21345-21364. [PMID: 37465579 PMCID: PMC10350660 DOI: 10.1039/d3ra03477a] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
The intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.
Collapse
Affiliation(s)
- Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Merve Celik
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koç University Istanbul 34450 Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Sayantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Chirantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Elif Ayse Kacar
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Senanur Kugu
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Elif Naz Karagulle
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Savaş Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University Istanbul Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University Istanbul Turkey
| | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Priya Roy
- Department of Law, Raiganj University North Dinajpur West Bengal India
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Marlon H Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
- Centre for Nanotechnology Sciences (CeNS), Raiganj University North Dinajpur West Bengal India
| |
Collapse
|
106
|
Shao J, Xia L, Ye Z, Yang Q, Zhang C, Shi Y, Zhang L, Gu L, Xu C, Chen Y, Chen Y, Pan X, Wu F, Pan R, Liang J, Zhang L. A repeat-dose toxicity study of human umbilical cord mesenchymal stem cells in NOG mice by intravenous injection. Expert Opin Drug Metab Toxicol 2023; 19:857-866. [PMID: 37921457 DOI: 10.1080/17425255.2023.2279243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Stem cell-based therapies have demonstrated great potential in several clinical trials. However, safety data on stem cell application remain inadequate. This study evaluated the toxicity of human umbilical cord mesenchymal stem cells (hUC-MSCs) in NOD/Shi-scid/IL-2 Rγnull (NOG) mice. RESEARCH DESIGN AND METHODS Mice were administered hUC-MSCs intravenously at doses of 3.5 × 106 cells/kg and 3.5 × 107 cells/kg. Toxicity was assessed by clinical observation, behavioral evaluation, pathology, organ weight, and histopathology. We determined the distribution of hUC-MSCs using a validated qPCR method and colonization using immunohistochemistry. RESULTS No significant abnormal effects on clinical responses, body weight, or food intake were observed in the mice, except for two in the high-dose group that died during the last administration. Mouse activity in the high-dose group decreased 6 h after the first administration. Terminal examination revealed dose-dependent changes in hematology. The mice in the high-dose group displayed pulmonary artery wall plaques and mild alveolar wall microthrombi. hUC-MSCs colonized primarily the lung tissues and were largely distributed there 24 h after the final administration. CONCLUSIONS The no observed adverse effect level for intravenous administration of hUC-MSCs in NOG mice over a period of 3 w was 3.5 × 106 cells/kg.
Collapse
Affiliation(s)
- Jinjin Shao
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Lijuan Xia
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Zhichao Ye
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Qian Yang
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Chengda Zhang
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Yuhua Shi
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Lili Zhang
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Liqiang Gu
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Cong Xu
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Ying Chen
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Yunxiang Chen
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Xin Pan
- Zhejiang Key Laboratory of Cell-Based Drug and Applied Technology Development, S-Evans Biosciences Co., Ltd, Hangzhou, China
| | - Feifei Wu
- Zhejiang Key Laboratory of Cell-Based Drug and Applied Technology Development, S-Evans Biosciences Co., Ltd, Hangzhou, China
| | - Ruolang Pan
- Zhejiang Key Laboratory of Cell-Based Drug and Applied Technology Development, S-Evans Biosciences Co., Ltd, Hangzhou, China
| | - Jinfeng Liang
- Zhejiang Center for Drugs and Cosmetics Evaluation, Zhejiang Province Food and Drug Administration, Hangzhou, China
| | - Lijiang Zhang
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| |
Collapse
|
107
|
Sousa AB, Barbosa JN. The Role of Neutrophils in Biomaterial-Based Tissue Repair-Shifting Paradigms. J Funct Biomater 2023; 14:327. [PMID: 37367291 DOI: 10.3390/jfb14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Tissue engineering and regenerative medicine are pursuing clinical valid solutions to repair and restore function of damaged tissues or organs. This can be achieved in different ways, either by promoting endogenous tissue repair or by using biomaterials or medical devices to replace damaged tissues. The understanding of the interactions of the immune system with biomaterials and how immune cells participate in the process of wound healing are critical for the development of successful solutions. Until recently, it was thought that neutrophils participate only in the initial steps of an acute inflammatory response with the role of eliminating pathogenic agents. However, the appreciation that upon activation the longevity of neutrophils is highly increased and the fact that neutrophils are highly plastic cells and can polarize into different phenotypes led to the discovery of new and important actions of neutrophils. In this review, we focus on the roles of neutrophils in the resolution of the inflammatory response, in biomaterial-tissue integration and in the subsequent tissue repair/regeneration. We also discuss the potential of neutrophils for biomaterial-based immunomodulation.
Collapse
Affiliation(s)
- Ana Beatriz Sousa
- i3S-Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Judite N Barbosa
- i3S-Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
108
|
Jakovija A, Chtanova T. Skin immunity in wound healing and cancer. Front Immunol 2023; 14:1060258. [PMID: 37398649 PMCID: PMC10312005 DOI: 10.3389/fimmu.2023.1060258] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
The skin is the body's largest organ. It serves as a barrier to pathogen entry and the first site of immune defense. In the event of a skin injury, a cascade of events including inflammation, new tissue formation and tissue remodeling contributes to wound repair. Skin-resident and recruited immune cells work together with non-immune cells to clear invading pathogens and debris, and guide the regeneration of damaged host tissues. Disruption to the wound repair process can lead to chronic inflammation and non-healing wounds. This, in turn, can promote skin tumorigenesis. Tumors appropriate the wound healing response as a way of enhancing their survival and growth. Here we review the role of resident and skin-infiltrating immune cells in wound repair and discuss their functions in regulating both inflammation and development of skin cancers.
Collapse
Affiliation(s)
- Arnolda Jakovija
- Immunity Theme, Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tatyana Chtanova
- Immunity Theme, Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
109
|
Costa-Fujishima M, Yazdanpanah A, Horne S, Lamont A, Lopez P, Farr Zuend C, Birse K, Taverner M, Greenslade R, Abou M, Noel-Romas L, Abrenica B, Ajibola O, Ikeogu N, Su RC, McKinnon LR, Pymar H, Poliquin V, Berard AR, Burgener AD, Murooka TT. Nonoptimal bacteria species induce neutrophil-driven inflammation and barrier disruption in the female genital tract. Mucosal Immunol 2023; 16:341-356. [PMID: 37121385 DOI: 10.1016/j.mucimm.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023]
Abstract
Neutrophil recruitment and activation within the female genital tract are often associated with tissue inflammation, loss of vaginal epithelial barrier integrity, and increased risk for sexually transmitted infections, such as HIV-1. However, the direct role of neutrophils on vaginal epithelial barrier function during genital inflammation in vivo remains unclear. Using complementary proteome and immunological analyses, we show high neutrophil influx into the lower female genital tract in response to physiological surges in progesterone, stimulating distinct stromal, immunological, and metabolic signaling pathways. However, despite the release of extracellular matrix-modifying proteases and inflammatory mediators, neutrophils contributed little to physiological mucosal remodeling events such as epithelial shedding or re-epithelialization during transition from diestrus to estrus phase. In contrast, the presence of bacterial vaginosis-associated bacteria resulted in a rapid and sustained neutrophil recruitment, resulting in vaginal epithelial barrier leakage and decreased cell-cell junction protein expression in vivo. Thus, neutrophils are important mucosal sentinels that rapidly respond to various biological cues within the female genital tract, dictating the magnitude and duration of the ensuing inflammatory response at steady state and during disease processes.
Collapse
Affiliation(s)
- Marina Costa-Fujishima
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada
| | - Atta Yazdanpanah
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada
| | - Samantha Horne
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA; University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada
| | - Alana Lamont
- University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada; National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Paul Lopez
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada
| | - Christina Farr Zuend
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA
| | - Kenzie Birse
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA; University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada
| | - Morgan Taverner
- University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada
| | - Riley Greenslade
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada
| | - Max Abou
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Laura Noel-Romas
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA; University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada
| | - Bernard Abrenica
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Oluwaseun Ajibola
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada
| | - Nnamdi Ikeogu
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada
| | - Ruey-Chyi Su
- University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada; National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Lyle R McKinnon
- University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada; Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa; Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Helen Pymar
- University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada
| | - Vanessa Poliquin
- University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada
| | - Alicia R Berard
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA; University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada
| | - Adam D Burgener
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA; University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada; Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas T Murooka
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada; University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada.
| |
Collapse
|
110
|
Ma H, Siu WS, Leung PC. The Potential of MSC-Based Cell-Free Therapy in Wound Healing-A Thorough Literature Review. Int J Mol Sci 2023; 24:ijms24119356. [PMID: 37298306 DOI: 10.3390/ijms24119356] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
A wound is an interruption of the normal anatomic structure and function of the skin, which is critical in protecting against foreign pathogens, regulating body temperature and water balance. Wound healing is a complex process involving various phases, including coagulation, inflammation, angiogenesis, re-epithelialization, and re-modeling. Factors such as infection, ischemia, and chronic diseases such as diabetes can compromise wound healing, leading to chronic and refractory ulcers. Mesenchymal stem cells (MSCs) have been used to treat various wound models due to their paracrine activity (secretome) and extracellular vehicles (exosomes) that contain several molecules, including long non-coding RNAs (lncRNAs), micro-RNAs (miRNAs), proteins, and lipids. Studies have shown that MSCs-based cell-free therapy using secretome and exosomes has great potential in regenerative medicine compared to MSCs, as there are fewer safety concerns. This review provides an overview of the pathophysiology of cutaneous wounds and the potential of MSCs-based cell-free therapy in each phase of wound healing. It also discusses clinical studies of MSCs-based cell-free therapies.
Collapse
Affiliation(s)
- Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
111
|
Graca FA, Stephan A, Minden-Birkenmaier BA, Shirinifard A, Wang YD, Demontis F, Labelle M. Platelet-derived chemokines promote skeletal muscle regeneration by guiding neutrophil recruitment to injured muscles. Nat Commun 2023; 14:2900. [PMID: 37217480 DOI: 10.1038/s41467-023-38624-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Skeletal muscle regeneration involves coordinated interactions between different cell types. Injection of platelet-rich plasma is circumstantially considered an aid to muscle repair but whether platelets promote regeneration beyond their role in hemostasis remains unexplored. Here, we find that signaling via platelet-released chemokines is an early event necessary for muscle repair in mice. Platelet depletion reduces the levels of the platelet-secreted neutrophil chemoattractants CXCL5 and CXCL7/PPBP. Consequently, early-phase neutrophil infiltration to injured muscles is impaired whereas later inflammation is exacerbated. Consistent with this model, neutrophil infiltration to injured muscles is compromised in male mice with Cxcl7-knockout platelets. Moreover, neo-angiogenesis and the re-establishment of myofiber size and muscle strength occurs optimally in control mice post-injury but not in Cxcl7ko mice and in neutrophil-depleted mice. Altogether, these findings indicate that platelet-secreted CXCL7 promotes regeneration by recruiting neutrophils to injured muscles, and that this signaling axis could be utilized therapeutically to boost muscle regeneration.
Collapse
Affiliation(s)
- Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Benjamin A Minden-Birkenmaier
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Oncology, Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
112
|
Lima C, Andrade-Barros AI, Carvalho FF, Falcão MAP, Lopes-Ferreira M. Inflammasome Coordinates Senescent Chronic Wound Induced by Thalassophryne nattereri Venom. Int J Mol Sci 2023; 24:ijms24098453. [PMID: 37176162 PMCID: PMC10179710 DOI: 10.3390/ijms24098453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Thalassophryne nattereri toadfish (niquim) envenomation, common in the hands and feet of bathers and fishermen in the north and northeast regions of Brazil, is characterized by local symptoms such as immediate edema and intense pain. These symptoms progress to necrosis that lasts for an extended period of time, with delayed healing. Wound healing is a complex process characterized by the interdependent role of keratinocytes, fibroblasts, and endothelial and innate cells such as neutrophils and macrophages. Macrophages and neutrophils are actively recruited to clear debris during the inflammatory phase of wound repair, promoting the production of pro-inflammatory mediators, and in the late stage, macrophages promote tissue repair. Our hypothesis is that injury caused by T. nattereri venom (VTn) leads to senescent wounds. In this study, we provide valuable information about the mechanism(s) behind the dysregulated inflammation in wound healing induced by VTn. We demonstrate in mouse paws injected with the venom the installation of γH2AX/p16Ink4a-dependent senescence with persistent neutrophilic inflammation in the proliferation and remodeling phases. VTn induced an imbalance of M1/M2 macrophages by maintaining a high number of TNF-α-producing M1 macrophages in the wound but without the ability to eliminate the persistent neutrophils. Chronic neutrophilic inflammation and senescence were mediated by cytokines such as IL-1α and IL-1β in a caspase-1- and caspase-11-dependent manner. In addition, previous blocking with anti-IL-1α and anti-IL-β neutralizing antibodies and caspase-1 (Ac YVAD-CMK) and caspase-11 (Wedelolactone) inhibitors was essential to control the pro-inflammatory activity of M1 macrophages induced by VTn injection, skewing towards an anti-inflammatory state, and was sufficient to block neutrophil recruitment and senescence.
Collapse
Affiliation(s)
- Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, São Paulo 05503-009, Brazil
| | - Aline Ingrid Andrade-Barros
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, São Paulo 05503-009, Brazil
| | - Fabiana Franco Carvalho
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, São Paulo 05503-009, Brazil
| | - Maria Alice Pimentel Falcão
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, São Paulo 05503-009, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, São Paulo 05503-009, Brazil
| |
Collapse
|
113
|
Butenko S, Miwa H, Liu Y, Plikus MV, Scumpia PO, Liu WF. Engineering Immunomodulatory Biomaterials to Drive Skin Wounds toward Regenerative Healing. Cold Spring Harb Perspect Biol 2023; 15:a041242. [PMID: 36123029 PMCID: PMC10153801 DOI: 10.1101/cshperspect.a041242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The healing of human skin wounds is designed for a rapid fibroproliferative response at the expense of tissue complexity and is therefore prone to scar formation. Moreover, wound healing often goes awry when excessive inflammation leads to chronic nonhealing wounds or when excessive repair results in uncontrolled tissue fibrosis. The immune system plays a central role in orchestrating wound healing, and, thus, controlling immune cell activities holds great potential for reducing scars and enhancing regeneration. Biomaterial dressings directly interact with immune cells in the wound and have been shown to improve the repair process. A few studies have even shown that biomaterials can induce complete regeneration through mechanisms involving immune cells. Here, we review the role of the immune system in skin repair and regeneration and describe how advances in biomaterial research may uncover immunomodulatory elements to enhance fully functional skin regeneration.
Collapse
Affiliation(s)
- Sergei Butenko
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, USA
| | - Hiromi Miwa
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Yingzi Liu
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, California, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, USA
| | - Phillip O Scumpia
- Department of Medicine, Division of Dermatology, University of California Los Angeles, Los Angeles, California, USA
- Department of Dermatology, Greater Los Angeles VAMC, Los Angeles, California, USA
| | - Wendy F Liu
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California Irvine, Irvine, California, USA
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
- Institute for Immunology, University of California Irvine, Irvine, California, USA
| |
Collapse
|
114
|
Xie W, Chen J, Cheng X, Feng H, Zhang X, Zhu Z, Dong S, Wan Q, Pei X, Wang J. Multi-Mechanism Antibacterial Strategies Enabled by Synergistic Activity of Metal-Organic Framework-Based Nanosystem for Infected Tissue Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205941. [PMID: 36587967 DOI: 10.1002/smll.202205941] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Drug-resistant bacterial infection impairs tissue regeneration and is a challenging clinical problem. Metal-organic frameworks (MOFs)-based photodynamic therapy (PDT) opens up a new era for antibiotic-free infection treatment. However, the MOF-based PDT normally encounters limited photon absorbance under visible light and notorious recombination of photogenerated holes and electrons, which significantly impede their applications. Herein, a MOFs-based nanosystem (AgNPs@MOFs) with enhanced visible light response and charge carrier separation is developed by modifying MOFs with silver nanoparticles (AgNPs) to improve PDT efficiency. The AgNPs@MOFs with enhanced photodynamic performance under visible light irradiation mainly disrupt bacteria translation process and the metabolism of purine and pyrimidine. In addition, the introduction of AgNPs endows nanosystems with chemotherapy ability, which causes destructive effect on bacterial cell membrane, including membrane ATPase protein and fatty acids. AgNPs@MOFs show excellent synergistic drug-resistant bacterial killing efficiency through multiple mechanisms, which further restrain bacterial resistance. In addition, biocompatible AgNPs@MOFs pose potential tissue regeneration ability in both Methicillin-resistant Staphylococcus aureus (MRSA)-related soft and hard tissue infection. Overall, this study provides a promising perspective in the exploration of AgNPs@MOFs as nano antibacterial medicine against drug-resistant bacteria for infected tissue regeneration in the future.
Collapse
Affiliation(s)
- Wenjia Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Hao Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shanshan Dong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
115
|
Xu Z, Dong M, Yin S, Dong J, Zhang M, Tian R, Min W, Zeng L, Qiao H, Chen J. Why traditional herbal medicine promotes wound healing: Research from immune response, wound microbiome to controlled delivery. Adv Drug Deliv Rev 2023; 195:114764. [PMID: 36841332 DOI: 10.1016/j.addr.2023.114764] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Impaired wound healing in chronic wounds has been a significant challenge for clinicians and researchers for decades. Traditional herbal medicine (THM) has a long history of promoting wound healing, making them culturally accepted and trusted by a great number of people in the world. However, for a long time, the understanding of herbal medicine has been limited and incomplete, particularly in the allopathic medicine-dominated research system. The therapeutic effects of individual components isolated from THM are found less pronounced compared to synthetic chemical medicine, and the clinical efficacy is always inferior to herbs. In the present article, we review and discuss underlying mechanisms of the skin microbiome involved in the wound healing process; THM in regulating immune responses and commensal microbiome. We additionally propose few pioneer ideas and studies in the development of therapeutic strategies for controlled delivery of herbal medicine. This review aims to promote wound care with a focus on wound microbiome, immune response, and topical drug delivery systems. Finally, future development trends, challenges, and research directions are discussed.
Collapse
Affiliation(s)
- Zeyu Xu
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mei Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ming Zhang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Rong Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wen Min
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, PR China
| | - Li Zeng
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
116
|
Ding Y, Yang Y, Xue L. Immune cells and their related genes provide a new perspective on the common pathogenesis of ankylosing spondylitis and inflammatory bowel diseases. Front Immunol 2023; 14:1137523. [PMID: 37063924 PMCID: PMC10101339 DOI: 10.3389/fimmu.2023.1137523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundThe close relationship between ankylosing spondylitis (AS) and inflammatory bowel diseases (IBD) has been supported by many aspects, including but not limited to clinical manifestations, epidemiology and pathogenesis. Some evidence suggests that immune cells actively participated in the pathogenesis of both diseases. However, information on which cells are primarily involved in this process and how these cells mobilize, migrate and interact is still limited.MethodsDatasets were downloaded from Gene Expression Omnibus (GEO) database. Common differentially expressed genes (coDEGs) were identified by package “limma”. The protein-protein interaction (PPI) network and Weighted Gene Co-Expression Network Analysis (WGCNA) were used to analyze the interactions between coDEGs. KEGG pathway enrichment analysis and inverse cumulative distribution function were applied to identify common differential pathways, while Gene Set Enrichment Analysis (GSEA) was used to confirm the significance. Correlation analysis between coDEGs and immune cells led to the identification of critical immune-cell-related coDEGs. The diagnostic models were established based on least absolute shrinkage and selection operator (LASSO) regression, while receiver operating characteristic (ROC) analysis was used to identify the ability of the model. Validation datasets were imported to demonstrate the significant association of coDEGs with specific immune cells and the capabilities of the diagnostic model.ResultsIn total, 67 genes were up-regulated and 185 genes were down-regulated in both diseases. Four down-regulated pathways and four up-regulated pathways were considered important. Up-regulated coDEGs were firmly associated with neutrophils, while down-regulated genes were significantly associated with CD8+ T−cells and CD4+ T−cells in both AS and IBD datasets. Five up-regulated and six down-regulated key immue-cell-related coDEGs were identified. Diagnostic models based on key immue-cell-related coDEGs were established and tested. Validation datasets confirmed the significance of the correlation between coDEGs and specific immune cells.ConclusionThis study provides fresh insights into the co-pathogenesis of AS and IBD. It is proposed that neutrophils and T cells may be actively involved in this process, however, in opposite ways. The immue-cell-related coDEGs, revealed in this study, may be relevant to their regulation, although relevant research is still lacking.
Collapse
|
117
|
Emami S, Ebrahimi M. Bioactive wound powders as wound healing dressings and drug delivery systems. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
118
|
Siwicki M, Kubes P. Neutrophils in host defense, healing, and hypersensitivity: Dynamic cells within a dynamic host. J Allergy Clin Immunol 2023; 151:634-655. [PMID: 36642653 DOI: 10.1016/j.jaci.2022.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 01/15/2023]
Abstract
Neutrophils are cells of the innate immune system that are extremely abundant in vivo and respond quickly to infection, injury, and inflammation. Their constant circulation throughout the body makes them some of the first responders to infection, and indeed they play a critical role in host defense against bacterial and fungal pathogens. It is now appreciated that neutrophils also play an important role in tissue healing after injury. Their short life cycle, rapid response kinetics, and vast numbers make neutrophils a highly dynamic and potentially extremely influential cell population. It has become clear that they are highly integrated with other cells of the immune system and can thus exert critical effects on the course of an inflammatory response; they can further impact tissue homeostasis and recovery after challenge. In this review, we discuss the fundamentals of neutrophils in host defense and healing; we explore the relationship between neutrophils and the dynamic host environment, including circadian cycles and the microbiome; we survey the field of neutrophils in asthma and allergy; and we consider the question of neutrophil heterogeneity-namely, whether there could be specific subsets of neutrophils that perform different functions in vivo.
Collapse
Affiliation(s)
- Marie Siwicki
- Immunology Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Immunology Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
119
|
Cao X, Li Y, Luo Y, Chu T, Yang H, Wen J, Liu Y, Zhao Y, Herrmann M. Transient receptor potential melastatin 2 regulates neutrophil extracellular traps formation and delays resolution of neutrophil-driven sterile inflammation. J Inflamm (Lond) 2023; 20:7. [PMID: 36810113 PMCID: PMC9945693 DOI: 10.1186/s12950-023-00334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
The formation of neutrophil extracellular traps (NETs) is a process releasing into the extracellular space networks of chromatin fibers decorated with granular proteins. It is implicated in infection-related as well as sterile inflammation. Monosodium urate (MSU) crystals serve as damage-associated molecular pattern (DAMP) in various conditions of disease. Formation of NETs or aggregated NETs (aggNETs) orchestrates initiation and resolution of MSU crystals-triggered inflammation, respectively. Elevated intracellular calcium levels and the generation of reactive oxygen species (ROS) are crucial for the formation of MSU crystal-induced NETs. However, the exact signaling pathways involved are still elusive. Herein, we demonstrate that the ROS-sensing, non-selective calcium-permeable channel transient receptor potential cation channel subfamily M member 2 (TRPM2) is required for a full-blown MSU crystal-induced NET formation. Primary neutrophils from TRPM2-/- mice showed reduced calcium influx and ROS production and, consequently a reduced formation of MSU crystal-induced NETs and aggNETs. Furthermore, in TRPM2-/- mice the infiltration of inflammatory cells into infected tissues and their production of inflammatory mediators was suppressed. Taken together these results describe an inflammatory role of TRPM2 for neutrophil-driven inflammation and identify TRPM2 as potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Xue Cao
- grid.13291.380000 0001 0807 1581Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.414011.10000 0004 1808 090XDepartment of Rheumatology and Immunology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan China
| | - Yanhong Li
- grid.13291.380000 0001 0807 1581Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yubin Luo
- grid.13291.380000 0001 0807 1581Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Tianshu Chu
- grid.414011.10000 0004 1808 090XDepartment of Rheumatology and Immunology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan China
| | - Hang Yang
- grid.13291.380000 0001 0807 1581Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ji Wen
- grid.13291.380000 0001 0807 1581Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yi Liu
- grid.13291.380000 0001 0807 1581Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg (FAU), Erlangen, Germany. .,Department of Rheumatology & Immunology, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Martin Herrmann
- grid.5330.50000 0001 2107 3311Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
120
|
Wang CL, Wang Y, Jiang QL, Zeng Y, Yao QP, Liu X, Li T, Jiang J. DNase I and Sivelestat Ameliorate Experimental Hindlimb Ischemia-Reperfusion Injury by Eliminating Neutrophil Extracellular Traps. J Inflamm Res 2023; 16:707-721. [PMID: 36852300 PMCID: PMC9961174 DOI: 10.2147/jir.s396049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Purpose Neutrophil extracellular traps (NETs) play an important role in ischemia-reperfusion injury (IRI) of the hindlimb. The aim of this study was to investigate the effect of recombinant DNase I and sivelestat in eliminating NETs and their effects on IRI limbs. Patients and Methods An air pump was used to apply a pressure of 300 mmHg to the root of the right hindlimb of the rat for 2 h and then deflated to replicate the IRI model. The formation of NETs was determined by the detection of myeloperoxidase (MPO), neutrophil elastase (NE), and histone H3 in the skeletal muscles of the hindlimbs. Animals were administered 2.5 mg/kg bw/d DNase I, 15 or 60 mg/kg bw/d sivelestat by injection into the tail vein or intramuscularly into the ischemic area for 7d. Elimination of NETs, hindlimb perfusion, muscle fibrosis, angiogenesis and motor function were assessed. Results DNase I reduced NETs, attenuated muscle fibrosis, promoted angiogenesis in IRI area and improved limb motor function. Local administration of DNase I improved hindlimb perfusion more than intravenous administration. Sivelestat at a dose of 15 mg/kg bw/d increased perfusion, counteracted skeletal muscle fibrosis, promoted angiogenesis and enhanced motor function. However, sivelestat at a dosage of 60 mg/kg bw/d had an adverse effect on tissue repair, especially when injected locally. Conclusion Both DNase I and moderate doses of sivelestat can eliminate IRI-derived NETs. They improve hindlimb function by improving perfusion and angiogenesis, preventing muscle fibrosis. Appropriate administration mode and dosage is the key to prevent IRI by elimination of NETs. DNase I is more valid when administered topically and sivelestat is more effective when administered intravenously. These results will provide a better strategy for the treatment of IRI in clinical.
Collapse
Affiliation(s)
- Chun-Lian Wang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yan Wang
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Qi-Lan Jiang
- Department of Clinical Nutrition, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yang Zeng
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xing Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China,Correspondence: Jun Jiang; Tao Li, Email ;
| |
Collapse
|
121
|
Liu JL, Kang DL, Mi P, Xu CZ, Zhu L, Wei BM. Mesenchymal Stem Cell Derived Extracellular Vesicles: Promising Nanomedicine for Cutaneous Wound Treatment. ACS Biomater Sci Eng 2023; 9:531-541. [PMID: 36607315 DOI: 10.1021/acsbiomaterials.2c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A skin wound represents a rupture caused by external damage or the existence of underlying pathological conditions. Sometimes, skin wound healing processes may place a heavy burden on patients, families, and society. Wound healing processes mainly consist of several continuous, dynamic, but overlapping stages, namely, the coagulation stage, inflammation stage, proliferation stage, and remodeling stage. Bacterial infection, excessive inflammation, impaired angiogenesis, and scar formation constitute the four significant factors impeding the recovery efficacy of skin wounds. This encourages scientists to develop multifunctional nanomedicines to meet challenging needs. As we know, mesenchymal stem cells (MSCs) have been widely explored for wound repair owing to their unique capability for self-renewal and multipotency. However, problems including immune concerns and legal restrictions should be properly resolved before MSC-based therapeutics are safely and widely used in clinics. Besides, maintaining the high viability/proliferation capability of MSCs during administration processes and therapy procedures is also one of the biggest technical bottlenecks. Extracellular vesicles (EVs) are cell-derived nanovesicles, that not only possess the basic characteristics and functions of their corresponding maternal cells but also contain several outstanding advantages including abundant sources, excellent biocompatibility, and convenient administration routes. Furthermore, the membrane surface and cavity are easy to flexibly modify to meet versatile application needs. Recently, MSC-derived EVs have emerged as promising therapeutics for skin wound repair. However, current reviews are too broad and rarely focused on the specific roles of EVs in the different stages of wound recovery. Therefore, it is quite necessary to demonstrate the significance of stem cell-derived EVs in promoting wound healing from several specific aspects. Here, this review primarily tries to provide critical comments on current advances in EVs derived from MSCs for wound repair, particularly elaborating on their impressive roles in effectively eliminating infections, inhibiting inflammation, promoting angiogenesis, and reducing scar formation. Last but not least, current limitations and future prospects of EVs derived from MSCs in the areas of wound repair are also objectively analyzed.
Collapse
Affiliation(s)
- Jia-Lin Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - De-Lai Kang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Peng Mi
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Cheng-Zhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Ben-Mei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| |
Collapse
|
122
|
Li S, Zhao Z, Li Q, Li J, Pang Y. Lamprey Wound Healing and Regenerative Effects: The Collaborative Efforts of Diverse Drivers. Int J Mol Sci 2023; 24:ijms24043213. [PMID: 36834626 PMCID: PMC9965152 DOI: 10.3390/ijms24043213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Skin is a natural barrier between the body and the external environment, and this important multifunctional organ plays roles in body temperature regulation, sensory stimulation, mucus secretion, metabolite excretion and immune defense. Lampreys, as ancient vertebrates, rarely experience infection of damaged skin during farming and efficiently promote skin wound healing. However, the mechanism underlying these wound healing and regenerative effects is unclear. Our histology and transcriptomics results demonstrate that lampreys regenerate a nearly complete skin structure in damaged epidermis, including the secretory glands, and will almost not be infected, even if experiencing full-thickness damage. In addition, ATGL, DGL and MGL participate in the lipolysis process to provide space for infiltrating cells. A large number of red blood cells migrate to the site of injury and exert proinflammatory effects, upregulating the expression of proinflammatory factors such as IL-8 and IL-17. Based on a lamprey skin damage healing model, adipocytes and red blood cells in the subcutaneous fat layer can promote wound healing, which provides a new approach for the study of skin healing mechanisms. Transcriptome data reveal that mechanical signal transduction pathways are mainly regulated by focal adhesion kinase and that the actin cytoskeleton plays an important role in the healing of lamprey skin injuries. We identified RAC1 as a key regulatory gene that is necessary and partially sufficient for wound regeneration. Insights into the mechanisms of lamprey skin injury and healing will provide a theoretical basis for overcoming the challenges associated with chronic healing and scar healing in the clinic.
Collapse
Affiliation(s)
- Shushen Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Zhiyuan Zhao
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Jun Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Correspondence: (J.L.); (Y.P.)
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Correspondence: (J.L.); (Y.P.)
| |
Collapse
|
123
|
Nguyen HM, Ngoc Le TT, Nguyen AT, Thien Le HN, Pham TT. Biomedical materials for wound dressing: recent advances and applications. RSC Adv 2023; 13:5509-5528. [PMID: 36793301 PMCID: PMC9924226 DOI: 10.1039/d2ra07673j] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Wound healing is vital to maintain the physiological functions of the skin. The most common treatment is the use of a dressing to cover the wound and reduce infection risk and the rate of secondary injuries. Modern wound dressings have been the top priority choice for healing various types of wounds owing to their outstanding biocompatibility and biodegradability. In addition, they also maintain temperature and a moist environment, aid in pain relief, and improve hypoxic environments to stimulate wound healing. Due to the different types of wounds, as well as the variety of advanced wound dressing products, this review will provide information on the clinical characteristics of the wound, the properties of common modern dressings, and the in vitro, in vivo as well as the clinical trials on their effectiveness. The most popular types commonly used in producing modern dressings are hydrogels, hydrocolloids, alginates, foams, and films. In addition, the review also presents the polymer materials for dressing applications as well as the trend of developing these current modern dressings to maximize their function and create ideal dressings. The last is the discussion about dressing selection in wound treatment and an estimate of the current development tendency of new materials for wound healing dressings.
Collapse
Affiliation(s)
- Hien Minh Nguyen
- School of Medicine, Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Tam Thi Ngoc Le
- School of Medicine, Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| | - An Thanh Nguyen
- Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Han Nguyen Thien Le
- School of Medicine, Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Thi Tan Pham
- Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| |
Collapse
|
124
|
Armstrong DG, Edmonds ME, Serena TE. Point-of-care fluorescence imaging reveals extent of bacterial load in diabetic foot ulcers. Int Wound J 2023; 20:554-566. [PMID: 36708275 PMCID: PMC9885466 DOI: 10.1111/iwj.14080] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 01/29/2023] Open
Abstract
Elevated levels of bacteria, including biofilm, increase the risk of chronic wound infection and inhibit healing. Addressing asymptomatic high bacterial loads is challenged by a lack of clinical terminology and diagnostic tools. This post-hoc multicenter clinical trial analysis of 138 diabetic foot ulcers investigates fluorescence (FL)-imaging role in detecting biofilm-encased and planktonic bacteria in wounds at high loads. The sensitivity and specificity of clinical assessment and FL-imaging were compared across bacterial loads of concern (104 -109 CFU/g). Quantitative tissue culture confirmed the total loads. Bacterial presence was confirmed in 131/138 ulcers. Of these, 93.9% had loads >104 CFU/g. In those wounds, symptoms of infection were largely absent and did not correlate with, or increase proportionately with, bacterial loads at any threshold. FL-imaging increased sensitivity for the detection of bacteria across loads 104 -109 (P < .0001), peaking at 92.6% for >108 CFU/g. Imaging further showed that 84.2% of ulcers contained high loads in the periwound region. New terminology, chronic inhibitory bacterial load (CIBL), describes frequently asymptomatic, high bacterial loads in diabetic ulcers and periwound tissues, which require clinical intervention to prevent sequelae of infection. We anticipate this will spark a paradigm shift in assessment and management, enabling earlier intervention along the bacterial-infection continuum and supporting improved wound outcomes.
Collapse
Affiliation(s)
- David G. Armstrong
- Department of SurgeryKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | | |
Collapse
|
125
|
Liu T, Lu Y, Zhan R, Qian W, Luo G. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Adv Drug Deliv Rev 2023; 193:114670. [PMID: 36538990 DOI: 10.1016/j.addr.2022.114670] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Various factors could damage the structure and integrity of skin to cause wounds. Nonhealing or chronic wounds seriously affect the well-being of patients and bring heavy burdens to the society. The past few decades have witnessed application of numerous nanomaterials to promote wound healing. Owing to the unique physicochemical characteristics at nanoscale, nanomaterials-based therapy has been regarded as a potential approach to promote wound healing. In this review, we first overview the wound categories, wound healing process and critical influencing factors. Then applications of nanomaterials with intrinsic therapeutic effect and nanomaterials-based drug delivery systems to promote wound healing are addressed in detail. Finally, current limitations and future perspectives of nanomaterials in wound healing are discussed.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rixing Zhan
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
126
|
Zhang KW, Jia Y, Li YY, Guo DY, Li XX, Hu K, Qian XX, Chen ZH, Wu JJ, Yuan ZD, Yuan FL. LEP and LEPR are possibly a double-edged sword for wound healing. J Cell Physiol 2023; 238:355-365. [PMID: 36571294 DOI: 10.1002/jcp.30936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Wound healing is a complex and error-prone process. Wound healing in adults often leads to the formation of scars, a type of fibrotic tissue that lacks skin appendages. Hypertrophic scars and keloids can also form when the wound-healing process goes wrong. Leptin (Lep) and leptin receptors (LepRs) have recently been shown to affect multiple stages of wound healing. This effect, however, is paradoxical for scarless wound healing. On the one hand, Lep exerts pro-inflammatory and profibrotic effects; on the other hand, Lep can regulate hair follicle growth. This paper summarises the role of Lep and LepRs on cells in different stages of wound healing, briefly introduces the process of wound healing and Lep and LepRs, and examines the possibility of promoting scarless wound healing through spatiotemporal, systemic, and local regulation of Lep levels and the binding of Lep and LepRs.
Collapse
Affiliation(s)
- Kai-Wen Zhang
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yue-Yue Li
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dan-Yang Guo
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Xiao Li
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Kai Hu
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Xiao-Xi Qian
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Zhong-Hua Chen
- Department of Medicine, The Nantong University, Nantong, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China.,Affiliated Hospital of Jiangnan University, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|
127
|
Parker JB, Griffin MF, Spielman AF, Wan DC, Longaker MT. Exploring the Overlooked Roles and Mechanisms of Fibroblasts in the Foreign Body Response. Adv Wound Care (New Rochelle) 2023; 12:85-96. [PMID: 35819293 PMCID: PMC10081717 DOI: 10.1089/wound.2022.0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022] Open
Abstract
Significance: Foreign body response (FBR), wherein a fibrotic capsule forms around an implanted structure, is a common surgical complication that often leads to pain, discomfort, and eventual revision surgeries. Although believed to have some mechanistic overlap with normal wound healing, much remains to be discovered about the specific mechanism by which this occurs. Recent Advances: Current understanding of FBR has focused on the roles of the immune system and the biomaterial, both major contributors to FBR. However, another key player, the fibroblast, is often overlooked. This review summarizes key contributors of FBR, focusing on the roles of fibroblasts. As much remains to be discovered about fibroblasts' specific roles in FBR, we draw on current knowledge of fibroblast subpopulations and functions during wound healing. We also provide an overview on candidate biomaterials and signaling pathways involved in FBR. Critical Issues and Future Directions: While the global implantable medical devices market is considerable and continues to appreciate in value, FBR remains one of the most common surgical implant complications. In parallel with the continued development of candidate biomaterials, further exploration of potential fibroblast subpopulations at a transcriptional level would provide key insights into further understanding the underlying mechanisms by which fibrous encapsulation occurs, and unveil novel directions for antifibrotic and regenerative therapies in the future.
Collapse
Affiliation(s)
- Jennifer B. Parker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle F. Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford, California, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Amanda F. Spielman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford, California, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford, California, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
128
|
Qiu ZK, Zhang MZ, Zhang WC, Li ZJ, Si LB, Long X, Yu NZ, Wang XJ. Role of HIF-1α in pathogenic mechanisms of keloids. J Cosmet Dermatol 2023; 22:1436-1448. [PMID: 36718786 DOI: 10.1111/jocd.15601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUDS AND OBJECTIVE Keloids are defined as overrepairing products that develop after skin lesions. Keloids are characterized by the proliferation of fibroblasts and the overaccumulation of extracellular matrix components (mainly collagen), leading to a locally hypoxic microenvironment. Hence, this article was aimed to review hypoxia in pathogenesis of keloids. METHODS We reviewed and summarized the relevant published studies. RESULTS Hypoxia results in the accumulation of hypoxia-inducible factor 1α (HIF-1α) in keloids, contributing to overactivation of the fibrotic signaling pathway, epithelial-mesenchymal transition, and changes in metabolism, eventually leading to aggravated fibrosis, infiltrative growth, and radiotherapy resistance. CONCLUSION It is, therefore, essential to understand the role of HIF-1α in the pathogenic mechanisms of keloids in order to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Zi-Kai Qiu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Zi Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Chao Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Jin Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lou-Bin Si
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Jun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
129
|
Lin CY, Yu HP, Chang YT, Lin ZC, Alalaiwe A, Hwang TL, Fang JY. Targeting anti-inflammatory immunonanocarriers to human and murine neutrophils via the Ly6 antigen for psoriasiform dermatitis alleviation. Biomater Sci 2023; 11:873-893. [PMID: 36515218 DOI: 10.1039/d2bm01521h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Psoriasis is a refractory and difficult-to-treat skin disorder. The neutrophil-targeting approach represents a promising option for psoriasis therapy. This study developed and examined NIMP-R14-conjugated immunonanoparticles for specific targeting to neutrophils associated with psoriasiform dermatitis. In the process, roflumilast (RFL), as a phosphodiesterase (PDE) 4 inhibitor, was encapsulated in the nanocarriers to assess the anti-inflammatory capability against primary neutrophil activation and murine psoriasiform lesion. The average size and surface charge of the immunonanocarriers were 305 ± 36 nm and -18 ± 6 mV, respectively. The monovalent antibody-conjugated nanoparticles offered precise uptake by both human and mouse neutrophils but failed to exhibit this effect in monocytes and lymphocytes. The intracellular RFL concentration of the immunonanocarriers was five-fold superior to that of the passive counterparts. The immunonanocarriers specifically recognized the neutrophils through the Ly6 antigen with no apparent cytotoxicity. The antibody-conjugated nanoparticles mitigated superoxide anion production and migration of the activated human neutrophils. The in vivo biodistribution in the psoriasiform mice, found using an in vivo imaging system (IVIS) and liquid chromatography (LC)-mass-mass analysis, showed that the antibody conjugation increased the nanoparticle residence in systemic circulation after intravenous administration. On the other hand, most of the nanoparticles were accumulated in the lesional skin after subcutaneous injection. The actively-targeted nanocarriers were better than the free RFL and unfunctionalized nanoparticles in suppressing psoriasiform inflammation. The immunonanocarriers reduced neutrophil recruitment and epidermal hyperplasia in the plaque. Intravenous and subcutaneous treatments with the immunonanocarriers significantly reduced the overexpressed cytokines and chemokines in the inflamed skin, demonstrating that the nanosystems could both systematically and locally alleviate inflammation. The results indicated that the NIMP-R14-conjugated RFL-loaded nanoparticles have potential as an anti-autoimmune disease delivery system for neutrophil targeting.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yen-Tzu Chang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Tsong-Long Hwang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
130
|
Guillen MRS, Borges EL, Amorim GL, Vieira PC, Guedes ACM, Barcelos LS. The use of occlusive dressings: influence on excisional wound healing in animal model. Acta Cir Bras 2023; 37:e371206. [PMID: 36651431 PMCID: PMC9839187 DOI: 10.1590/acb371206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/14/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To analyze the influence of occlusive dressing on the healing of excisional skin wounds in mice. METHODS Pre-clinical, comparative, and translational study. Mice were divided into three experimental groups: wounds occluded with hydrocolloid (HD) dressings, transparent polyurethane film (TF) dressings, and without occlusion (WO), monitored at three, six and 14 days, with eight animals each. Closure rate, infiltration of neutrophils and macrophages, measurement of tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) and, histologically, angiogenesis were evaluated. RESULTS Wound closure was accelerated in the occlusive groups. There was a decrease in TNF-α levels in the HD group when compared to the WO and TF groups. Neutrophils accumulation decreased in the HD group. Increased dosages of macrophages were evidenced in the HD group, compared to the WO and TF groups. Levels of VEGF were increased in the TF and HD groups. CONCLUSIONS It is suggested that the occlusion of wounds modulates the inflammatory response.
Collapse
Affiliation(s)
- Mariana Raquel Soares Guillen
- MSc. Universidade Federal de Minas Gerais – School of Nursing – Department of Basic Nursing – Belo Horizonte (MG), Brazil.,Corresponding author:
- (55 31) 32489853
| | - Eline Lima Borges
- PhD. Universidade Federal de Minas Gerais – School of Nursing – Department of Basic Nursing – Belo Horizonte (MG), Brazil
| | - Gilmara Lopes Amorim
- MSc. Universidade Federal de Minas Gerais – School of Nursing – Department of Basic Nursing – Belo Horizonte (MG), Brazil
| | - Puebla Cassini Vieira
- PhD. Universidade Federal Rural de Pernambuco – Department of Animal Morphology and Physiology – Pernambuco (PE), Brazil
| | - Antônio Carlos Martins Guedes
- PhD. Universidade Federal de Minas Gerais – School of Medicine – Medical Clinic Department – Belo Horizonte (MG), Brazil
| | - Luciola Silva Barcelos
- PhD. Universidade Federal de Minas Gerais – Institute of Biological Sciences – Department of Physiology and Biophysics – Belo Horizonte (MG), Brazil
| |
Collapse
|
131
|
Falbo F, Spizzirri UG, Restuccia D, Aiello F. Natural Compounds and Biopolymers-Based Hydrogels Join Forces to Promote Wound Healing. Pharmaceutics 2023; 15:271. [PMID: 36678899 PMCID: PMC9863749 DOI: 10.3390/pharmaceutics15010271] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Rapid and complete wound healing is a clinical emergency, mainly in pathological conditions such as Type 2 Diabetes mellitus. Many therapeutic tools are not resolutive, and the research for a more efficient remedial remains a challenge. Wound dressings play an essential role in diabetic wound healing. In particular, biocompatible hydrogels represent the most attractive wound dressings due to their ability to retain moisture as well as ability to act as a barrier against bacteria. In the last years, different functionalized hydrogels have been proposed as wound dressing materials, showing encouraging outcomes with great benefits in the healing of the diabetic wounds. Specifically, because of their excellent biocompatibility and biodegradability, natural bioactive compounds, as well as biomacromolecules such as polysaccharides and protein, are usually employed in the biomedical field. In this review, readers can find the main discoveries regarding the employment of naturally occurring compounds and biopolymers as wound healing promoters with antibacterial activity. The emerging approaches and engineered devices for effective wound care in diabetic patients are reported and deeply investigated.
Collapse
Affiliation(s)
| | | | | | - Francesca Aiello
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Edificio Poli-Funzionale, 87036 Rende, CS, Italy
| |
Collapse
|
132
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Sánchez-Martinez H, Gonzalez-Granado JM. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int J Mol Sci 2023; 24:ijms24021526. [PMID: 36675038 PMCID: PMC9863490 DOI: 10.3390/ijms24021526] [Citation(s) in RCA: 191] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation with no exact known cause. Intestinal innate immunity is enacted by neutrophils, monocytes, macrophages, and dendritic cells (DCs), and innate lymphoid cells and NK cells, characterized by their capacity to produce a rapid and nonspecific reaction as a first-line response. Innate immune cells (IIC) defend against pathogens and excessive entry of intestinal microorganisms, while preserving immune tolerance to resident intestinal microbiota. Changes to this equilibrium are linked to intestinal inflammation in the gut and IBD. IICs mediate host defense responses, inflammation, and tissue healing by producing cytokines and chemokines, activating the complement cascade and phagocytosis, or presenting antigens to activate the adaptive immune response. IICs exert important functions that promote or ameliorate the cellular and molecular mechanisms that underlie and sustain IBD. A comprehensive understanding of the mechanisms underlying these clinical manifestations will be important for developing therapies targeting the innate immune system in IBD patients. This review examines the complex roles of and interactions among IICs, and their interactions with other immune and non-immune cells in homeostasis and pathological conditions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Hector Sánchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
133
|
Thompson S, Pang CY, Sepuru KM, Cambier S, Hellyer TP, Scott J, Simpson AJ, Proost P, Kirby JA, Rajarathnam K, Sheerin NS, Ali S. Nitration of chemokine CXCL8 acts as a natural mechanism to limit acute inflammation. Cell Mol Life Sci 2023; 80:35. [PMID: 36622452 PMCID: PMC9829591 DOI: 10.1007/s00018-022-04663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023]
Abstract
Chemokine CXCL8 is a key facilitator of the human host immune response, mediating neutrophil migration, and activation at the site of infection and injury. The oxidative burst is an important effector mechanism which leads to the generation of reactive nitrogen species (RNS), including peroxynitrite. The current study was performed to determine the potential for nitration to alter the biological properties of CXCL8 and its detection in human disease. Here, we show peroxynitrite nitrates CXCL8 and thereby regulates neutrophil migration and activation. The nitrated chemokine was unable to induce transendothelial neutrophil migration in vitro and failed to promote leukocyte recruitment in vivo. This reduced activity is due to impairment in both G protein-coupled receptor signaling and glycosaminoglycan binding. Using a novel antibody, nitrated CXCL8 was detected in bronchoalveolar lavage samples from patients with pneumonia. These findings were validated by mass spectrometry. Our results provide the first direct evidence of chemokine nitration in human pathophysiology and suggest a natural mechanism that limits acute inflammation.
Collapse
Affiliation(s)
- Sarah Thompson
- Immunity and Inflammation Theme, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Chong Yun Pang
- Immunity and Inflammation Theme, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Seppe Cambier
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000, Leuven, Belgium
| | - Thomas P Hellyer
- Immunity and Inflammation Theme, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Department of Critical Care Medicine, Royal Victoria Infirmary, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, NE1 4LP, UK
| | - Jonathan Scott
- Immunity and Inflammation Theme, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - A John Simpson
- Immunity and Inflammation Theme, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Department of Respiratory Medicine, Royal Victoria Infirmary, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4L9, UK
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000, Leuven, Belgium
| | - John A Kirby
- Immunity and Inflammation Theme, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Neil S Sheerin
- Immunity and Inflammation Theme, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Simi Ali
- Immunity and Inflammation Theme, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
134
|
Parker JB, Griffin MF, Downer MA, Akras D, Berry CE, Cotterell AC, Gurtner GC, Longaker MT, Wan DC. Chelating the valley of death: Deferoxamine's path from bench to wound clinic. Front Med (Lausanne) 2023; 10:1015711. [PMID: 36873870 PMCID: PMC9975168 DOI: 10.3389/fmed.2023.1015711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
There is undisputable benefit in translating basic science research concretely into clinical practice, and yet, the vast majority of therapies and treatments fail to achieve approval. The rift between basic research and approved treatment continues to grow, and in cases where a drug is granted approval, the average time from initiation of human trials to regulatory marketing authorization spans almost a decade. Albeit with these hurdles, recent research with deferoxamine (DFO) bodes significant promise as a potential treatment for chronic, radiation-induced soft tissue injury. DFO was originally approved by the Food and Drug Administration (FDA) in 1968 for the treatment of iron overload. However, investigators more recently have posited that its angiogenic and antioxidant properties could be beneficial in treating the hypovascular and reactive-oxygen species-rich tissues seen in chronic wounds and radiation-induced fibrosis (RIF). Small animal experiments of various chronic wound and RIF models confirmed that treatment with DFO improved blood flow and collagen ultrastructure. With a well-established safety profile, and now a strong foundation of basic scientific research that supports its potential use in chronic wounds and RIF, we believe that the next steps required for DFO to achieve FDA marketing approval will include large animal studies and, if those prove successful, human clinical trials. Though these milestones remain, the extensive research thus far leaves hope for DFO to bridge the gap between bench and wound clinic in the near future.
Collapse
Affiliation(s)
- Jennifer B Parker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Michelle F Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Mauricio A Downer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Deena Akras
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Charlotte E Berry
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Asha C Cotterell
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Geoffrey C Gurtner
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Derrick C Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
135
|
Kono M, Okuda T, Ishihara N, Hagino H, Tani Y, Okochi H, Tokoro C, Takaishi M, Ikeda H, Ishihara Y. Chemokine expression in human 3-dimensional cultured epidermis exposed to PM2.5 collected by cyclonic separation. Toxicol Res 2023; 39:1-13. [PMID: 36726829 PMCID: PMC9839915 DOI: 10.1007/s43188-022-00142-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Fine particulate matter (PM2.5) exposure has a risk of inducing several health problems, especially in the respiratory tract. The skin is the largest organ of the human body and is therefore the primary target of PM2.5. In this study, we examined the effects of PM2.5 on the skin using a human 3-dimensional cultured epidermis model. PM2.5 was collected by cyclonic separation in Yokohama, Japan. Global analysis of 34 proteins released from the epidermis revealed that the chemokines, chemokine C-X-C motif ligand 1 (CXCL1) and interleukin 8 (IL-8), were significantly increased in response to PM2.5 exposure. These chemokines stimulated neutrophil chemotaxis in a C-X-C motif chemokine receptor 2-dependent manner. The oxidative stress and signal transducer and activator of transcription 3 pathways may be involved in the increased expression of CXCL1 and IL-8 in the human epidermis model. Interestingly, in the HaCaT human keratinocyte cell line, PM2.5 did not affect chemokine expression but did induce IL-6 expression, suggesting a different effect of PM2.5 between the epidermis model and HaCaT cells. Overall, PM2.5 could induce the epidermis to release chemokines, followed by neutrophil activation, which might cause an unregulated inflammatory reaction in the skin.
Collapse
Affiliation(s)
- Maori Kono
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
- Product Assurance Division, Mandom Corporation, Osaka, 540-8530 Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa, 223-8522 Japan
| | - Nami Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521 Japan
| | - Hiroyuki Hagino
- Japan Automobile Research Institute, Ibaraki, 305-0822 Japan
| | - Yuto Tani
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
| | - Hiroshi Okochi
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
| | - Chiharu Tokoro
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
| | - Masayuki Takaishi
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
- Product Assurance Division, Mandom Corporation, Osaka, 540-8530 Japan
| | - Hidefumi Ikeda
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
- Product Assurance Division, Mandom Corporation, Osaka, 540-8530 Japan
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521 Japan
| |
Collapse
|
136
|
Bui TA, Jickling GC, Winship IR. Neutrophil dynamics and inflammaging in acute ischemic stroke: A transcriptomic review. Front Aging Neurosci 2022; 14:1041333. [PMID: 36620775 PMCID: PMC9813499 DOI: 10.3389/fnagi.2022.1041333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Stroke is among the leading causes of death and disability worldwide. Restoring blood flow through recanalization is currently the only acute treatment for cerebral ischemia. Unfortunately, many patients that achieve a complete recanalization fail to regain functional independence. Recent studies indicate that activation of peripheral immune cells, particularly neutrophils, may contribute to microcirculatory failure and futile recanalization. Stroke primarily affects the elderly population, and mortality after endovascular therapies is associated with advanced age. Previous analyses of differential gene expression across injury status and age identify ischemic stroke as a complex age-related disease. It also suggests robust interactions between stroke injury, aging, and inflammation on a cellular and molecular level. Understanding such interactions is crucial in developing effective protective treatments. The global stroke burden will continue to increase with a rapidly aging human population. Unfortunately, the mechanisms of age-dependent vulnerability are poorly defined. In this review, we will discuss how neutrophil-specific gene expression patterns may contribute to poor treatment responses in stroke patients. We will also discuss age-related transcriptional changes that may contribute to poor clinical outcomes and greater susceptibility to cerebrovascular diseases.
Collapse
Affiliation(s)
- Truong An Bui
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen C. Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ian R. Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
137
|
Affiliation(s)
- Azucena Salas
- IDIBAPS, CIBERehd, Hospital Clinic de Barcelona, Barcelona, Spain
| |
Collapse
|
138
|
Calcium/calmodulin-dependent protein kinase IV promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice. Nat Commun 2022; 13:4255. [PMID: 35869084 PMCID: PMC9307837 DOI: 10.1038/s41467-022-31935-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
CaMK4 has an important function in autoimmune diseases, and the contribution of CaMK4 in psoriasis remains obscure. Here, we show that CaMK4 expression is significantly increased in psoriatic lesional skin from psoriasis patients compared to healthy human skin as well as inflamed skin from an imiquimod (IMQ)-induced mouse model of psoriasis compared to healthy mouse skin. Camk4-deficient (Camk4−/−) mice treated with IMQ exhibit reduced severity of psoriasis compared to wild-type (WT) mice. There are more macrophages and fewer IL-17A+γδ TCR+ cells in the skin of IMQ-treated Camk4−/− mice compared to IMQ-treated WT mice. CaMK4 inhibits IL-10 production by macrophages, thus allowing excessive psoriatic inflammation. Deletion of Camk4 in macrophages alleviates IMQ-induced psoriatic inflammation in mice. In keratinocytes, CaMK4 inhibits apoptosis as well as promotes cell proliferation and the expression of pro-inflammatory genes such as S100A8 and CAMP. Taken together, these data indicate that CaMK4 regulates IMQ-induced psoriasis by sustaining inflammation and provides a potential target for psoriasis treatment. Calcium/calmodulin-dependent protein kinase IV (CaMK4) has been shown to be involved in autoimmunity but it is not clear how it functions in psoriasis. Here the authors show that CaMK4 is increased in psoriasis and promotes inflammatory responses in mouse models of psoriasis mediated through macrophages and keratinocytes.
Collapse
|
139
|
Urao N, Liu J, Takahashi K, Ganesh G. Hematopoietic Stem Cells in Wound Healing Response. Adv Wound Care (New Rochelle) 2022; 11:598-621. [PMID: 34353116 PMCID: PMC9419985 DOI: 10.1089/wound.2021.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Emerging evidence has shown a link between the status of hematopoietic stem cells (HSCs) and wound healing responses. Thus, better understanding HSCs will contribute to further advances in wound healing research. Recent Advances: Myeloid cells such as neutrophils and monocyte-derived macrophages are critical players in the process of wound healing. HSCs actively respond to wound injury and other tissue insults, including infection and produce the effector myeloid cells, and a failing of the HSC response can result in impaired wound healing. Technological advances such as transcriptome at single-cell resolution, epigenetics, three-dimensional imaging, transgenic animals, and animal models, have provided novel concepts of myeloid generation (myelopoiesis) from HSCs, and have revealed cell-intrinsic and -extrinsic mechanisms that can impact HSC functions in the context of health conditions. Critical Issues: The newer concepts include-the programmed cellular fate at a differentiation stage that is used to be considered as the multilineage, the signaling pathways that can activate HSCs directly and indirectly, the mechanisms that can deteriorate HSCs, the roles and remodeling of the surrounding environment for HSCs and their progenitors (the niche). Future Directions: The researches on HSCs, which produce blood cells, should contribute to the development of blood biomarkers predicting a risk of chronic wounds, which may transform clinical practice of wound care with precision medicine for patients at high risk of poor healing.
Collapse
Affiliation(s)
- Norifumi Urao
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA.,Correspondence: Department of Pharmacology, State University of New York Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Room 5322, Syracuse, NY 13210, USA.
| | - Jinghua Liu
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Kentaro Takahashi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Gayathri Ganesh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
140
|
Azcutia V, Kelm M, Kim S, Luissint AC, Flemming S, Abernathy-Close L, Young VB, Nusrat A, Miller MJ, Parkos CA. Distinct stimulus-dependent neutrophil dynamics revealed by real-time imaging of intestinal mucosa after acute injury. PNAS NEXUS 2022; 1:pgac249. [PMID: 36712325 PMCID: PMC9802210 DOI: 10.1093/pnasnexus/pgac249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Clinical symptoms in many inflammatory diseases of the intestine are directly related to neutrophil (PMN) migration across colonic mucosa and into the intestinal lumen, yet in-vivo studies detailing this process are lacking. Using real-time intravital microscopy and a new distal colon loop model, we report distinct PMN migratory dynamics in response to several models of acute colonic injury. PMNs exhibited rapid swarming responses after mechanically induced intestinal wounds. Similar numbers of PMNs infiltrated colonic mucosa after wounding in germ-free mice, suggesting microbiota-independent mechanisms. By contrast, acute mucosal injury secondary to either a treatment of mice with dextran sodium sulfate or an IL-10 receptor blockade model of colitis resulted in lamina propria infiltration with PMNs that were largely immotile. Biopsy wounding of colonic mucosa in DSS-treated mice did not result in enhanced PMN swarming however, intraluminal application of the neutrophil chemoattractant LTB4 under such conditions resulted in enhanced transepithelial migration of PMNs. Analyses of PMNs that had migrated into the colonic lumen revealed that the majority of PMNs were directly recruited from the circulation and not from the immotile pool in the mucosa. Decreased PMN motility parallels upregulation of the receptor CXCR4 and apoptosis. Similarly, increased expression of CXCR4 on human PMNs was observed in colonic biopsies from people with active ulcerative colitis. This new approach adds an important tool to investigate mechanisms regulating PMN migration across mucosa within the distal intestine and will provide new insights for developing future anti-inflammatory and pro-repair therapies.
Collapse
Affiliation(s)
- Veronica Azcutia
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Matthias Kelm
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Seonyoung Kim
- Department of Internal Medicine, Washington University School of Medicine; Saint Louis, MO 63110, USA
| | | | - Sven Flemming
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Lisa Abernathy-Close
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan; Ann Arbor, MI 48109, USA
| | - Vincent B Young
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan; Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Mark J Miller
- Department of Internal Medicine, Washington University School of Medicine; Saint Louis, MO 63110, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| |
Collapse
|
141
|
Yin J, Zhang S, Yang C, Wang Y, Shi B, Zheng Q, Zeng N, Huang H. Mechanotransduction in skin wound healing and scar formation: Potential therapeutic targets for controlling hypertrophic scarring. Front Immunol 2022; 13:1028410. [PMID: 36325354 PMCID: PMC9618819 DOI: 10.3389/fimmu.2022.1028410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic scarring (HTS) is a major source of morbidity after cutaneous injury. Recent studies indicate that mechanical force significantly impacts wound healing and skin regeneration which opens up a new direction to combat scarring. Hence, a thorough understanding of the underlying mechanisms is essential in the development of efficacious scar therapeutics. This review provides an overview of the current understanding of the mechanotransduction signaling pathways in scar formation and some strategies that offload mechanical forces in the wounded region for scar prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ni Zeng
- *Correspondence: Ni Zeng, ; Hanyao Huang,
| | | |
Collapse
|
142
|
Lecron JC, Charreau S, Jégou JF, Salhi N, Petit-Paris I, Guignouard E, Burucoa C, Favot-Laforge L, Bodet C, Barra A, Huguier V, Mcheik J, Dumoutier L, Garnier J, Bernard FX, Ryffel B, Morel F. IL-17 and IL-22 are pivotal cytokines to delay wound healing of S. aureus and P. aeruginosa infected skin. Front Immunol 2022; 13:984016. [PMID: 36275755 PMCID: PMC9585169 DOI: 10.3389/fimmu.2022.984016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionAlthough the presence of pathogens in skin wounds is known to delay the wound healing process, the mechanisms underlying this delay remain poorly understood. In the present study, we have investigated the regulatory role of proinflammatory cytokines on the healing kinetics of infected wounds.MethodsWe have developed a mouse model of cutaneous wound healing, with or without wound inoculation with Staphylococcus aureus and Pseudomonas aeruginosa, two major pathogens involved in cutaneous wound bacterial infections.ResultsAseptic excision in C57BL/6 mouse skin induced early expression of IL-1β, TNFα and Oncostatin M (OSM), without detectable expression of IL-22 and IL-17A/F. S. aureus and P. aeruginosa wound inoculation not only increased the expression of IL-1β and OSM, but also induced a strong cutaneous expression of IL-22, IL-17A and IL-17F, along with an increased number of infiltrating IL-17A and/or IL-22-producing γδ T cells. The same cytokine expression pattern was observed in infected human skin wounds. When compared to uninfected wounds, mouse skin infection delayed the wound healing process. Injection of IL-1α, TNFα, OSM, IL-22 and IL-17 together in the wound edges induced delayed wound healing similar to that induced by the bacterial infection. Wound healing experiments in infected Rag2KO mice (deficient in lymphocytes) showed a wound healing kinetic similar to uninfected Rag2KO mice or WT mice. Rag2KO infected-skin lesions expressed lower levels of IL-17 and IL-22 than WT, suggesting that the expression of these cytokines is mainly dependent on γδ T cells in this model. Wound healing was not delayed in infected IL-17R/IL-22KO, comparable to uninfected control mice. Injection of recombinant IL-22 and IL-17 in infected wound edges of Rag2KO mice re-establish the delayed kinetic of wound healing, as in infected WT mice.ConclusionThese results demonstrate the synergistic and specific effects of IL-22 and IL-17 induced by bacterial infection delay the wound healing process, regardless of the presence of bacteria per se. Therefore, these cytokines play an unexpected role in delayed skin wound healing.
Collapse
Affiliation(s)
- Jean-Claude Lecron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Laboratoire Immunologie et Inflammation, Centre Hospitalier et Universitaire (CHU) de Poitiers, Poitiers, France
- *Correspondence: Jean-Claude Lecron,
| | - Sandrine Charreau
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Qima-Bioalternatives (Qima Life Sciences), Gençay, France
| | - Jean-François Jégou
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Nadjet Salhi
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Isabelle Petit-Paris
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Emmanuel Guignouard
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Christophe Burucoa
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Laboratoire de Bactériologie, Centre Hospitalier et Universitaire (CHU) de Poitiers, Poitiers, France
| | - Laure Favot-Laforge
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Anne Barra
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Laboratoire Immunologie et Inflammation, Centre Hospitalier et Universitaire (CHU) de Poitiers, Poitiers, France
| | - Vincent Huguier
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service de Chirurgie Plastique, Centre Hospitalier et Universitaire (CHU) de Poitiers, Poitiers, France
| | - Jiad Mcheik
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service de Chirurgie Pédiatrique, Centre Hospitalier et Universitaire CHU) de Poitiers, Poitiers, France
| | - Laure Dumoutier
- De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Julien Garnier
- Qima-Bioalternatives (Qima Life Sciences), Gençay, France
| | - François-Xavier Bernard
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Qima-Bioalternatives (Qima Life Sciences), Gençay, France
| | - Bernhard Ryffel
- Laboratoire d'Immunologie et Neurogénétique Expérimentales et Moléculaire (INEM) - Unité Mixte de Recherche (UMR) 7355, Centre National de la Recherche Scientifique (CNRS) et Université d’Orléans, Orléans, France
| | - Franck Morel
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| |
Collapse
|
143
|
Neutrophils in Intestinal Inflammation: What We Know and What We Could Expect for the Near Future. GASTROINTESTINAL DISORDERS 2022. [DOI: 10.3390/gidisord4040025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neutrophils are short-lived cells that play a crucial role in inflammation. As in other tissues, these polymorphonuclear phagocytes are involved in the intestinal inflammatory response, on the one hand, contributing to the activation and recruitment of other immune cells, but on the other hand, facilitating intestinal mucosa repair by releasing mediators that aid in the resolution of inflammation. Even though these responses are helpful in physiological conditions, excessive recruitment of activated neutrophils in the gut correlates with increased mucosal damage and severe symptoms in patients with inflammatory bowel disease (IBD) and pre-clinical models of colitis. Thus, there is growing interest in controlling their biology to generate novel therapeutic approaches capable of reducing exacerbated intestinal inflammation. However, the beneficial and harmful effects of neutrophils on intestinal inflammation are still controversial. With this review, we summarise and discuss the most updated literature showing how neutrophils (and neutrophil extracellular traps) contribute to developing and resolving intestinal inflammation and their putative use as therapeutic targets.
Collapse
|
144
|
Coulibaly AP. Neutrophil modulation of behavior and cognition in health and disease: The unexplored role of an innate immune cell. Immunol Rev 2022; 311:177-186. [PMID: 35924463 PMCID: PMC9804154 DOI: 10.1111/imr.13123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Behavior and cognition are multifaceted processes influenced by genetics, synaptic plasticity, and neuronal connectivity. Recent reports have demonstrated that peripheral inflammation and peripheral immune cells play important roles in the preservation and deterioration of behavior/cognition under various conditions. Indeed, several studies show that the activity of peripheral immune cells can be critical for normal cognitive function. Neutrophils are the most abundant immune cells in the mammalian system. Their activation is critical to the initiation of the inflammatory process and critical for wound healing. Neutrophils are the first cells to be activated and recruited to the central nervous system in both injury and disease. However, our understanding of the role these cells play in behavior and cognition is limited. The present review will summarize what is currently known about the effect the activation of these cells has on various behaviors and cognitive processes.
Collapse
Affiliation(s)
- Aminata P. Coulibaly
- Department of NeuroscienceRockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| |
Collapse
|
145
|
Abri S, Attia R, Pukale DD, Leipzig ND. Modulatory Contribution of Oxygenating Hydrogels and Polyhexamethylene Biguanide on the Antimicrobial Potency of Neutrophil-like Cells. ACS Biomater Sci Eng 2022; 8:3842-3855. [PMID: 35960539 PMCID: PMC10259321 DOI: 10.1021/acsbiomaterials.2c00292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutrophils are a first line of host defense against infection and utilize a series of oxygen-dependent processes to eliminate pathogens. Research suggests that oxygen availability can improve anti-infective mechanisms by promoting the formation of reactive oxygen species. Also, oxygen can synergistically upregulate the antibacterial properties of certain antibiotics against bacteria by altering their metabolism and causing an increase in the antibiotic uptake of bacteria. Therefore, understanding the effects of oxygen availability, as provided via a biomaterial treatment alone or along with potent antibacterial agents, on neutrophil functions can lead us to the development of new anti-inflammatory and anti-infective approaches. However, the study of neutrophil functions in vitro is often limited by their short life span and nonreproducibility, which suggests the need for cell line-based models as a substitute for primary neutrophils. Here, we took advantage of the differentiated human leukemia-60 cell line (HL-60), as an in vitro neutrophil model, to test the effects of local oxygen and antibacterial delivery by fluorinated methacrylamide chitosan (MACF) hydrogels incorporated with polyhexamethylene biguanide (PHMB) antibacterial agent. Considering the natural modes of neutrophil actions to combat bacteria, we studied the impact of our dual functioning oxygenating-antibacterial platforms on neutrophil phagocytosis and antibacterial properties as well as the formation of neutrophil extracellular traps (NETs) and reactive oxygen species (ROS). Our results demonstrated that supplemental oxygen and antibacterial delivery from MACF-PHMB hydrogel platforms upregulated neutrophil antibacterial properties and ROS production. NET formation by neutrophils upon treatment with MACF and PHMB varied when chemical and biological stimuli were used. Overall, this study presents a model to study immune responses in vitro and lays the foundation for future studies to investigate if similar responses also occur in vivo.
Collapse
Affiliation(s)
- Shahrzad Abri
- Department of Chemical, Biomolecular and Corrosion Engineering, University of Akron, Ohio, United States of America
| | - Rheem Attia
- Department of Biomedical Engineering, University of Akron, Ohio, United States of America
| | - Dipak D. Pukale
- Department of Chemical, Biomolecular and Corrosion Engineering, University of Akron, Ohio, United States of America
| | - Nic D. Leipzig
- Department of Chemical, Biomolecular and Corrosion Engineering, University of Akron, Ohio, United States of America
| |
Collapse
|
146
|
Neutrophil-Epithelial Crosstalk During Intestinal Inflammation. Cell Mol Gastroenterol Hepatol 2022; 14:1257-1267. [PMID: 36089244 PMCID: PMC9583449 DOI: 10.1016/j.jcmgh.2022.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/31/2023]
Abstract
Neutrophils are the most abundant leukocyte population in the human circulatory system and are rapidly recruited to sites of inflammation. Neutrophils play a multifaceted role in intestinal inflammation, as they contribute to the elimination of invading pathogens. Recently, their role in epithelial restitution has been widely recognized; however, they are also associated with bystander tissue damage. The intestinal epithelium provides a physical barrier to prevent direct contact of luminal contents with subepithelial tissues, which is extremely important for the maintenance of intestinal homeostasis. Numerous studies have demonstrated that transepithelial migration of neutrophils is closely related to disease symptoms and disruption of crypt architecture in inflammatory bowel disease and experimental colitis. There has been growing interest in how neutrophils interact with the epithelium under inflammatory conditions. Most studies focus on the effects of neutrophils on intestinal epithelial cells; however, the effects of intestinal epithelial cells on neutrophils during intestinal inflammation need to be well-established. Based on these data, we have summarized recent articles on the role of neutrophil-epithelial interactions in intestinal inflammation, particularly highlighting the epithelium-derived molecular regulators that mediate neutrophil recruitment, transepithelial migration, and detachment from the epithelium, as well as the functional consequences of their crosstalk. A better understanding of these molecular events may help develop novel therapeutic targets for mitigating the deleterious effects of neutrophils in inflammatory bowel disease.
Collapse
|
147
|
Segaud J, Yao W, Marschall P, Daubeuf F, Lehalle C, German B, Meyer P, Hener P, Hugel C, Flatter E, Guivarch M, Clauss L, Martin SF, Oulad-Abdelghani M, Li M. Context-dependent function of TSLP and IL-1β in skin allergic sensitization and atopic march. Nat Commun 2022; 13:4703. [PMID: 36050303 PMCID: PMC9437001 DOI: 10.1038/s41467-022-32196-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Atopic diseases, including atopic dermatitis (AD) and asthma, affect a large proportion of the population, with increasing prevalence worldwide. AD often precedes the development of asthma, known as the atopic march. Allergen sensitization developed through the barrier-defective skin of AD has been recognized to be a critical step leading to asthma, in which thymic stromal lymphopoietin (TSLP) was previously shown to be critical. In this study, using a laser-assistant microporation system to disrupt targeted skin layers for generating micropores at a precise anatomic depth of mouse skin, we model allergen exposure superficially or deeply in the skin, leading to epicutaneous sensitization or dermacutaneous sensitization that is associated with a different cytokine microenvironment. Our work shows a differential requirement for TSLP in these two contexts, and identifies an important function for IL-1β, which is independent of TSLP, in promoting allergen sensitization and subsequent allergic asthma. Allergic sensitisation in the skin can lead to allergic dermatitis and further to airway asthma in a process of atopic march. Here the authors examine the difference between superficial or deep skin sensitisation, characterise the immune cells generated and show differential TSLP and IL-1β involvement.
Collapse
Affiliation(s)
- Justine Segaud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Wenjin Yao
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Pierre Marschall
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - François Daubeuf
- CNRS-Strasbourg University, UAR3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg/Strasbourg Drug Discovery and Development Institute, ESBS, Illkirch, France.,CNRS-Strasbourg University, UMR7200, Laboratoire d'Innovation Thérapeutique/ Strasbourg Drug Discovery and Development Institute, Faculté de Pharmacie, Illkirch, France
| | - Christine Lehalle
- CNRS-Strasbourg University, UAR3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg/Strasbourg Drug Discovery and Development Institute, ESBS, Illkirch, France.,CNRS-Strasbourg University, UMR7200, Laboratoire d'Innovation Thérapeutique/ Strasbourg Drug Discovery and Development Institute, Faculté de Pharmacie, Illkirch, France
| | - Beatriz German
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Pierre Meyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Pierre Hener
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Cécile Hugel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Eric Flatter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Marine Guivarch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Laetitia Clauss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Mei Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France.
| |
Collapse
|
148
|
Ngoepe MP, Battison A, Mufamadi S. Nano-Enabled Chronic Wound Healing Strategies: Burn and Diabetic Ulcer Wounds. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human skin serves as the body’s first line of defense against the environment. Diabetes mellitus (DM) and 2nd–4th degree burns, on the other hand, affect the skin’s protective barrier features. Burn wounds, hypermetabolic state, and hyperglycemia compromise the
immune system leading to chronic wound healing. Unlike acute wound healing processes, chronic wounds are affected by reinfections which can lead to limb amputation or death. The conventional wound dressing techniques used to protect the wound and provide an optimal environment for repair have
their limitations. Various nanomaterials have been produced that exhibit distinct features to tackle issues affecting wound repair mechanisms. This review discusses the emerging technologies that have been designed to improve wound care upon skin injury. To ensure rapid healing and possibly
prevent scarring, different nanomaterials can be applied at different stages of healing (hemostasis, inflammation, proliferation, remodeling).
Collapse
Affiliation(s)
- Mpho Phehello Ngoepe
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| | - Aidan Battison
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| | - Steven Mufamadi
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| |
Collapse
|
149
|
Abstract
Wound healing is an aspect of normal physiology that we all take for granted until it goes wrong, such as, for example, the scarring that results from a severe burn, or those patients who suffer from debilitating chronic wounds that fail to heal. Ever since wound repair research began as a discipline, clinicians and basic scientists have collaborated to try and understand the cell and molecular mechanisms that underpin healthy repair in the hope that this will reveal clues for the therapeutic treatment of pathological healing. In recent decades mathematicians and physicists have begun to join in with this important challenge. Here we describe examples of how mathematical modeling married to biological experimentation has provided insights that biology alone could not fathom. To date, these studies have largely focused on wound re-epithelialization and inflammation, but we also discuss other components of wound healing that might be ripe for similar interdisciplinary approaches.
Collapse
Affiliation(s)
- Jake Turley
- School of Mathematics, Fry Building, University of Bristol, Bristol BS8 1UG, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Isaac V. Chenchiah
- School of Mathematics, Fry Building, University of Bristol, Bristol BS8 1UG, UK
| | | | - Helen Weavers
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
150
|
Cifarelli V, Kuda O, Yang K, Liu X, Gross RW, Pietka TA, Heo GS, Sultan D, Luehmann H, Lesser J, Ross M, Goldberg IJ, Gropler RJ, Liu Y, Abumrad NA. Cardiac immune cell infiltration associates with abnormal lipid metabolism. Front Cardiovasc Med 2022; 9:948332. [PMID: 36061565 PMCID: PMC9428462 DOI: 10.3389/fcvm.2022.948332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023] Open
Abstract
CD36 mediates the uptake of long-chain fatty acids (FAs), a major energy substrate for the myocardium. Under excessive FA supply, CD36 can cause cardiac lipid accumulation and inflammation while its deletion reduces heart FA uptake and lipid content and increases glucose utilization. As a result, CD36 was proposed as a therapeutic target for obesity-associated heart disease. However, more recent reports have shown that CD36 deficiency suppresses myocardial flexibility in fuel preference between glucose and FAs, impairing tissue energy balance, while CD36 absence in tissue macrophages reduces efferocytosis and myocardial repair after injury. In line with the latter homeostatic functions, we had previously reported that CD36-/- mice have chronic subclinical inflammation. Lipids are important for the maintenance of tissue homeostasis and there is limited information on heart lipid metabolism in CD36 deficiency. Here, we document in the hearts of unchallenged CD36-/- mice abnormalities in the metabolism of triglycerides, plasmalogens, cardiolipins, acylcarnitines, and arachidonic acid, and the altered remodeling of these lipids in response to an overnight fast. The hearts were examined for evidence of inflammation by monitoring the presence of neutrophils and pro-inflammatory monocytes/macrophages using the respective positron emission tomography (PET) tracers, 64Cu-AMD3100 and 68Ga-DOTA-ECL1i. We detected significant immune cell infiltration in unchallenged CD36-/- hearts as compared with controls and immune infiltration was also observed in hearts of mice with cardiomyocyte-specific CD36 deficiency. Together, the data show that the CD36-/- heart is in a non-homeostatic state that could compromise its stress response. Non-invasive immune cell monitoring in humans with partial or total CD36 deficiency could help evaluate the risk of impaired heart remodeling and disease.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States,*Correspondence: Vincenza Cifarelli,
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Kui Yang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States,Division of Complex Drug Analysis, Office of Testing and Research, U.S. Food and Drug Administration, St. Louis, MO, United States
| | - Xinping Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard W. Gross
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Terri A. Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Deborah Sultan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Josie Lesser
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Morgan Ross
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Ira J. Goldberg
- Division of Endocrinology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Robert J. Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States,Yongjian Liu,
| | - Nada A. Abumrad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States,Nada A. Abumrad,
| |
Collapse
|