101
|
Alrahawy M, Javed S, Atif H, Elsanhoury K, Mekhaeil K, Eskander G. Microbiome and Colorectal Cancer Management. Cureus 2022; 14:e30720. [DOI: 10.7759/cureus.30720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
102
|
Artificially Sweetened Beverage Consumption and Cancer Risk: A Comprehensive Dose-Response Meta-Analysis of Prospective Studies. Nutrients 2022; 14:nu14214445. [PMID: 36364707 PMCID: PMC9658995 DOI: 10.3390/nu14214445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
The impact of artificially sweetened beverages (ASBs), alternatives to sugar-sweetened beverages, on cancer incidence remains controversial. We conducted a meta-analysis of prospective studies to assess the association of daily ASB intake with cancer risk. A systematic search was performed between January 1967 and September 2022. Risk ratios (RR) or hazard ratios (HR) were extracted and pooled. The Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach was used for the assessment of the certainty of evidence. The study was registered at PROSPERO (CRD42022312171). Overall, 14 articles with 17 cohorts were included. There was no significant association between daily ASB consumption and risk of overall cancer (highest versus lowest category: n = 17, RR = 1.03, 95% CI: 0.96-1.11, p = 0.407). For site-specific cancer analysis, the risk of non-lymphoid leukemia was elevated with high ASB intake (n = 3, RR = 1.35, 95% CI: 1.03-1.77, p = 0.030), while risk of colorectal cancer was decreased (n = 3, RR = 0.78, 95% CI: 0.62-0.99, p = 0.037). Dose-response analysis indicated a positive linear association between ASB intake and the risk of leukemia (p-linear = 0.027). The risk increased by 15% per one serving (355 mL) daily ASB intake increment (RR = 1.15, 95% CI: 1.02-1.30). In conclusion, ASB consumption might be positively associated with the risk of leukemia and negatively associated with the risk of colorectal cancer.
Collapse
|
103
|
Colorectal Cancer and the Role of the Gut Microbiota-Do Medical Students Know More Than Other Young People?-Cross-Sectional Study. Nutrients 2022; 14:nu14194185. [PMID: 36235836 PMCID: PMC9572037 DOI: 10.3390/nu14194185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Malignant neoplasms account for an increasing share of the disease burden of the world population and are an increasingly common cause of death. In the aspect of colorectal cancer, increasing attention is paid to the microbiota. According to current knowledge, the composition of gut microbiota in patients diagnosed with colorectal cancer significantly differs from the composition of microorganisms in the intestines of healthy individuals. (2) Material and methods: The survey included 571 students from the three universities located in Silesia. The research tool was an original, anonymous questionnaire created for the study. The ratio of correct answers to the total number of points possible to obtain was evaluated according to the adopted criteria (≤25%—very low level of knowledge; >75%—high level of knowledge). (3) Results: From the questions about the gut microbiota, the subjects scored an average of six points (SD ± 1.31) out of nine possible points. Statistical analysis showed differences between the number of correct answers among students of the Medical University of Silesia and the University of Silesia (p = 0.04, p < 0.05). On the other hand, in the field of colorectal cancer, the respondents scored on average four points (SD ± 2.07) out of eight possible. Statistical analysis showed significant differences between the ratio of correct answers and the respondent’s university affiliation (p < 0.05). Both age and place of residence did not positively correlate with knowledge level (p = 0.08 NS). In contrast, chronic diseases were found to have a significant effect on the amount of information held by the students surveyed (p < 0.05). (4) Conclusions: The level of knowledge of the surveyed students of the Silesia Province is unsatisfactory. The higher awareness among the students of medical universities results from the presence of issues related to microbiota and CRC in the medical educational content. Therefore, there is a need to consider the introduction of educational activities in the field of cancer prevention, including CRC, especially among non-medical university students.
Collapse
|
104
|
Tabowei G, Gaddipati GN, Mukhtar M, Alzubaidee MJ, Dwarampudi RS, Mathew S, Bichenapally S, Khachatryan V, Muazzam A, Hamal C, Velugoti LSDR, Mohammed L. Microbiota Dysbiosis a Cause of Colorectal Cancer or Not? A Systematic Review. Cureus 2022; 14:e30893. [PMID: 36465770 PMCID: PMC9711892 DOI: 10.7759/cureus.30893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022] Open
Abstract
Deaths from colorectal cancer (CRC) are still rising, and various links to etiology have been proposed. However, a direct link between microbial dysbiosis and colorectal cancer has not been postulated. This study aimed to identify the role of microbes in the pathogenesis of colorectal cancer. This systematic review was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A systematic search was done considering papers published over the past 12 years, using PubMed, PubMed Central, Cochrane, Google Scholar, and ScienceDirect databases. Studies were selected based on the following predefined eligibility criteria: English-language systematic reviews, meta-analysis, randomized controlled trials (RCTs), and clinical trials, which included papers on microbes playing roles in colorectal cancer with the derived data transferred to a template. Following this, quality assessment was done using each study's relevant assessment tool. The initial search generated 128 studies. From the study, we found the ratio of Fusobacterium, when compared between healthy and colorectal cancer patients' guts, was the highest, although it was not the most predominant gut organism. Enterotoxigenic Bacteroides fragilis (ETBF), Clostridium and Salmonella, and Peptostreptococcus showed links with colorectal cancer and described pathways that could explain its implication in colorectal cancer. However, overt conclusions cannot be drawn because further research needs to be conducted.
Collapse
Affiliation(s)
- Godfrey Tabowei
- Department of Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Greeshma N Gaddipati
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maria Mukhtar
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohammed J Alzubaidee
- Department of Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Raga Sruthi Dwarampudi
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sheena Mathew
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sumahitha Bichenapally
- Department of Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vahe Khachatryan
- Department of Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Asmaa Muazzam
- Department of Pathology Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Chandani Hamal
- Department of Internal Medicine/Department of Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Lubna Mohammed
- Department of Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
105
|
Nausch B, Bittner CB, Höller M, Abramov-Sommariva D, Hiergeist A, Gessner A. Contribution of Symptomatic, Herbal Treatment Options to Antibiotic Stewardship and Microbiotic Health. Antibiotics (Basel) 2022; 11:1331. [PMID: 36289988 PMCID: PMC9598931 DOI: 10.3390/antibiotics11101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 12/03/2022] Open
Abstract
Epithelial surfaces in humans are home to symbiotic microbes (i.e., microbiota) that influence the defensive function against pathogens, depending on the health of the microbiota. Healthy microbiota contribute to the well-being of their host, in general (e.g., via the gut-brain axis), and their respective anatomical site, in particular (e.g., oral, urogenital, skin, or respiratory microbiota). Despite efforts towards a more responsible use of antibiotics, they are often prescribed for uncomplicated, self-limiting infections and can have a substantial negative impact on the gut microbiota. Treatment alternatives, such as non-steroidal anti-inflammatory drugs, may also influence the microbiota; thus, they can have lasting adverse effects. Herbal drugs offer a generally safe treatment option for uncomplicated infections of the urinary or respiratory tract. Additionally, their microbiota preserving properties allow for a more appropriate therapy of uncomplicated infections, without contributing to an increase in antibiotic resistance or disturbing the gut microbiota. Here, herbal treatments may be a more appropriate therapy, with a generally favorable safety profile.
Collapse
Affiliation(s)
- Bernhard Nausch
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Claudia B. Bittner
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Martina Höller
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Dimitri Abramov-Sommariva
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
106
|
Chen YC, Chuang CH, Miao ZF, Yip KL, Liu CJ, Li LH, Wu DC, Cheng T, Lin CY, Wang JY. Gut microbiota composition in chemotherapy and targeted therapy of patients with metastatic colorectal cancer. Front Oncol 2022; 12:955313. [PMID: 36212420 PMCID: PMC9539537 DOI: 10.3389/fonc.2022.955313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Studies have reported the effects of the gut microbiota on colorectal cancer (CRC) chemotherapy, but few studies have investigated the association between gut microbiota and targeted therapy. This study investigated the role of the gut microbiota in the treatment outcomes of patients with metastatic CRC (mCRC). We enrolled 110 patients with mCRC and treated them with standard cancer therapy. Stool samples were collected before administering a combination of chemotherapy and targeted therapy. Patients who had a progressive disease (PD) or partial response (PR) for at least 12 cycles of therapy were included in the study. We further divided these patients into anti-epidermal growth factor receptor (cetuximab) and anti-vascular endothelial growth factor (bevacizumab) subgroups. The gut microbiota of the PR group and bevacizumab-PR subgroup exhibited significantly higher α-diversity. The β-diversity of bacterial species significantly differed between the bevacizumab-PR and bevacizumab-PD groups (P = 0.029). Klebsiella quasipneumoniae exhibited the greatest fold change in abundance in the PD group than in the PR group. Lactobacillus and Bifidobacterium species exhibited higher abundance in the PD group. The abundance of Fusobacterium nucleatum was approximately 32 times higher in the PD group than in the PR group. A higher gut microbiota diversity was associated with more favorable treatment outcomes in the patients with mCRC. Bacterial species analysis of stool samples yielded heterogenous results. K. quasipneumoniae exhibited the greatest fold change in abundance among all bacterial species in the PD group. This result warrants further investigation especially in a Taiwanese population.
Collapse
Affiliation(s)
- Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Zhi-Feng Miao
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kwan-Ling Yip
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Deng-Chyang Wu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian−Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan
| |
Collapse
|
107
|
Jiang X, Jiang Z, Cheng Q, Sun W, Jiang M, Sun Y. Cholecystectomy promotes the development of colorectal cancer by the alternation of bile acid metabolism and the gut microbiota. Front Med (Lausanne) 2022; 9:1000563. [PMID: 36213655 PMCID: PMC9540502 DOI: 10.3389/fmed.2022.1000563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality of colorectal cancer (CRC) have been markedly increasing worldwide, causing a tremendous burden to the healthcare system. Therefore, it is crucial to investigate the risk factors and pathogenesis of CRC. Cholecystectomy is a gold standard procedure for treating symptomatic cholelithiasis and gallstone diseases. The rhythm of bile acids entering the intestine is altered after cholecystectomy, which leads to metabolic disorders. Nonetheless, emerging evidence suggests that cholecystectomy might be associated with the development of CRC. It has been reported that alterations in bile acid metabolism and gut microbiota are the two main reasons. However, the potential mechanisms still need to be elucidated. In this review, we mainly discussed how bile acid metabolism, gut microbiota, and the interaction between the two factors influence the development of CRC. Subsequently, we summarized the underlying mechanisms of the alterations in bile acid metabolism after cholecystectomy including cellular level, molecular level, and signaling pathways. The potential mechanisms of the alterations on gut microbiota contain an imbalance of bile acid metabolism, cellular immune abnormality, acid-base imbalance, activation of cancer-related pathways, and induction of toxin, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi Cheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Yan Sun,
| |
Collapse
|
108
|
Prognostic Analysis of LncRNA MCM3AP-AS1 in Colorectal Cancer and the Mechanism of Its Effect on Tumor Cell Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1616370. [PMID: 36172487 PMCID: PMC9512606 DOI: 10.1155/2022/1616370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
To determine the clinical prognostic significance of lncRNA MCM3AP-AS1 in colorectal cancer (CRC) and its preliminary mechanism, 43 CRC patients and 48 healthy individuals were analyzed. Peripheral blood MCM3AP-AS1 was quantified via qRT–PCR in CRC patients at admission and 2 h after surgery and in healthy individuals. Human colon cancer cells (HCT116 and SW480) were transfected with shRNAs targeting upregulation of MCM3AP-AS1 expression (named as sh-MCM3AP-AS1 group) and corresponding negative RNAs (named as sh-MCM3AP-AS1 group). Additionally, the cells were then treated either with 50 mM of the VEGF-specific inhibitor PTK787 (Selleck, USA) (named as inhibition group) or normal saline as a control (named as control group). Before therapy, CRC patients presented a higher MCM3AP-AS1 level than healthy individuals (P < 0.05), and the sensitivity and specificity of MCM3AP-AS1 in predicting the occurrence of CRC were 65.12% and 83.33%, respectively (P < 0.001). After therapy, CRC patients presented a decrease in MCM3AP-AS1 levels, and recurrence was higher in patients who died (P < 0.05). Additionally, the high MCM3AP-AS1 expression group presented a higher mortality than the low MCM3AP-AS1 expression group (P < 0.05). In an in vitro assay, CRC cells showed a higher MCM3AP-AS1 level than CCD-18Co cells, and the sh-MCM3AP-AS1 group presented decreased cell proliferation and invasiveness, whereas the levels apoptosis-associated proteins were increased (P < 0.05). Moreover, the VEGF and VEGFR2 mRNA levels were increased in CRC cells, and VEGF/VEGFR2 pathway-associated proteins were inhibited in the sh-MCM3AP-AS1 group (P < 0.05). Moreover, treatment with PTK787 decreased cell proliferation and invasivness but increased the levels of apoptosis-associated proteins (P < 0.05).
Collapse
|
109
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Aloizos G, Tsagarakis A, Damaskos C, Garmpis N, Garmpi A, Papavassiliou AG, Karamouzis MV. Implication of gut microbiome in immunotherapy for colorectal cancer. World J Gastrointest Oncol 2022; 14:1665-1674. [PMID: 36187397 PMCID: PMC9516653 DOI: 10.4251/wjgo.v14.i9.1665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/09/2022] [Accepted: 07/31/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) constitutes the third most frequently reported malignancy in the male population and the second most common in women in the last two decades. Colon carcinogenesis is a complex, multifactorial event, resulting from genetic and epigenetic aberrations, the impact of environmental factors, as well as the disturbance of the gut microbial ecosystem. The relationship between the intestinal microbiome and carcinogenesis was relatively undervalued in the last decade. However, its remarkable effect on metabolic and immune functions on the host has been in the spotlight as of recent years. There is a strong relationship between gut microbiome dysbiosis, bowel pathogenicity and responsiveness to anti-cancer treatment; including immunotherapy. Modifications of bacteriome consistency are closely associated with the immunologic response to immunotherapeutic agents. This condition that implies the necessity of gut microbiome manipulation. Thus, creatingan optimal response for CRC patients to immunotherapeutic agents. In this paper, we will review the current literature observing how gut microbiota influence the response of immunotherapy on CRC patients.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Nikolaos Papadopoulos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital of Athens, Athens 11521, Attica, Greece
| | - Georgios Aloizos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital of Athens, Athens 11521, Attica, Greece
| | | | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
110
|
Dietary Efficacy Evaluation by Applying a Prediction Model Using Clinical Fecal Microbiome Data of Colorectal Disease to a Controlled Animal Model from an Obesity Perspective. Microorganisms 2022; 10:microorganisms10091833. [PMID: 36144434 PMCID: PMC9505706 DOI: 10.3390/microorganisms10091833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity associated with a Western diet such as a high-fat diet (HFD) is a known risk factor for inflammatory bowel disease (IBD) and colorectal cancer (CRC). In this study, we aimed to develop fecal microbiome data-based deep learning algorithms for the risk assessment of colorectal diseases. The effects of a HFD and a candidate food (Nypa fruticans, NF) on IBD and CRC risk reduction were also evaluated. Fecal microbiome data were obtained from 109 IBD patients, 111 CRC patients, and 395 healthy control (HC) subjects by 16S rDNA amplicon sequencing. IBD and CRC risk assessment prediction models were then constructed by deep learning algorithms. Dietary effects were evaluated based on fecal microbiome data from rats fed on a regular chow diet (RCD), HFD, and HFD plus ethanol extracts or water extracts of NF. There were significant differences in taxa when IBD and CRC were compared with HC. The diagnostic performance (area under curve, AUC) of the deep learning algorithm was 0.84 for IBD and 0.80 for CRC prediction. Based on the rat fecal microbiome data, IBD and CRC risks were increased in HFD-fed rats versus RCD-fed rats. Interestingly, in the HFD-induced obesity model, the IBD and CRC risk scores were significantly lowered by the administration of ethanol extracts of NF, but not by the administration of water extracts of NF. In conclusion, changes in the fecal microbiome of obesity by Western diet could be important risk factors for the development of IBD and CRC. The risk prediction model developed in this study could be used to evaluate dietary efficacy.
Collapse
|
111
|
Xu H, Cao C, Ren Y, Weng S, Liu L, Guo C, Wang L, Han X, Ren J, Liu Z. Antitumor effects of fecal microbiota transplantation: Implications for microbiome modulation in cancer treatment. Front Immunol 2022; 13:949490. [PMID: 36177041 PMCID: PMC9513044 DOI: 10.3389/fimmu.2022.949490] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Fecal microbiome transplantation (FMT) from healthy donors is one of the techniques for restoration of the dysbiotic gut, which is increasingly being used to treat various diseases. Notably, mounting evidence in recent years revealed that FMT has made a breakthrough in the oncology treatment area, especially by improving immunotherapy efficacy to achieve antitumor effects. However, the mechanism of FMT in enhancing antitumor effects of immune checkpoint blockers (ICBs) has not yet been fully elucidated. This review systematically summarizes the role of microbes and their metabolites in the regulation of tumor immunity. We highlight the mechanism of action of FMT in the treatment of refractory tumors as well as in improving the efficacy of immunotherapy. Furthermore, we summarize ongoing clinical trials combining FMT with immunotherapy and further focus on refined protocols for the practice of FMT in cancer treatment, which could guide future directions and priorities of FMT scientific development.
Collapse
Affiliation(s)
- Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Chenxi Cao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Jianzhuang Ren, ; Zaoqu Liu,
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Jianzhuang Ren, ; Zaoqu Liu,
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Jianzhuang Ren, ; Zaoqu Liu,
| |
Collapse
|
112
|
Kapsetaki SE, Marquez Alcaraz G, Maley CC, Whisner CM, Aktipis A. Diet, Microbes, and Cancer Across the Tree of Life: a Systematic Review. Curr Nutr Rep 2022; 11:508-525. [PMID: 35704266 PMCID: PMC9197725 DOI: 10.1007/s13668-022-00420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Cancers are a leading cause of death in humans and for many other species. Diet has often been associated with cancers, and the microbiome is an essential mediator between diet and cancers. Here, we review the work on cancer and the microbiome across species to search for broad patterns of susceptibility associated with different microbial species. RECENT FINDINGS Some microbes, such as Helicobacter bacteria, papillomaviruses, and the carnivore-associated Fusobacteria, consistently induce tumorigenesis in humans and other species. Other microbes, such as the milk-associated Lactobacillus, consistently inhibit tumorigenesis in humans and other species. We systematically reviewed over a thousand published articles and identified links between diet, microbes, and cancers in several species of mammals, birds, and flies. Future work should examine a larger variety of host species to discover new model organisms for human preclinical trials, to better understand the observed variance in cancer prevalence across species, and to discover which microbes and diets are associated with cancers across species. Ultimately, this could help identify microbial and dietary interventions to diagnose, prevent, and treat cancers in humans as well as other animals.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA.
| | - Gissel Marquez Alcaraz
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Athena Aktipis
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
113
|
Zhang X, Hong R, Bei L, Hu Z, Yang X, Song T, Chen L, Meng H, Niu G, Ke C. SELENBP1 inhibits progression of colorectal cancer by suppressing epithelial–mesenchymal transition. Open Med (Wars) 2022; 17:1390-1404. [PMID: 36117772 PMCID: PMC9438969 DOI: 10.1515/med-2022-0532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 01/13/2023] Open
Abstract
Selenium-binding protein 1 (SELENBP1) is frequently dysregulated in various malignancies including colorectal cancer (CRC); however, its roles in progression of CRCs and the underlying mechanism remain to be elucidated. In this study, we compared the expression of SELENBP1 between CRCs and colorectal normal tissues (NTs), as well as between primary and metastatic CRCs; we determined the association between SELENBP1 expression and CRC patient prognoses; we conducted both in vitro and in vivo experiments to explore the functional roles of SELENBP1 in CRC progression; and we characterized the potential underlying mechanisms associated with SELENBP1 activities. We found that the expression of SELENBP1 was significantly and consistently decreased in CRCs than that in adjacent NTs, while significantly and frequently decreased in metastatic than primary CRCs. High expression of SELENBP1 was an independent predictor of favorable prognoses in CRC patients. Overexpression of SELENBP1 suppressed, while silencing of SELENBP1 promoted cell proliferation, migration and invasion, and in vivo tumorigenesis of CRC. Mechanically, SELENBP1 may suppress CRC progression by inhibiting the epithelial–mesenchymal transition.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, P.R. China
| | - Runqi Hong
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, P.R. China
| | - Lanxin Bei
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiqing Hu
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, P.R. China
| | - Ximin Yang
- Department of Radiology, Dongying New District Hospital, Dongying, Shandong Province, 257000, P.R. China
| | - Tao Song
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, P.R. China
| | - Liang Chen
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, P.R. China
| | - He Meng
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gengming Niu
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, P.R. China
| | - Chongwei Ke
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, P.R. China
| |
Collapse
|
114
|
Obón-Santacana M, Mas-Lloret J, Bars-Cortina D, Criado-Mesas L, Carreras-Torres R, Díez-Villanueva A, Moratalla-Navarro F, Guinó E, Ibáñez-Sanz G, Rodríguez-Alonso L, Mulet-Margalef N, Mata A, García-Rodríguez A, Duell EJ, Pimenoff VN, Moreno V. Meta-Analysis and Validation of a Colorectal Cancer Risk Prediction Model Using Deep Sequenced Fecal Metagenomes. Cancers (Basel) 2022; 14:cancers14174214. [PMID: 36077748 PMCID: PMC9454621 DOI: 10.3390/cancers14174214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
The gut microbiome is a potential modifiable risk factor for colorectal cancer (CRC). We re-analyzed all eight previously published stool sequencing data and conducted an MWAS meta-analysis. We used cross-validated LASSO predictive models to identify a microbiome signature for predicting the risk of CRC and precancerous lesions. These models were validated in a new study, Colorectal Cancer Screening (COLSCREEN), including 156 participants that were recruited in a CRC screening context. The MWAS meta-analysis identified 95 bacterial species that were statistically significantly associated with CRC (FDR < 0.05). The LASSO CRC predictive model obtained an area under the receiver operating characteristic curve (aROC) of 0.81 (95%CI: 0.78−0.83) and the validation in the COLSCREEN dataset was 0.75 (95%CI: 0.66−0.84). This model selected a total of 32 species. The aROC of this CRC-trained model to predict precancerous lesions was 0.52 (95%CI: 0.41−0.63). We have identified a signature of 32 bacterial species that have a good predictive accuracy to identify CRC but not precancerous lesions, suggesting that the identified microbes that were enriched or depleted in CRC are merely a consequence of the tumor. Further studies should focus on CRC as well as precancerous lesions with the intent to implement a microbiome signature in CRC screening programs.
Collapse
Affiliation(s)
- Mireia Obón-Santacana
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Joan Mas-Lloret
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - David Bars-Cortina
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Lourdes Criado-Mesas
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Robert Carreras-Torres
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| | - Anna Díez-Villanueva
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ferran Moratalla-Navarro
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08007 Barcelona, Spain
| | - Elisabet Guinó
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Gemma Ibáñez-Sanz
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Gastroenterology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Lorena Rodríguez-Alonso
- Gastroenterology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Núria Mulet-Margalef
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08916 Badalona, Spain
- Badalona-Applied Research Group in Oncology, Catalan Institute of Oncology (ICO), 08916 Badalona, Spain
| | - Alfredo Mata
- Digestive System Service, Moisés Broggi Hospital, 08970 Sant Joan Despí, Spain
| | - Ana García-Rodríguez
- Endoscopy Unit, Digestive System Service, Viladecans Hospital-IDIBELL, 08840 Viladecans, Spain
| | - Eric J. Duell
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ville Nikolai Pimenoff
- Department of Laboratory Medicine, Karolinska Institutet, 14186 Stockholm, Sweden
- Correspondence: (V.N.P.); (V.M.)
| | - Victor Moreno
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08007 Barcelona, Spain
- Correspondence: (V.N.P.); (V.M.)
| |
Collapse
|
115
|
Garcia-Etxebarria K, Etxart A, Barrero M, Nafria B, Segues Merino NM, Romero-Garmendia I, Franke A, D’Amato M, Bujanda L. Performance of the Use of Genetic Information to Assess the Risk of Colorectal Cancer in the Basque Population. Cancers (Basel) 2022; 14:4193. [PMID: 36077729 PMCID: PMC9454881 DOI: 10.3390/cancers14174193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/14/2023] Open
Abstract
Although the genetic contribution to colorectal cancer (CRC) has been studied in various populations, studies on the applicability of available genetic information in the Basque population are scarce. In total, 835 CRC cases and 940 controls from the Basque population were genotyped and genome-wide association studies were carried out. Mendelian Randomization analyses were used to discover the effect of modifiable risk factors and microbiota on CRC. In total, 25 polygenic risk score models were evaluated to assess their performance in CRC risk calculation. Moreover, 492 inflammatory bowel disease cases were used to assess whether that genetic information would not confuse both conditions. Five suggestive (p < 5 × 10−6) loci were associated with CRC risk, where genes previously associated with CRC were located (e.g., ABCA12, ATIC or ERBB4). Moreover, the analyses of CRC locations detected additional genes consistent with the biology of CRC. The possible contribution of cholesterol, BMI, Firmicutes and Cyanobacteria to CRC risk was detected by Mendelian Randomization. Finally, although polygenic risk score models showed variable performance, the best model performed correctly regardless of the location and did not misclassify inflammatory bowel disease cases. Our results are consistent with CRC biology and genetic risk models and could be applied to assess CRC risk in the Basque population.
Collapse
Affiliation(s)
- Koldo Garcia-Etxebarria
- Biodonostia, Gastrointestinal Genetics Group, 20014 San Sebastián, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Ane Etxart
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Maialen Barrero
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Beatriz Nafria
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Nerea Miren Segues Merino
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), 48940 Leioa, Spain
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE, Basque Research and Technology Alliance, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Sciences, 48009 Bilbao, Spain
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| |
Collapse
|
116
|
Li J, George Markowitz RH, Brooks AW, Mallott EK, Leigh BA, Olszewski T, Zare H, Bagheri M, Smith HM, Friese KA, Habibi I, Lawrence WM, Rost CL, Lédeczi Á, Eeds AM, Ferguson JF, Silver HJ, Bordenstein SR. Individuality and ethnicity eclipse a short-term dietary intervention in shaping microbiomes and viromes. PLoS Biol 2022; 20:e3001758. [PMID: 35998206 PMCID: PMC9397868 DOI: 10.1371/journal.pbio.3001758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 07/14/2022] [Indexed: 11/28/2022] Open
Abstract
Many diseases linked with ethnic health disparities associate with changes in microbial communities in the United States, but the causes and persistence of ethnicity-associated microbiome variation are not understood. For instance, microbiome studies that strictly control for diet across ethnically diverse populations are lacking. Here, we performed multiomic profiling over a 9-day period that included a 4-day controlled vegetarian diet intervention in a defined geographic location across 36 healthy Black and White females of similar age, weight, habitual diets, and health status. We demonstrate that individuality and ethnicity account for roughly 70% to 88% and 2% to 10% of taxonomic variation, respectively, eclipsing the effects a short-term diet intervention in shaping gut and oral microbiomes and gut viromes. Persistent variation between ethnicities occurs for microbial and viral taxa and various metagenomic functions, including several gut KEGG orthologs, oral carbohydrate active enzyme categories, cluster of orthologous groups of proteins, and antibiotic-resistant gene categories. In contrast to the gut and oral microbiome data, the urine and plasma metabolites tend to decouple from ethnicity and more strongly associate with diet. These longitudinal, multiomic profiles paired with a dietary intervention illuminate previously unrecognized associations of ethnicity with metagenomic and viromic features across body sites and cohorts within a single geographic location, highlighting the importance of accounting for human microbiome variation in research, health determinants, and eventual therapies. Trial Registration: ClinicalTrials.gov ClinicalTrials.gov Identifier: NCT03314194.
Collapse
Affiliation(s)
- Junhui Li
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Robert H George Markowitz
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Andrew W Brooks
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Stanford University Genetics Department, Stanford University, Palo Alto, California, United States of America
| | - Elizabeth K Mallott
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brittany A Leigh
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Timothy Olszewski
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
| | - Hamid Zare
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Software Integrated Systems, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Minoo Bagheri
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Holly M Smith
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Katie A Friese
- Department of Medicine, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
| | - Ismail Habibi
- School for Science and Math at Vanderbilt, Collaborative for STEM Education and Outreach, Department of Teaching and Learning, Vanderbilt University, Nashville, Tennessee, United States of America
| | - William M Lawrence
- School for Science and Math at Vanderbilt, Collaborative for STEM Education and Outreach, Department of Teaching and Learning, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Charlie L Rost
- School for Science and Math at Vanderbilt, Collaborative for STEM Education and Outreach, Department of Teaching and Learning, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ákos Lédeczi
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Software Integrated Systems, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Angela M Eeds
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- School for Science and Math at Vanderbilt, Collaborative for STEM Education and Outreach, Department of Teaching and Learning, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jane F Ferguson
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Heidi J Silver
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, United States of America
| | - Seth R Bordenstein
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
117
|
Piazzesi A, Putignani L. Extremely small and incredibly close: Gut microbes as modulators of inflammation and targets for therapeutic intervention. Front Microbiol 2022; 13:958346. [PMID: 36071979 PMCID: PMC9441770 DOI: 10.3389/fmicb.2022.958346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic inflammation is a hallmark for a variety of disorders and is at least partially responsible for disease progression and poor patient health. In recent years, the microbiota inhabiting the human gut has been associated with not only intestinal inflammatory diseases but also those that affect the brain, liver, lungs, and joints. Despite a strong correlation between specific microbial signatures and inflammation, whether or not these microbes are disease markers or disease drivers is still a matter of debate. In this review, we discuss what is known about the molecular mechanisms by which the gut microbiota can modulate inflammation, both in the intestine and beyond. We identify the current gaps in our knowledge of biological mechanisms, discuss how these gaps have likely contributed to the uncertain outcome of fecal microbiota transplantation and probiotic clinical trials, and suggest how both mechanistic insight and -omics-based approaches can better inform study design and therapeutic intervention.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Lorenza Putignani,
| |
Collapse
|
118
|
Sitthirak S, Suksawat M, Phetcharaburanin J, Wangwiwatsin A, Klanrit P, Namwat N, Khuntikeo N, Titapun A, Jarearnrat A, Sangkhamanon S, Loilome W. Chemotherapeutic resistant cholangiocarcinoma displayed distinct intratumoral microbial composition and metabolic profiles. PeerJ 2022; 10:e13876. [PMID: 35990899 PMCID: PMC9390323 DOI: 10.7717/peerj.13876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Background Cholangiocarcinoma (CCA) is a malignancy of the cholangiocytes. One of the major issues regarding treatment for CCA patients is the development of chemotherapeutic resistance. Recently, the association of intratumoral bacteria with chemotherapeutic response has been reported in many cancer types. Method In the present study, we aimed to investigate the association between the intratumoral microbiome and its function on gemcitabine and cisplatin response in CCA tissues using 16S rRNA sequencing and 1H NMR spectroscopic analysis. Result The results of 16S rRNA sequencing demonstrated that Gammaproteobacteria were significantly higher in both gemcitabine- and cisplatin-resistance groups compared to sensitive groups. In addition, intratumoral microbial diversity and abundance were significantly different compared between gemcitabine-resistant and sensitive groups. Furthermore, the metabolic phenotype of the low dose gemcitabine-resistant group significantly differed from that of low dose gemcitabine-sensitive group. Increased levels of acetylcholine, adenine, carnitine and inosine were observed in the low dose gemcitabine-resistant group, while the levels of acetylcholine, alpha-D-glucose and carnitine increased in the low dose cisplatin-resistant group. We further performed the intergrative microbiome-metabolome analysis and revealed a correlation between the intratumoral bacterial and metabolic profiles which reflect the chemotherapeutics resistance pattern in CCA patients. Conclusion Our results demonstrated insights into the disruption of the microbiome and metabolome in the progression of chemotherapeutic resistance. The altered microbiome-metabolome fingerprints could be used as predictive markers for drug responses potentially resulting in the development of an appropriate chemotherapeutic drug treatment plan for individual CCA patients.
Collapse
Affiliation(s)
- Sirinya Sitthirak
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apiwat Jarearnrat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sakkarn Sangkhamanon
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
119
|
Lin C, Li B, Tu C, Chen X, Guo M. Correlations between Intestinal Microbiota and Clinical Characteristics in Colorectal Adenoma/Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3140070. [PMID: 35937408 PMCID: PMC9352470 DOI: 10.1155/2022/3140070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022]
Abstract
Background Most of colorectal cancer (CRC) cases are sporadic and develop along the adenoma-carcinoma sequence. Intestinal microbial dysbiosis is involved in the development of colorectal cancer. However, there are still no absolute markers predicting the progression from adenoma to carcinoma. Aims To investigate the characteristics of intestinal microbiota in colorectal adenoma and carcinoma patients and the correlations with clinical characteristics. Methods Fecal samples were collected from 154 colorectal carcinoma patients (CRC group), 20 colorectal adenoma patients (AD group), and 199 healthy controls (control group). The intestinal microbiota was investigated by 16S rRNA gene sequencing. Results Compared to the healthy controls, microbial diversity was dramatically decreased in AD/CRC. At the genus level, Acidaminococcus significantly decreased with the order of control-AD-CRC (P < 0.05). Parvimonas, Peptostreptococcus, Prevotella, Butyricimonas, Alistipes, and Odoribacter were the key genera in the network of colorectal adenoma/carcinoma-associated bacteria. Combination of the top 10 most important species, including Butyricimonas synergistica, Agrobacterium larrymoorei, Bacteroides plebeius, Lachnospiraceae bacterium feline oral taxon 001, Clostridium scindens, Prevotella heparinolytica, bacterium LD2013, Streptococcus mutans, Lachnospiraceae bacterium 19gly4, and Eubacterium hallii, showed the best performance in distinguishing AD patients from CRC (AUC = 85.54%, 95% CI: 78.83%-92.25%). The clinicopathologic features, including age, sex, tumor location, differentiation degree, and TNM stage, were identified to be closely linked to the intestinal microbiome in CRC. Conclusion Several intestinal bacteria changed along the adenoma-carcinoma sequence and might be the potential markers for the diagnosis and treatment of colorectal adenoma/carcinoma. Intestinal microbiota characteristics in CRC should account for the host factors.
Collapse
Affiliation(s)
- Caizhao Lin
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Baolong Li
- Department of General Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunyi Tu
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province 510630, China
| | - Xiaohua Chen
- Department of Biochemistry, Medical College of Shaoguan University, Shaoguan, Guangdong Province 512026, China
| | - Min Guo
- Department of Oncology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
120
|
Hua H, Sun Y, He X, Chen Y, Teng L, Lu C. Intestinal Microbiota in Colorectal Adenoma-Carcinoma Sequence. Front Med (Lausanne) 2022; 9:888340. [PMID: 35935780 PMCID: PMC9348271 DOI: 10.3389/fmed.2022.888340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background Most colorectal cancer (CRC) cases are sporadic and develop along the adenoma-carcinoma sequence. Intestinal microbial dysbiosis is involved in the development of colorectal cancer. However, there are still no absolute markers predicting the progression from adenoma to carcinoma. This study aimed to investigate the characteristics of intestinal microbiota in patients with colorectal adenoma and carcinoma and its correlations with clinical characteristics. Methods Fecal samples were collected from 154 patients with CRC, 20 patients with colorectal adenoma (AD) and 199 healthy controls. To analyze the differences in the intestinal microbiota, 16S rRNA gene sequencing was conducted. Results At the genus level, there were four significantly different genera among the three groups, namely Acidaminococcus, Alloprevotella, Mycoplasma, and Sphingobacterium, while Acidaminococcus significantly decreased with the order of Control-AD-CRC (P < 0.05). In addition, Parvimonas, Peptostreptococcus, Prevotella, Butyricimonas, Alistipes, and Odoribacter were the key genera in the network of colorectal adenoma/carcinoma-associated bacteria. The top 10 most important species, including Butyricimonas synergistica, Agrobacterium larrymoorei, Bacteroides plebeius, Lachnospiraceae bacterium feline oral taxon 001, Clostridium scindens, Prevotella heparinolytica, bacterium LD2013, Streptococcus mutans, Lachnospiraceae bacterium 19gly4, and Eubacterium hallii, showed the best performance in distinguishing AD from CRC (AUC = 85.54%, 95% CI: 78.83–92.25%). The clinicopathologic features, including age, gender, tumor location, differentiation degree, and TNM stage, were identified to be closely linked to the intestinal microbiome in CRC. Conclusion Several intestinal bacteria changed along the adenoma-carcinoma sequence and might be the potential markers for the diagnosis and treatment of colorectal adenoma/carcinoma. Intestinal microbiota characteristics in CRC should account for the host factors.
Collapse
Affiliation(s)
- Hanju Hua
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanhong Sun
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinjue He
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Yi Chen,
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Lisong Teng,
| | - Chao Lu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Chao Lu,
| |
Collapse
|
121
|
Nittayaboon K, Leetanaporn K, Sangkhathat S, Roytrakul S, Navakanitworakul R. Characterization of Butyrate-Resistant Colorectal Cancer Cell Lines and the Cytotoxicity of Anticancer Drugs against These Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6565300. [PMID: 35909471 PMCID: PMC9325644 DOI: 10.1155/2022/6565300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. The gut microbiota plays a critical role in homeostasis and carcinogenesis. Butyrate, a short-chain fatty acid produced by the gut microbiota, plays a role in intestinal homeostasis and acts as an anticancer agent by inhibiting growth and inducing apoptosis. However, microbiota studies have revealed an abnormally high abundance of butyrate-producing bacteria in patients with CRC and indicated that it leads to chemoresistance. We characterized butyrate resistance in HCT-116 and PMF-K014 CRC cells after treatment with a maximum butyrate concentration of 3.2 mM. The 50% inhibitory concentration of butyrate was increased in butyrate-resistant (BR) cells compared with that in parental (PT) cells. The mechanism of butyrate resistance was initially investigated by determining the expression of butyrate influx- and drug efflux-related genes. We found the increased expression of influx- and efflux-related genes in BR cells compared with that in PT cells. Proteomic data showed both identical and different proteins in PT and BR cells. Further analysis revealed the crossresistance of HCT-116 cells to metformin and oxaliplatin and that of PMF-K014 cells to 5-fluorouracil. Our findings suggest that the acquisition of butyrate resistance induces the development of chemoresistance in CRC cells, which may play an important role in CRC development, treatment, and metastasis.
Collapse
Affiliation(s)
- Kesara Nittayaboon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Raphatphorn Navakanitworakul
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110
| |
Collapse
|
122
|
Kodikara S, Ellul S, Lê Cao KA. Statistical challenges in longitudinal microbiome data analysis. Brief Bioinform 2022; 23:bbac273. [PMID: 35830875 PMCID: PMC9294433 DOI: 10.1093/bib/bbac273] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/28/2022] [Accepted: 06/12/2022] [Indexed: 11/13/2022] Open
Abstract
The microbiome is a complex and dynamic community of microorganisms that co-exist interdependently within an ecosystem, and interact with its host or environment. Longitudinal studies can capture temporal variation within the microbiome to gain mechanistic insights into microbial systems; however, current statistical methods are limited due to the complex and inherent features of the data. We have identified three analytical objectives in longitudinal microbial studies: (1) differential abundance over time and between sample groups, demographic factors or clinical variables of interest; (2) clustering of microorganisms evolving concomitantly across time and (3) network modelling to identify temporal relationships between microorganisms. This review explores the strengths and limitations of current methods to fulfill these objectives, compares different methods in simulation and case studies for objectives (1) and (2), and highlights opportunities for further methodological developments. R tutorials are provided to reproduce the analyses conducted in this review.
Collapse
Affiliation(s)
- Saritha Kodikara
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Royal Parade, 3052, Victoria, Australia
| | - Susan Ellul
- Murdoch Children’s Research Institute and Department of Paediatrics, University of Melbourne, Bouverie Street, 3052, Victoria, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Royal Parade, 3052, Victoria, Australia
| |
Collapse
|
123
|
Ghosh S, Singh R, Vanwinkle ZM, Guo H, Vemula PK, Goel A, Haribabu B, Jala VR. Microbial metabolite restricts 5-fluorouracil-resistant colonic tumor progression by sensitizing drug transporters via regulation of FOXO3-FOXM1 axis. Theranostics 2022; 12:5574-5595. [PMID: 35910798 PMCID: PMC9330515 DOI: 10.7150/thno.70754] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
The survival rate of colorectal cancer patients is adversely affected by the selection of tumors resistant to conventional anti-cancer drugs such as 5-fluorouracil (5FU). Although there is mounting evidence that commensal gut microbiota is essential for effective colon cancer treatment, the detailed molecular mechanisms and the role of gut microbial metabolites remain elusive. The goal of this study is to decipher the impact and mechanisms of gut microbial metabolite, urolithin A (UroA) and its structural analogue, UAS03 on reversal of 5FU-resistant (5FUR) colon cancers. Methods: We have utilized the SW480 and HCT-116 parental (5FU-sensitive) and 5FUR colon cancer cells to examine the chemosensitization effects of UroA or UAS03 by using both in vitro and in vivo models. The effects of mono (UroA/UAS03/5FU) and combinatorial therapy (UroA/UAS03 + 5FU) on cell proliferation, apoptosis, cell migration and invasion, regulation of epithelial mesenchymal transition (EMT) mediators, expression and activities of drug transporters, and their regulatory transcription factors were examined using molecular, cellular, immunological and flowcytometric methods. Further, the anti-tumor effects of mono/combination therapy (UroA or UAS03 or 5FU or UroA/UAS03 + 5FU) were examined using pre-clinical models of 5FUR-tumor xenografts in NRGS mice and azoxymethane (AOM)-dextran sodium sulfate (DSS)-induced colon tumors. Results: Our data showed that UroA or UAS03 in combination with 5FU significantly inhibited cell viability, proliferation, invasiveness as well as induced apoptosis of the 5FUR colon cancer cells compared to mono treatments. Mechanistically, UroA or UAS03 chemosensitized the 5FUR cancer cells by downregulating the expression and activities of drug transporters (MDR1, BCRP, MRP2 and MRP7) leading to a decrease in the efflux of 5FU. Further, our data suggested the UroA or UAS03 chemosensitized 5FUR cancer cells to 5FU treatment through regulating FOXO3-FOXM1 axis. Oral treatment with UroA or UAS03 in combination with low dose i.p. 5FU significantly reduced the growth of 5FUR-tumor xenografts in NRGS mice. Further, combination therapy significantly abrogated colonic tumors in AOM-DSS-induced colon tumors in mice. Conclusions: In summary, gut microbial metabolite UroA and its structural analogue UAS03 chemosensitized the 5FUR colon cancers for effective 5FU chemotherapy. This study provided the novel characteristics of gut microbial metabolites to have significant translational implications in drug-resistant cancer therapeutics.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Rajbir Singh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Zachary Matthew Vanwinkle
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Haixun Guo
- Department of Radiology, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK campus, Bangalore, Karnataka 560065, India
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| |
Collapse
|
124
|
Alginate Oligosaccharides Ameliorate DSS-Induced Colitis through Modulation of AMPK/NF-κB Pathway and Intestinal Microbiota. Nutrients 2022; 14:nu14142864. [PMID: 35889822 PMCID: PMC9321948 DOI: 10.3390/nu14142864] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alginate oligosaccharides (AOS) are shown to have various biological activities of great value to medicine, food, and agriculture. However, little information is available about their beneficial effects and mechanisms on ulcerative colitis. In this study, AOS with a polymerization degree between 2 and 4 were found to possess anti-inflammatory effects in vitro and in vivo. AOS could decrease the levels of nitric oxide (NO), IL-1β, IL-6, and TNFα, and upregulate the levels of IL-10 in both RAW 264.7 and bone-marrow-derived macrophage (BMDM) cells under lipopolysaccharide (LPS) stimulation. Additionally, oral AOS administration could significantly prevent bodyweight loss, colonic shortening, and rectal bleeding in dextran sodium sulfate (DSS)-induced colitis mice. AOS pretreatment could also reduce disease activity index scores and histopathologic scores and downregulate proinflammatory cytokine levels. Importantly, AOS administration could reverse DSS-induced AMPK deactivation and NF-κB activation in colonic tissues, as evidenced by enhanced AMPK phosphorylation and p65 phosphorylation inhibition. AOS could also upregulate AMPK phosphorylation and inhibit NF-κB activation in vitro. Moreover, 16S rRNA gene sequencing of gut microbiota indicated that supplemental doses of AOS could affect overall gut microbiota structure to a varying extent and specifically change the abundance of some bacteria. Medium-dose AOS could be superior to low- or high-dose AOS in maintaining remission in DSS-induced colitis mice. In conclusion, AOS can play a protective role in colitis through modulation of gut microbiota and the AMPK/NF-kB pathway.
Collapse
|
125
|
Trimethylamine N-Oxide Promotes Cell Proliferation and Angiogenesis in Colorectal Cancer. J Immunol Res 2022; 2022:7043856. [PMID: 35832644 PMCID: PMC9273394 DOI: 10.1155/2022/7043856] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Of all intestinal microbiome-derived metabolites, trimethylamine N-oxide (TMAO) has received increasing attention because of its potent role in colorectal cancer development. Accumulating evidence suggests that TMAO generated by the gut microbiota is a new and important player in the etiological process of colorectal cancer. Nevertheless, the carcinogenic mechanism of TMAO in colorectal cancer remains unclear. In this study, TMAO induced colorectal cancer cell proliferation and produced higher vascular endothelial growth factor A (VEGFA) levels in vitro. In vivo, after long-term choline feeding in tumor-bearing mice, circulating TMAO levels, tumor volume, new blood vessel formation, and VEGFA and CD31 amounts were increased significantly. This study revealed that TMAO exerts oncogenic effects by promoting cell proliferation and angiogenesis in colorectal cancer.
Collapse
|
126
|
Koyande N, Gangopadhyay M, Thatikonda S, Rengan AK. The role of gut microbiota in the development of colorectal cancer: a review. Int J Colorectal Dis 2022; 37:1509-1523. [PMID: 35704091 DOI: 10.1007/s00384-022-04192-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is the cancer of the colon and rectum. Recent research has found a link between CRC and human gut microbiota. This review explores the effect of gut microbiota on colorectal carcinogenesis and the development of chemoresistance. METHODS A literature overview was performed to identify the gut microbiota species that showed altered abundance in CRC patients and the mechanisms by which some of them aid in the development of chemoresistance. RESULTS Types of gut microbiota present and methods of analyzing them were discussed. We observed that numerous microbiota showed altered abundance in CRC patients and could act as a biomarker for CRC diagnosis and treatment. Further, it was demonstrated that microbes also have a role in the development of chemoresistance by mechanisms like immune system activation, drug modification, and autophagy modulation. Finally, the key issue of the growing global problem of antimicrobial resistance and its relationship with CRC was highlighted. CONCLUSION This review discussed the role of gut microbiota dysbiosis on colorectal cancer progression and the development of chemoresistance.
Collapse
Affiliation(s)
- Navami Koyande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India
| | - Madhusree Gangopadhyay
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India.
| |
Collapse
|
127
|
Arnau-Collell C, Díez-Villanueva A, Bellosillo B, Augé JM, Muñoz J, Guinó E, Moreira L, Serradesanferm A, Pozo À, Torà-Rocamora I, Bonjoch L, Ibañez-Sanz G, Obon-Santacana M, Moratalla-Navarro F, Sanz-Pamplona R, Márquez Márquez C, Rueda Miret R, Pérez Berbegal R, Piquer Velasco G, Hernández Rodríguez C, Grau J, Castells A, Borràs JM, Bessa X, Moreno V, Castellví-Bel S. Evaluating the Potential of Polygenic Risk Score to Improve Colorectal Cancer Screening. Cancer Epidemiol Biomarkers Prev 2022; 31:1305-1312. [PMID: 35511747 PMCID: PMC9355543 DOI: 10.1158/1055-9965.epi-22-0042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 04/26/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Colorectal cancer has high incidence and associated mortality worldwide. Screening programs are recommended for men and women over 50. Intermediate screens such as fecal immunochemical testing (FIT) select patients for colonoscopy with suboptimal sensitivity. Additional biomarkers could improve the current scenario. METHODS We included 2,893 individuals with a positive FIT test. They were classified as cases when a high-risk lesion for colorectal cancer was detected after colonoscopy, whereas the control group comprised individuals with low-risk or no lesions. 65 colorectal cancer risk genetic variants were genotyped. Polygenic risk score (PRS) and additive models for risk prediction incorporating sex, age, FIT value, and PRS were generated. RESULTS Risk score was higher in cases compared with controls [per allele OR = 1.04; 95% confidence interval (CI), 1.02-1.06; P < 0.0001]. A 2-fold increase in colorectal cancer risk was observed for subjects in the highest decile of risk alleles (≥65), compared with those in the first decile (≤54; OR = 2.22; 95% CI, 1.59-3.12; P < 0.0001). The model combining sex, age, FIT value, and PRS reached the highest accuracy for identifying patients with a high-risk lesion [cross-validated area under the ROC curve (AUROC): 0.64; 95% CI, 0.62-0.66]. CONCLUSIONS This is the first investigation analyzing PRS in a two-step colorectal cancer screening program. PRS could improve current colorectal cancer screening, most likely for higher at-risk subgroups. However, its capacity is limited to predict colorectal cancer risk status and should be complemented by additional biomarkers. IMPACT PRS has capacity for risk stratification of colorectal cancer suggesting its potential for optimizing screening strategies alongside with other biomarkers.
Collapse
Affiliation(s)
- Coral Arnau-Collell
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Anna Díez-Villanueva
- Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology, Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) and University of Barcelona, Barcelona, Spain
| | - Beatriz Bellosillo
- Pathology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Josep M. Augé
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jenifer Muñoz
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Elisabet Guinó
- Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology, Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) and University of Barcelona, Barcelona, Spain
| | - Leticia Moreira
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Anna Serradesanferm
- Department of Preventive Medicine and Epidemiology, Clinical Institute of Internal Medicine and Dermatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona,Barcelona, Spain
| | - Àngels Pozo
- Department of Preventive Medicine and Epidemiology, Clinical Institute of Internal Medicine and Dermatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona,Barcelona, Spain
| | - Isabel Torà-Rocamora
- Department of Preventive Medicine and Epidemiology, Clinical Institute of Internal Medicine and Dermatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona,Barcelona, Spain
| | - Laia Bonjoch
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Gemma Ibañez-Sanz
- Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology, Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) and University of Barcelona, Barcelona, Spain
| | - Mireia Obon-Santacana
- Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology, Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) and University of Barcelona, Barcelona, Spain
| | - Ferran Moratalla-Navarro
- Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology, Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) and University of Barcelona, Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology, Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) and University of Barcelona, Barcelona, Spain
| | - Carmen Márquez Márquez
- Gastroenterology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rebeca Rueda Miret
- Pathology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rocio Pérez Berbegal
- Gastroenterology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Gabriel Piquer Velasco
- Pathology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Cristina Hernández Rodríguez
- Unitat de Prevenció i Registre del Càncer, Servei d'Epidemiologia i Avaluació, Hospital del Mar, Barcelona, Spain
| | - Jaume Grau
- Department of Preventive Medicine and Epidemiology, Clinical Institute of Internal Medicine and Dermatology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona,Barcelona, Spain
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Josep M. Borràs
- Department of Clinical Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Bessa
- Gastroenterology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Victor Moreno
- Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology, Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) and University of Barcelona, Barcelona, Spain.,Corresponding Authors: Victor Moreno, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology, Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) and University of Barcelona, Avinguda de la Granvia de l'Hospitalet, 199, L'Hospitalet de Llobregat 08908, Barcelona, Spain. Phone: 349-3260-7434; E-mail: ; and Sergi Castellví-Bel, Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Rosselló 149-153, Barcelona 08036, Spain. Phone: 349-3227-5707; E-mail:
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Corresponding Authors: Victor Moreno, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology, Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) and University of Barcelona, Avinguda de la Granvia de l'Hospitalet, 199, L'Hospitalet de Llobregat 08908, Barcelona, Spain. Phone: 349-3260-7434; E-mail: ; and Sergi Castellví-Bel, Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Rosselló 149-153, Barcelona 08036, Spain. Phone: 349-3227-5707; E-mail:
| |
Collapse
|
128
|
Zhou L, Zeng Y, Zhang H, Ma Y. The Role of Gastrointestinal Microbiota in Functional Dyspepsia: A Review. Front Physiol 2022; 13:910568. [PMID: 35755434 PMCID: PMC9214042 DOI: 10.3389/fphys.2022.910568] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 12/18/2022] Open
Abstract
Functional dyspepsia is a clinically common functional gastrointestinal disorder with a high prevalence, high impact and high consumption of medical resources. The microbiota in the gastrointestinal tract is a large number of families and is one of the most complex microbial reservoirs in the human body. An increasing number of studies have confirmed the close association between dysbiosis of the gastrointestinal microbiota and the occurrence and progression of functional dyspepsia. Therefore, we reviewed the role of dysbiosis of the gastrointestinal microbiota, H. pylori infection and gastrointestinal microbiota metabolites in functional dyspepsia, focusing on the possible mechanisms by which dysbiosis of the gastrointestinal microbiota contributes to the pathogenesis of functional dyspepsia. Several studies have confirmed that dysbiosis of the gastrointestinal microbiota may cause the occurrence and progression of functional dyspepsia by disrupting the biological barrier of the intestinal mucosa, by disturbing the immune function of the intestinal mucosa, or by causing dysregulation of the microbial-gut-brain axis. Probiotics and antibiotics have also been chosen to treat functional dyspepsia in clinical studies and have shown some improvement in the clinical symptoms. However, more studies are needed to explore and confirm the relationship between dysbiosis of the gastrointestinal microbiota and the occurrence and progression of functional dyspepsia, and more clinical studies are needed to confirm the therapeutic efficacy of microbiota modulation for functional dyspepsia.
Collapse
Affiliation(s)
- Li Zhou
- Department of Rehabilitation Medicine, Wuhan Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| | - Yi Zeng
- Department of Hospital Infection Management Office, Wuhan Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| | - Hongxing Zhang
- Department of Acupuncture, Wuhan Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| | - Yan Ma
- Department of Rehabilitation Medicine, Wuhan Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| |
Collapse
|
129
|
Quantitative Evaluation of Extramural Vascular Invasion of Rectal Cancer by Dynamic Contrast-Enhanced Magnetic Resonance Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3038308. [PMID: 35694706 PMCID: PMC9173987 DOI: 10.1155/2022/3038308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
This study was carried out to explore the preoperative predictive value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in extramural vascular invasion (EMVI) in patients with rectal cancer. 124 patients with rectal cancer were randomly divided into two groups, with 62 groups in each group. One group used conventional magnetic resonance imaging (MRI) and was recorded as the control group. The other group used DCE-MRI and was recorded as the experimental group. The diagnostic value was evaluated by comparing the MRI quantitative parameters of EMVI positive and EMVI negative patients, as well as the area under the curve (AUC) of the receiver operating characteristic curve (ROC), diagnostic sensitivity, and specificity of the two groups. The results showed that the Ktrans and Ve values of EMVI positive patients in the experimental group and the control group were 1.08 ± 0.97 and 1.03 ± 0.93, and 0.68 ± 0.29 and 0.65 ± 0.31, respectively, which were significantly higher than those in EMVI negative patients (P < 0.05). The AUC of EMVI diagnosis in the experimental group and the control group were 0.732 and 0.534 (P < 0.05), the sensitivity was 0.913 and 0.765 (P < 0.05), and the specificity was 0.798 and 0.756 (P > 0.05), respectively. In conclusion, DCE-MRI has a higher diagnostic value than conventional MRI in predicting EMVI in patients with rectal cancer, which was worthy of further clinical promotion.
Collapse
|
130
|
Hoang T, Kim MJ, Park JW, Jeong SY, Lee J, Shin A. Nutrition-wide association study of microbiome diversity and composition in colorectal cancer patients. BMC Cancer 2022; 22:656. [PMID: 35701733 PMCID: PMC9199192 DOI: 10.1186/s12885-022-09735-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effects of diet on the interaction between microbes and host health have been widely studied. However, its effects on the gut microbiota of patients with colorectal cancer (CRC) have not been elucidated. This study aimed to investigate the association between diet and the overall diversity and different taxa levels of the gut microbiota in CRC patients via the nutrition-wide association approach. METHODS This hospital-based study utilized data of 115 CRC patients who underwent CRC surgery in Department of Surgery, Seoul National University Hospital. Spearman correlation analyses were conducted for 216 dietary features and three alpha-diversity indices, Firmicutes/Bacteroidetes ratio, and relative abundance of 439 gut microbial taxonomy. To identify main enterotypes of the gut microbiota, we performed the principal coordinate analysis based on the β-diversity index. Finally, we performed linear regression to examine the association between dietary intake and main microbiome features, and linear discriminant analysis effect size (LEfSe) to identify bacterial taxa phylogenetically enriched in the low and high diet consumption groups. RESULTS Several bacteria were enriched in patients with higher consumption of mature pumpkin/pumpkin juice (ρ, 0.31 to 0.41) but lower intake of eggs (ρ, -0.32 to -0.26). We observed negative correlations between Bacteroides fragilis abundance and intake of pork (belly), beef soup with vegetables, animal fat, and fatty acids (ρ, -0.34 to -0.27); an inverse correlation was also observed between Clostridium symbiosum abundance and intake of some fatty acids, amines, and amino acids (ρ, -0.30 to -0.24). Furthermore, high intake of seaweed was associated with a 6% (95% CI, 2% to 11%) and 7% (95% CI, 2% to 11%) lower abundance of Rikenellaceae and Alistipes, respectively, whereas overall beverage consumption was associated with an 10% (95% CI, 2% to 18%) higher abundance of Bacteroidetes, Bacteroidia, and Bacteroidales, compared to that in the low intake group. LEfSe analysis identified phylogenetically enriched taxa associated with the intake of sugars and sweets, legumes, mushrooms, eggs, oils and fats, plant fat, carbohydrates, and monounsaturated fatty acids. CONCLUSIONS Our data elucidates the diet-microbe interactions in CRC patients. Additional research is needed to understand the significance of these results in CRC prognosis.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Min Jung Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Ji Won Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jeeyoo Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
131
|
Diagnosis of Nonperitonealized Colorectal Cancer with Computerized Tomography Image Features under Deep Learning. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1886406. [PMID: 35677028 PMCID: PMC9159838 DOI: 10.1155/2022/1886406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to explore the value of abdominal computerized tomography (CT) three-dimensional reconstruction using the dense residual single-axis super-resolution algorithm in the diagnosis of nonperitonealized colorectal cancer (CC). 103 patients with nonperitonealized CC (the lesion was located in the ascending colon or descending colon) were taken as the research subjects. The imagological tumor (T) staging, the extramural depth (EMD) of the cancer tissues, and the extramural vascular invasion (EMVI) grading were analyzed. A dense residual single-axis super-resolution network model was also constructed for enhancing CT images. It was found that the CT images processed using the algorithm were clear, and the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) were 33.828 dB and 0.856, respectively. In the imagological T staging of CC patients, there were 17 cases in the T3 stage and 68 cases in the T4 stage. With the EMD increasing, the preoperative carcinoembryonic antigen (CEA) highly increased, and the difference was statistically significant (P < 0.05). The postoperative hospital stays of patients were also different with different grades of EMVI. The hospital stay of grade 1 patients (19.45 days) was much longer than that of grade 2 patients (13.19 days), grade 3 patients (15.36 days), and grade 4 patients (14.36 days); the differences were of statistical significance (P < 0.05). It was suggested that CT images under the deep learning algorithm had a high clinical value in the evaluation of T staging, EMD, and EMVI for the diagnosis of CC.
Collapse
|
132
|
Patra S, Sahu N, Saxena S, Pradhan B, Nayak SK, Roychowdhury A. Effects of Probiotics at the Interface of Metabolism and Immunity to Prevent Colorectal Cancer-Associated Gut Inflammation: A Systematic Network and Meta-Analysis With Molecular Docking Studies. Front Microbiol 2022; 13:878297. [PMID: 35711771 PMCID: PMC9195627 DOI: 10.3389/fmicb.2022.878297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dysbiosis/imbalance in the gut microbial composition triggers chronic inflammation and promotes colorectal cancer (CRC). Modulation of the gut microbiome by the administration of probiotics is a promising strategy to reduce carcinogenic inflammation. However, the mechanism remains unclear. Methods In this study, we presented a systematic network, meta-analysis, and molecular docking studies to determine the plausible mechanism of probiotic intervention in diminishing CRC-causing inflammations. Results We selected 77 clinical, preclinical, in vitro, and in vivo articles (PRISMA guidelines) and identified 36 probiotics and 135 training genes connected to patients with CRC with probiotic application. The meta-analysis rationalizes the application of probiotics in the prevention and treatment of CRC. An association network is generated with 540 nodes and 1,423 edges. MCODE cluster analysis identifies 43 densely interconnected modules from the network. Gene ontology (GO) and pathway enrichment analysis of the top scoring and functionally significant modules reveal stress-induced metabolic pathways (JNK, MAPK), immunomodulatory pathways, intrinsic apoptotic pathways, and autophagy as contributors for CRC where probiotics could offer major benefits. Based on the enrichment analyses, 23 CRC-associated proteins and 7 probiotic-derived bacteriocins were selected for molecular docking studies. Results indicate that the key CRC-associated proteins (e.g., COX-2, CASP9, PI3K, and IL18R) significantly interact with the probiotic-derived bacteriocins (e.g., plantaricin JLA-9, lactococcin A, and lactococcin mmfii). Finally, a model for probiotic intervention to reduce CRC-associated inflammation has been proposed. Conclusion Probiotics and/or probiotic-derived bacteriocins could directly interact with CRC-promoting COX2. They could modulate inflammatory NLRP3 and NFkB pathways to reduce CRC-associated inflammation. Probiotics could also activate autophagy and apoptosis by regulating PI3K/AKT and caspase pathways in CRC. In summary, the potential mechanisms of probiotic-mediated CRC prevention include multiple signaling cascades, yet pathways related to metabolism and immunity are the crucial ones.
Collapse
Affiliation(s)
- Sinjini Patra
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Nilanjan Sahu
- National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Shivam Saxena
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Biswaranjan Pradhan
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Saroj Kumar Nayak
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
- *Correspondence: Anasuya Roychowdhury /0000-0003-3735-3021
| |
Collapse
|
133
|
Huo RX, Wang YJ, Hou SB, Wang W, Zhang CZ, Wan XH. Gut mucosal microbiota profiles linked to colorectal cancer recurrence. World J Gastroenterol 2022; 28:1946-1964. [PMID: 35664963 PMCID: PMC9150055 DOI: 10.3748/wjg.v28.i18.1946] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence links gut microbiota to various human diseases including colorectal cancer (CRC) initiation and development. However, gut microbiota profiles associated with CRC recurrence and patient prognosis are not completely understood yet, especially in a Chinese cohort. AIM To investigate the relationship between gut mucosal microbiota profiles and CRC recurrence and patient prognosis. METHODS We obtained the composition and structure of gut microbiota collected from 75 patients diagnosed with CRC and 26 healthy controls. The patients were followed up by regular examination to determine whether tumors recurred. Triplet-paired samples from on-tumor, adjacent-tumor and off-tumor sites of patients diagnosed with/without CRC recurrence were analyzed to assess spatial-specific patterns of gut mucosal microbiota by 16S ribosomal RNA sequencing. Next, we carried out bioinformatic analyses, Kaplan-Meier survival analyses and Cox regression analyses to determine the relationship between gut mucosal microbiota profiles and CRC recurrence and patient prognosis. RESULTS We observed spatial-specific patterns of gut mucosal microbiota profiles linked to CRC recurrence and patient prognosis. A total of 17 bacterial genera/families were identified as potential biomarkers for CRC recurrence and patient prognosis, including Anaerotruncus, Bacteroidales, Coriobacteriaceae, Dialister, Eubacterium, Fusobacterium, Filifactor, Gemella, Haemophilus, Mogibacteriazeae, Pyramidobacter, Parvimonas, Porphyromonadaceae, Slackia, Schwartzia, TG5 and Treponema. CONCLUSION Our work suggests that intestinal microbiota can serve as biomarkers to predict the risk of CRC recurrence and patient death.
Collapse
Affiliation(s)
- Rui-Xue Huo
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yi-Jia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shao-Bin Hou
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Wei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Chun-Ze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
- Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Xue-Hua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| |
Collapse
|
134
|
Dikeocha IJ, Al-Kabsi AM, Chiu HT, Alshawsh MA. Faecalibacterium prausnitzii Ameliorates Colorectal Tumorigenesis and Suppresses Proliferation of HCT116 Colorectal Cancer Cells. Biomedicines 2022; 10:biomedicines10051128. [PMID: 35625865 PMCID: PMC9138996 DOI: 10.3390/biomedicines10051128] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Faecalibacterium prausnitzii is one of the most abundant commensals of gut microbiota that is not commonly administered as a probiotic supplement. Being one of the gut’s major butyrate-producing bacteria, its clinical significance and uses are on the rise and it has been shown to have anti-inflammatory and gut microbiota-modulating properties in the treatment of inflammatory bowel illness, Crohn’s disease, and colorectal cancer. Colorectal cancer (CRC) is a silent killer disease that has become one of the leading causes of cancer-related death worldwide. This study aimed to evaluate the anti-tumorigenic and antiproliferative role of F. prausnitzii as well as to study its effects on the diversity of gut microbiota in rats. Findings showed that F. prausnitzii probiotic significantly reduced the colonic aberrant crypt foci frequency and formation in Azoxymethane (AOM)-induced CRC in rats. In addition, the administration of F. prausnitzii lowered the lipid peroxidation levels in the colon tissues. For in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, the cell-free supernatant of F. prausnitzii suppressed the growth of HCT116 colorectal cancer cells in a time/dose-dependent manner. 16S rRNA gene sequencing using rat stool samples showed that the administration of F. prausnitzii modulated the gut microbiota of the rats and enhanced its diversity. Hence, these findings suggest that F. prausnitzii as a probiotic supplement can be used in CRC prevention and management; however, more studies are warranted to understand its cellular and molecular mechanisms of action.
Collapse
Affiliation(s)
- Ifeoma Julieth Dikeocha
- Faculty of Medicine, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Malaysia; (I.J.D.); (A.M.A.-K.)
| | | | - Hsien-Tai Chiu
- Department of Chemistry, National Cheng Kung University, Tainan City 70101, Taiwan;
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| |
Collapse
|
135
|
Wade KH, Yarmolinsky J, Giovannucci E, Lewis SJ, Millwood IY, Munafò MR, Meddens F, Burrows K, Bell JA, Davies NM, Mariosa D, Kanerva N, Vincent EE, Smith-Byrne K, Guida F, Gunter MJ, Sanderson E, Dudbridge F, Burgess S, Cornelis MC, Richardson TG, Borges MC, Bowden J, Hemani G, Cho Y, Spiller W, Richmond RC, Carter AR, Langdon R, Lawlor DA, Walters RG, Vimaleswaran KS, Anderson A, Sandu MR, Tilling K, Davey Smith G, Martin RM, Relton CL. Applying Mendelian randomization to appraise causality in relationships between nutrition and cancer. Cancer Causes Control 2022; 33:631-652. [PMID: 35274198 PMCID: PMC9010389 DOI: 10.1007/s10552-022-01562-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/10/2022] [Indexed: 02/08/2023]
Abstract
Dietary factors are assumed to play an important role in cancer risk, apparent in consensus recommendations for cancer prevention that promote nutritional changes. However, the evidence in this field has been generated predominantly through observational studies, which may result in biased effect estimates because of confounding, exposure misclassification, and reverse causality. With major geographical differences and rapid changes in cancer incidence over time, it is crucial to establish which of the observational associations reflect causality and to identify novel risk factors as these may be modified to prevent the onset of cancer and reduce its progression. Mendelian randomization (MR) uses the special properties of germline genetic variation to strengthen causal inference regarding potentially modifiable exposures and disease risk. MR can be implemented through instrumental variable (IV) analysis and, when robustly performed, is generally less prone to confounding, reverse causation and measurement error than conventional observational methods and has different sources of bias (discussed in detail below). It is increasingly used to facilitate causal inference in epidemiology and provides an opportunity to explore the effects of nutritional exposures on cancer incidence and progression in a cost-effective and timely manner. Here, we introduce the concept of MR and discuss its current application in understanding the impact of nutritional factors (e.g., any measure of diet and nutritional intake, circulating biomarkers, patterns, preference or behaviour) on cancer aetiology and, thus, opportunities for MR to contribute to the development of nutritional recommendations and policies for cancer prevention. We provide applied examples of MR studies examining the role of nutritional factors in cancer to illustrate how this method can be used to help prioritise or deprioritise the evaluation of specific nutritional factors as intervention targets in randomised controlled trials. We describe possible biases when using MR, and methodological developments aimed at investigating and potentially overcoming these biases when present. Lastly, we consider the use of MR in identifying causally relevant nutritional risk factors for various cancers in different regions across the world, given notable geographical differences in some cancers. We also discuss how MR results could be translated into further research and policy. We conclude that findings from MR studies, which corroborate those from other well-conducted studies with different and orthogonal biases, are poised to substantially improve our understanding of nutritional influences on cancer. For such corroboration, there is a requirement for an interdisciplinary and collaborative approach to investigate risk factors for cancer incidence and progression.
Collapse
Affiliation(s)
- Kaitlin H Wade
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK.
| | - James Yarmolinsky
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
| | - Edward Giovannucci
- Departments of Nutrition and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Sarah J Lewis
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
- Bristol National Institute for Health Research (NIHR) Biomedical Research Centre, Bristol, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU) and the Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Marcus R Munafò
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
- Bristol National Institute for Health Research (NIHR) Biomedical Research Centre, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Fleur Meddens
- Department of Economics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Kimberley Burrows
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
| | - Joshua A Bell
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
| | - Neil M Davies
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Daniela Mariosa
- International Agency for Research On Cancer (IARC), Lyon, France
| | | | - Emma E Vincent
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
- Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Karl Smith-Byrne
- International Agency for Research On Cancer (IARC), Lyon, France
| | - Florence Guida
- International Agency for Research On Cancer (IARC), Lyon, France
| | - Marc J Gunter
- International Agency for Research On Cancer (IARC), Lyon, France
| | - Eleanor Sanderson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Tom G Richardson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
| | - Maria Carolina Borges
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
| | - Jack Bowden
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
- Research Innovation Learning and Development (RILD) Building, University of Exeter Medical School, Exeter, UK
| | - Gibran Hemani
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
| | - Yoonsu Cho
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
| | - Wes Spiller
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
| | - Rebecca C Richmond
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
| | - Alice R Carter
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
| | - Ryan Langdon
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
| | - Deborah A Lawlor
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
- Bristol National Institute for Health Research (NIHR) Biomedical Research Centre, Bristol, UK
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU) and the Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Annie Anderson
- Population Health and Genomics, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Meda R Sandu
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
- NIHR Biomedical Research Centre, Bristol, UK
| | - Kate Tilling
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
- Bristol National Institute for Health Research (NIHR) Biomedical Research Centre, Bristol, UK
| | - George Davey Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
- Bristol National Institute for Health Research (NIHR) Biomedical Research Centre, Bristol, UK
| | - Richard M Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
| | - Caroline L Relton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
- Bristol National Institute for Health Research (NIHR) Biomedical Research Centre, Bristol, UK
| |
Collapse
|
136
|
Ryu TY, Kim K, Han TS, Lee MO, Lee J, Choi J, Jung KB, Jeong EJ, An DM, Jung CR, Lim JH, Jung J, Park K, Lee MS, Kim MY, Oh SJ, Hur K, Hamamoto R, Park DS, Kim DS, Son MY, Cho HS. Human gut-microbiome-derived propionate coordinates proteasomal degradation via HECTD2 upregulation to target EHMT2 in colorectal cancer. THE ISME JOURNAL 2022; 16:1205-1221. [PMID: 34972816 PMCID: PMC9038766 DOI: 10.1038/s41396-021-01119-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
The human microbiome plays an essential role in the human immune system, food digestion, and protection from harmful bacteria by colonizing the human intestine. Recently, although the human microbiome affects colorectal cancer (CRC) treatment, the mode of action between the microbiome and CRC remains unclear. This study showed that propionate suppressed CRC growth by promoting the proteasomal degradation of euchromatic histone-lysine N-methyltransferase 2 (EHMT2) through HECT domain E3 ubiquitin protein ligase 2 (HECTD2) upregulation. In addition, EHMT2 downregulation reduced the H3K9me2 level on the promoter region of tumor necrosis factor α-induced protein 1 (TNFAIP1) as a novel direct target of EHMT2. Subsequently, TNFAIP1 upregulation induced the apoptosis of CRC cells. Furthermore, using Bacteroides thetaiotaomicron culture medium, we confirmed EHMT2 downregulation via upregulation of HECTD2 and TNFAIP1 upregulation. Finally, we observed the synergistic effect of propionate and an EHMT2 inhibitor (BIX01294) in 3D spheroid culture models. Thus, we suggest the anticancer effects of propionate and EHMT2 as therapeutic targets for colon cancer treatment and may provide the possibility for the synergistic effects of an EHMT2 inhibitor and microbiome in CRC treatment.
Collapse
Affiliation(s)
- Tae Young Ryu
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwangho Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Mi-Ok Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jinkwon Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jinhyeon Choi
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kwang Bo Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Eun-Jeong Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Da Mi An
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jaeeun Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kunhyang Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Soo Jin Oh
- Asan Institute for Life Sciences, Asan Medical Center and Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, 05505, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell biology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center, Tokyo, 104-0045, Japan
| | - Doo-Sang Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
137
|
Basu A, Singh R, Gupta S. Bacterial infections in cancer: A bilateral relationship. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1771. [PMID: 34994112 DOI: 10.1002/wnan.1771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/09/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Bacteria share a long commensal relationship with the human body. New findings, however, continue to unravel many complexities associated with this old alliance. In the past decades, the dysbiosis of human microbiome has been linked to tumorigenesis, and more recently to spontaneous colonization of existing tumors. The topic, however, remains open for debate as the claims for causative-prevailing dual characteristics of bacteria are mostly based on epidemiological evidence rather than robust mechanistic models. There are also no reviews linking the collective impact of bacteria in tumor microenvironments to the efficacy of cancer drugs, mechanisms of pathogen-initiated cancer and bacterial colonization, personalized nanomedicine, nanotechnology, and antimicrobial resistance. In this review, we provide a holistic overview of the bilateral relationship between cancer and bacteria covering all these aspects. Our collated evidence from the literature does not merely categorize bacteria as cancer causative or prevailing agents, but also critically highlights the gaps in the literature where more detailed studies may be required to reach such a conclusion. Arguments are made in favor of dual drug therapies that can simultaneously co-target bacteria and cancer cells to overcome drug resistance. Also discussed are the opportunities for leveraging the natural colonization and remission power of bacteria for cancer treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Abhirup Basu
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| | - Rohini Singh
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| | - Shalini Gupta
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| |
Collapse
|
138
|
Gheorghe AS, Negru ȘM, Preda M, Mihăilă RI, Komporaly IA, Dumitrescu EA, Lungulescu CV, Kajanto LA, Georgescu B, Radu EA, Stănculeanu DL. Biochemical and Metabolical Pathways Associated with Microbiota-Derived Butyrate in Colorectal Cancer and Omega-3 Fatty Acids Implications: A Narrative Review. Nutrients 2022; 14:nu14061152. [PMID: 35334808 PMCID: PMC8950877 DOI: 10.3390/nu14061152] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Knowledge regarding the influence of the microbial community in cancer promotion or protection has expanded even more through the study of bacterial metabolic products and how they can modulate cancer risk, which represents an extremely challenging approach for the relationship between intestinal microbiota and colorectal cancer (CRC). This review discusses research progress on the effect of bacterial dysbiosis from a metabolic point of view, particularly on the biochemical mechanisms of butyrate, one of the main short chain fatty acids (SCFAs) with anti-inflammatory and anti-tumor properties in CRC. Increased daily intake of omega-3 polyunsaturated fatty acids (PUFAs) significantly increases the density of bacteria that are known to produce butyrate. Omega-3 PUFAs have been proposed as a treatment to prevent gut microbiota dysregulation and lower the risk or progression of CRC.
Collapse
Affiliation(s)
- Adelina Silvana Gheorghe
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Șerban Mircea Negru
- Department of Oncology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Correspondence: (Ș.M.N.); (M.P.)
| | - Mădălina Preda
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (Ș.M.N.); (M.P.)
| | - Raluca Ioana Mihăilă
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Isabela Anda Komporaly
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Elena Adriana Dumitrescu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | | | - Lidia Anca Kajanto
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Bogdan Georgescu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Emanuel Alin Radu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Dana Lucia Stănculeanu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| |
Collapse
|
139
|
Nouri R, Hasani A, Asgharzadeh M, Sefidan FY, Hemmati F, Rezaee MA. Roles of gut microbiota in colorectal carcinogenesis providing a perspective for early diagnosis and treatment. Curr Pharm Biotechnol 2022; 23:1569-1580. [PMID: 35255786 DOI: 10.2174/1389201023666220307112413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/02/2022]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignant neoplasm in the world. CRC is influenced by both environmental and genetic factors. Through toxin-mediated DNA damage and promotion of persistent dysregulated inflammation, the gut microbiota plays a crucial role in the development of CRC. In this review, we discussed the correlation between the bacterial microbiota and CRC carcinogenesis as well as the mechanism by which Streptococcus bovis/gallolyticus, Fusobacterium nucleatum, Bacteroides fragilis, and Escherichia coli can cause CRC.
Collapse
Affiliation(s)
- Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Yeganeh Sefidan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hemmati
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit of Children Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
140
|
Merali N, Chouari T, Kayani K, Rayner CJ, Jiménez JI, Krell J, Giovannetti E, Bagwan I, Relph K, Rockall TA, Dhillon T, Pandha H, Annels NE, Frampton AE. A Comprehensive Review of the Current and Future Role of the Microbiome in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:1020. [PMID: 35205769 PMCID: PMC8870349 DOI: 10.3390/cancers14041020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second most common cause of cancer death in the USA by 2030, yet progress continues to lag behind that of other cancers, with only 9% of patients surviving beyond 5 years. Long-term survivorship of PDAC and improving survival has, until recently, escaped our understanding. One recent frontier in the cancer field is the microbiome. The microbiome collectively refers to the extensive community of bacteria and fungi that colonise us. It is estimated that there is one to ten prokaryotic cells for each human somatic cell, yet, the significance of this community in health and disease has, until recently, been overlooked. This review examines the role of the microbiome in PDAC and how it may alter survival outcomes. We evaluate the possibility of employing microbiomic signatures as biomarkers of PDAC. Ultimately this review analyses whether the microbiome may be amenable to targeting and consequently altering the natural history of PDAC.
Collapse
Affiliation(s)
- Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Daphne Jackson Road, Guildford GU2 7WG, UK; (N.M.); (T.A.R.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK; (T.C.); (K.K.); (C.J.R.)
- Targeted Cancer Therapy Unit, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK; (I.B.); (K.R.); (T.D.); (H.P.); (N.E.A.)
| | - Tarak Chouari
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK; (T.C.); (K.K.); (C.J.R.)
- Targeted Cancer Therapy Unit, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK; (I.B.); (K.R.); (T.D.); (H.P.); (N.E.A.)
| | - Kayani Kayani
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK; (T.C.); (K.K.); (C.J.R.)
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Charles J. Rayner
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK; (T.C.); (K.K.); (C.J.R.)
- Targeted Cancer Therapy Unit, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK; (I.B.); (K.R.); (T.D.); (H.P.); (N.E.A.)
| | - José I. Jiménez
- Department of Life Sciences, South Kensington Campus, Imperial College London, London SW7 2AZ, UK;
| | - Jonathan Krell
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK;
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Fondazione Pisa per la Scienza, 56017 San Giuliano, Italy
| | - Izhar Bagwan
- Targeted Cancer Therapy Unit, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK; (I.B.); (K.R.); (T.D.); (H.P.); (N.E.A.)
| | - Kate Relph
- Targeted Cancer Therapy Unit, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK; (I.B.); (K.R.); (T.D.); (H.P.); (N.E.A.)
| | - Timothy A. Rockall
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Daphne Jackson Road, Guildford GU2 7WG, UK; (N.M.); (T.A.R.)
| | - Tony Dhillon
- Targeted Cancer Therapy Unit, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK; (I.B.); (K.R.); (T.D.); (H.P.); (N.E.A.)
| | - Hardev Pandha
- Targeted Cancer Therapy Unit, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK; (I.B.); (K.R.); (T.D.); (H.P.); (N.E.A.)
| | - Nicola E. Annels
- Targeted Cancer Therapy Unit, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK; (I.B.); (K.R.); (T.D.); (H.P.); (N.E.A.)
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Daphne Jackson Road, Guildford GU2 7WG, UK; (N.M.); (T.A.R.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK; (T.C.); (K.K.); (C.J.R.)
- Targeted Cancer Therapy Unit, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK; (I.B.); (K.R.); (T.D.); (H.P.); (N.E.A.)
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK;
| |
Collapse
|
141
|
Mandal S, Bandyopadhyay S, Tyagi K, Roy A. Human microbial dysbiosis as driver of gynecological malignancies. Biochimie 2022; 197:86-95. [PMID: 35176353 DOI: 10.1016/j.biochi.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 11/12/2022]
Abstract
Gynecological cancers that affect female reproductive tract, remain at the top of the global cancer burden list with high relapse rate and mortality. Notwithstanding development of several novel therapeutic interventions including poly-ADP-ribose polymerase inhibitors, this family of malignancies remain deadly. The human microbiome project demonstrated that dysbiosis of health resident microflora is associated with several pathologies including malignancies of the female reproductive tract and detailed characterization of species variation and host-microbe interaction could provide clues for identification of early diagnostic biomarker, preventive and therapeutic interventions. Emerging evidence suggests that several microbial signatures are significantly associated with gynecological cancers. An increased population of Proteobacteria and Firmicutes followed by significantly reduced Lactobacilli are associated with lethal epithelial ovarian cancer. Similarly, a constant association of elevated level of Atopobium vaginae, Porphyromonas somerae, Micrococci and Gardnerella vaginalis are observed in endometrial and cervical cancers. Moreover, human papilloma virus infection significantly augments colonization of pathogenic microbes including Sneathia sanguinegens, Anaerococcus tetradius, and Peptostreptococcus anaerobius and drives carcinoma of the cervix. Interestingly, microbial dysbiosis in female reproductive tract modulates expression of several microbial and immune-responsive genes such as TLR-4, TLR-5, TLR-6 and NOD-1. Therefore, stringent investigation into the microbial dysbiosis and its underlying mechanism could provide valuable cues for identification of early diagnostic biomarker, preventive and therapeutic interventions against rogue gynecological malignancies.
Collapse
Affiliation(s)
- Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| | - Komal Tyagi
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India.
| |
Collapse
|
142
|
Crowder SL, Hoogland AI, Welniak TL, LaFranchise EA, Carpenter KM, Li D, Rotroff DM, Mariam A, Pierce CM, Extermann M, Kim RD, Tometich DB, Figueiredo JC, Muzaffar J, Bari S, Turner K, Weinstock GM, Jim HS. Metagenomics and chemotherapy-induced nausea: A roadmap for future research. Cancer 2022; 128:461-470. [PMID: 34643945 PMCID: PMC8776572 DOI: 10.1002/cncr.33892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/06/2021] [Accepted: 08/13/2021] [Indexed: 02/03/2023]
Abstract
Uncontrolled chemotherapy-induced nausea and vomiting can reduce patients' quality of life and may result in premature discontinuation of chemotherapy. Although nausea and vomiting are commonly grouped together, research has shown that antiemetics are clinically effective against chemotherapy-induced vomiting (CIV) but less so against chemotherapy-induced nausea (CIN). Nausea remains a problem for up to 68% of patients who are prescribed guideline-consistent antiemetics. Despite the high prevalence of CIN, relatively little is known regarding its etiology independent of CIV. This review summarizes a metagenomics approach to the study and treatment of CIN with the goal of encouraging future research. Metagenomics focuses on genetic risk factors and encompasses both human (ie, host) and gut microbial genetic variation. Little work to date has focused on metagenomics as a putative biological mechanism of CIN. Metagenomics has the potential to be a powerful tool in advancing scientific understanding of CIN by identifying new biological pathways and intervention targets. The investigation of metagenomics in the context of well-established demographic, clinical, and patient-reported risk factors may help to identify patients at risk and facilitate the prevention and management of CIN.
Collapse
Affiliation(s)
| | | | | | | | | | - Daneng Li
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Arshiya Mariam
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Richard D. Kim
- Department of Hematology Oncology, Moffitt Cancer Center
| | | | | | - Jameel Muzaffar
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center
| | - Shahla Bari
- Department of Hematology Oncology, Moffitt Cancer Center
| | - Kea Turner
- Department of Health Outcomes and Behavior, Moffitt Cancer Center
| | | | - Heather S.L. Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center
| |
Collapse
|
143
|
Kato I, Zhang J, Sun J. Bacterial-Viral Interactions in Human Orodigestive and Female Genital Tract Cancers: A Summary of Epidemiologic and Laboratory Evidence. Cancers (Basel) 2022; 14:425. [PMID: 35053587 PMCID: PMC8773491 DOI: 10.3390/cancers14020425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious agents, including viruses, bacteria, fungi, and parasites, have been linked to pathogenesis of human cancers, whereas viruses and bacteria account for more than 99% of infection associated cancers. The human microbiome consists of not only bacteria, but also viruses and fungi. The microbiome co-residing in specific anatomic niches may modulate oncologic potentials of infectious agents in carcinogenesis. In this review, we focused on interactions between viruses and bacteria for cancers arising from the orodigestive tract and the female genital tract. We examined the interactions of these two different biological entities in the context of human carcinogenesis in the following three fashions: (1) direct interactions, (2) indirect interactions, and (3) no interaction between the two groups, but both acting on the same host carcinogenic pathways, yielding synergistic or additive effects in human cancers, e.g., head and neck cancer, liver cancer, colon cancer, gastric cancer, and cervical cancer. We discuss the progress in the current literature and summarize the mechanisms of host-viral-bacterial interactions in various human cancers. Our goal was to evaluate existing evidence and identify gaps in the knowledge for future directions in infection and cancer.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jilei Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
144
|
Blackmur JP, Vaughan-Shaw PG, Donnelly K, Harris BT, Svinti V, Ochocka-Fox AM, Freile P, Walker M, Gurran T, Reid S, Semple CA, Din FVN, Timofeeva M, Dunlop MG, Farrington SM. Gene Co-Expression Network Analysis Identifies Vitamin D-Associated Gene Modules in Adult Normal Rectal Epithelium Following Supplementation. Front Genet 2022; 12:783970. [PMID: 35096006 PMCID: PMC8790603 DOI: 10.3389/fgene.2021.783970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common, multifactorial disease. While observational studies have identified an association between lower vitamin D and higher CRC risk, supplementation trials have been inconclusive and the mechanisms by which vitamin D may modulate CRC risk are not well understood. We sought to perform a weighted gene co-expression network analysis (WGCNA) to identify modules present after vitamin D supplementation (when plasma vitamin D level was sufficient) which were absent before supplementation, and then to identify influential genes in those modules. The transcriptome from normal rectal mucosa biopsies of 49 individuals free from CRC were assessed before and after 12 weeks of 3200IU/day vitamin D (Fultium-D3) supplementation using paired-end total RNAseq. While the effects on expression patterns following vitamin D supplementation were subtle, WGCNA identified highly correlated genes forming gene modules. Four of the 17 modules identified in the post-vitamin D network were not preserved in the pre-vitamin D network, shedding new light on the biochemical impact of supplementation. These modules were enriched for GO terms related to the immune system, hormone metabolism, cell growth and RNA metabolism. Across the four treatment-associated modules, 51 hub genes were identified, with enrichment of 40 different transcription factor motifs in promoter regions of those genes, including VDR:RXR. Six of the hub genes were nominally differentially expressed in studies of vitamin D effects on adult normal mucosa organoids: LCN2, HLA-C, AIF1L, PTPRU, PDE4B and IFI6. By taking a gene-correlation network approach, we have described vitamin D induced changes to gene modules in normal human rectal epithelium in vivo, the target tissue from which CRC develops.
Collapse
Affiliation(s)
- James P. Blackmur
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter G. Vaughan-Shaw
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin Donnelly
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Bradley T. Harris
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Victoria Svinti
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna-Maria Ochocka-Fox
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Paz Freile
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Marion Walker
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Toby Gurran
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart Reid
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Colin A. Semple
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Farhat V. N. Din
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Timofeeva
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Department of Public Health, Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Malcolm G. Dunlop
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan M. Farrington
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
145
|
Ma Y, Qu R, Zhang Y, Jiang C, Zhang Z, Fu W. Progress in the Study of Colorectal Cancer Caused by Altered Gut Microbiota After Cholecystectomy. Front Endocrinol (Lausanne) 2022; 13:815999. [PMID: 35282463 PMCID: PMC8907136 DOI: 10.3389/fendo.2022.815999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies have found an increased incidence of colorectal cancer (CRC) in people who undergo cholecystectomy compared to healthy individuals. After cholecystectomy, bile enters the duodenum directly, unregulated by the timing of meals. Disruption of the balance of bile acid metabolism and increased production of primary bile acids, which in turn affects the composition and abundance of intestinal microorganisms. The link among cholecystectomy, the gut microbiota, and the occurrence and development of CRC is becoming clearer. However, due to the complexity of the microbial community, the mechanistic connections are less well understood. In this review, we summarize the changes of gut microbiota after cholecystectomy and illuminate the potential mechanisms on CRC, such as inflammation and immune regulation, production of genotoxins, metabolism of dietary ingredients, activation of signaling pathways, and so on. By reviewing these, we aimed to unravel the interactions between the gut microbiota and its host and be better positioned to develop treatments for CRC after cholecystectomy.
Collapse
Affiliation(s)
- Yanpeng Ma
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Ruize Qu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Yi Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhipeng Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhipeng Zhang, ; Wei Fu,
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhipeng Zhang, ; Wei Fu,
| |
Collapse
|
146
|
Ahmad Kendong SM, Raja Ali RA, Nawawi KNM, Ahmad HF, Mokhtar NM. Gut Dysbiosis and Intestinal Barrier Dysfunction: Potential Explanation for Early-Onset Colorectal Cancer. Front Cell Infect Microbiol 2021; 11:744606. [PMID: 34966694 PMCID: PMC8710575 DOI: 10.3389/fcimb.2021.744606] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease that commonly affects individuals aged more than 50 years old globally. Regular colorectal screening, which is recommended for individuals aged 50 and above, has decreased the number of cancer death toll over the years. However, CRC incidence has increased among younger population (below 50 years old). Environmental factors, such as smoking, dietary factor, urbanization, sedentary lifestyle, and obesity, may contribute to the rising trend of early-onset colorectal cancer (EOCRC) because of the lack of genetic susceptibility. Research has focused on the role of gut microbiota and its interaction with epithelial barrier genes in sporadic CRC. Population with increased consumption of grain and vegetables showed high abundance of Prevotella, which reduces the risk of CRC. Microbes, such as Fusobacterium nucleatum, Bacteroides fragilis and Escherichia coli deteriorate in the intestinal barrier, which leads to the infiltration of inflammatory mediators and chemokines. Gut dysbiosis may also occur following inflammation as clearly observed in animal model. Both gut dysbiosis pre- or post-inflammatory process may cause major alteration in the morphology and functional properties of the gut tissue and explain the pathological outcome of EOCRC. The precise mechanism of disease progression from an early stage until cancer establishment is not fully understood. We hypothesized that gut dysbiosis, which may be influenced by environmental factors, may induce changes in the genome, metabolome, and immunome that could destruct the intestinal barrier function. Also, the possible underlying inflammation may give impact microbial community leading to disruption of physical and functional role of intestinal barrier. This review explains the potential role of the interaction among host factors, gut microenvironment, and gut microbiota, which may provide an answer to EOCRC.
Collapse
Affiliation(s)
- Siti Maryam Ahmad Kendong
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - Raja Affendi Raja Ali
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairul Najmi Muhammad Nawawi
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hajar Fauzan Ahmad
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang, Malaysia.,Center for Research in Advanced Tropical Bioscience, Universiti Malaysia Pahang, Gambang, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
147
|
Sędzikowska A, Szablewski L. Human Gut Microbiota in Health and Selected Cancers. Int J Mol Sci 2021; 22:13440. [PMID: 34948234 PMCID: PMC8708499 DOI: 10.3390/ijms222413440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
The majority of the epithelial surfaces of our body, and the digestive tract, respiratory and urogenital systems, are colonized by a vast number of bacteria, archaea, fungi, protozoans, and viruses. These microbiota, particularly those of the intestines, play an important, beneficial role in digestion, metabolism, and the synthesis of vitamins. Their metabolites stimulate cytokine production by the human host, which are used against potential pathogens. The composition of the microbiota is influenced by several internal and external factors, including diet, age, disease, and lifestyle. Such changes, called dysbiosis, may be involved in the development of various conditions, such as metabolic diseases, including metabolic syndrome, type 2 diabetes mellitus, Hashimoto's thyroidis and Graves' disease; they can also play a role in nervous system disturbances, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and depression. An association has also been found between gut microbiota dysbiosis and cancer. Our health is closely associated with the state of our microbiota, and their homeostasis. The aim of this review is to describe the associations between human gut microbiota and cancer, and examine the potential role of gut microbiota in anticancer therapy.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
148
|
Cai L, Ying M, Wu H. Microenvironmental Factors Modulating Tumor Lipid Metabolism: Paving the Way to Better Antitumoral Therapy. Front Oncol 2021; 11:777273. [PMID: 34888248 PMCID: PMC8649922 DOI: 10.3389/fonc.2021.777273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic reprogramming is one of the emerging hallmarks of cancer and is driven by both the oncogenic mutations and challenging microenvironment. To satisfy the demands of energy and biomass for rapid proliferation, the metabolism of various nutrients in tumor cells undergoes important changes, among which the aberrant lipid metabolism has gained increasing attention in facilitating tumor development and metastasis in the past few years. Obstacles emerged in the aspect of application of targeting lipid metabolism for tumor therapy, due to lacking of comprehensive understanding on its regulating mechanism. Tumor cells closely interact with stromal niche, which highly contributes to metabolic rewiring of critical nutrients in cancer cells. This fact makes the impact of microenvironment on tumor lipid metabolism a topic of renewed interest. Abundant evidence has shown that many factors existing in the tumor microenvironment can rewire multiple signaling pathways and proteins involved in lipid metabolic pathways of cancer cells. Hence in this review, we summarized the recent progress on the understanding of microenvironmental factors regulating tumor lipid metabolism, and discuss the potential of modulating lipid metabolism as an anticancer approach.
Collapse
Affiliation(s)
- Limeng Cai
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
149
|
Abstract
Colorectal cancer (CRC) is still one of the most common types of cancer in the world, and the gut microbiome plays an important role in its development. The microbiome is involved in the carcinogenesis, formation and progression of CRC as well as its response to different systemic therapies. The composition of bacterial strains and the influence of geography, race, sex, and diet on the composition of the microbiome serve as important information for screening, early detection and prediction of the treatment outcome of CRC. Microbiome modulation is one of the most prospective new strategies in medicine to improve the health of individuals. Therefore, future research and clinical trials on the gut microbiome in oncology as well as in the treatment of CRC patients are warranted to determine the efficacy of systemic treatments for CRC, minimize adverse effects and increase survival rates.
Collapse
Affiliation(s)
- Martina Rebersek
- Department of Medical Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000, Ljubljana, Slovenia. .,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
150
|
de Souza JB, Brelaz-de-Castro MCA, Cavalcanti IMF. Strategies for the treatment of colorectal cancer caused by gut microbiota. Life Sci 2021; 290:120202. [PMID: 34896161 DOI: 10.1016/j.lfs.2021.120202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC), also named as colon and rectal or bowel cancer, is one of the leading neoplasia diagnosed in the world. Genetic sequencing studies of microorganisms from the intestinal microbiota of patients with CRC revealed that changes in its composition occur with the development of the disease, which can play a fundamental role in its development, being mediated by the production of metabolites and toxins that damage enterocytes. Some microorganisms are frequently reported in the literature as the main agents of this process, such as the bacteria Fusobacterium nucleatum, Escherichia coli and Bacteroides fragilis. Thus, understanding the mechanisms and function of each microorganism in CRC is essential for the development of treatment tools that focus on the gut microbiota. This review verifies current research aimed at evaluating the microorganisms present in the microbiota that can influence the development of CRC, as well as possible forms of treatment that can prevent the initiation and/or spread of this disease. Due to the incidence of CRC, alternatives have been launched considering factors beyond those already known in the disease development, such as diet, fecal microbiota transplantation, use of probiotics and antibiotics, which have been widely studied for this purpose. However, despite being promising, the studies that focus on the development of new therapeutic approaches targeting the microorganisms that cause CRC still need to be improved and better developed, involving new techniques to elucidate the effectiveness and safety of these new methods.
Collapse
Affiliation(s)
- Jaqueline Barbosa de Souza
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Isabella Macário Ferro Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil; Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|