101
|
Enzymatic synthesis of a bicyclobutane fatty acid by a hemoprotein lipoxygenase fusion protein from the cyanobacterium Anabaena PCC 7120. Proc Natl Acad Sci U S A 2007; 104:18941-5. [PMID: 18025466 DOI: 10.1073/pnas.0707148104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biological transformations of polyunsaturated fatty acids often lead to chemically unstable products, such as the prostaglandin endoperoxides and leukotriene A(4) epoxide of mammalian biology and the allene epoxides of plants. Here, we report on the enzymatic production of a fatty acid containing a highly strained bicyclic four-carbon ring, a moiety known previously only as a model compound for mechanistic studies in chemistry. Starting from linolenic acid (C18.3omega3), a dual function protein from the cyanobacterium Anabaena PCC 7120 forms 9R-hydroperoxy-C18.3omega3 in a lipoxygenase domain, then a catalase-related domain converts the 9R-hydroperoxide to two unstable allylic epoxides. We isolated and identified the major product as 9R,10R-epoxy-11trans-C18.1 containing a bicyclo[1.1.0]butyl ring on carbons 13-16, and the minor product as 9R,10R-epoxy-11trans,13trans,15cis-C18.omega3, an epoxide of the leukotriene A type. Synthesis of both epoxides can be understood by initial transformation of the hydroperoxide to an epoxy allylic carbocation. Rearrangement to an intermediate bicyclobutonium ion followed by deprotonation gives the bicyclobutane fatty acid. This enzymatic reaction has no parallel in aqueous or organic solvent, where ring-opened cyclopropanes, cyclobutanes, and homoallyl products are formed. Given the capability shown here for enzymatic formation of the highly strained and unstable bicyclobutane, our findings suggest that other transformations involving carbocation rearrangement, in both chemistry and biology, should be examined for the production of the high energy bicyclobutanes.
Collapse
|
102
|
Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P. Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 2007; 31:692-720. [PMID: 17903205 DOI: 10.1111/j.1574-6976.2007.00085.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cyanobacteria may possess two distinct nickel-iron (NiFe)-hydrogenases: an uptake enzyme found in N(2)-fixing strains, and a bidirectional one present in both non-N(2)-fixing and N(2)-fixing strains. The uptake hydrogenase (encoded by hupSL) catalyzes the consumption of the H(2) produced during N(2) fixation, while the bidirectional enzyme (hoxEFUYH) probably plays a role in fermentation and/or acts as an electron valve during photosynthesis. hupSL constitute a transcriptional unit, and are essentially transcribed under N(2)-fixing conditions. The bidirectional hydrogenase consists of a hydrogenase and a diaphorase part, and the corresponding five hox genes are not always clustered or cotranscribed. The biosynthesis/maturation of NiFe-hydrogenases is highly complex, requiring several core proteins. In cyanobacteria, the genes that are thought to affect hydrogenases pleiotropically (hyp), as well as the genes presumably encoding the hydrogenase-specific endopeptidases (hupW and hoxW) have been identified and characterized. Furthermore, NtcA and LexA have been implicated in the transcriptional regulation of the uptake and the bidirectional enzyme respectively. Recently, the phylogenetic origin of cyanobacterial and algal hydrogenases was analyzed, and it was proposed that the current distribution in cyanobacteria reflects a differential loss of genes according to their ecological needs or constraints. In addition, the possibilities and challenges of cyanobacterial-based H(2) production are addressed.
Collapse
Affiliation(s)
- Paula Tamagnini
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Shah GR, Karunakaran R, Naresh Kumar G. In vivo restriction endonuclease activity of the Anabaena PCC 7120 XisA protein in Escherichia coli. Res Microbiol 2007; 158:679-84. [PMID: 18023966 DOI: 10.1016/j.resmic.2007.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/02/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
Abstract
Anabaena PCC 7120 genome contains three elements, which get excised out during late stages of heterocyst differentiation by a site-specific recombination process. The XisA protein, which excises the nifD element, shows sequence homology with the integrase family of tyrosine recombinase. The 11 bp target site of XisA CGGAGTAATCC contains a 3 bp inverted repeat. Here, we report restriction endonuclease activity of XisA by specific loss of plasmids containing single or double target sites. The pMX25 plasmid containing two target sites demonstrated endonuclease activity proportional to excision frequency. Different plasmid substrates containing one base pair mutation in the inverted repeat of the target site were monitored for endonuclease activity. Mutation of A4C retained endonuclease activity, while other modifications lost endonuclease activity. The presence of an additional copy of the target site enhanced endonuclease activity. These results suggest that the XisA protein could be an IIE type of restriction endonuclease in addition to being a recombinase.
Collapse
Affiliation(s)
- Gopit R Shah
- Department of Biochemistry, Faculty of Science, M.S. University of Baroda, Sayajigung, Vadodara, Gujarat 390 002, India.
| | | | | |
Collapse
|
104
|
Aldea MR, Mella-Herrera RA, Golden JW. Sigma factor genes sigC, sigE, and sigG are upregulated in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2007; 189:8392-6. [PMID: 17873052 PMCID: PMC2168693 DOI: 10.1128/jb.00821-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used gfp transcriptional fusions to investigate the regulation of eight sigma factor genes during heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Reporter strains containing gfp fusions with the upstream regions of sigB2, sigD, sigI, and sigJ did not show developmental regulation. Time-lapse microscopy of sigC, sigE, and sigG reporter strains showed increased green fluorescent protein fluorescence in differentiating cells at 4 h, 16 h, and 9 h, respectively, after nitrogen step down.
Collapse
Affiliation(s)
- M Ramona Aldea
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| | | | | |
Collapse
|
105
|
Campbell EL, Summers ML, Christman H, Martin ME, Meeks JC. Global gene expression patterns of Nostoc punctiforme in steady-state dinitrogen-grown heterocyst-containing cultures and at single time points during the differentiation of akinetes and hormogonia. J Bacteriol 2007; 189:5247-56. [PMID: 17483217 PMCID: PMC1951844 DOI: 10.1128/jb.00360-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vegetative cells of the filamentous cyanobacterium Nostoc punctiforme can differentiate into three mutually exclusive cell types: nitrogen-fixing heterocysts, spore-like akinetes, and motile hormogomium filaments. A DNA microarray consisting of 6,893 N. punctiforme genes was used to identify the global transcription patterns at single time points in the three developmental states, compared to those in ammonium-grown time zero cultures. Analysis of ammonium-grown cultures yielded a transcriptome of 2,935 genes, which is nearly twice the size of a soluble proteome. The NH(4)(+)-grown transcriptome was enriched in genes encoding core metabolic functions. A steady-state N(2)-grown (heterocyst-containing) culture showed differential transcription of 495 genes, 373 of which were up-regulated. The majority of the up-regulated genes were predicted from studies of heterocyst differentiation and N(2) fixation; other genes are candidates for more detailed genetic analysis. Three days into the developmental process, akinetes showed a similar number of differentially expressed genes (497 genes), which were equally up- and down-regulated. The down-regulated genes were enriched in core metabolic functions, consistent with entry into a nongrowth state. There were relatively few adaptive genes up-regulated in 3-day akinetes, and there was little overlap with putative heterocyst developmental genes. There were 1,827 differentially transcribed genes in 24-h hormogonia, which was nearly fivefold greater than the number in akinete-forming or N(2)-fixing cultures. The majority of the up-regulated adaptive genes were genes encoding proteins for signal transduction and transcriptional regulation, which is characteristic of a motile filament that is poised to sense and respond to the environment. The greatest fraction of the 883 down-regulated genes was involved in core metabolism, also consistent with entry into a nongrowth state. The differentiation of heterocysts (steady state, N(2) grown), akinetes, and hormogonia appears to involve the up-regulation of genes distinct for each state.
Collapse
Affiliation(s)
- Elsie L Campbell
- Section of Microbiology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
106
|
Jang J, Wang L, Jeanjean R, Zhang CC. PrpJ, a PP2C-type protein phosphatase located on the plasma membrane, is involved in heterocyst maturation in the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 2007; 64:347-58. [PMID: 17371502 DOI: 10.1111/j.1365-2958.2007.05654.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein phosphatases play important roles in the regulation of cell growth, division and differentiation. The cyanobacterium Anabaena PCC 7120 is able to differentiate heterocysts specialized in nitrogen fixation. To protect the nitrogenase from inactivation by oxygen, heterocyst envelope possesses a layer of polysaccharide and a layer of glycolipids. In the present study, we characterized All1731 (PrpJ), a protein phosphatase from Anabaena PCC 7120. prpJ was constitutively expressed in both vegetative cells and heterocysts. Under diazotrophic conditions, the mutant DeltaprpJ (S20) did not grow, lacked only one of the two heterocyst glycolipids, and fragmented extensively at the junctions between developing cells and vegetative cells. No heterocyst glycolipid layer could be observed in the mutant by electron microscopy. The inactivation of prpJ affected the expression of hglE(A) and nifH, two genes necessary for the formation of the glycolipid layer of heterocysts and the nitrogenase respectively. PrpJ displayed a phosphatase activity characteristic of PP2C-type protein phosphatases, and was localized on the plasma membrane. The function of prpJ establishes a new control point for heterocyst maturation because it regulates the synthesis of only one of the two heterocyst glycolipids while all other genes so far analysed regulate the synthesis of both heterocyst glycolipids.
Collapse
Affiliation(s)
- Jichan Jang
- Laboratoire de Chimie Bactérienne, CNRS-UPR9043, Institut de Biologie Structurale et Microbiologie, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | |
Collapse
|
107
|
Okamoto S, Yamanishi Y, Ehira S, Kawashima S, Tonomura K, Kanehisa M. Prediction of nitrogen metabolism-related genes inAnabaena by kernel-based network analysis. Proteomics 2007; 7:900-9. [PMID: 17370268 DOI: 10.1002/pmic.200600862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Prediction of molecular interaction networks from large-scale datasets in genomics and other omics experiments is an important task in terms of both developing bioinformatics methods and solving biological problems. We have applied a kernel-based network inference method for extracting functionally related genes to the response of nitrogen deprivation in cyanobacteria Anabaena sp. PCC 7120 integrating three heterogeneous datasets: microarray data, phylogenetic profiles, and gene orders on the chromosome. We obtained 1348 predicted genes that are somehow related to known genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. While this dataset contained previously known genes related to the nitrogen deprivation condition, it also contained additional genes. Thus, we attempted to select any relevant genes using the constraints of Pfam domains and NtcA-binding sites. We found candidates of nitrogen metabolism-related genes, which are depicted as extensions of existing KEGG pathways. The prediction of functional relationships between proteins rather than functions of individual proteins will thus assist the discovery from the large-scale datasets.
Collapse
Affiliation(s)
- Shinobu Okamoto
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan.
| | | | | | | | | | | |
Collapse
|
108
|
Sakurai H, Masukawa H. Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:128-45. [PMID: 17340220 DOI: 10.1007/s10126-006-6073-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 08/25/2006] [Indexed: 05/14/2023]
Abstract
This review article explores the potential of using mariculture-raised cyanobacteria as solar energy converters of hydrogen (H(2)). The exploitation of the sea surface for large-scale renewable energy production and the reasons for selecting the economical, nitrogenase-based systems of cyanobacteria for H(2) production, are described in terms of societal benefits. Reports of cyanobacterial photobiological H(2) production are summarized with respect to specific activity, efficiency of solar energy conversion, and maximum H(2) concentration attainable. The need for further improvements in biological parameters such as low-light saturation properties, sustainability of H(2) production, and so forth, and the means to overcome these difficulties through the identification of promising wild-type strains followed by optimization of the selected strains using genetic engineering are also discussed. Finally, a possible mechanism for the development of economical large-scale mariculture operations in conjunction with international cooperation and social acceptance is outlined.
Collapse
Affiliation(s)
- Hidehiro Sakurai
- Department of Biology, School of Education, and Major in Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Nishiwaseda 1, Shinjuku, Tokyo, 169-8050, Japan.
| | | |
Collapse
|
109
|
|
110
|
Physiological Adaptations in Nitrogen-fixing Nostoc–Plant Symbiotic Associations. MICROBIOLOGY MONOGRAPHS 2007. [DOI: 10.1007/7171_2007_101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
111
|
Chen H, Laurent S, Bédu S, Ziarelli F, Chen HL, Cheng Y, Zhang CC, Peng L. Studying the signaling role of 2-oxoglutaric acid using analogs that mimic the ketone and ketal forms of 2-oxoglutaric acid. ACTA ACUST UNITED AC 2006; 13:849-56. [PMID: 16931334 DOI: 10.1016/j.chembiol.2006.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 05/18/2006] [Accepted: 06/01/2006] [Indexed: 11/23/2022]
Abstract
2-Oxoglutaric acid (2-OG), a Krebs cycle intermediate, is a signaling molecule in many organisms. To determine which form of 2-OG, the ketone or the ketal form, is responsible for its signaling function, we have synthesized and characterized various 2-OG analogs. Only 2-methylenepentanedioic acid (2-MPA), which resembles closely the ketone form of 2-OG, is able to elicit cell responses in the cyanobacterium Anabaena by inducing nitrogen-fixing cells called heterocysts. None of the analogs mimicking the ketal form of 2-OG are able to induce heterocysts because none of them are able to interact with NtcA, a 2-OG sensor. NtcA interacts with 2-MPA and 2-OG in a similar manner, and it is necessary for heterocyst differentiation induced by 2-MPA. Therefore, it is primarily the ketone form that is responsible for the signaling role of 2-OG in Anabaena.
Collapse
Affiliation(s)
- Han Chen
- College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
Why do bacteria have shape? Is morphology valuable or just a trivial secondary characteristic? Why should bacteria have one shape instead of another? Three broad considerations suggest that bacterial shapes are not accidental but are biologically important: cells adopt uniform morphologies from among a wide variety of possibilities, some cells modify their shape as conditions demand, and morphology can be tracked through evolutionary lineages. All of these imply that shape is a selectable feature that aids survival. The aim of this review is to spell out the physical, environmental, and biological forces that favor different bacterial morphologies and which, therefore, contribute to natural selection. Specifically, cell shape is driven by eight general considerations: nutrient access, cell division and segregation, attachment to surfaces, passive dispersal, active motility, polar differentiation, the need to escape predators, and the advantages of cellular differentiation. Bacteria respond to these forces by performing a type of calculus, integrating over a number of environmental and behavioral factors to produce a size and shape that are optimal for the circumstances in which they live. Just as we are beginning to answer how bacteria create their shapes, it seems reasonable and essential that we expand our efforts to understand why they do so.
Collapse
Affiliation(s)
- Kevin D Young
- Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
113
|
Ehira S, Ohmori M. NrrA directly regulates expression of hetR during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2006; 188:8520-5. [PMID: 17041048 PMCID: PMC1698254 DOI: 10.1128/jb.01314-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120 requires NtcA, the global nitrogen regulator in cyanobacteria, and HetR, the master regulator of heterocyst differentiation. Expression of hetR is upregulated by nitrogen deprivation, and its upregulation depends on NtcA. However, it has not yet been revealed how NtcA regulates the expression of hetR. In the experiments presented here, it was confirmed that NrrA (All4312), a nitrogen-responsive response regulator, was required for the upregulation of hetR. The use of the nitrogen-responsive transcription initiation sites (TISs) for the hetR gene depended upon NrrA. NrrA bound specifically to the region upstream of TISs located at positions -728 and -696 in vitro. Overexpression of nrrA resulted in enhanced hetR expression and heterocyst formation. A molecular regulatory cascade is proposed whereby NtcA upregulates the expression of nrrA upon limitation of combined nitrogen in the medium and then NrrA upregulates the expression of hetR, leading to heterocyst differentiation.
Collapse
Affiliation(s)
- Shigeki Ehira
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
| | | |
Collapse
|
114
|
Fan Q, Lechno-Yossef S, Ehira S, Kaneko T, Ohmori M, Sato N, Tabata S, Wolk CP. Signal transduction genes required for heterocyst maturation in Anabaena sp. strain PCC 7120. J Bacteriol 2006; 188:6688-93. [PMID: 16952961 PMCID: PMC1595475 DOI: 10.1128/jb.01669-05] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How heterocyst differentiation is regulated, once particular cells start to differentiate, remains largely unknown. Using near-saturation transposon mutagenesis and testing of transposon-tagged loci, we identified three presumptive regulatory genes not previously recognized as being required specifically for normal heterocyst maturation. One of these genes has a hitherto unreported mutant phenotype. Two previously identified regulatory genes were further characterized.
Collapse
Affiliation(s)
- Qing Fan
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1312, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Olmedo-Verd E, Muro-Pastor AM, Flores E, Herrero A. Localized induction of the ntcA regulatory gene in developing heterocysts of Anabaena sp. strain PCC 7120. J Bacteriol 2006; 188:6694-9. [PMID: 16952962 PMCID: PMC1595470 DOI: 10.1128/jb.00509-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ntcA gene encodes an N-control transcriptional regulator in cyanobacteria. In the N(2)-fixing, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ntcA is an autoregulatory gene that is transcribed from a complex promoter region that includes a constitutive promoter (P(2)) and promoters that are induced upon N step-down (P(1) and P(3)). Expression of ntcA was investigated with the use of an ntcA-gfp translational fusion, which was introduced both in the natural ntcA locus and in a heterologous genomic place. Induction of ntcA-gfp took place after N step-down in all the cells of the filament, but at especially high levels in developing heterocysts. Localized induction could be driven independently by P(3) and P(1).
Collapse
Affiliation(s)
- Elvira Olmedo-Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Américo Vespucio 49, E-41092 Seville, Spain
| | | | | | | |
Collapse
|
116
|
Pratte BS, Eplin K, Thiel T. Cross-functionality of nitrogenase components NifH1 and VnfH in Anabaena variabilis. J Bacteriol 2006; 188:5806-11. [PMID: 16885448 PMCID: PMC1540069 DOI: 10.1128/jb.00618-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anabaena variabilis fixes nitrogen under aerobic growth conditions in differentiated cells called heterocysts using either a Mo nitrogenase or a V nitrogenase. The nifH1 gene, which encodes the dinitrogenase reductase of the Mo nitrogenase that is expressed only in heterocysts, is cotranscribed with nifD1 and nifK1, which together encode the Mo dinitrogenase. These genes were expressed in the presence or absence of molybdate or vanadate. The vnfH gene, which encodes the dinitrogenase reductase of the V nitrogenase, was located about 23 kb from vnfDGK, which encodes the V dinitrogenase; however, like vnfDGK, vnfH was expressed only in the absence of molybdate, with or without vanadate. Like nifH1, the vnfH gene was expressed exclusively in heterocysts under either aerobic or anaerobic growth conditions and thus is under the control of developmental factors. The vnfH mutant was able to grow diazotrophically using the V nitrogenase, because NifH1, which was also made in cells starved for molybdate, could substitute for VnfH. Under oxic conditions, the nifH1 mutant grew in the absence of molybdate but not in its presence, using VnfH, while the nifH1 vnfH double mutant did not grow diazotrophically with or without molybdate or vanadate. A nifH1 mutant that expressed nifDK and vnfH but not vnfDGK was able to grow and fix nitrogen normally, indicating that VnfH could substitute for NifH in the Mo nitrogenase and that these dinitrogenase reductases are not involved in determining the metal specificity of the Mo nitrogenase or the V nitrogenase.
Collapse
Affiliation(s)
- Brenda S Pratte
- Department of Biology, University of Missouri-St. Louis, One University Blvd., St. Louis, MO 63121-4499, USA
| | | | | |
Collapse
|
117
|
Vanhoven MK, Bauer Huang SL, Albin SD, Bargmann CI. The claudin superfamily protein nsy-4 biases lateral signaling to generate left-right asymmetry in C. elegans olfactory neurons. Neuron 2006; 51:291-302. [PMID: 16880124 DOI: 10.1016/j.neuron.2006.06.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/19/2006] [Accepted: 06/29/2006] [Indexed: 11/20/2022]
Abstract
Early in C. elegans development, signaling between bilaterally symmetric AWC olfactory neurons causes them to express different odorant receptor genes. AWC left-right asymmetry is stochastic: in each animal, either the left or the right neuron randomly becomes AWC(ON), and the other neuron becomes AWC(OFF). Here we show that the nsy-4 gene coordinates the lateral signaling that diversifies AWC(ON) and AWC(OFF) neurons. nsy-4 mutants generate 2 AWC(OFF) neurons, as expected if communication between the AWC neurons is lost, whereas overexpression of nsy-4 results in 2 AWC(ON) neurons. nsy-4 encodes a transmembrane protein related to the gamma subunits of voltage-activated calcium channels and the claudin superfamily; it interacts genetically with calcium channels and antagonizes a calcium-to-MAP kinase cascade in the neuron that becomes AWC(ON). Genetic mosaic analysis indicates that nsy-4 functions both cell-autonomously and nonautonomously in signaling between AWC neurons, providing evidence for lateral signaling and feedback that coordinate asymmetric receptor choice.
Collapse
Affiliation(s)
- Miri K Vanhoven
- Department of Anatomy and Department of Biochemistry and Biophysics, The University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
118
|
Dagnino D, de Abreu Meireles D, de Aquino Almeida JC. Growth of nutrient-replete Microcystis PCC 7806 cultures is inhibited by an extracellular signal produced by chlorotic cultures. Environ Microbiol 2006; 8:30-6. [PMID: 16343319 DOI: 10.1111/j.1462-2920.2005.00866.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The frequency of cyanobacterial blooms has been increasing all over the world. These blooms are often toxic and have become a serious health problem. The aim of this work was to search for population density control mechanisms that could inhibit the proliferation of the toxic bloom-forming genus Microcystis. Microcystis PCC 7806 cultured for long periods in liquid ASM-1 medium loses its characteristic green colour. When a medium of chlorotic cultures is added to a nutrient-replete culture, cell density increase is drastically reduced when compared with controls. Inhibition of cell proliferation occurs in Microcystis cultures from any growth stage and was not strain-specific, but other genera tested showed no response. Investigations on the mechanism of growth inhibition showed that cultures treated with the conditioned medium acquired a pale colour, with pigment concentration similar to that found in chlorotic cultures. Ultrastructural examination showed that the conditioned medium induced thylakoid membrane disorganization, typical of chlorotic cells, in nutrient-replete cultures. An active extract was obtained and investigations showed that activity was retained after heating and after addition of an apolar solvent. This indicates that activity of the conditioned medium from chlorotic cells results from non-protein, apolar compound(s).
Collapse
Affiliation(s)
- Denise Dagnino
- Laboratório de Biotecnologia, Centro de Biociencias e Biotechnologia, Universidade Estadual do Norte Fluminense, Campos does Goytacazes, RJ, BR-28013-600, Brazil.
| | | | | |
Collapse
|
119
|
Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY. The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 2006; 103:13126-31. [PMID: 16924101 PMCID: PMC1551899 DOI: 10.1073/pnas.0605709103] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Comparative analysis of 15 complete cyanobacterial genome sequences, including "near minimal" genomes of five strains of Prochlorococcus spp., revealed 1,054 protein families [core cyanobacterial clusters of orthologous groups of proteins (core CyOGs)] encoded in at least 14 of them. The majority of the core CyOGs are involved in central cellular functions that are shared with other bacteria; 50 core CyOGs are specific for cyanobacteria, whereas 84 are exclusively shared by cyanobacteria and plants and/or other plastid-carrying eukaryotes, such as diatoms or apicomplexans. The latter group includes 35 families of uncharacterized proteins, which could also be involved in photosynthesis. Only a few components of cyanobacterial photosynthetic machinery are represented in the genomes of the anoxygenic phototrophic bacteria Chlorobium tepidum, Rhodopseudomonas palustris, Chloroflexus aurantiacus, or Heliobacillus mobilis. These observations, coupled with recent geological data on the properties of the ancient phototrophs, suggest that photosynthesis originated in the cyanobacterial lineage under the selective pressures of UV light and depletion of electron donors. We propose that the first phototrophs were anaerobic ancestors of cyanobacteria ("procyanobacteria") that conducted anoxygenic photosynthesis using a photosystem I-like reaction center, somewhat similar to the heterocysts of modern filamentous cyanobacteria. From procyanobacteria, photosynthesis spread to other phyla by way of lateral gene transfer.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- *School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- A. N. Belozersky Institute of Physico–Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Sergey L. Mekhedov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Alexander Sorokin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Alexis Dufresne
- Station Biologique, Unité Mixte de Recherche 7144, Centre National de la Recherche Scientifique et Université Paris 6, BP74, F-29682 Roscoff Cedex, France
| | - Frédéric Partensky
- Station Biologique, Unité Mixte de Recherche 7144, Centre National de la Recherche Scientifique et Université Paris 6, BP74, F-29682 Roscoff Cedex, France
| | - Henry Burd
- Integrated Genomics, Inc., Chicago, IL 60612; and
| | | | - Robert Haselkorn
- **Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| |
Collapse
|
120
|
Shi Y, Zhao W, Zhang W, Ye Z, Zhao J. Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 2006; 103:11334-9. [PMID: 16849429 PMCID: PMC1544087 DOI: 10.1073/pnas.0602839103] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcium ions are important to some prokaryotic cellular processes, such as heterocyst differentiation of cyanobacteria. Intracellular free Ca(2+)concentration, [Ca(2+)](i), increases several fold in heterocysts and is regulated by CcbP, a Ca(2+)-binding protein found in heterocyst-forming cyanobacteria. We demonstrate here that CcbP is degraded by HetR, a serine-type protease that controls heterocyst differentiation. The degradation depends on Ca(2+) and appears to be specific because HetR did not digest other tested proteins. CcbP was found to bind two Ca(2+) per molecule with K(D) values of 200 nM and 12.8 microM. Degradation of CcbP releases bound Ca(2+) that contributes significantly to the increase of [Ca(2+)](i) during the process of heterocyst differentiation in Anabaena sp. strain PCC 7120. We suggest that degradation of CcbP is a mechanism of positive autoregulation of HetR. The down-regulation of ccbP in differentiating cells and mature heterocysts, which also is critical to the regulation of [Ca(2+)](i), depends on NtcA. Coexpression of ntcA and a ccbP promoter-controlled gfp in Escherichia coli diminished production of GFP, and the decrease is enhanced by alpha-ketoglutarate. It was also found that NtcA could bind a fragment of the ccbP promoter containing an NtcA-binding sequence in a alpha-ketoglutarate-dependent fashion. Therefore, [Ca(2+)](i) is regulated by a collaboration of HetR and NtcA in heterocyst differentiation in Anabaena sp. strain PCC 7120.
Collapse
Affiliation(s)
- Yunming Shi
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Weixing Zhao
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Zhang
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zi Ye
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jindong Zhao
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
121
|
Zhang CC, Laurent S, Sakr S, Peng L, Bédu S. Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 2006; 59:367-75. [PMID: 16390435 DOI: 10.1111/j.1365-2958.2005.04979.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterocyst differentiation in filamentous cyanobacteria provides an excellent prokaryotic model for studying multicellular behaviour and pattern formation. In Anabaena sp. strain PCC 7120, for example, 5-10% of the cells along each filament are induced, when deprived of combined nitrogen, to differentiate into heterocysts. Heterocysts are specialized in the fixation of N(2) under oxic conditions and are semi-regularly spaced among vegetative cells. This developmental programme leads to spatial separation of oxygen-sensitive nitrogen fixation (by heterocysts) and oxygen-producing photosynthesis (by vegetative cells). The interdependence between these two cell types ensures filament growth under conditions of combined-nitrogen limitation. Multiple signals have recently been identified as necessary for the initiation of heterocyst differentiation, the formation of the heterocyst pattern and pattern maintenance. The Krebs cycle metabolite 2-oxoglutarate (2-OG) serves as a signal of nitrogen deprivation. Accumulation of a non-metabolizable analogue of 2-OG triggers the complex developmental process of heterocyst differentiation. Once heterocyst development has been initiated, interactions among the various components involved in heterocyst differentiation determine the developmental fate of each cell. The free calcium concentration is crucial to heterocyst differentiation. Lateral diffusion of the PatS peptide or a derivative of it from a developing cell may inhibit the differentiation of neighbouring cells. HetR, a protease showing DNA-binding activity, is crucial to heterocyst differentiation and appears to be the central processor of various early signals involved in the developmental process. How the various signalling pathways are integrated and used to control heterocyst differentiation processes is a challenging question that still remains to be elucidated.
Collapse
Affiliation(s)
- Cheng-Cai Zhang
- Laboratoire de Chimie Bactérienne, UPR9043-CNRS, Institut de Biologie Structurale et Microbiologie, 31, chemin Joseph Aiguier, 13402 Marseille cedex 20, France.
| | | | | | | | | |
Collapse
|
122
|
Ehira S, Ohmori M. NrrA, a nitrogen-responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 2006; 59:1692-703. [PMID: 16553876 DOI: 10.1111/j.1365-2958.2006.05049.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heterocyst is a specialized cell for nitrogen fixation in the filamentous cyanobacteria, and its development is triggered by limitation of combined nitrogen in the medium. During heterocyst development, patterns of gene expression change dramatically. We identified seven genes encoding transcriptional regulators that were upregulated by nitrogen deprivation in Anabaena PCC 7120, using an Anabaena oligonucleotide microarray. Among them, the nrrA gene, which encodes a response regulator of the OmpR family with a DNA-binding domain, has shown the most prominent induction after nitrogen deprivation. Expression of nrrA increased all through the filaments within 3 h of nitrogen deprivation and became higher in proheterocysts than in vegetative cells after 12 h. Sequence analysis of the promoter region of nrrA indicated that the induction of nrrA depended on NtcA, which is the global nitrogen regulator in cyanobacteria. In the nrrA deletion mutant, heterocyst development was delayed and the induction of hetR, which is the master gene in regulation of heterocyst development, was diminished up to 24 h nitrogen deprivation. It is concluded that nrrA facilitates heterocyst development.
Collapse
Affiliation(s)
- Shigeki Ehira
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Sakura, Japan
| | | |
Collapse
|
123
|
Orozco CC, Risser DD, Callahan SM. Epistasis analysis of four genes from Anabaena sp. strain PCC 7120 suggests a connection between PatA and PatS in heterocyst pattern formation. J Bacteriol 2006; 188:1808-16. [PMID: 16484191 PMCID: PMC1426565 DOI: 10.1128/jb.188.5.1808-1816.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hetR, patA, hetN, and patS genes are part of a regulatory network that regulates the differentiation and patterning of heterocysts in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. In this report, the epistatic interactions of mutant alleles of these four genes have been used to refine our understanding of their relationships to one another. The hetR gene was necessary for differentiation in genetic backgrounds that normally give rise to excessive differentiation, supporting its role as the master regulator of differentiation and indicating that HetR directly regulates factors in addition to hetR and patS genes that regulate differentiation. A functional patS gene was necessary for the delayed multiple-contiguous-heterocyst phenotype observed in hetN mutants as well as for the relative lack of intercalary heterocysts in patA mutants. Epistasis results with mutant alleles of these three genes suggested that PatA attenuates the negative effects of both PatS and HetN on differentiation and promotes differentiation independent of its antagonistic effects on PatS and HetN activity. Cooverxpression of patS and hetR in a synthetic operon indicated that patS acts at a point downstream of hetR transcription in the regulatory network controlling differentiation. A model for the regulation of differentiation that is consistent with these and previous findings is presented.
Collapse
Affiliation(s)
- Christine C Orozco
- University of Hawaii, Department of Microbiology, 2538 McCarthy Mall, 207 Snyder Hall, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
124
|
Curatti L, Giarrocco L, Salerno GL. Sucrose synthase and RuBisCo expression is similarly regulated by the nitrogen source in the nitrogen-fixing cyanobacterium Anabaena sp. PLANTA 2006; 223:891-900. [PMID: 16261375 DOI: 10.1007/s00425-005-0142-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Accepted: 09/26/2005] [Indexed: 05/05/2023]
Abstract
In higher plants and cyanobacteria, sucrose (Suc) metabolism is carried out by a similar set of enzymes. The function and regulation of Suc metabolism in cyanobacteria has begun to be elucidated. In strains of Anabaena sp., filamentous nitrogen-fixing cyanobacteria, Suc synthase (SuS, EC 2.4.1.13) controls Suc cell level through the cleavage of the disaccharide. The present work shows that there are two sus genes in Anabaena (Nostoc) sp. that are co-regulated regarding the nitrogen source; however, only susA accounts for the extractable SuS activity and for the control of the Suc level. Primer extension analysis has uncovered the sequence of the Anabaena susA and susB ammonium-activated putative promoters, which share a high sequence similarity with that of rbcLS encoding ribulose bisphosphate carboxylase/oxygenase (EC 4.1.1.39) and other ammonium up-regulated genes. Moreover, susA and rbcLS expression is developmentally co-localized to the vegetative cells of the nitrogen-fixing cyanobacterial filaments. Our results strongly suggest the existence of a regulatory network that would coordinate the expression of key genes for Suc and nitrogen metabolism, carbon fixation, and development in Anabaena sp.
Collapse
Affiliation(s)
- Leonardo Curatti
- Centro de Investigaciones Biológicas, Fundación para Investigaciones Biológicas Aplicadas, FIBA, CC 1348, 7600, Mar del Plata, Argentina
| | | | | |
Collapse
|
125
|
Sakr S, Jeanjean R, Zhang CC, Arcondeguy T. Inhibition of cell division suppresses heterocyst development in Anabaena sp. strain PCC 7120. J Bacteriol 2006; 188:1396-404. [PMID: 16452422 PMCID: PMC1367218 DOI: 10.1128/jb.188.4.1396-1404.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When the filamentous cyanobacterium Anabaena PCC 7120 is exposed to combined nitrogen starvation, 5 to 10% of the cells along each filament at semiregular intervals differentiate into heterocysts specialized in nitrogen fixation. Heterocysts are terminally differentiated cells in which the major cell division protein FtsZ is undetectable. In this report, we provide molecular evidence indicating that cell division is necessary for heterocyst development. FtsZ, which is translationally fused to the green fluorescent protein (GFP) as a reporter, is found to form a ring structure at the mid-cell position. SulA from Escherichia coli inhibits the GTPase activity of FtsZ in vitro and prevents the formation of FtsZ rings when expressed in Anabaena PCC 7120. The expression of sulA arrests cell division and suppresses heterocyst differentiation completely. The antibiotic aztreonam, which is targeted to the FtsI protein necessary for septum formation, has similar effects on both cell division and heterocyst differentiation, although in this case, the FtsZ ring is still formed. Therefore, heterocyst differentiation is coupled to cell division but independent of the formation of the FtsZ ring. Consistently, once the inhibitory pressure of cell division is removed, cell division should take place first before heterocyst differentiation resumes at a normal frequency. The arrest of cell division does not affect the accumulation of 2-oxoglutarate, which triggers heterocyst differentiation. Consistently, a nonmetabolizable analogue of 2-oxoglutarate does not rescue the failure of heterocyst differentiation when cell division is blocked. These results suggest that the control of heterocyst differentiation by cell division is independent of the 2-oxoglutarate signal.
Collapse
Affiliation(s)
- Samer Sakr
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | |
Collapse
|
126
|
Makarova KS, Koonin EV, Haselkorn R, Galperin MY. Cyanobacterial response regulator PatA contains a conserved N-terminal domain (PATAN) with an alpha-helical insertion. Bioinformatics 2006; 22:1297-301. [PMID: 16543275 DOI: 10.1093/bioinformatics/btl096] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The cyanobacterium Anabaena (Nostoc) PCC 7120 responds to starvation for nitrogen compounds by differentiating approximately every 10th cell in the filament into nitrogen-fixing cells called heterocysts. Heterocyst formation is subject to complex regulation, which involves an unusual response regulator PatA that contains a CheY-like phosphoacceptor (receiver, REC) domain at its C-terminus. PatA-like response regulators are widespread in cyanobacteria; one of them regulates phototaxis in Synechocystis PCC 6803. Sequence analysis of PatA revealed, in addition to the REC domain, a previously undetected, conserved domain, which we named PATAN (after PatA N-terminus), and a potential helix-turn-helix (HTH) domain. PATAN domains are encoded in a variety of environmental bacteria and archaea, often in several copies per genome, and are typically associated with REC, Roadblock and other signal transduction domains, or with DNA-binding HTH domains. Many PATAN domains contain insertions of a small additional domain, termed alpha-clip, which is predicted to form a four-helix bundle. PATAN domains appear to participate in protein-protein interactions that regulate gliding motility and processes of cell development and differentiation in cyanobacteria and some proteobacteria, such as Myxococcus xanthus and Geobacter sulfurreducens.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
127
|
Steunou AS, Bhaya D, Bateson MM, Melendrez MC, Ward DM, Brecht E, Peters JW, Kühl M, Grossman AR. In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc Natl Acad Sci U S A 2006; 103:2398-403. [PMID: 16467157 PMCID: PMC1413695 DOI: 10.1073/pnas.0507513103] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Indexed: 11/18/2022] Open
Abstract
Genome sequences of two Synechococcus ecotypes inhabiting the Octopus Spring microbial mat in Yellowstone National Park revealed the presence of all genes required for nitrogenase biosynthesis. We demonstrate that nif genes of the Synechococcus ecotypes are expressed in situ in a region of the mat that varies in temperature from 53.5 degrees C to 63.4 degrees C (average 60 degrees C); transcripts are only detected at the end of the day when the mat becomes anoxic. Nitrogenase activity in mat samples was also detected in the evening. Hitherto, N2 fixation in hot spring mats was attributed either to filamentous cyanobacteria (not present at >50 degrees C in these mats) or to heterotrophic bacteria. To explore how energy-generating processes of the Synechococcus ecotypes track natural light and O2 conditions, we evaluated accumulation of transcripts encoding proteins involved in photosynthesis, respiration, and fermentation. Transcripts from photosynthesis (cpcF, cpcE, psaB, and psbB) and respiration (coxA and cydA) genes declined in the evening. In contrast, transcripts encoding enzymes that may participate in fermentation fell into two categories; some (ldh, pdhB, ald, and ackA) decreased in the evening, whereas others (pflB, pflA, adhE, and acs) increased at the end of the day and remained high into the night. Energy required for N2 fixation during the night may be derived from fermentation pathways that become prominent as the mat becomes anoxic. In a broader context, our data suggest that there are critical regulatory switches in situ that are linked to the diel cycle and that these switches alter many metabolic processes within the microbial mat.
Collapse
Affiliation(s)
- Anne-Soisig Steunou
- Department of Plant Biology, The Carnegie Institution, 260 Panama Street, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Pinzon NM, Ju LK. Modeling Culture Profiles of the Heterocystous N2-Fixing CyanobacteriumAnabaenaflos-aquae. Biotechnol Prog 2006. [DOI: 10.1002/bp060163c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
129
|
Picossi S, Montesinos ML, Pernil R, Lichtlé C, Herrero A, Flores E. ABC-type neutral amino acid permease N-I is required for optimal diazotrophic growth and is repressed in the heterocysts of Anabaena sp. strain PCC 7120. Mol Microbiol 2005; 57:1582-92. [PMID: 16135226 DOI: 10.1111/j.1365-2958.2005.04791.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can fix N2 in differentiated cells called heterocysts. The products of Anabaena open reading frames (ORFs) all1046, all1047, all1284, alr1834 and all2912 were identified as putative elements of a neutral amino acid permease. Anabaena mutants of these ORFs were strongly affected (1-12% of the wild-type activity) in the transport of Pro, Phe, Leu and Gly and also impaired (17-30% of the wild-type activity) in the transport of Ala and Ser. These results identified those ORFs as the nat genes encoding the N-I neutral amino acid permease. According to amino acid sequence homologies, natA (all1046) and natE (all2912) encode ATPases, natC (all1047) and natD (all1284) encode transmembrane proteins, and natB (alr1834) encodes a periplasmic substrate-binding protein of an ABC-type uptake transporter. The natA, natC, natD and natE mutants showed defects in Gln and His uptake that were not observed in the natB mutant suggesting that NatB is not a binding protein for Gln or His. The nat mutants released hydrophobic amino acids to the medium, and amino acid release took place at higher levels in cultures incubated in the absence of combined N than in the presence of nitrate. Alanine was the amino acid released at highest levels, and its release was impaired in a mutant unable to develop heterocysts. The nat mutants were also impaired in diazotrophic growth, with natA, natC, natD and natE mutants showing more severe defects than the natB mutant. Expression of natA and natC, which constitute an operon, natCA, as well as of natB was studied and found to take place in vegetative cells but not in the heterocysts. These results indicate that the N-I permease is necessary for normal growth of Anabaena sp. strain PCC 7120 on N2, and that this permease has a role in the diazotrophic filament specifically in the vegetative cells.
Collapse
Affiliation(s)
- Silvia Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092 Seville, Spain
| | | | | | | | | | | |
Collapse
|
130
|
Carrasco CD, Holliday SD, Hansel A, Lindblad P, Golden JW. Heterocyst-specific excision of the Anabaena sp. strain PCC 7120 hupL element requires xisC. J Bacteriol 2005; 187:6031-8. [PMID: 16109944 PMCID: PMC1196164 DOI: 10.1128/jb.187.17.6031-6038.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In nitrogen-limiting conditions, approximately 10% of the vegetative cells in filaments of the cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 differentiate into nitrogen-fixing heterocysts. During the late stages of heterocyst differentiation, three DNA elements, each embedded within an open reading frame, are programmed to excise from the chromosome by site-specific recombination. The DNA elements are named after the genes that they interrupt: nifD, fdxN, and hupL. The nifD and fdxN elements each contain a gene, xisA or xisF, respectively, that encodes the site-specific recombinase required for programmed excision of the element. Here, we show that the xisC gene (alr0677), which is present at one end of the 9,435-bp hupL element, is required for excision of the hupL element. A strain in which the xisC gene was inactivated showed no detectable excision of the hupL element. hupL encodes the large subunit of uptake hydrogenase. The xisC mutant forms heterocysts and grows diazotrophically, but unlike the wild type, it evolved hydrogen gas under nitrogen-fixing conditions. Overexpression of xisC from a plasmid in a wild-type background caused a low level of hupL rearrangement even in nitrogen-replete conditions. Expression of xisC in Escherichia coli was sufficient to produce rearrangement of an artificial substrate plasmid bearing the hupL element recombination sites. Sequence analysis indicated that XisC is a divergent member of the phage integrase family of recombinases. Site-directed mutagenesis of xisC showed that the XisC recombinase has functional similarity to the phage integrase family.
Collapse
Affiliation(s)
- Claudio D Carrasco
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| | | | | | | | | |
Collapse
|
131
|
Gatherer D, McEwan NR. Phylogenetic differences in content and intensity of periodic proteins. J Mol Evol 2005; 60:447-61. [PMID: 15883880 DOI: 10.1007/s00239-004-0189-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 11/07/2004] [Indexed: 10/25/2022]
Abstract
Many proteins exhibit sequence periodicity, often correlated with a visible structural periodicity. The statistical significance of such periodicity can be assessed by means of a chi-squared-based test, with significance thresholds being calculated from shuffled sequences. Comparison of the complete proteomes of 45 species reveals striking differences in the proportion of periodic proteins and the intensity of the most significant periodicities. Eukaryotes tend to have a higher proportion of periodic proteins than eubacteria, which in turn tend to have more than archaea. The intensity of periodicity in the most periodic proteins is also greatest in eukaryotes. By contrast, the relatively small group of periodic proteins in archaea also tend to be weakly periodic compared to those of eukaryotes and eubacteria. Exceptions to this general rule are found in those prokaryotes with multicellular life-cycle phases, e.g., Methanosarcina sp., or Anabaena sp., which have more periodicities than prokaryotes in general, and in unicellular eukaryotes, which have fewer than multicellular eukaryotes. The distribution of significantly periodic proteins in eukaryotes is over a wide range of period lengths, whereas prokaryotic proteins typically have a more limited set of period lengths. This is further investigated by repeating the analysis on the NRL-3D database of proteins of solved structure. Some short-range periodicities are explicable in terms of basic secondary structure, e.g., alpha helices, while middle-range periodicities are frequently found to consist of known short Pfam domains, e.g., leucine-rich repeats, tetratricopeptides or armadillo domains. However, not all can be explained in this way.
Collapse
Affiliation(s)
- Derek Gatherer
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow, G11 5JR, UK.
| | | |
Collapse
|
132
|
Wei XY, Sakr S, Li JH, Wang L, Chen WL, Zhang CC. Expression of split dnaE genes and trans-splicing of DnaE intein in the developmental cyanobacterium Anabaena sp. PCC 7120. Res Microbiol 2005; 157:227-34. [PMID: 16256311 DOI: 10.1016/j.resmic.2005.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 07/26/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
Protein intein is widespread in a variety of organisms. Several intein elements are also present in cyanobacteria, and some of them have been studied biochemically in vitro. However, no evidence is available for intein removal in vivo in cyanobacteria. In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, the DNA replication factor DnaE is encoded by two split open reading frames (ORFs) far apart from each other on the chromosome, and each of them could contain a split intein element. This organism can undergo a developmental process leading to the formation of nitrogen-fixing cells, or heterocysts. Heterocysts are terminally differentiated cells with arrest of cell cycle. Since DnaE is an important cell cycle element involved in DNA replication, we would like to provide in vivo evidence for DnaE intein removal in cyanobacteria and determine whether mature DnaE protein is still present in heterocysts. In this study, we showed that the products of these two ORFs were joined together to form a complete DnaE protein through the process of protein trans-splicing. More interestingly, protein trans-splicing could be detected in vivo for the first time in cyanobacteria, which allowed us to compare the formation of mature DnaE protein in heterocysts and vegetative cells, and show that mature DnaE protein could be formed in both cell types. Transcriptional fusion between the promoter regions of the two split ORFs and gfp reporter also demonstrate that both ORFs are transcribed in vegetative cells and heterocysts, without strong variation during the process of heterocyst differentiation. Although heterocysts are terminally differentiated and may not replicate its chromosome, the expression and maturation of DnaE in these cells may underlie the need for DNA replication machinery in processes such as DNA recombination and repair.
Collapse
Affiliation(s)
- Xin-Yuan Wei
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
133
|
Affiliation(s)
- Karen L Visick
- Department of Biology, 1001 E. 3rd St., Jordan Hall 142, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
134
|
Laurent S, Chen H, Bédu S, Ziarelli F, Peng L, Zhang CC. Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 2005; 102:9907-12. [PMID: 15985552 PMCID: PMC1174989 DOI: 10.1073/pnas.0502337102] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In response to combined nitrogen starvation in the growth medium, the filamentous cyanobacterium Anabaena sp. PCC 7120 is able to develop a particular cell type, called a heterocyst, specialized in molecular nitrogen fixation. Heterocysts are regularly intercalated among vegetative cells and represent 5-10% of all cells along each filament. In unicellular cyanobacteria, the key Krebs cycle intermediate, 2-oxoglutarate (2-OG), has been suggested as a nitrogen status signal, but in vivo evidence is still lacking. In this study we show that nitrogen starvation causes 2-OG to accumulate transiently within cells of Anabaena PCC 7120, reaching a maximal intracellular concentration of approximately 0.1 mM 1 h after combined nitrogen starvation. A nonmetabolizable fluorinated 2-OG derivative, 2,2-difluoropentanedioic acid (DFPA), was synthesized and used to demonstrate the signaling function of 2-OG in vivo. DFPA is shown to be a structural analogue of 2-OG and the process of its uptake and accumulation in vivo can be followed by (19)F magic angle spinning NMR because of the presence of the fluorine atom and its chemical stability. DFPA at a threshold concentration of 0.3 mM triggers heterocyst differentiation under repressing conditions. The multidisciplinary approaches using synthetic fluorinated analogues, magic angle spinning NMR for their analysis in vivo, and techniques of molecular biology provide a powerful means to identify the nature of the signals that remain unknown or poorly defined in many signaling pathways.
Collapse
Affiliation(s)
- Sophie Laurent
- Laboratoire de Chimie Bactérienne, UPR9043, Centre National de la Recherche Scientifique, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
135
|
Li L, Kehoe DM. In vivo analysis of the roles of conserved aspartate and histidine residues within a complex response regulator. Mol Microbiol 2005; 55:1538-52. [PMID: 15720559 DOI: 10.1111/j.1365-2958.2005.04491.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RcaC is the founding member of a group of large response regulators with complex domain combinations containing at least two receiver domains, an OmpR-class winged helix-turn-helix DNA binding domain, and a histidine phosphotransfer (HPt) domain. Within its two receiver and HPt domains, RcaC contains consensus phosphorylation sites at aspartates 51, 576 and histidine 316. RcaC operates in the pathway regulating transcription of genes encoding components of photosynthetic light harvesting antenna to changes in light colour. We show that phycocyanin gene expression requires RcaC. RcaC contributes to light regulation of phycoerythrin genes, but is not part of the second light regulation pathway controlling these genes. Substitutions at aspartate 51 or histidine 316 severely impaired light responsiveness while substitutions at aspartate 576 had little effect. Complete loss of light regulation, measured by phycocyanin gene expression, only occurred in the triple mutant. We conclude that aspartate 51 primarily controls light colour responsiveness and is regulated by histidine 316, and that these residues are likely phosphorylated in red light and dephosphorylated in green light. The carboxy-terminal receiver domain has a minor role in controlling this response. RcaC abundance is also light regulated and depends on aspartate 51 and histidine 316, but not aspartate 576.
Collapse
Affiliation(s)
- Lina Li
- Department of Biology, 1001 East 3rd Street, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
136
|
Prince RC, Kheshgi HS. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 2005; 31:19-31. [PMID: 15839402 DOI: 10.1080/10408410590912961] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photosynthetic microorganisms can produce hydrogen when illuminated, and there has been considerable interest in developing this to a commercially viable process. Its appealing aspects include the fact that the hydrogen would come from water, and that the process might be more energetically efficient than growing, harvesting, and processing crops. We review current knowledge about photobiological hydrogen production, and identify and discuss some of the areas where scientific and technical breakthroughs are essential for commercialization. First we describe the underlying biochemistry of the process, and identify some opportunities for improving photobiological hydrogen production at the molecular level. Then we address the fundamental quantum efficiency of the various processes that have been suggested, technological issues surrounding large-scale growth of hydrogen-producing microorganisms, and the scale and efficiency on which this would have to be practiced to make a significant contribution to current energy use.
Collapse
Affiliation(s)
- Roger C Prince
- ExxonMobil Research and Engineering Co., Annandale, New Jersey 08801, USA.
| | | |
Collapse
|
137
|
Abstract
Recent advances have demonstrated that bacterial cells have an exquisitely organized and dynamic subcellular architecture. Like their eukaryotic counterparts, bacteria employ a full complement of cytoskeletal proteins, localize proteins and DNA to specific subcellular addresses at specific times, and use intercellular signaling to coordinate multicellular events. The striking conceptual and molecular similarities between prokaryotic and eukaryotic cell biology thus make bacteria powerful model systems for studying fundamental cellular questions.
Collapse
Affiliation(s)
- Zemer Gitai
- Department of Developmental Biology, Beckman Center, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
138
|
Zhao Y, Shi Y, Zhao W, Huang X, Wang D, Brown N, Brand J, Zhao J. CcbP, a calcium-binding protein from Anabaena sp. PCC 7120, provides evidence that calcium ions regulate heterocyst differentiation. Proc Natl Acad Sci U S A 2005; 102:5744-8. [PMID: 15811937 PMCID: PMC556313 DOI: 10.1073/pnas.0501782102] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Indexed: 11/18/2022] Open
Abstract
Although it is known that calcium is a very important messenger involved in many eukaryotic cellular processes, much less is known about calcium's role in bacteria. CcbP, a Ca(2+)-binding protein, was isolated from the heterocystous cyanobacterium Anabaena sp. PCC 7120, and the ccbP gene was cloned and inactivated. In the absence of combined nitrogen, inactivation of ccbP resulted in multiple contiguous heterocysts, whereas overexpression of ccbP suppressed heterocyst formation. Calmodulin, which is not present in Anabaena species, could also suppress heterocyst formation in both Anabaena sp. PCC 7120 and Anabaena variabilis. HetR induction upon nitrogen step-down was slow in the strain overexpressing ccbP. The Ca(2+) reporter protein obelin was used to show that mature heterocysts had a high intracellular free Ca(2+)concentration {[Ca(2+)](i)}, and immunoblotting showed that CcbP was absent from heterocysts. A regular pattern of cells with higher [Ca(2+)](i) was established during heterocyst differentiation before the appearance of proheterocysts. A rapid increase of [Ca(2+)](i) could be detected 4 h after the removal of combined nitrogen, and this increase was suppressed by excessive CcbP. These results suggest that Ca(2+) ions play very important roles in hetR induction and heterocyst differentiation.
Collapse
Affiliation(s)
- Yinhong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Olmedo-Verd E, Flores E, Herrero A, Muro-Pastor AM. HetR-dependent and -independent expression of heterocyst-related genes in an Anabaena strain overproducing the NtcA transcription factor. J Bacteriol 2005; 187:1985-91. [PMID: 15743946 PMCID: PMC1064053 DOI: 10.1128/jb.187.6.1985-1991.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120 depends on both the global nitrogen control transcription factor NtcA and the cell differentiation regulatory protein HetR, with expression of ntcA and hetR being dependent on each other. In this study we constructed strains that constitutively express the ntcA gene leading to high levels of NtcA protein irrespective of the nitrogen source, and we analyzed the effects of such NtcA levels on heterocyst differentiation. In the NtcA-overproducing strain, heterocyst differentiation, induction of NtcA-dependent heterocyst development genes or operons such as devBCA or the cox2 operon, and NtcA-dependent excision of the 11-kb nifD-intervening element only took place under nitrogen deficiency. Although functional heterocysts were produced in response to nitrogen step-down, the NtcA overproducing strain could not grow diazotrophically. Overexpression of ntcA in a hetR background promoted expression of devBCA in response to ammonium withdrawal and excision of the 11-kb element even in the presence of combined nitrogen. Our results show that some NtcA-dependent heterocyst-related genes can be expressed independently of HetR.
Collapse
Affiliation(s)
- Elvira Olmedo-Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | | | | | | |
Collapse
|
140
|
Torrecilla I, Leganés F, Bonilla I, Fernández-Piñas F. A calcium signal is involved in heterocyst differentiation in the cyanobacterium Anabaena sp. PCC7120. Microbiology (Reading) 2004; 150:3731-3739. [PMID: 15528659 DOI: 10.1099/mic.0.27403-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The impact of calcium signals in virtually all cells has led to the study of their role in prokaryotic organisms as stress response modulators. Cell differentiation in adverse conditions is a common Ca2+-requiring response. Nitrogen starvation induces the differentiation of N2-fixing heterocysts in the filamentous cyanobacterium Anabaena sp. PCC7120. This paper reports the use of a recombinant strain of this organism expressing the photoprotein aequorin to monitor the intracellular free-calcium concentration during the course of heterocyst differentiation. A specific calcium signature that is triggered exclusively when cells are deprived of combined nitrogen and generated by intracellular calcium stores was identified. The intracellular calcium signal was manipulated by treatment with specific calcium drugs, and the effect of such manipulation on the process of heterocyst differentiation was subsequently assessed. Suppression, magnification or poor regulation of this signal prevented the process of heterocyst differentiation, thereby suggesting that a calcium signal with a defined set of kinetic parameters may be required for differentiation. A hetR mutant of Anabaena sp. PCC7120 that cannot differentiate into heterocysts retains, however, the capacity to generate the calcium transient in response to nitrogen deprivation, strongly suggesting that Ca2+ may be involved in a very early step of the differentiation process.
Collapse
Affiliation(s)
- I Torrecilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - F Leganés
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - I Bonilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - F Fernández-Piñas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
141
|
Pappas KM, Weingart CL, Winans SC. Chemical communication in proteobacteria: biochemical and structural studies of signal synthases and receptors required for intercellular signalling. Mol Microbiol 2004; 53:755-69. [PMID: 15255890 DOI: 10.1111/j.1365-2958.2004.04212.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-cell communication via the production and detection of chemical signal molecules has been the focus of a great deal of research over the past decade. One class of chemical signals widely used by proteobacteria consists of N-acyl-homoserine lactones, which are synthesized by proteins related to LuxI of Vibrio fischeri and are detected by proteins related to the V. fischeri LuxR protein. A related marine bacterium, Vibrio harveyi, communicates using two chemical signals, one of which, autoinducer-2 (AI-2), is a furanone borate diester that is synthesized by the LuxS protein and detected by a periplasmic protein called LuxP. Evidence from a number of laboratories suggests that AI-2 may be used as a signal by diverse groups of bacteria, and might permit intergeneric signalling. These two families of signalling systems have been studied from the perspectives of physiology, ecology, biochemistry, and more recently, structural biology. Here, we review the biochemistry and structural biology of both acyl-homoserine-lactone-dependent and AI-2-dependent signalling systems.
Collapse
Affiliation(s)
- Katherine M Pappas
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Athens, Greece
| | | | | |
Collapse
|
142
|
Wu X, Liu D, Lee MH, Golden JW. patS minigenes inhibit heterocyst development of Anabaena sp. strain PCC 7120. J Bacteriol 2004; 186:6422-9. [PMID: 15375122 PMCID: PMC516582 DOI: 10.1128/jb.186.19.6422-6429.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The patS gene encodes a small peptide that is required for normal heterocyst pattern formation in the cyanobacterium Anabaena sp. strain PCC 7120. PatS is proposed to control the heterocyst pattern by lateral inhibition. patS minigenes were constructed and expressed by different developmentally regulated promoters to gain further insight into PatS signaling. patS minigenes patS4 to patS8 encode PatS C-terminal 4 (GSGR) to 8 (CDERGSGR) oligopeptides. When expressed by P(petE), P(patS), or P(rbcL) promoters, patS5 to patS8 inhibited heterocyst formation but patS4 did not. In contrast to the full-length patS gene, P(hepA)-patS5 failed to restore a wild-type pattern in a patS null mutant, indicating that PatS-5 cannot function in cell-to-cell signaling if it is expressed in proheterocysts. To establish the location of the PatS receptor, PatS-5 was confined within the cytoplasm as a gfp-patS5 fusion. The green fluorescent protein GFP-PatS-5 fusion protein inhibited heterocyst formation. Similarly, full-length PatS with a C-terminal hexahistidine tag inhibited heterocyst formation. These data indicate that the PatS receptor is located in the cytoplasm, which is consistent with recently published data indicating that HetR is a PatS target. We speculated that overexpression of other Anabaena strain PCC 7120 RGSGR-encoding genes might show heterocyst inhibition activity. In addition to patS and hetN, open reading frame (ORF) all3290 and an unannotated ORF, orf77, encode an RGSGR motif. Overexpression of all3290 and orf77 under the control of the petE promoter inhibited heterocyst formation, indicating that the RGSGR motif can inhibit heterocyst development in a variety of contexts.
Collapse
Affiliation(s)
- Xiaoqiang Wu
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | | | |
Collapse
|
143
|
Hellingwerf KJ. A network of net-workers: report of the Euresco conference on ‘Bacterial Neural Networks’ held at San Feliu (Spain) from 8 to 14 May 2004. Mol Microbiol 2004; 54:2-13. [PMID: 15458400 DOI: 10.1111/j.1365-2958.2004.04321.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In May 2004, over 100 bacteriologists from 19 different countries discussed recent progress in identification and understanding of individual signal transfer mechanisms in bacteria and in the mutual interactions between these systems to form a functional living cell. The meeting was held in San Feliu and supported by ESF and EMBO. In part through the extensive sequencing efforts of the past few years, the bulk of the bacterial signal transfer systems have been resolved and their detailed characterization is revealing such characteristics as signal specificity, signalling rate constants, molecular interaction affinities, subcellular localization, etc., which should provide a solid basis to a computational extension of this field of studies. In parallel, the new genomics techniques are providing tools to characterize the way a collection of such systems interact in an individual cell, to give rise to 'life'. Systems theory provides rational and convenient ways to bring order to the wide range of observables thus obtained. Ultimately, the performance of engineered design will have to prove whether or not we know enough about the processes involved.
Collapse
Affiliation(s)
- Klaas J Hellingwerf
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands.
| |
Collapse
|
144
|
Meinhardt H. Models for the generation of the embryonic body axes: ontogenetic and evolutionary aspects. Curr Opin Genet Dev 2004; 14:446-54. [PMID: 15261663 DOI: 10.1016/j.gde.2004.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coelenterates including hydra are assumed to be close to the last common ancestor before bilaterality evolved. Models based on local self-enhancement and long-range inhibition account for pattern formation and regeneration along this ancestral axis. The body of a hydra-like ancestor evolved into the brain and heart of higher organisms, accounting for the close relationship of both patterning processes. Bilateria require a long-extended organizing region to pattern their dorsoventral axis. Models reveal the difficulties in the generation of such a stripe-like organizer and account for different mechanisms realized in vertebrates and insects. Common pathways involved in hydra budding and in the formation of appendages in higher organisms suggest a possible link.
Collapse
Affiliation(s)
- Hans Meinhardt
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstr. 35, D-72076 Tübingen, Germany.
| |
Collapse
|
145
|
Huang X, Dong Y, Zhao J. HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. Proc Natl Acad Sci U S A 2004; 101:4848-53. [PMID: 15051891 PMCID: PMC387337 DOI: 10.1073/pnas.0400429101] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Indexed: 11/18/2022] Open
Abstract
HetR plays a key role in regulation of heterocyst differentiation. When the Cys-48 residue of the HetR from Anabaena sp. PCC 7120 was replaced with an Ala residue, the mutant HetR (HetR(C48A)) could not dimerize, indicating that HetR forms a homodimer through a disulfide bond. The Anabaena strain C48, containing the hetRc48a gene, could not produce HetR homodimer and failed to form heterocyst. We show that HetR is a DNA-binding protein and that its homodimerization is required for the DNA binding. HetR binds the promoter regions of hetR, hepA, and patS, suggesting a direct control of the expression of these genes by HetR. We present evidence that shows that the up-regulation of patS and hetR depends on DNA binding by HetR dimer. The pentapeptide RGSGR, which is present at the C terminus of PatS and blocks heterocyst formation, inhibits the DNA binding of HetR and prevents hetR up-regulation.
Collapse
Affiliation(s)
- Xu Huang
- State Key Laboratory of Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|