101
|
Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc Natl Acad Sci U S A 2011; 108:17378-83. [PMID: 21987808 DOI: 10.1073/pnas.1114907108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
An in-depth mechanistic understanding of microbial infection necessitates a molecular dissection of host-pathogen relationships. Both Drosophila melanogaster and Pseudomonas aeruginosa have been intensively studied. Here, we analyze the infection of D. melanogaster by P. aeruginosa by using mutants in both host and pathogen. We show that orally ingested P. aeruginosa crosses the intestinal barrier and then proliferates in the hemolymph, thereby causing the infected flies to die of bacteremia. Host defenses against ingested P. aeruginosa included an immune deficiency (IMD) response in the intestinal epithelium, systemic Toll and IMD pathway responses, and a cellular immune response controlling bacteria in the hemocoel. Although the observed cellular and intestinal immune responses appeared to act throughout the course of the infection, there was a late onset of the systemic IMD and Toll responses. In this oral infection model, P. aeruginosa PA14 did not require its type III secretion system or other well-studied virulence factors such as the two-component response regulator GacA or the protease AprA for virulence. In contrast, the quorum-sensing transcription factor RhlR, but surprisingly not LasR, played a key role in counteracting the cellular immune response against PA14, possibly at an early stage when only a few bacteria are present in the hemocoel. These results illustrate the power of studying infection from the dual perspective of host and pathogen by revealing that RhlR plays a more complex role during pathogenesis than previously appreciated.
Collapse
|
102
|
Teixeira AB, Lana AMA, Lamounier JA, Pereira da Silva O, Eloi-Santos SM. Neonatal listeriosis: the importance of placenta histological examination-a case report. AJP Rep 2011; 1:3-6. [PMID: 23705075 PMCID: PMC3653548 DOI: 10.1055/s-0030-1271216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 10/28/2010] [Indexed: 11/28/2022] Open
Abstract
Neonatal listeriosis is not a rare disease, but it is infrequently diagnosed and reported in the literature. Herein we report a case of listeria lethal sepsis, followed by increased cytokines levels in the cord blood, in which diagnosis was made possible by histological examination of the placenta.
Collapse
Affiliation(s)
- Amarilis Batista Teixeira
- Child and Adolescent Health, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
103
|
García-del Portillo F, Calvo E, D'Orazio V, Pucciarelli MG. Association of ActA to peptidoglycan revealed by cell wall proteomics of intracellular Listeria monocytogenes. J Biol Chem 2011; 286:34675-89. [PMID: 21846725 DOI: 10.1074/jbc.m111.230441] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive intracellular bacterial pathogen that colonizes the cytosol of eukaryotic cells. Recent transcriptomic studies have revealed that intracellular L. monocytogenes alter expression of genes encoding envelope components. However, no comparative global analysis of this cell wall remodeling process is yet known at the protein level. Here, we used high resolution mass spectrometry to define the cell wall proteome of L. monocytogenes growing inside epithelial cells. When compared with extracellular bacteria growing in a nutrient-rich medium, a major difference found in the proteome was the presence of the actin assembly-inducing protein ActA in peptidoglycan purified from intracellular bacteria. ActA was also identified in the peptidoglycan of extracellular bacteria growing in a chemically defined minimal medium. In this condition, ActA maintains its membrane anchoring domain and promotes efficient bacterial entry into nonphagocytic host cells. Unexpectedly, Internalin-A, which mediates entry of extracellular L. monocytogenes into eukaryotic cells, was identified at late infection times (6 h) as an abundant protein in the cell wall of intracellular bacteria. Other surface proteins covalently bound to the peptidoglycan, as Lmo0514 and Lmo2085, were detected exclusively in intracellular and extracellular bacteria, respectively. Altogether, these data provide the first insights into the changes occurring at the protein level in the L. monocytogenes cell wall as the pathogen transits from the extracellular environment to an intracytosolic lifestyle inside eukaryotic cells. Some of these changes include alterations in the relative amount and the mode of association of certain surface proteins.
Collapse
Affiliation(s)
- Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
104
|
Probing the role of protein surface charge in the activation of PrfA, the central regulator of Listeria monocytogenes pathogenesis. PLoS One 2011; 6:e23502. [PMID: 21858145 PMCID: PMC3155570 DOI: 10.1371/journal.pone.0023502] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 07/19/2011] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes is a food-borne intracellular bacterial pathogen capable of causing serious human disease. L. monocytogenes survival within mammalian cells depends upon the synthesis of a number of secreted virulence factors whose expression is regulated by the transcriptional activator PrfA. PrfA becomes activated following bacterial entry into host cells where it induces the expression of gene products required for bacterial spread to adjacent cells. Activation of PrfA appears to occur via the binding of a small molecule cofactor whose identity remains unknown. Electrostatic modeling of the predicted PrfA cofactor binding pocket revealed a highly positively charged region with two lysine residues, K64 and K122, located at the edge of the pocket and another (K130) located deep within the interior. Mutational analysis of these residues indicated that K64 and K122 contribute to intracellular activation of PrfA, whereas a K130 substitution abolished protein activity. The requirement of K64 and K122 for intracellular PrfA activation could be bypassed via the introduction of the prfA G145S mutation that constitutively activates PrfA in the absence of cofactor binding. Our data indicate that the positive charge of the PrfA binding pocket contributes to intracellular activation of PrfA, presumably by facilitating binding of an anionic cofactor.
Collapse
|
105
|
Xayarath B, Smart JI, Mueller KJ, Freitag NE. A novel C-terminal mutation resulting in constitutive activation of the Listeria monocytogenes central virulence regulatory factor PrfA. MICROBIOLOGY-SGM 2011; 157:3138-3149. [PMID: 21835879 DOI: 10.1099/mic.0.049957-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The environmental bacterium Listeria monocytogenes survives and replicates in a variety of diverse ecological niches that range from the soil to the cytosol of infected mammalian cells. The ability of L. monocytogenes to replicate within an infected host requires the expression of a number of secreted bacterial gene products whose expression is regulated by the transcriptional activator PrfA. PrfA becomes activated following bacterial entry into host cells; however, the mechanism by which this activation occurs remains unknown. Here we describe a novel C-terminal mutation that results in the high-level constitutive activation of PrfA and yet, in contrast with other described prfA* activation mutations, only modestly increases PrfA DNA binding affinity. L. monocytogenes strains containing the prfA P219S mutation exhibited high levels of PrfA-dependent virulence gene expression, were hyperinvasive in tissue culture models of infection, were fully motile and were hypervirulent in mice. In contrast with PrfA G145S and other mutationally activated PrfA proteins, the PrfA P219S protein readily formed homodimers and did not exhibit a dramatic increase in its DNA-binding affinity for target promoters. Interestingly, the prfA P219S mutation is located adjacent to the prfA K220 residue that has been previously reported to contribute to PrfA DNA binding activity. prfA P219S therefore appears to constitutively activate PrfA via a novel mechanism which minimally affects PrfA DNA binding in vitro.
Collapse
Affiliation(s)
- Bobbi Xayarath
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jennifer I Smart
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kimberly J Mueller
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Nancy E Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
106
|
Identification and Role of Regulatory Non-Coding RNAs in Listeria monocytogenes. Int J Mol Sci 2011; 12:5070-9. [PMID: 21954346 PMCID: PMC3179153 DOI: 10.3390/ijms12085070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/15/2011] [Accepted: 08/08/2011] [Indexed: 11/16/2022] Open
Abstract
Bacterial regulatory non-coding RNAs control numerous mRNA targets that direct a plethora of biological processes, such as the adaption to environmental changes, growth and virulence. Recently developed high-throughput techniques, such as genomic tiling arrays and RNA-Seq have allowed investigating prokaryotic cis- and trans-acting regulatory RNAs, including sRNAs, asRNAs, untranslated regions (UTR) and riboswitches. As a result, we obtained a more comprehensive view on the complexity and plasticity of the prokaryotic genome biology. Listeria monocytogenes was utilized as a model system for intracellular pathogenic bacteria in several studies, which revealed the presence of about 180 regulatory RNAs in the listerial genome. A regulatory role of non-coding RNAs in survival, virulence and adaptation mechanisms of L. monocytogenes was confirmed in subsequent experiments, thus, providing insight into a multifaceted modulatory function of RNA/mRNA interference. In this review, we discuss the identification of regulatory RNAs by high-throughput techniques and in their functional role in L. monocytogenes.
Collapse
|
107
|
Dortet L, Mostowy S, Louaka AS, Gouin E, Nahori MA, Wiemer EA, Dussurget O, Cossart P. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog 2011; 7:e1002168. [PMID: 21829365 PMCID: PMC3150275 DOI: 10.1371/journal.ppat.1002168] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/31/2011] [Indexed: 12/12/2022] Open
Abstract
L. monocytogenes is a facultative intracellular bacterium responsible for listeriosis. It is able to invade, survive and replicate in phagocytic and non-phagocytic cells. The infectious process at the cellular level has been extensively studied and many virulence factors have been identified. Yet, the role of InlK, a member of the internalin family specific to L. monocytogenes, remains unknown. Here, we first show using deletion analysis and in vivo infection, that InlK is a bona fide virulence factor, poorly expressed in vitro and well expressed in vivo, and that it is anchored to the bacterial surface by sortase A. We then demonstrate by a yeast two hybrid screen using InlK as a bait, validated by pulldown experiments and immunofluorescence analysis that intracytosolic bacteria via an interaction with the protein InlK interact with the Major Vault Protein (MVP), the main component of cytoplasmic ribonucleoproteic particules named vaults. Although vaults have been implicated in several cellular processes, their role has remained elusive. Our analysis demonstrates that MVP recruitment disguises intracytosolic bacteria from autophagic recognition, leading to an increased survival rate of InlK over-expressing bacteria compared to InlK(-) bacteria. Together these results reveal that MVP is hijacked by L. monocytogenes in order to counteract the autophagy process, a finding that could have major implications in deciphering the cellular role of vault particles.
Collapse
Affiliation(s)
- Laurent Dortet
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine et Université Paris-Sud, Le Kremlin- Bicêtre Cedex, France
| | - Serge Mostowy
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
| | - Ascel Samba Louaka
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
| | - Edith Gouin
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
| | - Marie-Anne Nahori
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
| | - Erik A.C. Wiemer
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Olivier Dussurget
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
- Université Paris Diderot-Paris 7, Paris, France
| | - Pascale Cossart
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
- * E-mail:
| |
Collapse
|
108
|
Bamburg JR. Listeria monocytogenes cell invasion: a new role for cofilin in co-ordinating actin dynamics and membrane lipids. Mol Microbiol 2011; 81:851-4. [PMID: 21762221 DOI: 10.1111/j.1365-2958.2011.07759.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Actin reorganization, mediated by the actin dynamizing protein cofilin, is essential for host cell invasion by the intracellular pathogenic bacterium Listeria monocytogenes. During invasion, the InlB bacterial surface ligands closely interact with host cell Met receptors to induce phagocytosis. In this issue of Molecular Microbiology, Han et al., 2011 clearly demonstrate that phospholipase D (PLD)-dependent production of membrane phosphatidic acid is required for invasion. They further show that the phosphorylated form of cofilin, which is inactive in actin binding, is necessary for the activation of the PLD1 isoform. Although cofilin-independent PLD2 can also mediate internalization, it is a phospho-cofilin-dependent balanced production of phosphatidic acid that is required for optimal Listeria internalization. Cofilin-dependent membrane lipid remodelling has important implications for cofilin function that go well beyond its direct effects on actin.
Collapse
Affiliation(s)
- James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| |
Collapse
|
109
|
Han X, Yu R, Ji L, Zhen D, Tao S, Li S, Sun Y, Huang L, Feng Z, Li X, Han G, Schmidt M, Han L. InlB-mediated Listeria monocytogenes internalization requires a balanced phospholipase D activity maintained through phospho-cofilin. Mol Microbiol 2011; 81:860-80. [PMID: 21722201 DOI: 10.1111/j.1365-2958.2011.07726.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Internalization of Listeria monocytogenes into non-phagocytic cells is tightly controlled by host cell actin dynamics and cell membrane alterations. However, knowledge about the impact of phosphatidylcholine cleavage driven by host cell phospholipase D (PLD) on Listeria internalization into epithelial cells is limited. Here, we report that L. monocytogenes activates PLD in Vero cells during the internalization. With immunostaining it was shown that both PLD1 and PLD2 surrounded partially or completely the phagocytic cup of most L. monocytogenes. Either up- or down-regulation of PLD expression (activity) diminished Listeria internalization. Both PLD1 and PLD2 in Vero cells were required for efficient Listeria internalization, and could substitute for each other in the regulation of Listeria internalization. Further, exogenous InlB activated host cell PLD1 and PLD2 via the Met receptor, and restored host PLD activation by InlB-deficient L. monocytogenes. InlB-induced PLD activation and Listeria internalization were tightly controlled by phospho-cycling of cofilin. PLD1, but not PLD2, was involved in cofilin-mediated PLD activation and Listeria internalization. These data indicate that cofilin-dependent PLD activation induced by InlB may represent a novel regulation mechanism for efficient Listeria internalization into epithelial cells.
Collapse
Affiliation(s)
- Xuelin Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Velge P, Roche SM. Variability of Listeria monocytogenes virulence: a result of the evolution between saprophytism and virulence? Future Microbiol 2011; 5:1799-821. [PMID: 21155663 DOI: 10.2217/fmb.10.134] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The genus Listeria consists of eight species but only two are pathogenic. Human listeriosis due to Listeria monocytogenes is a foodborne disease. L. monocytogenes is widespread in the environment living as a saprophyte, but is also capable of making the transition into a pathogen following its ingestion by susceptible humans or animals. It is now known that many distinct strains of L. monocytogenes differ in their virulence and epidemic potential. Unfortunately, there is currently no standard definition of virulence levels and no complete comprehensive overview of the evolution of Listeria species and L. monocytogenes strains taking into account the presence of both epidemic and low-virulence strains. This article focuses on the methods and genes allowing us to determine the pathogenic potential of Listeria strains, and the evolution of Listeria virulence. The presence of variable levels of virulence within L. monocytogenes has important consequences on detection of Listeria strains and risk analysis but also on our comprehension of how certain pathogens will behave in a population over evolutionary time.
Collapse
Affiliation(s)
- Philippe Velge
- INRA de tours, UR1282, Infectiologie Animale et Santé Publique, 37380 Nouzilly, France.
| | | |
Collapse
|
111
|
Kapadia D, Sadikovic A, Vanloubbeeck Y, Brockstedt D, Fong L. Interplay between CD8α+ dendritic cells and monocytes in response to Listeria monocytogenes infection attenuates T cell responses. PLoS One 2011; 6:e19376. [PMID: 21559416 PMCID: PMC3084837 DOI: 10.1371/journal.pone.0019376] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 04/04/2011] [Indexed: 11/19/2022] Open
Abstract
During the course of a microbial infection, different antigen presenting cells (APCs) are exposed and contribute to the ensuing immune response. CD8α(+) dendritic cells (DCs) are an important coordinator of early immune responses to the intracellular bacteria Listeria monocytogenes (Lm) and are crucial for CD8(+) T cell immunity. In this study, we examine the contribution of different primary APCs to inducing immune responses against Lm. We find that CD8α(+) DCs are the most susceptible to infection while plasmacytoid DCs are not infected. Moreover, CD8α(+) DCs are the only DC subset capable of priming an immune response to Lm in vitro and are also the only APC studied that do so when transferred into β2 microglobulin deficient mice which lack endogenous cross-presentation. Upon infection, CD11b(+) DCs primarily secrete low levels of TNFα while CD8α(+) DCs secrete IL-12 p70. Infected monocytes secrete high levels of TNFα and IL-12p70, cytokines associated with activated inflammatory macrophages. Furthermore, co-culture of infected CD8α(+) DCs and CD11b+ DCs with monocytes enhances production of IL-12 p70 and TNFα. However, the presence of monocytes in DC/T cell co-cultures attenuates T cell priming against Lm-derived antigens in vitro and in vivo. This suppressive activity of spleen-derived monocytes is mediated in part by both TNFα and inducible nitric oxide synthase (iNOS). Thus these monocytes enhance IL-12 production to Lm infection, but concurrently abrogate DC-mediated T cell priming.
Collapse
Affiliation(s)
- Dilnawaz Kapadia
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Aida Sadikovic
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Yannick Vanloubbeeck
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Dirk Brockstedt
- Aduro Biotech, Berkeley, California, United States of America
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
112
|
Mraheil MA, Billion A, Kuenne C, Pischimarov J, Kreikemeyer B, Engelmann S, Hartke A, Giard JC, Rupnik M, Vorwerk S, Beier M, Retey J, Hartsch T, Jacob A, Cemič F, Hemberger J, Chakraborty T, Hain T. Comparative genome-wide analysis of small RNAs of major Gram-positive pathogens: from identification to application. Microb Biotechnol 2011; 3:658-76. [PMID: 21255362 PMCID: PMC3815340 DOI: 10.1111/j.1751-7915.2010.00171.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the recent years, the number of drug- and multi-drug-resistant microbial strains has increased rapidly. Therefore, the need to identify innovative approaches for development of novel anti-infectives and new therapeutic targets is of high priority in global health care. The detection of small RNAs (sRNAs) in bacteria has attracted considerable attention as an emerging class of new gene expression regulators. Several experimental technologies to predict sRNA have been established for the Gram-negative model organism Escherichia coli. In many respects, sRNA screens in this model system have set a blueprint for the global and functional identification of sRNAs for Gram-positive microbes, but the functional role of sRNAs in colonization and pathogenicity for Listeria monocytogenes, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis and Clostridium difficile is almost completely unknown. Here, we report the current knowledge about the sRNAs of these socioeconomically relevant Gram-positive pathogens, overview the state-of-the-art high-throughput sRNA screening methods and summarize bioinformatics approaches for genome-wide sRNA identification and target prediction. Finally, we discuss the use of modified peptide nucleic acids (PNAs) as a novel tool to inactivate potential sRNA and their applications in rapid and specific detection of pathogenic bacteria.
Collapse
Affiliation(s)
- Mobarak A Mraheil
- Institute of Medical Microbiology, Justus-Liebig-University, Frankfurter Strasse 107, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Solodova E, Jablonska J, Weiss S, Lienenklaus S. Production of IFN-β during Listeria monocytogenes infection is restricted to monocyte/macrophage lineage. PLoS One 2011; 6:e18543. [PMID: 21494554 PMCID: PMC3073975 DOI: 10.1371/journal.pone.0018543] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/04/2011] [Indexed: 12/19/2022] Open
Abstract
The family of type I interferons (IFN), which consists of several IFN-α and one IFN-β, are produced not only after stimulation by viruses, but also after infection with non-viral pathogens. In the course of bacterial infections, these cytokines could be beneficial or detrimental. IFN-β is the primary member of type I IFN that initiates a cascade of IFN-α production. Here we addressed the question which cells are responsible for IFN-β expression after infection with the intracellular pathogen Listeria monocytogenes by using a genetic approach. By means of newly established reporter mice, maximum of IFN-β expression was observed at 24 hours post infection in spleen and, surprisingly, 48 hours post infection in colonized cervical and inguinal lymph nodes. Colonization of lymph nodes was independent of the type I IFN signaling, as well as bacterial dose and strain. Using cell specific reporter function and conditional deletions we could define cells expressing LysM as the major IFN-β producers, with cells formerly defined as Tip-DCs being the highest. Neutrophilic granulocytes, dendritic cells and plasmacytoid dendritic cells did not significantly contribute to type I IFN production.
Collapse
Affiliation(s)
- Evgenia Solodova
- Department of Molecular Biotechnology, Helmholtz Centre for Infection Research, Brunswick, Germany.
| | | | | | | |
Collapse
|
114
|
Lebreton A, Lakisic G, Job V, Fritsch L, Tham TN, Camejo A, Matteï PJ, Regnault B, Nahori MA, Cabanes D, Gautreau A, Ait-Si-Ali S, Dessen A, Cossart P, Bierne H. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science 2011; 331:1319-21. [PMID: 21252314 DOI: 10.1126/science.1200120] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intracellular pathogens such as Listeria monocytogenes subvert cellular functions through the interaction of bacterial effectors with host components. Here we found that a secreted listerial virulence factor, LntA, could target the chromatin repressor BAHD1 in the host cell nucleus to activate interferon (IFN)-stimulated genes (ISGs). IFN-λ expression was induced in response to infection of epithelial cells with bacteria lacking LntA; however, the BAHD1-chromatin associated complex repressed downstream ISGs. In contrast, in cells infected with lntA-expressing bacteria, LntA prevented BAHD1 recruitment to ISGs and stimulated their expression. Murine listeriosis decreased in BAHD1(+/-) mice or when lntA was constitutively expressed. Thus, the LntA-BAHD1 interplay may modulate IFN-λ-mediated immune response to control bacterial colonization of the host.
Collapse
Affiliation(s)
- Alice Lebreton
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Stavru F, Bouillaud F, Sartori A, Ricquier D, Cossart P. Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proc Natl Acad Sci U S A 2011; 108:3612-7. [PMID: 21321208 PMCID: PMC3048117 DOI: 10.1073/pnas.1100126108] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are essential and highly dynamic organelles, constantly undergoing fusion and fission. We analyzed mitochondrial dynamics during infection with the human bacterial pathogen Listeria monocytogenes and show that this infection profoundly alters mitochondrial dynamics by causing transient mitochondrial network fragmentation. Mitochondrial fragmentation is specific to pathogenic Listeria monocytogenes, and it is not observed with the nonpathogenic Listeria innocua species or several other intracellular pathogens. Strikingly, the efficiency of Listeria infection is affected in cells where either mitochondrial fusion or fission has been altered by siRNA treatment, highlighting the relevance of mitochondrial dynamics for Listeria infection. We identified the secreted pore-forming toxin listeriolysin O as the bacterial factor mainly responsible for mitochondrial network disruption and mitochondrial function modulation. Together, our results suggest that the transient shutdown of mitochondrial function and dynamics represents a strategy used by Listeria at the onset of infection to interfere with cellular physiology.
Collapse
Affiliation(s)
- Fabrizia Stavru
- Unité des Interactions Bactéries-Cellules, Institut Pasteur; U604, Institut National de la Santé et de la Recherche Médicale and
- USC2020, Institut National de la Recherche Agronomique, 75015 Paris, France
| | - Frédéric Bouillaud
- Institut Cochin
- Institut National de la Santé et de la Recherche Médicale U1016, and
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Descartes, 75014 Paris, France; and
| | - Anna Sartori
- Plate-Forme de Microscopie Ultrastructurale, Imagopole, Institut Pasteur, Unité de Recherche Associée 2185; 75015 Paris, France
| | - Daniel Ricquier
- Institut Cochin
- Institut National de la Santé et de la Recherche Médicale U1016, and
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Descartes, 75014 Paris, France; and
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur; U604, Institut National de la Santé et de la Recherche Médicale and
- USC2020, Institut National de la Recherche Agronomique, 75015 Paris, France
| |
Collapse
|
116
|
Stavru F, Archambaud C, Cossart P. Cell biology and immunology of Listeria monocytogenes infections: novel insights. Immunol Rev 2011; 240:160-84. [DOI: 10.1111/j.1600-065x.2010.00993.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
117
|
Ebbes M, Bleymüller WM, Cernescu M, Nölker R, Brutschy B, Niemann HH. Fold and function of the InlB B-repeat. J Biol Chem 2011; 286:15496-506. [PMID: 21345802 DOI: 10.1074/jbc.m110.189951] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Host cell invasion by the facultative intracellular pathogen Listeria monocytogenes requires the invasion protein InlB in many cell types. InlB consists of an N-terminal internalin domain that binds the host cell receptor tyrosine kinase Met and C-terminal GW domains that bind to glycosaminoglycans (GAGs). Met binding and activation is required for host cell invasion, while the interaction between GW domains and GAGs enhances this effect. Soluble InlB elicits the same cellular phenotypes as the natural Met ligand hepatocyte growth factor/scatter factor (HGF/SF), e.g. cell scatter. So far, little is known about the central part of InlB, the B-repeat. Here we present a structural and functional characterization of the InlB B-repeat. The crystal structure reveals a variation of the β-grasp fold that is most similar to small ubiquitin-like modifiers (SUMOs). However, structural similarity also suggests a potential evolutionary relation to bacterial mucin-binding proteins. The B-repeat defines the prototype structure of a hitherto uncharacterized domain present in over a thousand bacterial proteins. Generally, this domain probably acts as a spacer or a receptor-binding domain in extracellular multi-domain proteins. In cellular assays the B-repeat acts synergistically with the internalin domain conferring to it the ability to stimulate cell motility. Thus, the B-repeat probably binds a further host cell receptor and thereby enhances signaling downstream of Met.
Collapse
Affiliation(s)
- Maria Ebbes
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
118
|
Mraheil MA, Billion A, Mohamed W, Mukherjee K, Kuenne C, Pischimarov J, Krawitz C, Retey J, Hartsch T, Chakraborty T, Hain T. The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages. Nucleic Acids Res 2011; 39:4235-48. [PMID: 21278422 PMCID: PMC3105390 DOI: 10.1093/nar/gkr033] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Small non-coding RNAs (sRNAs) are widespread effectors of post-transcriptional gene regulation in bacteria. Currently extensive information exists on the sRNAs of Listeria monocytogenes expressed during growth in extracellular environments. We used deep sequencing of cDNAs obtained from fractioned RNA (<500 nt) isolated from extracellularly growing bacteria and from L. monocytogenes infected macrophages to catalog the sRNA repertoire during intracellular bacterial growth. Here, we report on the discovery of 150 putative regulatory RNAs of which 71 have not been previously described. A total of 29 regulatory RNAs, including small non-coding antisense RNAs, are specifically expressed intracellularly. We validated highly expressed sRNAs by northern blotting and demonstrated by the construction and characterization of isogenic mutants of rli31, rli33-1 and rli50* for intracellular expressed sRNA candidates, that their expression is required for efficient growth of bacteria in macrophages. All three mutants were attenuated when assessed for growth in mouse and insect models of infection. Comparative genomic analysis revealed the presence of lineage specific sRNA candidates and the absence of sRNA loci in genomes of naturally occurring infection-attenuated bacteria, with additional loss in non-pathogenic listerial genomes. Our analyses reveal extensive sRNA expression as an important feature of bacterial regulation during intracellular growth.
Collapse
Affiliation(s)
- Mobarak A Mraheil
- Institute of Medical Microbiology, Justus-Liebig-University, Frankfurter Strasse 107, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Listeria monocytogenes infection induces prosurvival metabolic signaling in macrophages. Infect Immun 2011; 79:1526-35. [PMID: 21263022 DOI: 10.1128/iai.01195-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Host cells use metabolic signaling through the LXRα nuclear receptor to defend against Listeria monocytogenes infection. 25-Hydroxycholesterol is a natural ligand of LXRs that is produced by the enzyme cholesterol 25-hydroxylase (CH25H). We found that expression of Ch25h is upregulated following L. monocytogenes infection in a beta interferon (IFN-β)-dependent fashion. Moreover, increased Ch25h expression promotes survival of L. monocytogenes-infected cells and increases sensitivity of the host to infection. We determined that expression of Cd5l, a prosurvival gene, is controlled by CH25H. In addition, we found that CD5L inhibits activation of caspase-1, promoting survival of infected macrophages. Our results reveal a mechanism by which an intracellular pathogen can prolong survival of infected cells, thus providing itself with a protected environment in which to replicate.
Collapse
|
120
|
Arnett E, Lehrer RI, Pratikhya P, Lu W, Seveau S. Defensins enable macrophages to inhibit the intracellular proliferation of Listeria monocytogenes. Cell Microbiol 2011; 13:635-51. [DOI: 10.1111/j.1462-5822.2010.01563.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
121
|
Blue and red light modulates SigB-dependent gene transcription, swimming motility and invasiveness in Listeria monocytogenes. PLoS One 2011; 6:e16151. [PMID: 21264304 PMCID: PMC3019169 DOI: 10.1371/journal.pone.0016151] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/14/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In a number of gram-positive bacteria, including Listeria, the general stress response is regulated by the alternative sigma factor B (SigB). Common stressors which lead to the activation of SigB and the SigB-dependent regulon are high osmolarity, acid and several more. Recently is has been shown that also blue and red light activates SigB in Bacillus subtilis. METHODOLOGY/PRINCIPAL FINDINGS By qRT-PCR we analyzed the transcriptional response of the pathogen L. monocytogenes to blue and red light in wild type bacteria and in isogenic deletion mutants for the putative blue-light receptor Lmo0799 and the stress sigma factor SigB. It was found that both blue (455 nm) and red (625 nm) light induced the transcription of sigB and SigB-dependent genes, this induction was completely abolished in the SigB mutant. The blue-light effect was largely dependent on Lmo0799, proving that this protein is a genuine blue-light receptor. The deletion of lmo0799 enhanced the red-light effect, the underlying mechanism as well as that of SigB activation by red light remains unknown. Blue light led to an increased transcription of the internalin A/B genes and of bacterial invasiveness for Caco-2 enterocytes. Exposure to blue light also strongly inhibited swimming motility of the bacteria in a Lmo0799- and SigB-dependent manner, red light had no effect there. CONCLUSIONS/SIGNIFICANCE Our data established that visible, in particular blue light is an important environmental signal with an impact on gene expression and physiology of the non-phototrophic bacterium L. monocytogenes. In natural environments these effects will result in sometimes random but potentially also cyclic fluctuations of gene activity, depending on the light conditions prevailing in the respective habitat.
Collapse
|
122
|
Sciaranghella G, Lakhashe S, Ayash-Rashkovsky M, Mirshahidi S, Siddappa NB, Novembre FJ, Velu V, Amara RR, Zhou C, Li S, Li Z, Frankel FR, Ruprecht RM. A live attenuated Listeria monocytogenes vaccine vector expressing SIV Gag is safe and immunogenic in macaques and can be administered repeatedly. Vaccine 2011; 29:476-86. [PMID: 21070847 PMCID: PMC3039419 DOI: 10.1016/j.vaccine.2010.10.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/23/2010] [Accepted: 10/25/2010] [Indexed: 02/05/2023]
Abstract
Listeria monocytogenes (Lm) is known to induce strong cellular immune responses. We constructed a live-attenuated Lm vector, Lmdd-BdopSIVgag, which encodes SIVmac239 gag. Intragastric (i.g.) administration of 3 × 10(12) bacteria to rhesus macaques was safe and induced anti-Gag cellular but no humoral immune responses. Boosting of Gag-specific cellular responses was observed after i.g. administration of Lmdd-BdopSIVgag to previously vaccinated RM despite preexisting anti-Lm immunity shown by lymphoproliferative responses. Surprisingly, anti-Lm cellular responses were also detected in non-vaccinated controls, which may reflect the fact that Lm is a ubiquitous bacterium. The novel, live-attenuated Lmdd-BdopSIVgag may be an attractive platform for oral vaccine delivery.
Collapse
Affiliation(s)
- Gaia Sciaranghella
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Samir Lakhashe
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Mila Ayash-Rashkovsky
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Saied Mirshahidi
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Nagadenahalli B. Siddappa
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Francis J. Novembre
- Division of Research Resources and Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, United States
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, United States
| | - Chenghui Zhou
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Sufen Li
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Zhongxia Li
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Fred R. Frankel
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Ruth M. Ruprecht
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
123
|
Rehaiem A, Martínez B, Manai M, Rodríguez A. Technological Performance of the Enterocin A Producer Enterococcus faecium MMRA as a Protective Adjunct Culture to Enhance Hygienic and Sensory Attributes of Traditional Fermented Milk ‘Rayeb’. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-010-0501-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
124
|
Torello CO, de Souza Queiroz J, Oliveira SC, Queiroz ML. Immunohematopoietic modulation by oral β-1,3-glucan in mice infected with Listeria monocytogenes. Int Immunopharmacol 2010; 10:1573-9. [DOI: 10.1016/j.intimp.2010.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 02/08/2023]
|
125
|
Desvaux M, Dumas E, Chafsey I, Chambon C, Hébraud M. Comprehensive appraisal of the extracellular proteins from a monoderm bacterium: theoretical and empirical exoproteomes of Listeria monocytogenes EGD-e by secretomics. J Proteome Res 2010; 9:5076-92. [PMID: 20839850 DOI: 10.1021/pr1003642] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Defined as proteins actively transported via secretion systems, secreted proteins can have radically different subcellular destinations in monoderm (Gram-positive) bacteria. From degradative enzymes in saprophytes to virulence factors in pathogens, secreted proteins are the main tools used by bacteria to interact with their surroundings. The etiological agent of listeriosis, Listeria monocytogenes, is a Gram-positive facultative intracellular foodborne pathogen, whose ecological niche is the soil and as such should be primarily considered as a ubiquitous saprophyte. Recent advances on protein secretion systems in this species prompted us to investigate the exoproteome. First, an original and rational bioinformatic strategy was developed to mimic the protein exportation steps leading to the extracellular localization of secreted proteins; 79 exoproteins were predicted as secreted via Sec, 1 exoprotein via Tat, 4 bacteriocins via ABC exporters, 3 exoproteins via holins, and 3 exoproteins via the WXG100 system. This bioinformatic analysis allowed for defining a databank of the mature protein set in L. monocytogenes, which was used for generating the theoretical exoproteome and for subsequent protein identification by proteomics. 2-DE proteomic analyses were performed over a wide pI range to experimentally cover the largest protein spectrum possible. A total of 120 spots could be resolved and identified, which corresponded to 50 distinct proteins. These exoproteins were essentially virulence factors, degradative enzymes, and proteins of unknown functions, which exportation would essentially rely on the Sec pathway or nonclassical secretion. This investigation resulted in the first comprehensive appraisal of the exoproteome of L. monocytogenes EGD-e based on theoretical and experimental secretomic analyses, which further provided indications on listerial physiology in relation with its habitat and lifestyle. The novel and rational strategy described here is generic and has been purposely designed for the prediction of proteins localized extracellularly in monoderm bacteria.
Collapse
Affiliation(s)
- Mickaël Desvaux
- INRA, UR454 Microbiology, Food Quality and Safety Team, Saint-Genès Champanelle, France.
| | | | | | | | | |
Collapse
|
126
|
Gouin E, Adib-Conquy M, Balestrino D, Nahori MA, Villiers V, Colland F, Dramsi S, Dussurget O, Cossart P. The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the I{kappa}B kinase subunit IKK{alpha}. Proc Natl Acad Sci U S A 2010; 107:17333-8. [PMID: 20855622 PMCID: PMC2951401 DOI: 10.1073/pnas.1007765107] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Listeria monocytogenes is an intracellular pathogen responsible for severe foodborne infections. It can replicate in both phagocytic and nonphagocytic mammalian cells. The infectious process at the cellular level has been studied extensively, but how the bacterium overcomes early host innate immune responses remains largely unknown. Here we show that InlC, a member of the internalin family, is secreted intracellularly and directly interacts with IKKα, a subunit of the IκB kinase complex critical for the phosphorylation of IκB and activation of NF-κB, the major regulator of innate immune responses. Infection experiments with WT Listeria or the inlC-deletion mutant and transfection of cells with InlC reveal that InlC expression impairs phosphorylation and consequently delays IκB degradation normally induced by TNF-α, a classical NF-κB stimulator. Moreover, infection of RAW 264.7 macrophages by the inlC mutant leads to increased production of proinflammatory cytokines compared with that obtained with the WT. Finally, in a peritonitis mouse model, we show that infection with the inlC mutant induces increased production of chemokines and increased recruitment of neutrophils in the peritoneal cavity compared with infection with WT. Together, these results demonstrate that InlC, by interacting with IKKα, dampens the host innate response induced by Listeria during the infection process.
Collapse
Affiliation(s)
- Edith Gouin
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, F-75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale U604, F-75015 Paris, France
- Institut National de la Recherche Agronomique USC2020, F-75015 Paris, France
| | - Minou Adib-Conquy
- Unité Cytokines & Inflammation, Département Infection et Epidémiologie, Institut Pasteur, F-75015 Paris, France
| | - Damien Balestrino
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, F-75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale U604, F-75015 Paris, France
- Institut National de la Recherche Agronomique USC2020, F-75015 Paris, France
| | - Marie-Anne Nahori
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, F-75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale U604, F-75015 Paris, France
- Institut National de la Recherche Agronomique USC2020, F-75015 Paris, France
| | - Véronique Villiers
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, F-75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale U604, F-75015 Paris, France
- Institut National de la Recherche Agronomique USC2020, F-75015 Paris, France
| | | | - Shaynoor Dramsi
- Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Département de Microbiologie, Institut Pasteur, F-75015 Paris, France
| | - Olivier Dussurget
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, F-75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale U604, F-75015 Paris, France
- Institut National de la Recherche Agronomique USC2020, F-75015 Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, F-75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale U604, F-75015 Paris, France
- Institut National de la Recherche Agronomique USC2020, F-75015 Paris, France
| |
Collapse
|
127
|
Sultana H, Neelakanta G, Kantor FS, Malawista SE, Fish D, Montgomery RR, Fikrig E. Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. ACTA ACUST UNITED AC 2010; 207:1727-43. [PMID: 20660616 PMCID: PMC2916137 DOI: 10.1084/jem.20100276] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anaplasma phagocytophilum, the agent of human anaplasmosis, persists in ticks and mammals. We show that A. phagocytophilum induces the phosphorylation of actin in an Ixodes ricinus tick cell line and Ixodes scapularis ticks, to alter the ratio of monomeric/filamentous (G/F) actin. A. phagocytophilum–induced actin phosphorylation was dependent on Ixodes p21-activated kinase (IPAK1)–mediated signaling. A. phagocytophilum stimulated IPAK1 activity via the G protein–coupled receptor Gβγ subunits, which mediated phosphoinositide 3-kinase (PI3K) activation. Disruption of Ixodes gβγ, pi3k, and pak1 reduced actin phosphorylation and bacterial acquisition by ticks. A. phagocytophilum–induced actin phosphorylation resulted in increased nuclear G actin and phosphorylated actin. The latter, in association with RNA polymerase II (RNAPII), enhanced binding of TATA box–binding protein to RNAPII and selectively promoted expression of salp16, a gene crucial for A. phagocytophilum survival. These data define a mechanism that A. phagocytophilum uses to selectively alter arthropod gene expression for its benefit and suggest new strategies to interfere with the life cycle of this intracellular pathogen, and perhaps other Rickettsia-related microbes of medical importance.
Collapse
Affiliation(s)
- Hameeda Sultana
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
128
|
Canchaya C, Giubellini V, Ventura M, de los Reyes-Gavilán CG, Margolles A. Mosaic-like sequences containing transposon, phage, and plasmid elements among Listeria monocytogenes plasmids. Appl Environ Microbiol 2010; 76:4851-7. [PMID: 20511420 PMCID: PMC2901719 DOI: 10.1128/aem.02799-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 05/20/2010] [Indexed: 11/20/2022] Open
Abstract
Sequencing of plasmid pLM33 from the food isolate Listeria monocytogenes Lm1 revealed a molecule of 32,307 bp with a G+C content of 36.2%. The plasmid displays a mosaic pattern of identities common to several closely related L. monocytogenes plasmids isolated from food and clinical sources.
Collapse
Affiliation(s)
- Carlos Canchaya
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parco Area delle Scienze 11a, 43100 Parma, Italy, Department of Biochemistry, Genetics and Immunology, Universidad de Vigo, 36310 Vigo, Spain, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain
| | - Vanessa Giubellini
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parco Area delle Scienze 11a, 43100 Parma, Italy, Department of Biochemistry, Genetics and Immunology, Universidad de Vigo, 36310 Vigo, Spain, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain
| | - Marco Ventura
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parco Area delle Scienze 11a, 43100 Parma, Italy, Department of Biochemistry, Genetics and Immunology, Universidad de Vigo, 36310 Vigo, Spain, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain
| | - Clara G. de los Reyes-Gavilán
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parco Area delle Scienze 11a, 43100 Parma, Italy, Department of Biochemistry, Genetics and Immunology, Universidad de Vigo, 36310 Vigo, Spain, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parco Area delle Scienze 11a, 43100 Parma, Italy, Department of Biochemistry, Genetics and Immunology, Universidad de Vigo, 36310 Vigo, Spain, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain
| |
Collapse
|
129
|
Citro S, Chiocca S. Listeria monocytogenes: a bacterial pathogen to hit on the SUMO pathway. Cell Res 2010; 20:738-40. [PMID: 20531377 DOI: 10.1038/cr.2010.76] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Simona Citro
- European Institute of Oncology, Department of Experimental Oncology, Milan, Italy
| | | |
Collapse
|
130
|
Ribet D, Cossart P. [Listeria battles with SUMO]. Med Sci (Paris) 2010; 26:545-7. [PMID: 20510159 DOI: 10.1051/medsci/2010265545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
131
|
Balestrino D, Hamon MA, Dortet L, Nahori MA, Pizarro-Cerda J, Alignani D, Dussurget O, Cossart P, Toledo-Arana A. Single-cell techniques using chromosomally tagged fluorescent bacteria to study Listeria monocytogenes infection processes. Appl Environ Microbiol 2010; 76:3625-36. [PMID: 20363781 PMCID: PMC2876438 DOI: 10.1128/aem.02612-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 03/28/2010] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen which invades different cell types, including nonphagocytic cells, where it is able to replicate and survive. The different steps of the cellular infectious process have been well described and consist of bacterial entry, lysis of the endocytic vacuole, intracellular replication, and spreading to neighboring cells. To study the listerial infectious process, gentamicin survival assays, plaque formation, and direct microscopy observations are typically used; however, there are some caveats with each of these techniques. In this study we describe new single-cell techniques based on use of an array of integrative fluorescent plasmids (green, cyan, and yellow fluorescent proteins) to easily, rapidly, and quantitatively detect L. monocytogenes in vitro and in vivo. We describe construction of 13 integrative and multicopy plasmids which can be used for detecting intracellular bacteria, for measuring invasion, cell-to-cell spreading, and intracellular replication, for monitoring in vivo infections, and for generating transcriptional or translational reporters. Furthermore, we tested these plasmids in a variety of epifluorescence- and flow cytometry-based assays. We showed that we could (i) determine the expression of a particular promoter during the cell cycle, (ii) establish in one rapid experiment at which step in the cell cycle a particular mutant is defective, and (iii) easily measure the number of infected cells in vitro and in mouse organs. The plasmids that are described and the methods to detect them are new powerful tools to study host-Listeria interactions in a fast, robust, and high-throughput manner.
Collapse
Affiliation(s)
- Damien Balestrino
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France, INSERM, U604, Paris F-75015, France, INRA, USC2020, Paris F-75015, France, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris F-75015, France, INSERM, U883, Paris F-75015, France
| | - Mélanie Anne Hamon
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France, INSERM, U604, Paris F-75015, France, INRA, USC2020, Paris F-75015, France, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris F-75015, France, INSERM, U883, Paris F-75015, France
| | - Laurent Dortet
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France, INSERM, U604, Paris F-75015, France, INRA, USC2020, Paris F-75015, France, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris F-75015, France, INSERM, U883, Paris F-75015, France
| | - Marie-Anne Nahori
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France, INSERM, U604, Paris F-75015, France, INRA, USC2020, Paris F-75015, France, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris F-75015, France, INSERM, U883, Paris F-75015, France
| | - Javier Pizarro-Cerda
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France, INSERM, U604, Paris F-75015, France, INRA, USC2020, Paris F-75015, France, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris F-75015, France, INSERM, U883, Paris F-75015, France
| | - Diego Alignani
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France, INSERM, U604, Paris F-75015, France, INRA, USC2020, Paris F-75015, France, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris F-75015, France, INSERM, U883, Paris F-75015, France
| | - Olivier Dussurget
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France, INSERM, U604, Paris F-75015, France, INRA, USC2020, Paris F-75015, France, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris F-75015, France, INSERM, U883, Paris F-75015, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France, INSERM, U604, Paris F-75015, France, INRA, USC2020, Paris F-75015, France, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris F-75015, France, INSERM, U883, Paris F-75015, France
| | - Alejandro Toledo-Arana
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France, INSERM, U604, Paris F-75015, France, INRA, USC2020, Paris F-75015, France, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris F-75015, France, INSERM, U883, Paris F-75015, France
| |
Collapse
|
132
|
Eisenreich W, Dandekar T, Heesemann J, Goebel W. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 2010; 8:401-12. [PMID: 20453875 DOI: 10.1038/nrmicro2351] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
New technologies such as high-throughput methods and 13C-isotopologue-profiling analysis are beginning to provide us with insight into the in vivo metabolism of microorganisms, especially in the host cell compartments that are colonized by intracellular bacterial pathogens. In this Review, we discuss the recent progress made in determining the major carbon sources and metabolic pathways used by model intracellular bacterial pathogens that replicate either in the cytosol or in vacuoles of infected host cells. Furthermore, we highlight the possible links between intracellular carbon metabolism and the expression of virulence genes.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, D-85747 Garching, Germany
| | | | | | | |
Collapse
|
133
|
Duodu S, Holst-Jensen A, Skjerdal T, Cappelier JM, Pilet MF, Loncarevic S. Influence of storage temperature on gene expression and virulence potential of Listeria monocytogenes strains grown in a salmon matrix. Food Microbiol 2010; 27:795-801. [PMID: 20630322 DOI: 10.1016/j.fm.2010.04.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 03/29/2010] [Accepted: 04/20/2010] [Indexed: 11/27/2022]
Abstract
Little is understood about the impact of environmental conditions on the virulence plasticity of Listeria monocytogenes strains grown in food. In this report, we monitored changes in the virulence properties of one high virulent (CCUG 3998) and one low virulent (442) L. monocytogenes strains grown on raw salmon (Salmo salar L.). The effect of temperature exposures (0 degrees C, 4 degrees C and 20 degrees C) on the expression levels of virulence genes (hlyA, actA, inlA and prfA), invasion into Caco-2 cells and in vivo mouse infection was analysed. Our results showed that L. monocytogenes virulence genes are differentially expressed when salmon is stored at different temperatures. Of the four virulence genes, the transcript levels for inlA were strongly affected, which correlated with the strain's virulence capacity as assessed by Caco-2 cells. In contrast to CCUG 3998, the virulence of strain 442 was altered with tested conditions. This strain maintains its low virulence status as far as salmon is stored at lower temperatures, but increases its virulence at higher temperatures. These results lead to the indication that exposure to abuse temperature conditions might influence the virulence potential of low pathogenic L. monocytogenes strains in salmon.
Collapse
Affiliation(s)
- Samuel Duodu
- National Veterinary Institute, Ullevaalsveien 68, Sentrum N-0106, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
134
|
Maltose and maltodextrin utilization by Listeria monocytogenes depend on an inducible ABC transporter which is repressed by glucose. PLoS One 2010; 5:e10349. [PMID: 20436965 PMCID: PMC2860498 DOI: 10.1371/journal.pone.0010349] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/07/2010] [Indexed: 01/19/2023] Open
Abstract
Background In the environment as well as in the vertebrate intestine, Listeriae have access to complex carbohydrates like maltodextrins. Bacterial exploitation of such compounds requires specific uptake and utilization systems. Methodology/Principal Findings We could show that Listeria monocytogenes and other Listeria species contain genes/gene products with high homology to the maltodextrin ABC transporter and utilization system of B. subtilis. Mutant construction and growth tests revealed that the L. monocytogenes gene cluster was required for the efficient utilization of maltodextrins as well as maltose. The gene for the ATP binding protein of the transporter was located distant from the cluster. Transcription analyses demonstrated that the system was induced by maltose/maltodextrins and repressed by glucose. Its induction was dependent on a LacI type transcriptional regulator. Repression by glucose was independent of the catabolite control protein CcpA, but was relieved in a mutant defective for Hpr kinase/phosphorylase. Conclusions/Significance The data obtained show that in L. monocytogenes the uptake of maltodextrin and, in contrast to B. subtilis, also maltose is exclusively mediated by an ABC transporter. Furthermore, the results suggest that glucose repression of the uptake system possibly is by inducer exclusion, a mechanism not described so far in this organism.
Collapse
|
135
|
Ribet D, Hamon M, Gouin E, Nahori MA, Impens F, Neyret-Kahn H, Gevaert K, Vandekerckhove J, Dejean A, Cossart P. Listeria monocytogenes impairs SUMOylation for efficient infection. Nature 2010; 464:1192-5. [PMID: 20414307 PMCID: PMC3627292 DOI: 10.1038/nature08963] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/24/2010] [Indexed: 12/30/2022]
Abstract
During infection, pathogenic bacteria manipulate the host cell in various ways to allow their own replication, propagation and escape from host immune responses. Post-translational modifications are unique mechanisms that allow cells to rapidly, locally and specifically modify activity or interactions of key proteins. Some of these modifications, including phosphorylation and ubiquitylation, can be induced by pathogens. However, the effects of pathogenic bacteria on SUMOylation, an essential post-translational modification in eukaryotic cells, remain largely unknown. Here we show that infection with Listeria monocytogenes leads to a decrease in the levels of cellular SUMO-conjugated proteins. This event is triggered by the bacterial virulence factor listeriolysin O (LLO), which induces a proteasome-independent degradation of Ubc9, an essential enzyme of the SUMOylation machinery, and a proteasome-dependent degradation of some SUMOylated proteins. The effect of LLO on Ubc9 is dependent on the pore-forming capacity of the toxin and is shared by other bacterial pore-forming toxins like perfringolysin O (PFO) and pneumolysin (PLY). Ubc9 degradation was also observed in vivo in infected mice. Furthermore, we show that SUMO overexpression impairs bacterial infection. Together, our results reveal that Listeria, and probably other pathogens, dampen the host response by decreasing the SUMOylation level of proteins critical for infection.
Collapse
Affiliation(s)
- David Ribet
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France
- Inserm, U604, F-75015 Paris, France
- INRA, USC2020, F-75015 Paris, France
| | - Mélanie Hamon
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France
- Inserm, U604, F-75015 Paris, France
- INRA, USC2020, F-75015 Paris, France
| | - Edith Gouin
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France
- Inserm, U604, F-75015 Paris, France
- INRA, USC2020, F-75015 Paris, France
| | - Marie-Anne Nahori
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France
- Inserm, U604, F-75015 Paris, France
- INRA, USC2020, F-75015 Paris, France
| | - Francis Impens
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Hélène Neyret-Kahn
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, F-75015 Paris, France
- Inserm, U579, F-75015 Paris, France
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Joël Vandekerckhove
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Anne Dejean
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, F-75015 Paris, France
- Inserm, U579, F-75015 Paris, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France
- Inserm, U604, F-75015 Paris, France
- INRA, USC2020, F-75015 Paris, France
| |
Collapse
|
136
|
Palumbo D, Iannaccone M, Porta A, Capparelli R. Experimental antibacterial therapy with puroindolines, lactoferrin and lysozyme in Listeria monocytogenes-infected mice. Microbes Infect 2010; 12:538-45. [PMID: 20348006 DOI: 10.1016/j.micinf.2010.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 02/02/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
Puroindoline A and puroindoline B from plant seeds, bovine lactoferrin and chicken eggs lysozyme are antimicrobial proteins of innate immune system that lyse invading organisms. We investigate their potential antibacterial activity against Listeria monocytogenes in a mouse model. Bacteria were isolated from various organs for 7 days after challenge. Livers displayed consistently higher bacterial count (up to 10(7)cfu/g) than spleens, kidneys and brains. The efficacy of the AMPs was therefore established by measuring the infection level (cfu number) of these organs. Puroindoline A and puroindoline B (5mg/mouse), lactoferrin and lysozyme (1.25mg/mouse), intravenously injected individually, inhibited bacterial growth completely. Puroindoline A, puroindoline B and lactoferrin were effective when administered 24h before infection; lysozyme was effective at the time of infection or 5 days after. Their combined use resulted in the enhancement of individual antibacterial activities. Complete inhibition of bacterial growth was observed using concurrently 0.059mg/mouse of puroindoline A and 0.019mg/mouse of puroindoline B, lactoferrin and lysozyme. Individual antimicrobial proteins reduced significantly the expression level of pro-inflammatory cytokines (IL-6, IL-8, INF-gamma and TNF-alpha), acute phase proteins (C-reactive protein and fibrinogen) and the T lymphocyte antigens CD4, CD8a, CD8b and CD25. These results suggest their potential use for the control of L. monocytogenes infections.
Collapse
Affiliation(s)
- Daniela Palumbo
- Chair of Immunology, School of Biotechnological Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, Naples, Italy
| | | | | | | |
Collapse
|
137
|
|
138
|
Oevermann A, Zurbriggen A, Vandevelde M. Rhombencephalitis Caused by Listeria monocytogenes in Humans and Ruminants: A Zoonosis on the Rise? Interdiscip Perspect Infect Dis 2010; 2010:632513. [PMID: 20204066 PMCID: PMC2829626 DOI: 10.1155/2010/632513] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/25/2009] [Indexed: 02/05/2023] Open
Abstract
Listeriosis is an emerging zoonotic infection of humans and ruminants worldwide caused by Listeria monocytogenes (LM). In both host species, CNS disease accounts for the high mortality associated with listeriosis and includes rhombencephalitis, whose neuropathology is strikingly similar in humans and ruminants. This review discusses the current knowledge about listeric encephalitis, and involved host and bacterial factors. There is an urgent need to study the molecular mechanisms of neuropathogenesis, which are poorly understood. Such studies will provide a basis for the development of new therapeutic strategies that aim to prevent LM from invading the brain and spread within the CNS.
Collapse
Affiliation(s)
- Anna Oevermann
- Neurocenter, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Andreas Zurbriggen
- Neurocenter, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Marc Vandevelde
- Division of Clinical Neurology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
139
|
Van de Velde S, Delaive E, Dieu M, Carryn S, Van Bambeke F, Devreese B, Raes M, Tulkens PM. Isolation and 2-D-DIGE proteomic analysis of intracellular and extracellular forms of Listeria monocytogenes. Proteomics 2010; 9:5484-96. [PMID: 19834917 DOI: 10.1002/pmic.200900503] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The pathogenicity of Listeria monocytogenes is related to its ability of invading and multiplying in eukaryotic cells. Its main virulence factors are now well characterized, but limited proteomic data is available concerning its adaptation to the intracellular environment. In this study, L. monocytogenes EGD (serotype 1/2a) grown in human THP-1 monocytes (24 h) were successfully separated from host organelles and cytosolic proteins by differential and isopycnic centrifugation. For control, we used cell homogenates spiked with bacteria grown in broth. Proteomes from both forms of bacteria were compared using a 2-D-DIGE approach followed by MALDI-TOF analysis to identify proteins. From 1684 distinct spots, 448 were identified corresponding to 245 distinct proteins with no apparent contamination of host proteins. Amongst them, 61 show underexpression (stress defense; transport systems, carbon metabolism, pyrimidines synthesis, D-Ala-D-Ala ligase) and 22 an overexpression (enzymes involved in the synthesis of cell envelope lipids, glyceraldehyde-3-phosphate, pyruvate and fatty acids). Our proteomic analysis of intracellular L. monocytogenes (i) suggests that bacteria thrive in a more favorable environment than extracellularly, (ii) supports the concept of metabolic adaptation of bacteria to intracellular environment and (iii) may be at the basis of improved anti-Listeria therapy.
Collapse
Affiliation(s)
- Sébastien Van de Velde
- Unité de pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 2010; 11:232-9. [PMID: 20118928 PMCID: PMC2840267 DOI: 10.1038/ni.1842] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/07/2010] [Indexed: 11/09/2022]
Abstract
Macrophage phagocytosis is critical for defense against pathogens. Whereas many steps of phagocytosis involve ionic flux, the underlying ion channels remain ill defined. Here we show that zymosan-, immunoglobulin G (IgG)- and complement-mediated particle binding and phagocytosis were impaired in macrophages lacking the cation channel TRPV2. TRPV2 was recruited to the nascent phagosome and depolarized the plasma membrane. Depolarization increased the synthesis of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)), which triggered the partial actin depolymerization necessary for occupancy-elicited phagocytic receptor clustering. TRPV2-deficient macrophages were also defective in chemoattractant-elicited motility. Consequently, TRPV2-deficient mice showed accelerated mortality and greater organ bacterial load when challenged with Listeria monocytogenes. Our data demonstrate the participation of TRPV2 in early phagocytosis and its fundamental importance in innate immunity.
Collapse
Affiliation(s)
- Tiffany M Link
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
141
|
Robbins JR, Skrzypczynska KM, Zeldovich VB, Kapidzic M, Bakardjiev AI. Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes. PLoS Pathog 2010; 6:e1000732. [PMID: 20107601 PMCID: PMC2809766 DOI: 10.1371/journal.ppat.1000732] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/18/2009] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts-which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin-served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta.
Collapse
Affiliation(s)
- Jennifer R. Robbins
- Department of Pediatrics, University of California, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, California, United States of America
- Department of Biology, Xavier University, Cincinnati, Ohio, United States of America
| | - Kasia M. Skrzypczynska
- Department of Pediatrics, University of California, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, California, United States of America
| | - Varvara B. Zeldovich
- Department of Pediatrics, University of California, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, California, United States of America
| | - Mirhan Kapidzic
- Institute for Regeneration Medicine, Human Embryonic Stem Cell Program, Department of Obstetrics and Gynecology, University of California, San Francisco, California, United States of America
| | - Anna I. Bakardjiev
- Department of Pediatrics, University of California, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, California, United States of America
| |
Collapse
|
142
|
Dominguez R. Actin filament nucleation and elongation factors--structure-function relationships. Crit Rev Biochem Mol Biol 2009; 44:351-66. [PMID: 19874150 DOI: 10.3109/10409230903277340] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The spontaneous and unregulated polymerization of actin filaments is inhibited in cells by actin monomer-binding proteins such as profilin and Tbeta4. Eukaryotic cells and certain pathogens use filament nucleators to stabilize actin polymerization nuclei, whose formation is rate-limiting. Known filament nucleators include the Arp2/3 complex and its large family of nucleation promoting factors (NPFs), formins, Spire, Cobl, VopL/VopF, TARP and Lmod. These molecules control the time and location for polymerization, and additionally influence the structures of the actin networks that they generate. Filament nucleators are generally unrelated, but with the exception of formins they all use the WASP-Homology 2 domain (WH2 or W), a small and versatile actin-binding motif, for interaction with actin. A common architecture, found in Spire, Cobl and VopL/VopF, consists of tandem W domains that bind three to four actin subunits to form a nucleus. Structural considerations suggest that NPFs-Arp2/3 complex can also be viewed as a specialized form of tandem W-based nucleator. Formins are unique in that they use the formin-homology 2 (FH2) domain for interaction with actin and promote not only nucleation, but also processive barbed end elongation. In contrast, the elongation function among W-based nucleators has been "outsourced" to a dedicated family of proteins, Eva/VASP, which are related to WASP-family NPFs.
Collapse
Affiliation(s)
- Roberto Dominguez
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
143
|
Nielsen JS, Lei LK, Ebersbach T, Olsen AS, Klitgaard JK, Valentin-Hansen P, Kallipolitis BH. Defining a role for Hfq in Gram-positive bacteria: evidence for Hfq-dependent antisense regulation in Listeria monocytogenes. Nucleic Acids Res 2009; 38:907-19. [PMID: 19942685 PMCID: PMC2817478 DOI: 10.1093/nar/gkp1081] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Small trans-encoded RNAs (sRNAs) modulate the translation and decay of mRNAs in bacteria. In Gram-negative species, antisense regulation by trans-encoded sRNAs relies on the Sm-like protein Hfq. In contrast to this, Hfq is dispensable for sRNA-mediated riboregulation in the Gram-positive species studied thus far. Here, we provide evidence for Hfq-dependent translational repression in the Gram-positive human pathogen Listeria monocytogenes, which is known to encode at least 50 sRNAs. We show that the Hfq-binding sRNA LhrA controls the translation and degradation of its target mRNA by an antisense mechanism, and that Hfq facilitates the binding of LhrA to its target. The work presented here provides the first experimental evidence for Hfq-dependent riboregulation in a Gram-positive bacterium. Our findings indicate that modulation of translation by trans-encoded sRNAs may occur by both Hfq-dependent and -independent mechanisms, thus adding another layer of complexity to sRNA-mediated riboregulation in Gram-positive species.
Collapse
Affiliation(s)
- Jesper Sejrup Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | | | | | |
Collapse
|
144
|
Ojcius DM, Kaufmann SHE. Microbes and Infection: past, present and future. Microbes Infect 2009; 12:1-2. [PMID: 19944181 DOI: 10.1016/j.micinf.2009.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 11/15/2022]
|
145
|
Abstract
Listeria monocytogenes is an intracellular bacterial pathogen that invades epithelial cells by subverting two cellular receptors, E-cadherin and Met. We recently identified type II phosphatidylinositol 4-kinases alpha and beta (PI4KIIalpha and PI4KIIbeta) as being required for bacterial entry downstream of Met. In this work, we investigated whether tetraspanins CD9, CD63, and CD81, which figure among the few described molecular partners of PI4KIIalpha, function as molecular adaptors recruiting PI4KIIalpha to the bacterial entry site. We observed by fluorescence microscopy that CD9, CD63, and CD81 are expressed and detected at the cellular surface and also within intracellular compartments, particularly in the case of CD63. In resting cells, colocalization of tetraspanins and PI4KIIalpha is detectable only in restricted areas of the perinuclear region. Upon infection with Listeria, endogenous CD9, CD63, and CD81 were recruited to the bacterial entry site but did not colocalize strictly with endogenous PI4KIIalpha. Live-cell imaging confirmed that tetraspanins and PI4KIIalpha do not follow the same recruitment dynamics to the Listeria entry site. Depletion of CD9, CD63, and CD81 levels by small interfering RNA demonstrated that CD81 is required for bacterial internalization, identifying for the first time a role for a member of the tetraspanin family in the entry of Listeria into target cells. Moreover, depletion of CD81 inhibits the recruitment of PI4KIIalpha but not that of the Met receptor to the bacterial entry site, suggesting that CD81 may act as a membrane organizer required for the integrity of signaling events occurring at Listeria entry sites.
Collapse
|
146
|
Xayarath B, Marquis H, Port GC, Freitag NE. Listeria monocytogenes CtaP is a multifunctional cysteine transport-associated protein required for bacterial pathogenesis. Mol Microbiol 2009; 74:956-73. [PMID: 19818015 DOI: 10.1111/j.1365-2958.2009.06910.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The bacterial pathogen Listeria monocytogenes survives under a myriad of conditions in the outside environment and within the human host where infections can result in severe disease. Bacterial life within the host requires the expression of genes with roles in nutrient acquisition as well as the biosynthesis of bacterial products required to support intracellular growth. A gene product identified as the substrate-binding component of a novel oligopeptide transport system (encoded by lmo0135) was recently shown to be required for L. monocytogenes virulence. Here we demonstrate that lmo0135 encodes a multifunctional protein that is associated with cysteine transport, acid resistance, bacterial membrane integrity and adherence to host cells. The lmo0135 gene product (designated CtaP, for cysteine transport associated protein) was required for bacterial growth in the presence of low concentrations of cysteine in vitro, but was not required for bacterial replication within the host cytosol. Loss of CtaP increased membrane permeability and acid sensitivity, and reduced bacterial adherence to host cells. ctaP deletion mutants were severely attenuated following intragastric and intravenous inoculation of mice. Taken together, the data presented indicate that CtaP contributes to multiple facets of L. monocytogenes physiology, growth and survival both inside and outside of animal cells.
Collapse
Affiliation(s)
- Bobbi Xayarath
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
147
|
Abstract
An extra layer of complexity in the regulation of gene expression in bacteria is now apparent through previously unanticipated roles of noncoding and antisense RNAs.
Collapse
Affiliation(s)
| | - Brendan W Wren
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
148
|
Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Régnault B, Coppée JY, Lecuit M, Johansson J, Cossart P. The Listeria transcriptional landscape from saprophytism to virulence. Nature 2009; 459:950-6. [PMID: 19448609 DOI: 10.1038/nature08080] [Citation(s) in RCA: 692] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 04/27/2009] [Indexed: 12/12/2022]
Abstract
The bacterium Listeria monocytogenes is ubiquitous in the environment and can lead to severe food-borne infections. It has recently emerged as a multifaceted model in pathogenesis. However, how this bacterium switches from a saprophyte to a pathogen is largely unknown. Here, using tiling arrays and RNAs from wild-type and mutant bacteria grown in vitro, ex vivo and in vivo, we have analysed the transcription of its entire genome. We provide the complete Listeria operon map and have uncovered far more diverse types of RNAs than expected: in addition to 50 small RNAs (<500 nucleotides), at least two of which are involved in virulence in mice, we have identified antisense RNAs covering several open-reading frames and long overlapping 5' and 3' untranslated regions. We discovered that riboswitches can act as terminators for upstream genes. When Listeria reaches the host intestinal lumen, an extensive transcriptional reshaping occurs with a SigB-mediated activation of virulence genes. In contrast, in the blood, PrfA controls transcription of virulence genes. Remarkably, several non-coding RNAs absent in the non-pathogenic species Listeria innocua exhibit the same expression patterns as the virulence genes. Together, our data unravel successive and coordinated global transcriptional changes during infection and point to previously unknown regulatory mechanisms in bacteria.
Collapse
|
149
|
Camejo A, Buchrieser C, Couvé E, Carvalho F, Reis O, Ferreira P, Sousa S, Cossart P, Cabanes D. In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog 2009; 5:e1000449. [PMID: 19478867 PMCID: PMC2679221 DOI: 10.1371/journal.ppat.1000449] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 04/27/2009] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a human intracellular pathogen able to colonize host tissues after ingestion of contaminated food, causing severe invasive infections. In order to gain a better understanding of the nature of host-pathogen interactions, we studied the L. monocytogenes genome expression during mouse infection. In the spleen of infected mice, approximately 20% of the Listeria genome is differentially expressed, essentially through gene activation, as compared to exponential growth in rich broth medium. Data presented here show that, during infection, Listeria is in an active multiplication phase, as revealed by the high expression of genes involved in replication, cell division and multiplication. In vivo bacterial growth requires increased expression of genes involved in adaptation of the bacterial metabolism and stress responses, in particular to oxidative stress. Listeria interaction with its host induces cell wall metabolism and surface expression of virulence factors. During infection, L. monocytogenes also activates subversion mechanisms of host defenses, including resistance to cationic peptides, peptidoglycan modifications and release of muramyl peptides. We show that the in vivo differential expression of the Listeria genome is coordinated by a complex regulatory network, with a central role for the PrfA-SigB interplay. In particular, L. monocytogenes up regulates in vivo the two major virulence regulators, PrfA and VirR, and their downstream effectors. Mutagenesis of in vivo induced genes allowed the identification of novel L. monocytogenes virulence factors, including an LPXTG surface protein, suggesting a role for S-layer glycoproteins and for cadmium efflux system in Listeria virulence.
Collapse
Affiliation(s)
- Ana Camejo
- IBMC - Instituto de Biologia Molecular e Celular, Group of Molecular Microbiology, Universidade do Porto, Porto, Portugal
| | - Carmen Buchrieser
- Institut Pasteur, UP Biologie des Bactéries Intracellulaires and CNRS URA 2171, Paris, France
| | - Elisabeth Couvé
- Institut Pasteur, Unité Génétique des Génomes Bactériens CNRS URA 2171, Paris, France
| | - Filipe Carvalho
- IBMC - Instituto de Biologia Molecular e Celular, Group of Molecular Microbiology, Universidade do Porto, Porto, Portugal
| | - Olga Reis
- IBMC - Instituto de Biologia Molecular e Celular, Group of Molecular Microbiology, Universidade do Porto, Porto, Portugal
| | - Pierre Ferreira
- IBMC - Instituto de Biologia Molecular e Celular, Group of Molecular Microbiology, Universidade do Porto, Porto, Portugal
| | - Sandra Sousa
- IBMC - Instituto de Biologia Molecular e Celular, Group of Molecular Microbiology, Universidade do Porto, Porto, Portugal
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
- Inserm U604, Paris, France
- INRA USC2020, Paris, France
| | - Didier Cabanes
- IBMC - Instituto de Biologia Molecular e Celular, Group of Molecular Microbiology, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
150
|
Bischofberger M, Gonzalez MR, van der Goot FG. Membrane injury by pore-forming proteins. Curr Opin Cell Biol 2009; 21:589-95. [PMID: 19442503 DOI: 10.1016/j.ceb.2009.04.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 02/02/2023]
Abstract
The plasma membrane defines the boundary of every living cell, and its integrity is essential for life. The plasma membrane may, however, be challenged by mechanical stress or pore-forming proteins produced by the organism itself or invading pathogens. We will here review recent findings about pore-forming proteins from different organisms, highlighting their structural and functional similarities, and describe the mechanisms that lead to membrane repair, since remarkably, cells can repair breaches in their plasma membrane of up to 10,000 microm(2).
Collapse
Affiliation(s)
- Mirko Bischofberger
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Lausanne, Switzerland
| | | | | |
Collapse
|