101
|
Bao X, Liu Z, Zhang W, Gladysz K, Fung YME, Tian G, Xiong Y, Wong JWH, Yuen KWY, Li XD. Glutarylation of Histone H4 Lysine 91 Regulates Chromatin Dynamics. Mol Cell 2019; 76:660-675.e9. [DOI: 10.1016/j.molcel.2019.08.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/29/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023]
|
102
|
Delman M, Avcı ST, Akçok İ, Kanbur T, Erdal E, Çağır A. Antiproliferative activity of (R)-4'-methylklavuzon on hepatocellular carcinoma cells and EpCAM +/CD133 + cancer stem cells via SIRT1 and Exportin-1 (CRM1) inhibition. Eur J Med Chem 2019; 180:224-237. [PMID: 31306909 DOI: 10.1016/j.ejmech.2019.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Cytotoxic effects of (R)-4'-methylklavuzon were investigated on hepatocellular carcinoma cells (HuH-7 and HepG2) and HuH-7 EpCAM+/CD133+ cancer stem cells. IC50 of (R)-4'-methylklavuzon was found as 1.25 μM for HuH-7 parental cells while it was found as 2.50 μM for HuH-7 EpCAM+/CD133+ cancer stem cells. (R)-4'-methylklavuzon tended to show more efficient in vitro cytotoxicity with its lower IC50 values on hepatocellular carcinoma cell lines compared to its lead molecule, goniothalamin and FDA-approved drugs, sorafenib and regorafenib. Cell-based Sirtuin/HDAC enzyme activity measurements revealed that endogenous Sirtuin/HDAC enzymes were reduced by 40% compared to control. SIRT1 protein levels were upregulated indicating triggered DNA repair mechanism. p53 was overexpressed in HepG2 cells. (R)-4'-methylklavuzon inhibited CRM1 protein providing increased retention of p53 and RIOK2 protein in the nucleus. HuH-7 parental and EpCAM+/CD133+ cancer stem cell spheroids lost intact morphology. 3D HepG2 spheroid viabilities were decreased in a correlation with upregulation in p53 protein levels.
Collapse
Affiliation(s)
- Murat Delman
- Department of Biotechnology and Bioengineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Sanem Tercan Avcı
- Izmir Biomedicine and Genome Center, 35340, Balcova, Izmir, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - İsmail Akçok
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Tuğçe Kanbur
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, 35340, Balcova, Izmir, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.
| | - Ali Çağır
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| |
Collapse
|
103
|
SIRT1 and p300/CBP regulate the reversible acetylation of serine-threonine kinase NDR2. Biochem Biophys Res Commun 2019; 518:396-401. [PMID: 31427083 DOI: 10.1016/j.bbrc.2019.08.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022]
Abstract
Nuclear Dbf2-related kinase 2 (NDR2) is a highly conserved kinase that belongs to the NDR/LATS serine-threonine kinase family. NDR2 is involved in many cellular processes as a kinase or a scaffolding protein. As a known kinase, NDR2 requires self-phosphorylation and trans-phosphorylation to become fully active. However, beside phosphorylation, little is known about other posttranslational modifications of NDR2. In this study, we found that NDR2 can be specially acetylated at K463 in cells. In addition, SIRT1 acts as the major deacetylase for NDR2, while p300 and CBP function as specific acetyltransferases for NDR2. Interestingly, in SIRT1 deficient cells HDAC6 and HDAC1/2 can deacetylate NDR2, which provides a novel insight in deacetylation regulation. Our results demonstrate that NDR2 is a reversible acetylated kinase regulated by SIRT1 and p300/CBP.
Collapse
|
104
|
Song SB, Park JS, Chung GJ, Lee IH, Hwang ES. Diverse therapeutic efficacies and more diverse mechanisms of nicotinamide. Metabolomics 2019; 15:137. [PMID: 31587111 DOI: 10.1007/s11306-019-1604-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nicotinamide (NAM) is a form of vitamin B3 that, when administered at near-gram doses, has been shown or suggested to be therapeutically effective against many diseases and conditions. The target conditions are incredibly diverse ranging from skin disorders such as bullous pemphigoid to schizophrenia and depression and even AIDS. Similar diversity is expected for the underlying mechanisms. In a large portion of the conditions, NAM conversion to nicotinamide adenine dinucleotide (NAD+) may be a major factor in its efficacy. The augmentation of cellular NAD+ level not only modulates mitochondrial production of ATP and superoxide, but also activates many enzymes. Activated sirtuin proteins, a family of NAD+-dependent deacetylases, play important roles in many of NAM's effects such as an increase in mitochondrial quality and cell viability countering neuronal damages and metabolic diseases. Meanwhile, certain observed effects are mediated by NAM itself. However, our understanding on the mechanisms of NAM's effects is limited to those involving certain key proteins and may even be inaccurate in some proposed cases. AIM OF REVIEW This review details the conditions that NAM has been shown to or is expected to effectively treat in humans and animals and evaluates the proposed underlying molecular mechanisms, with the intention of promoting wider, safe therapeutic application of NAM. KEY SCIENTIFIC CONCEPTS OF REVIEW NAM, by itself or through altering metabolic balance of NAD+ and tryptophan, modulates mitochondrial function and activities of many molecules and thereby positively affects cell viability and metabolic functions. And, NAM administration appears to be quite safe with limited possibility of side effects which are related to NAM's metabolites.
Collapse
Affiliation(s)
- Seon Beom Song
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea
| | - Jin Sung Park
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea
| | - Gu June Chung
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea
| | - In Hye Lee
- Department of Life Science, Ewha Womans University, Ewhayeodae-gil 52, Seoul, Republic of Korea
| | - Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea.
| |
Collapse
|
105
|
Wei Z, Jia J, Heng G, Xu H, Shan J, Wang G, Liu C, Xia J, Zhou H, Wu M, Yang Z, Wang M, Xiong Z, Huang H, Liu L, Qian C. Sirtuin-1/Mitochondrial Ribosomal Protein S5 Axis Enhances the Metabolic Flexibility of Liver Cancer Stem Cells. Hepatology 2019; 70:1197-1213. [PMID: 30901096 DOI: 10.1002/hep.30622] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
Metabolic reprogramming endows cancer cells with the ability to adjust metabolic pathways to support heterogeneously biological processes. However, it is not known how the reprogrammed activities are implemented during differentiation of cancer stem cells (CSCs). In this study, we demonstrated that liver CSCs relied on the enhanced mitochondrial function to maintain stemness properties, which is different from aerobic glycolysis playing main roles in the differentiated non-CSCs. We found that liver CSCs exhibit increased mitochondrial respiratory capacity and that complex-I of mitochondria was necessary for stemness properties of liver CSCs through regulation of mitochondrial respiration. Bioinformatics analysis reveals that mitochondrial ribosomal protein S5 (MRPS5) is closely related with the function of complex-I. Further experiments confirmed that MRPS5 promoted the production of nicotinamide adenine dinucleotide (NAD+ ), which is necessary for enhanced mitochondrial function in liver CSCs. MRPS5 played a critical role for liver CSCs to maintain stemness properties and to participate in tumor progression. Mechanistically, the acetylation status of MRPS5 is directly regulated by NAD+ dependent deacetylase sirtuin-1 (SIRT1), which is abundant in liver CSCs and decreased during differentiation. Deacetylated MRPS5 locates in mitochondria to promote the function complex-I and the generation of NAD+ to enhance mitochondrial respiration. Conversely, the acetylated MRPS5 gathered in nuclei leads to increased expression of glycolytic proteins and promotion of the Warburg Effect. Therefore, liver CSCs transform mitochondrial-dependent energy supply to a Warburg phenotype by the dual function of MRPS5. Clinical analysis of SIRT1 and MRPS5 expression in tumor tissues showed the SIRT1High /Cytoplasmic-MRPS5High profile was associated with patients with hepatocellular carcinoma with poor prognosis. Conclusion: SIRT1/MRPS5 axis participates in metabolic reprogramming to facilitate tumor progression and may serve as a promising therapeutic target of liver cancer.
Collapse
Affiliation(s)
- Zhihao Wei
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jiankun Jia
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gang Heng
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Huailong Xu
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Juanjuan Shan
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Guiqin Wang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Chungang Liu
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jianyu Xia
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China.,Precision Cancer Medicine Center, Cancer Hospital, Chongqing University, Chongqing, China
| | - Haijun Zhou
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China.,Precision Cancer Medicine Center, Cancer Hospital, Chongqing University, Chongqing, China
| | - Min Wu
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhi Yang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Meiling Wang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhouxing Xiong
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hong Huang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Limei Liu
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China.,Precision Cancer Medicine Center, Cancer Hospital, Chongqing University, Chongqing, China
| | - Cheng Qian
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China.,Precision Cancer Medicine Center, Cancer Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
106
|
Xu Z, Zhang H, Zhang X, Jiang H, Liu C, Wu F, Qian L, Hao B, Czajkowsky DM, Guo S, Xu Z, Bi L, Wang S, Li H, Tan M, Yan W, Feng L, Hou J, Tao S. Interplay between the bacterial protein deacetylase CobB and the second messenger c-di-GMP. EMBO J 2019; 38:e100948. [PMID: 31418899 PMCID: PMC6745502 DOI: 10.15252/embj.2018100948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
As a ubiquitous bacterial secondary messenger, c-di-GMP plays key regulatory roles in processes such as bacterial motility and transcription regulation. CobB is the Sir2 family protein deacetylase that controls energy metabolism, chemotaxis, and DNA supercoiling in many bacteria. Using an Escherichia coli proteome microarray, we found that c-di-GMP strongly binds to CobB. Further, protein deacetylation assays showed that c-di-GMP inhibits the activity of CobB and thereby modulates the biogenesis of acetyl-CoA. Interestingly, we also found that one of the key enzymes directly involved in c-di-GMP production, DgcZ, is a substrate of CobB. Deacetylation of DgcZ by CobB enhances its activity and thus the production of c-di-GMP. Our work establishes a novel negative feedback loop linking c-di-GMP biogenesis and CobB-mediated protein deacetylation.
Collapse
Affiliation(s)
- Zhaowei Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Hainan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xingrun Zhang
- MOE Key Laboratory of Protein SciencesCenter for Structural BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijingChina
| | - Hewei Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Chengxi Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Fanlin Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Lili Qian
- The Chemical Proteomics Center and State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Bingbing Hao
- The Chemical Proteomics Center and State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | | | - Shujuan Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Zhijing Xu
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Lijun Bi
- National Key Laboratory of BiomacromoleculesKey Laboratory of Non‐Coding RNA and Key Laboratory of Protein and Peptide PharmaceuticalsInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- School of Stomatology and MedicineFoshan UniversityFoshanChina
| | - Shihua Wang
- School of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Haitao Li
- MOE Key Laboratory of Protein SciencesCenter for Structural BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijingChina
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Wei Yan
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Lei Feng
- Instrumental Analysis CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Jingli Hou
- Instrumental Analysis CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Sheng‐ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesShanghaiChina
| |
Collapse
|
107
|
Zhang C, Tan Z, Xie Y, Zhao Y, Huang TY, Lu Z, Luo H, Can D, Xu H, Zhang YW, Zhang X. Appoptosin Mediates Lesions Induced by Oxidative Stress Through the JNK-FoxO1 Pathway. Front Aging Neurosci 2019; 11:243. [PMID: 31551758 PMCID: PMC6737070 DOI: 10.3389/fnagi.2019.00243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress is a common feature of neurodegenerative diseases and plays an important role in disease progression. Appoptosin is a pro-apoptotic protein that contributes to the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. However, whether appoptosin mediates oxidative stress-induced neurotoxicity has yet to be determined. Here, we observe that appoptosin protein levels are induced by hydrogen peroxide (H2O2) exposure through the inhibition of proteasomal appoptosin degradation. Furthermore, we demonstrate that overexpression of appoptosin induces apoptosis through the JNK-FoxO1 pathway. Importantly, knockdown of appoptosin can ameliorate H2O2-induced JNK activation and apoptosis in primary neurons. Thus, we propose that appoptosin functions as an upstream regulator of the JNK-FoxO1 pathway, contributing to cell death in response to oxidative stress during neurodegeneration.
Collapse
Affiliation(s)
- Cuilin Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Zhenqiu Tan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yongzhuang Xie
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Zhaoping Lu
- Fujian Provincial Maternity and Children's Hospital of Fujian Medical University, Fuzhou, China
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Dan Can
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| |
Collapse
|
108
|
Audrito V, Managò A, Gaudino F, Sorci L, Messana VG, Raffaelli N, Deaglio S. NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer. Front Immunol 2019; 10:1720. [PMID: 31402913 PMCID: PMC6671870 DOI: 10.3389/fimmu.2019.01720] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cells, particularly in solid tumors, are surrounded by non-neoplastic elements, including endothelial and stromal cells, as well as cells of immune origin, which can support tumor growth by providing the right conditions. On the other hand, local hypoxia, and lack of nutrients induce tumor cells to reprogram their metabolism in order to survive, proliferate, and disseminate: the same conditions are also responsible for building a tumor-suppressive microenvironment. In addition to tumor cells, it is now well-recognized that metabolic rewiring occurs in all cellular components of the tumor microenvironment, affecting epigenetic regulation of gene expression and influencing differentiation/proliferation decisions of these cells. Nicotinamide adenine dinucleotide (NAD) is an essential co-factor for energy transduction in metabolic processes. It is also a key component of signaling pathways, through the regulation of NAD-consuming enzymes, including sirtuins and PARPs, which can affect DNA plasticity and accessibility. In addition, both NAD-biosynthetic and NAD-consuming enzymes can be present in the extracellular environment, adding a new layer of complexity to the system. In this review we will discuss the role of the “NADome” in the metabolic cross-talk between cancer and infiltrating immune cells, contributing to cancer growth and immune evasion, with an eye to therapeutic implications.
Collapse
Affiliation(s)
- Valentina Audrito
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Antonella Managò
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Federica Gaudino
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Leonardo Sorci
- Division of Bioinformatics and Biochemistry, Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| | - Vincenzo Gianluca Messana
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| |
Collapse
|
109
|
Dall M, Trammell SAJ, Asping M, Hassing AS, Agerholm M, Vienberg SG, Gillum MP, Larsen S, Treebak JT. Mitochondrial function in liver cells is resistant to perturbations in NAD + salvage capacity. J Biol Chem 2019; 294:13304-13326. [PMID: 31320478 DOI: 10.1074/jbc.ra118.006756] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Supplementation with NAD precursors such as nicotinamide riboside (NR) has been shown to enhance mitochondrial function in the liver and to prevent hepatic lipid accumulation in high-fat diet (HFD)-fed rodents. Hepatocyte-specific knockout of the NAD+-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT) reduces liver NAD+ levels, but the metabolic phenotype of Nampt-deficient hepatocytes in mice is unknown. Here, we assessed Nampt's role in maintaining mitochondrial and metabolic functions in the mouse liver. Using the Cre-LoxP system, we generated hepatocyte-specific Nampt knockout (HNKO) mice, having a 50% reduction of liver NAD+ levels. We screened the HNKO mice for signs of metabolic dysfunction following 60% HFD feeding for 20 weeks ± NR supplementation and found that NR increases hepatic NAD+ levels without affecting fat mass or glucose tolerance in HNKO or WT animals. High-resolution respirometry revealed that NR supplementation of the HNKO mice did not increase state III respiration, which was observed in WT mice following NR supplementation. Mitochondrial oxygen consumption and fatty-acid oxidation were unaltered in primary HNKO hepatocytes. Mitochondria isolated from whole-HNKO livers had only a 20% reduction in NAD+, suggesting that the mitochondrial NAD+ pool is less affected by HNKO than the whole-tissue pool. When stimulated with tryptophan in the presence of [15N]glutamine, HNKO hepatocytes had a higher [15N]NAD+ enrichment than WT hepatocytes, indicating that HNKO mice compensate through de novo NAD+ synthesis. We conclude that NAMPT-deficient hepatocytes can maintain substantial NAD+ levels and that the Nampt knockout has only minor consequences for mitochondrial function in the mouse liver.
Collapse
Affiliation(s)
- Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Magnus Asping
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Anna S Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Sara G Vienberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark.
| |
Collapse
|
110
|
Christensen DG, Xie X, Basisty N, Byrnes J, McSweeney S, Schilling B, Wolfe AJ. Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Front Microbiol 2019; 10:1604. [PMID: 31354686 PMCID: PMC6640162 DOI: 10.3389/fmicb.2019.01604] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N-𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
Collapse
Affiliation(s)
- David G. Christensen
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Xueshu Xie
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA, United States
| | - James Byrnes
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Sean McSweeney
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | | | - Alan J. Wolfe
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
111
|
Williams AC, Hill LJ. Nicotinamide and Demographic and Disease transitions: Moderation is Best. Int J Tryptophan Res 2019; 12:1178646919855940. [PMID: 31320805 PMCID: PMC6610439 DOI: 10.1177/1178646919855940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Good health and rapid progress depend on an optimal dose of nicotinamide. Too little meat triggers the neurodegenerative condition pellagra and tolerance of symbionts such as tuberculosis (TB), risking dysbioses and impaired resistance to acute infections. Nicotinamide deficiency is an overlooked diagnosis in poor cereal-dependant economies masquerading as 'environmental enteropathy' or physical and cognitive stunting. Too much meat (and supplements) may precipitate immune intolerance and autoimmune and allergic disease, with relative infertility and longevity, via the tryptophan-nicotinamide pathway. This switch favours a dearth of regulatory T (Treg) and an excess of T helper cells. High nicotinamide intake is implicated in cancer and Parkinson's disease. Pro-fertility genes, evolved to counteract high-nicotinamide-induced infertility, may now be risk factors for degenerative disease. Moderation of the dose of nicotinamide could prevent some common diseases and personalised doses at times of stress or, depending on genetic background or age, may treat some other conditions.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
112
|
Petin K, Weiss R, Müller G, Garten A, Grahnert A, Sack U, Hauschildt S. NAD metabolites interfere with proliferation and functional properties of THP-1 cells. Innate Immun 2019; 25:280-293. [PMID: 31053044 PMCID: PMC6830904 DOI: 10.1177/1753425919844587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Over the past few years the NAD-related compounds nicotinamide (NAM),
nicotinamide riboside (NR) and 1-methylnicotinamide (MNA) have been established
as important molecules in signalling pathways that contribute to metabolic
functions of many cells, including those of the immune system. Among immune
cells, monocytes/macrophages, which are the major players of inflammatory
processes, are especially susceptible to the anti-inflammatory action of NAM.
Here we asked whether NAM and the two other compounds have the potential to
regulate differentiation and LPS-induced biological answers of the monocytic
cell line THP-1. We show that treatment of THP-1 cells with NAM, NR and MNA
resulted in growth retardation accompanied by enrichment of cells in the
G0/G1-phase independent of p21 and p53. NAM and NR caused an increase in
intracellular NAD concentrations and SIRT1 and PARP1 mRNA expression was found
to be enhanced. The compounds failed to up-regulate the expression of the cell
surface differentiation markers CD38, CD11b and CD14. They modulated the
reactive oxygen species production and primed the cells to respond less
effectively to the LPS induced TNF-α production. Our data show that the NAD
metabolites interfere with early events associated with differentiation of THP-1
cells along the monocytic path and that they affect LPS-induced biological
responses of the cell line.
Collapse
Affiliation(s)
- Katharina Petin
- 1 Institute of Clinical Immunology, Leipzig University, Germany
| | - Ronald Weiss
- 1 Institute of Clinical Immunology, Leipzig University, Germany
| | - Gerd Müller
- 2 Department of Molecular Oncology, Leipzig University, Germany
| | - Antje Garten
- 3 Centre for Paediatric Research Leipzig (CPL), Leipzig University, Germany.,4 Institute of Metabolism and Systems Research, University of Birmingham, UK
| | - Anja Grahnert
- 1 Institute of Clinical Immunology, Leipzig University, Germany
| | - Ulrich Sack
- 1 Institute of Clinical Immunology, Leipzig University, Germany
| | | |
Collapse
|
113
|
Hałasa M, Bartuzi D, Cieślak D, Kaczor AA, Miziak P, Stepulak A, Matosiuk D. Role of N-terminus in function and dynamics of sirtuin 7: an in silico study. J Biomol Struct Dyn 2019; 38:1283-1291. [PMID: 31025603 DOI: 10.1080/07391102.2019.1600585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sirtuin family comprises seven NAD+-dependent histone deacetylases named SIRT1 to SIRT7. The least investigated SIRT7 is currently considered as a promising therapeutic target for cardiovascular diseases, diabetes and different types of cancer. So far, its structure was not experimentally resolved, except of a fragment of its N-terminus. The aim of this study was to create in silico model of SIRT7 containing its core together with N-terminus, which is known to affect the enzyme's catalytic activity and to find pockets that could be targeted by structure-based virtual screening. Homology model of SIRT7 was prepared using X-ray structures of other sirtuins and a resolved fragment of the N-terminus of SIRT7 as templates. All atom-unbiased molecular dynamics simulations were performed. It was found that N-terminus of SIRT7 remains in spatial proximity of the catalytic core for considerable fraction of time, and therefore, it may affect its catalytic activity by helping the enzyme to hold the substrate peptide. It may also participate in holding and release of the cofactor. Preferred orientations of NAD+ and acetyl-lysine inside SIRT7 were found, with all components forming a stable complex. Molecular dynamics provided an ensemble of conformations that will be targeted with virtual screening. Reliable in silico structure of SIRT7 will be a useful tool in searching for its inhibitors, which can be potential drugs in cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Marta Hałasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical, Medical University of Lublin, Lublin, Poland
| | - Dominika Cieślak
- Department of Synthesis and Chemical Technology of Pharmaceutical, Medical University of Lublin, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical, Medical University of Lublin, Lublin, Poland.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
114
|
Farooqi AS, Hong JY, Cao J, Lu X, Price IR, Zhao Q, Kosciuk T, Yang M, Bai JJ, Lin H. Novel Lysine-Based Thioureas as Mechanism-Based Inhibitors of Sirtuin 2 (SIRT2) with Anticancer Activity in a Colorectal Cancer Murine Model. J Med Chem 2019; 62:4131-4141. [PMID: 30986062 DOI: 10.1021/acs.jmedchem.9b00191] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sirtuin 2 (SIRT2) is a protein lysine deacylase that has been indicated as a therapeutic target for cancer. To further establish the role of SIRT2 in cancers, it is necessary to develop selective and potent inhibitors. Here, we report the facile synthesis of novel lysine-derived thioureas as mechanism-based SIRT2 inhibitors with anticancer activity. Compounds AF8, AF10, and AF12 selectively inhibited SIRT2 with IC50 values of 0.06, 0.15, and 0.08 μM, respectively. Compounds AF8 and AF10 demonstrated broad cytotoxicity amongst cancer cell lines, but minimal toxicity in noncancerous cells. AF8 and AF10 inhibited the anchorage-independent growth of human colorectal cancer cell line HCT116 with GI50 values of ∼7 μM. Furthermore, AF8 potently inhibited tumor growth in a HCT116 xenograft murine model, supporting that SIRT2 is a viable therapeutic target for colorectal cancer.
Collapse
|
115
|
Wang SN, Miao CY. Targeting NAMPT as a therapeutic strategy against stroke. Stroke Vasc Neurol 2019; 4:83-89. [PMID: 31338216 PMCID: PMC6613878 DOI: 10.1136/svn-2018-000199] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Stroke is the second and the leading most common cause of death in the world and China, respectively, but with few effective therapies. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for nicotinamide adenine dinucleotide (NAD) salvage synthesis in mammals, thereby influencing NAD-dependent enzymes and constituting a strong endogenous defence system against various stresses. Accumulating in-vitro and in-vivo studies have demonstrated the neuroprotective effect of NAMPT in stroke. Here, we review the direct evidence of NAMPT as a promising target against stroke from five potential therapeutic strategies, including NAMPT overexpression, recombinant NAMPT, NAMPT activators, NAMPT enzymatic product nicotinamide mononucleotide (NMN), and NMN precursors nicotinamide riboside and nicotinamide, and describe the relevant mechanisms and limitations, providing a promising choice for developing novel and effective therapeutic interventions against ischaemic and haemorrhagic stroke.
Collapse
Affiliation(s)
- Shu-Na Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
116
|
Xu L, Wang L, Zhou L, Dorfman RG, Pan Y, Tang D, Wang Y, Yin Y, Jiang C, Zou X, Wu J, Zhang M. The SIRT2/cMYC Pathway Inhibits Peroxidation-Related Apoptosis In Cholangiocarcinoma Through Metabolic Reprogramming. Neoplasia 2019; 21:429-441. [PMID: 30933885 PMCID: PMC6441712 DOI: 10.1016/j.neo.2019.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 02/05/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant cancer with an unknown etiology and an unfavorable prognosis. Most patients are diagnosed at an advanced stage, thus making it essential to find novel curative targets for CCA. Metabolic reprogramming of the tumor cells includes metabolic abnormalities in glucose (known as the Warburg effect) and other substances such as amino acids and fats. Metabolic reprogramming produces anti-oxidant substances, reduces tumor oxidative stress, and finally promotes the proliferation of tumors. There is increasing evidence to imply that SIRT2, a histone deacetylase, and its downstream target cMYC, play metabolic regulatory roles in tumor cells. However, the role of the SIRT2/cMYC pathway in CCA is unclear. To assess the metabolic reprogramming function of the SIRT2/cMYC pathway in CCA and to determine the downstream targets as well as evaluate the therapeutic effect, the CCA RNA-Seq data were downloaded from the TCGA database. Differentially expressed genes were confirmed and KEGG pathway enrichment analysis was performed. Overall, 48 paired CCA samples were collected and subjected to immunohistochemical detection, and the clinical characteristics of participants were summarized. The CCA cells were suppressed or overexpressed with different downstream targets of SIRT2 and then subjected to apoptosis, immunoblotting, seahorse, and metabolites tracing analysis. In vivo experiments were also performed. We found that the SIRT2/cMYC pathway contributed to the proliferation of CCA cells and confirmed that the downstream target is PHDA1 and the serine synthesis pathway. The up-regulated SIRT2 and cMYC levels resulted in low levels of mitochondrial oxidative phosphorylation and increased conversion of glucose to serine and led to poor patient survival. The highly active SIRT2/cMYC pathway up-regulated the serine synthesis pathway pyruvate and increased antioxidant production, thus consequently protecting the CCA cells from oxidative stress-induced apoptosis. Our data revealed that the SIRT2/cMYC pathway plays a critical role in transforming glucose oxidative metabolism to serine anabolic metabolism, thus providing antioxidants for stress resistance. SIRT2/cMYC-induced metabolic reprogramming may represent a new therapeutic target for treating CCA.
Collapse
Affiliation(s)
- Lei Xu
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Lixing Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China; The Center of Gerontology and Geriatrics/National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | - Yida Pan
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Dehua Tang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Yuming Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Yuyao Yin
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Chengfei Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaoping Zou
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China.
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China.
| | - Mingming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
117
|
Zhang D, Hu X, Li J, Liu J, Baks-Te Bulte L, Wiersma M, Malik NUA, van Marion DMS, Tolouee M, Hoogstra-Berends F, Lanters EAH, van Roon AM, de Vries AAF, Pijnappels DA, de Groot NMS, Henning RH, Brundel BJJM. DNA damage-induced PARP1 activation confers cardiomyocyte dysfunction through NAD + depletion in experimental atrial fibrillation. Nat Commun 2019; 10:1307. [PMID: 30898999 PMCID: PMC6428932 DOI: 10.1038/s41467-019-09014-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common clinical tachyarrhythmia with a strong tendency to progress in time. AF progression is driven by derailment of protein homeostasis, which ultimately causes contractile dysfunction of the atria. Here we report that tachypacing-induced functional loss of atrial cardiomyocytes is precipitated by excessive poly(ADP)-ribose polymerase 1 (PARP1) activation in response to oxidative DNA damage. PARP1-mediated synthesis of ADP-ribose chains in turn depletes nicotinamide adenine dinucleotide (NAD+), induces further DNA damage and contractile dysfunction. Accordingly, NAD+ replenishment or PARP1 depletion precludes functional loss. Moreover, inhibition of PARP1 protects against tachypacing-induced NAD+ depletion, oxidative stress, DNA damage and contractile dysfunction in atrial cardiomyocytes and Drosophila. Consistently, cardiomyocytes of persistent AF patients show significant DNA damage, which correlates with PARP1 activity. The findings uncover a mechanism by which tachypacing impairs cardiomyocyte function and implicates PARP1 as a possible therapeutic target that may preserve cardiomyocyte function in clinical AF.
Collapse
Affiliation(s)
- Deli Zhang
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ, Amsterdam, The Netherlands.
| | - Xu Hu
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ, Amsterdam, The Netherlands
| | - Jin Li
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ, Amsterdam, The Netherlands
| | - Jia Liu
- Department of Cardiology, Laboratory of Experimental Cardiology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Luciënne Baks-Te Bulte
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ, Amsterdam, The Netherlands
| | - Marit Wiersma
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ, Amsterdam, The Netherlands
| | - Noor-Ul-Ann Malik
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ, Amsterdam, The Netherlands
| | - Denise M S van Marion
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ, Amsterdam, The Netherlands
| | - Marziyeh Tolouee
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Femke Hoogstra-Berends
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Eva A H Lanters
- Department of Cardiology, Erasmus Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Arie M van Roon
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - Antoine A F de Vries
- Department of Cardiology, Laboratory of Experimental Cardiology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Daniël A Pijnappels
- Department of Cardiology, Laboratory of Experimental Cardiology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Natasja M S de Groot
- Department of Cardiology, Erasmus Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
118
|
Ali TFS, Ciftci HI, Radwan MO, Koga R, Ohsugi T, Okiyama Y, Honma T, Nakata A, Ito A, Yoshida M, Fujita M, Otsuka M. New SIRT2 inhibitors: Histidine-based bleomycin spin-off. Bioorg Med Chem 2019; 27:1767-1775. [PMID: 30885568 DOI: 10.1016/j.bmc.2019.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
Bleomycin is considered to exert its antitumor activity via DNA cleavage mediated by activated oxygen generated from the iron complex in its chelator moiety. Spin-offs from this moiety, HPH-1Trt and HPH-2Trt, with anti-cancer activities were recently synthesized. In this paper, we developed inhibitors of nicotinamide adenine dinucleotide-dependent deacetylase isoform 2 of Sirtuin protein (SIRT2), based on HPH-1Trt/HPH-2Trt, and aimed to generate new anti-cancer drugs. HPH-1Trt and HPH-2Trt had in vitro anti-SIRT2 inhibitory activity with 50% inhibitory concentration (IC50) values of 5.5 and 8.8 μM, respectively. A structural portion of HPH-1Trt/HPH-2Trt, a tritylhistidine derivative TH-1, had stronger activity (IC50 = 1.7 μM), and thus, fourteen derivatives of TH-1 were synthesized. Among them, TH-3 had the strongest activity (IC50 = 1.3 μM). Selective binding of TH-3 in the pocket of SIRT2 protein was confirmed with a molecular docking study. Furthermore, TH-3 strongly lowered viability of the breast cancer cell line MCF7 with an IC50 of 0.71 μM. A structure-activity relationship study using cell lines suggested that the mechanism of TH-3 to suppress MCF7 cells involves not only SIRT2 inhibition, but also another function. This compound may be a new candidate anti-cancer drug.
Collapse
Affiliation(s)
- Taha F S Ali
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Halil I Ciftci
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Mohamed O Radwan
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan; Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Ryoko Koga
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takeo Ohsugi
- Department of Laboratory Animal Science, School of Veterinary Medicine, Rakuno-Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Yoshio Okiyama
- Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Teruki Honma
- Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Nakata
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiro Ito
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Minoru Yoshida
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikako Fujita
- Research Institute for Drug Discovery, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Masami Otsuka
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
119
|
Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37:107345. [PMID: 30738111 DOI: 10.1016/j.biotechadv.2019.02.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are 'silent' in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.
Collapse
Affiliation(s)
- Brandon T Pfannenstiel
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
120
|
Gadelha APR, Bravim B, Vidal J, Reignault LC, Cosme B, Huber K, Bracher F, de Souza W. Alterations on growth and cell organization of Giardia intestinalis trophozoites after treatment with KH-TFMDI, a novel class III histone deacetylase inhibitor. Int J Med Microbiol 2019; 309:130-142. [PMID: 30665874 DOI: 10.1016/j.ijmm.2019.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 12/30/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
Giardia trophozoites have developed resistance mechanisms to currently available compounds, leading to treatment failures. In this context, the development of new additional agents is mandatory. Sirtuins, which are class III NAD+-dependent histone deacetylases, have been considered important targets for the development of new anti-parasitic drugs. Here, we evaluated the activity of KH-TFMDI, a novel 3-arylideneindolin-2-one-type sirtuin inhibitor, on G. intestinalis trophozoites. This compound decreased the trophozoite growth presenting an IC50 value lower than nicotinamide, a moderately active inhibitor of yeast and human sirtuins. Light and electron microscopy analysis showed the presence of multinucleated cell clusters suggesting that the cytokinesis could be compromised in treated trophozoites. Cell rounding, concomitantly with the folding of the ventro-lateral flange and flagella internalization, was also observed. These cells eventually died by a mechanism which lead to DNA/nuclear damage, formation of multi-lamellar bodies and annexin V binding on the parasite surface. Taken together, these data show that KH-TFMDI has significant effects against G. intestinalis trophozoites proliferation and structural organization and suggest that histone deacetylation pathway should be explored on this protozoon as target for chemotherapy.
Collapse
Affiliation(s)
- Ana Paula R Gadelha
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Bárbara Bravim
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Juliana Vidal
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lissa Catherine Reignault
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno Cosme
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Kilian Huber
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Wanderley de Souza
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
121
|
Young Hong J, Cao J, Lin H. Fluorogenic Assays for the Defatty-Acylase Activity of Sirtuins. Methods Mol Biol 2019; 2009:129-136. [PMID: 31152400 DOI: 10.1007/978-1-4939-9532-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sirtuins are type III histone deacetylases (HDAC) that uses nicotinamide adenine dinucleotide as cosubstrate. Dysfunction of sirtuins is implicated in wide varieties of human diseases. As such, there has been increased interest in the development of small molecule to modulate sirtuin activities. Besides deacetylase activity, recent studies suggest SIRT1, 2, 3, and 6 efficiently remove fatty acyl groups on lysine. In vitro sirtuin enzymatic activity assays established so far are mainly based on the deacetylation activity. Here, we describe a fluorogenic assay for monitoring defatty-acylase activity of SIRT1, 2, 3 and 6 using peptide substrates. This assay can be utilized to evaluate sirtuin modulators in high-throughput manners.
Collapse
Affiliation(s)
- Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Ji Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
122
|
Nicotinamide Promotes Cell Survival and Differentiation as Kinase Inhibitor in Human Pluripotent Stem Cells. Stem Cell Reports 2018; 11:1347-1356. [PMID: 30503259 PMCID: PMC6294242 DOI: 10.1016/j.stemcr.2018.10.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B3, is widely used in disease treatments and stem cell applications. However, nicotinamide's impact often cannot be attributed to its nutritional functions. In a vitamin screen, we find that nicotinamide promotes cell survival and differentiation in human pluripotent stem cells. Nicotinamide inhibits the phosphorylation of myosin light chain, suppresses actomyosin contraction, and leads to improved cell survival after individualization. Further analysis demonstrates that nicotinamide is an inhibitor of multiple kinases, including ROCK and casein kinase 1. We demonstrate that nicotinamide affects human embryonic stem cell pluripotency and differentiation as a selective kinase inhibitor. The findings in this report may help researchers design better strategies to develop nicotinamide-related stem cell applications and disease treatments. High dosage of nicotinamide is a direct kinase inhibitor with multiple targets Nicotinamide promotes hPSC survival after individualization through ROCK inhibition Nicotinamide affects hPSC differentiation partially through CK1 inhibition
Collapse
|
123
|
Harrison IF, Powell NM, Dexter DT. The histone deacetylase inhibitor nicotinamide exacerbates neurodegeneration in the lactacystin rat model of Parkinson's disease. J Neurochem 2018; 148:136-156. [PMID: 30269333 PMCID: PMC6487684 DOI: 10.1111/jnc.14599] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/14/2018] [Accepted: 09/21/2018] [Indexed: 01/03/2023]
Abstract
Histone hypoacetylation is associated with dopaminergic neurodegeneration in Parkinson's disease (PD), because of an imbalance in the activities of the enzymes responsible for histone (de)acetylation. Correction of this imbalance, with histone deacetylase (HDAC) inhibiting agents, could be neuroprotective. We therefore hypothesize that nicotinamide, being a selective inhibitor of HDAC class III as well as having modulatory effects on mitochondrial energy metabolism, would be neuroprotective in the lactacystin rat model of PD, which recapitulates the formation of neurotoxic accumulation of altered proteins within the substantia nigra to cause progressive dopaminergic cell death. Rats received nicotinamide for 28 days, starting 7 days after unilateral injection of the irreversible proteasome inhibitor, lactacystin, into the substantia nigra. Longitudinal motor behavioural testing and structural magnetic resonance imaging were used to track changes in this model of PD, and assessment of nigrostriatal integrity, histone acetylation and brain gene expression changes post-mortem used to quantify nicotinamide-induced neuroprotection. Counterintuitively, nicotinamide dose-dependently exacerbated neurodegeneration of dopaminergic neurons, behavioural deficits and structural brain changes in the lactacystin-lesioned rat. Nicotinamide treatment induced histone hyperacetylation and over-expression of numerous neurotrophic and anti-apoptotic factors in the brain, yet failed to result in neuroprotection, rather exacerbated dopaminergic pathology. These findings highlight the importance of inhibitor specificity within HDAC isoforms for therapeutic efficacy in PD, demonstrating the contrasting effects of HDAC class III inhibition upon cell survival in this animal model of the disease. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Ian F Harrison
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.,Parkinson's Disease Research Group, Division of Brain Sciences, Department of Medicine, Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, UK
| | - Nicholas M Powell
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.,Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - David T Dexter
- Parkinson's Disease Research Group, Division of Brain Sciences, Department of Medicine, Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, UK
| |
Collapse
|
124
|
Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat Commun 2018; 9:4468. [PMID: 30367038 PMCID: PMC6203763 DOI: 10.1038/s41467-018-06812-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
The conversion of serine and glycine that is accomplished by serine hydroxymethyltransferase 2 (SHMT2) in mitochondria is significantly upregulated in various cancers to support cancer cell proliferation. In this study, we observed that SHMT2 is acetylated at K95 in colorectal cancer (CRC) cells. SIRT3, the major deacetylase in mitochondria, is responsible for SHMT2 deacetylation. SHMT2-K95-Ac disrupts its functional tetramer structure and inhibits its enzymatic activity. SHMT2-K95-Ac also promotes its degradation via the K63-ubiquitin–lysosome pathway in a glucose-dependent manner. TRIM21 acts as an E3 ubiquitin ligase for SHMT2. SHMT2-K95-Ac decreases CRC cell proliferation and tumor growth in vivo through attenuation of serine consumption and reduction in NADPH levels. Finally, SHMT2-K95-Ac is significantly decreased in human CRC samples and is inversely associated with increased SIRT3 expression, which is correlated with poorer postoperative overall survival. Our study reveals the unknown mechanism of SHMT2 regulation by acetylation which is involved in colorectal carcinogenesis. Serine hydroxymethyltransferase 2 (SHMT2) converts serine to glycine in mitochondria and is upregulated in a variety of cancers. Here the authors show that acetylation of the lysine-95 (K95) residue negatively regulates SHMT2 expression and activity and is deacetylated by SIRT3 in colorectal cancer.
Collapse
|
125
|
Qian J, Luo F, Yang J, Liu J, Liu R, Wang L, Wang C, Deng Y, Lu Z, Wang Y, Lu M, Wang JY, Chu Y. TLR2 Promotes Glioma Immune Evasion by Downregulating MHC Class II Molecules in Microglia. Cancer Immunol Res 2018; 6:1220-1233. [PMID: 30131377 DOI: 10.1158/2326-6066.cir-18-0020] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/15/2018] [Accepted: 08/15/2018] [Indexed: 11/16/2022]
Abstract
Gliomas, the most common primary neoplasms in the brain, are notorious for their ability to evade the immune response. Despite microglial infiltration in gliomas, expression of MHC class II molecules in those microglia is compromised. Here, we report that Toll-like receptor 2 (TLR2) activation downregulated expression of MHC class II molecules in microglia in an orthotopic murine glioma model. TLR2-induced microglial impairment hindered the proliferation and activation of CD4+ T cells, which facilitated glioma immune evasion. TLR2-induced downregulation of MHC class II molecules was caused by suppression of the master regulator of MHC class II molecule transcription, Ciita TLR2 activation triggered downstream MAPK/ERK1/2 signaling and loss of histone H3 acetylation at Ciita promoters, which in turn inhibited Ciita expression. In glioblastoma tissues, various endogenous TLR2 ligands, including the heat shock proteins that are endogenous TLR2 ligands, were upregulated, a response that correlated with CIITA inhibition. Thus, TLR2 promotes glioma immune-system evasion. These results advance our understanding of microglia as antigen-presenting cells in the context of glioma. In the glioma tumor microenvironment, TLR2 activation of microglia induces downregulation of microglial MHC class II expression. Impaired MHC class II expression limits T-cell-dependent antitumor immunity. Cancer Immunol Res; 6(10); 1220-33. ©2018 AACR.
Collapse
Affiliation(s)
- Jiawen Qian
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China.,Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, P.R. China.,Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jiao Yang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China.,Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| | - Jun Liu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Chen Wang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China.,Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| | - Yuting Deng
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China.,Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| | - Zhou Lu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Yuedi Wang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China.,Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| | - Mingfang Lu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China. .,Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| |
Collapse
|
126
|
SIRT7 promotes thyroid tumorigenesis through phosphorylation and activation of Akt and p70S6K1 via DBC1/SIRT1 axis. Oncogene 2018; 38:345-359. [PMID: 30093629 DOI: 10.1038/s41388-018-0434-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/02/2018] [Accepted: 07/17/2018] [Indexed: 01/22/2023]
Abstract
SIRT7 is an NAD+-dependent histone/non-histone deacetylase, which is highly expressed in different types of cancer including thyroid cancer; however, its biological function in thyroid cancer is still undiscovered. In this study, we found that SIRT7 expression was elevated in papillary thyroid cancers (PTCs), and demonstrated that SIRT7 knockdown dramatically inhibited the proliferation, colony formation, migration and invasion of thyroid cancer cells, and induced thyroid cancer cell cycle arrest and apoptosis. Conversely, SIRT7 re-expression markedly enhanced thyroid cancer cell growth, invasiveness and tumorigenic potential in nude mice. Further studies revealed that SIRT7 exerted an oncogenic function in thyroid tumorigenesis by phosphorylation of Akt and p70S6K1. Mechanistically, SIRT7 binds to the promoter of deleted in breast cancer-1 (DBC1), an endogenous inhibitor of SIRT1, and represses its transcription via deacetylation of H3K18Ac. This results in enhanced interactions between SIRT1 and Akt or p70S6K1, thereby promoting deacetylation and subsequent phosphorylation of Akt and p70S6K1 through a SIRT1-dependent manner. Altogether, our results show that DBC1 is a downstream target of SIRT7, and first uncover that SIRT7 promotes thyroid tumorigenesis through phosphorylation and activation of Akt and p70S6K1 via the modulation of DBC1/SIRT1 axis.
Collapse
|
127
|
Guymer C, Wood JPM, Chidlow G, Casson RJ. Neuroprotection in glaucoma: recent advances and clinical translation. Clin Exp Ophthalmol 2018; 47:88-105. [DOI: 10.1111/ceo.13336] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Chelsea Guymer
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - John PM Wood
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Robert J Casson
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
128
|
Agerholm M, Dall M, Jensen BAH, Prats C, Madsen S, Basse AL, Graae AS, Risis S, Goldenbaum J, Quistorff B, Larsen S, Vienberg SG, Treebak JT. Perturbations of NAD + salvage systems impact mitochondrial function and energy homeostasis in mouse myoblasts and intact skeletal muscle. Am J Physiol Endocrinol Metab 2018; 314:E377-E395. [PMID: 29208611 DOI: 10.1152/ajpendo.00213.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) can be synthesized by nicotinamide phosphoribosyltransferase (NAMPT). We aimed to determine the role of NAMPT in maintaining NAD+ levels, mitochondrial function, and metabolic homeostasis in skeletal muscle cells. We generated stable Nampt knockdown (sh Nampt KD) C2C12 cells using a shRNA lentiviral approach. Moreover, we applied gene electrotransfer to express Cre recombinase in tibialis anterior muscle of floxed Nampt mice. In sh Nampt KD C2C12 myoblasts, Nampt and NAD+ levels were reduced by 70% and 50%, respectively, and maximal respiratory capacity was reduced by 25%. Moreover, anaerobic glycolytic flux increased by 55%, and 2-deoxyglucose uptake increased by 25% in sh Nampt KD cells. Treatment with the NAD+ precursor nicotinamide riboside restored NAD+ levels in sh Nampt cells and increased maximal respiratory capacity by 18% and 32% in control and sh Nampt KD cells, respectively. Expression of Cre recombinase in muscle of floxed Nampt mice reduced NAMPT and NAD+ levels by 38% and 43%, respectively. Glucose uptake increased by 40%, and mitochondrial complex IV respiration was compromised by 20%. Hypoxia-inducible factor (HIF)-1α-regulated genes and histone H3 lysine 9 (H3K9) acetylation, a known sirtuin 6 (SIRT6) target, were increased in shNampt KD cells. Thus, we propose that the shift toward glycolytic metabolism observed, at least in part, is mediated by the SIRT6/HIF1α axis. Our findings suggest that NAMPT plays a key role for maintaining NAD+ levels in skeletal muscle and that NAMPT deficiency compromises oxidative phosphorylation capacity and alters energy homeostasis in this tissue.
Collapse
Affiliation(s)
- Marianne Agerholm
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Morten Dall
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Benjamin A H Jensen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Clara Prats
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Søren Madsen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Astrid L Basse
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Anne-Sofie Graae
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Steve Risis
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Julie Goldenbaum
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Bjørn Quistorff
- Section for Translational Metabolic Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, and Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Sara G Vienberg
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
129
|
Abstract
Sirtuins (SIRT) are coenzyme NAD+-dependent histone deacetylases for the transfer of modified acetyl groups. Sirtuins are widely involved in various physiological processes and therefore associated with cardiovascular disease, diabetes, Parkinson's disease, cancer and beyond. Consequently, the development of modulators for sirtuins has considerable clinical value. To date, a variety of SIRT1/2 inhibitors have been reported and none has been approved for the market. This review summarizes the recent progress in the discovery and development of SIRT1/2 inhibitors including their inhibitory potency, structure–activity relationship and binding mode analysis as well as discusses the perspective for the future development of SIRT1/2 inhibitors.
Collapse
|
130
|
Guan X, Upadhyay A, Munshi S, Chakrabarti R. Biophysical characterization of hit compounds for mechanism-based enzyme activation. PLoS One 2018; 13:e0194175. [PMID: 29547630 PMCID: PMC5856274 DOI: 10.1371/journal.pone.0194175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/26/2018] [Indexed: 11/19/2022] Open
Abstract
Across all families of enzymes, only a dozen or so distinct classes of non-natural small molecule activators have been characterized, with only four known modes of activation among them. All of these modes of activation rely on naturally evolved binding sites that trigger global conformational changes. Among the enzymes that are of greatest interest for small molecule activation are the seven sirtuin enzymes, nicotinamide adenine dinucleotide (NAD+)-dependent protein deacylases that play a central role in the regulation of healthspan and lifespan in organisms ranging from yeast to mammals. However, there is currently no understanding of how to design sirtuin-activating compounds beyond allosteric activators of SIRT1-catalyzed reactions that are limited to particular substrates. Here, we introduce a general mode of sirtuin activation that is distinct from the known modes of enzyme activation. Based on the conserved mechanism of sirtuin-catalyzed deacylation reactions, we establish biophysical properties of small molecule modulators that can in principle result in enzyme activation for diverse sirtuins and substrates. Building upon this framework, we propose strategies for the identification, characterization and evolution of hits for mechanism-based enzyme activating compounds.
Collapse
Affiliation(s)
- Xiangying Guan
- Division of Fundamental Research, Chakrabarti Advanced Technology, Mount Laurel, New Jersey, United States of America
| | - Alok Upadhyay
- Division of Fundamental Research, Chakrabarti Advanced Technology, Mount Laurel, New Jersey, United States of America
| | - Sudipto Munshi
- Division of Fundamental Research, Chakrabarti Advanced Technology, Mount Laurel, New Jersey, United States of America
| | - Raj Chakrabarti
- Division of Fundamental Research, Chakrabarti Advanced Technology, Mount Laurel, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
131
|
Kato Y, Kihara H, Fukui K, Kojima M. A ternary complex model of Sirtuin4-NAD +-Glutamate dehydrogenase. Comput Biol Chem 2018; 74:94-104. [PMID: 29571013 DOI: 10.1016/j.compbiolchem.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 11/09/2017] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Sirtuin4 (Sirt4) is one of the mammalian homologues of Silent information regulator 2 (Sir2), which promotes the longevity of yeast, C. elegans, fruit flies and mice. Sirt4 is localized in the mitochondria, where it contributes to preventing the development of cancers and ischemic heart disease through regulating energy metabolism. The ADP-ribosylation of glutamate dehydrogenase (GDH), which is catalyzed by Sirt4, downregulates the TCA cycle. However, this reaction mechanism is obscure, because the structure of Sirt4 is unknown. We here constructed structural models of Sirt4 by homology modeling and threading, and docked nicotinamide adenine dinucleotide+ (NAD+) to Sirt4. In addition, a partial GDH structure was docked to the Sirt4-NAD+ complex model. In the ternary complex model of Sirt4-NAD+-GDH, the acetylated lysine 171 of GDH is located close to NAD+. This suggests a possible mechanism underlying the ADP-ribosylation at cysteine 172, which may occur through a transient intermediate with ADP-ribosylation at the acetylated lysine 171. These results may be useful in designing drugs for the treatment of cancers and ischemic heart disease.
Collapse
Affiliation(s)
- Yusuke Kato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Japan; Himeji Hinomoto College, 890 Koro, Himeji 679-2151, Japan; Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Hiroshi Kihara
- Himeji Hinomoto College, 890 Koro, Himeji 679-2151, Japan
| | - Kiyoshi Fukui
- Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Masaki Kojima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Japan
| |
Collapse
|
132
|
Yoshino J, Baur JA, Imai SI. NAD + Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab 2018; 27:513-528. [PMID: 29249689 PMCID: PMC5842119 DOI: 10.1016/j.cmet.2017.11.002] [Citation(s) in RCA: 681] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/10/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Abstract
Research on the biology of NAD+ has been gaining momentum, providing many critical insights into the pathogenesis of age-associated functional decline and diseases. In particular, two key NAD+ intermediates, nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), have been extensively studied over the past several years. Supplementing these NAD+ intermediates has shown preventive and therapeutic effects, ameliorating age-associated pathophysiologies and disease conditions. Although the pharmacokinetics and metabolic fates of NMN and NR are still under intensive investigation, these NAD+ intermediates can exhibit distinct behavior, and their fates appear to depend on the tissue distribution and expression levels of NAD+ biosynthetic enzymes, nucleotidases, and presumptive transporters for each. A comprehensive concept that connects NAD+ metabolism to the control of aging and longevity in mammals has been proposed, and the stage is now set to test whether these exciting preclinical results can be translated to improve human health.
Collapse
Affiliation(s)
- Jun Yoshino
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, 12-114 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104-5160, USA.
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Department of Medicine (Joint), Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Japan Agency for Medical Research and Development, Project for Elucidating and Controlling Mechanisms of Aging and Longevity, Tokyo, Japan.
| |
Collapse
|
133
|
Chini EN, Chini CCS, Espindola Netto JM, de Oliveira GC, van Schooten W. The Pharmacology of CD38/NADase: An Emerging Target in Cancer and Diseases of Aging. Trends Pharmacol Sci 2018; 39:424-436. [PMID: 29482842 DOI: 10.1016/j.tips.2018.02.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/23/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Recent reports indicate that intracellular NAD levels decline in tissues during chronological aging, and that therapies aimed at increasing cellular NAD levels could have beneficial effects in many age-related diseases. The protein CD38 (cluster of differentiation 38) is a multifunctional enzyme that degrades NAD and modulates cellular NAD homeostasis. At the physiological level, CD38 has been implicated in the regulation of metabolism and in the pathogenesis of multiple conditions including aging, obesity, diabetes, heart disease, asthma, and inflammation. Interestingly, many of these functions are mediated by CD38 enzymatic activity. In addition, CD38 has also been identified as a cell-surface marker in hematologic cancers such as multiple myeloma, and a cytotoxic anti-CD38 antibody has been approved by the FDA for use in this disease. Although this is a remarkable development, killing CD38-positive tumor cells with cytotoxic anti-CD38 antibodies is only one of the potential pharmacological uses of targeting CD38. The present review discusses the biology of the CD38 enzyme and the current state of development of pharmacological tools aimed at CD38, and explores how these agents may represent a novel approach for treating human conditions including cancer, metabolic disease, and diseases of aging.
Collapse
Affiliation(s)
- Eduardo N Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Claudia C S Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jair Machado Espindola Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Guilherme C de Oliveira
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
134
|
Li FL, Liu JP, Bao RX, Yan G, Feng X, Xu YP, Sun YP, Yan W, Ling ZQ, Xiong Y, Guan KL, Yuan HX. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun 2018; 9:508. [PMID: 29410405 PMCID: PMC5802808 DOI: 10.1038/s41467-018-02950-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/09/2018] [Indexed: 12/27/2022] Open
Abstract
Enhanced glycolysis in cancer cells has been linked to cell protection from DNA damaging signals, although the mechanism is largely unknown. The 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) catalyzes the generation of fructose-2,6-bisphosphate, a potent allosteric stimulator of glycolysis. Intriguingly, among the four members of PFKFB family, PFKFB3 is uniquely localized in the nucleus, although the reason remains unclear. Here we show that chemotherapeutic agent cisplatin promotes glycolysis, which is suppressed by PFKFB3 deletion. Mechanistically, cisplatin induces PFKFB3 acetylation at lysine 472 (K472), which impairs activity of the nuclear localization signal (NLS) and accumulates PFKFB3 in the cytoplasm. Cytoplasmic accumulation of PFKFB3 facilitates its phosphorylation by AMPK, leading to PFKFB3 activation and enhanced glycolysis. Inhibition of PFKFB3 sensitizes tumor to cisplatin treatment in a xenograft model. Our findings reveal a mechanism for cells to stimulate glycolysis to protect from DNA damage and potentially suggest a therapeutic strategy to sensitize tumor cells to genotoxic agents by targeting PFKFB3.
Collapse
Affiliation(s)
- Fu-Long Li
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Jin-Ping Liu
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ruo-Xuan Bao
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - GuoQuan Yan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xu Feng
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan-Ping Xu
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yi-Ping Sun
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Weili Yan
- Department of Clinical Epidemiology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital Zhejiang Cancer Center, Hangzhou, 310022, China
| | - Yue Xiong
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun-Liang Guan
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hai-Xin Yuan
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
135
|
Thangaleela S, Shanmugapriya V, Mukilan M, Radhakrishnan K, Rajan KE. Alterations in MicroRNA-132/212 Expression Impairs Fear Memory in Goldfish Carassius auratus. Ann Neurosci 2018; 25:90-97. [PMID: 30140120 DOI: 10.1159/000486842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background Earlier, we showed that nicotinamide (NAM) treatment impairs spatial memory through the downregulation of CREB-Sirt 1-brain-derived neurotrophic factor (Bdnf) signaling cascade. Purpose In this study, we examine whether NAM treatment alters CREB-regulated genes through -microRNAs. Method To test this hypothesis, goldfish (Carassius auratus) were divided into 2 groups: (i) vehicle group (VEH; double distilled water intra-peritoneally [i.p.]) (ii) nicotinamide group (NAM, 1,000 mg/kg, i.p.) and again divided into VEH untrained/trained, NAM untrained/trained. One hour after receiving VEH or NAM, individuals were subject to contextual fear conditioning (CFC) training. After 24 h, both the groups were tested for contextual fear memory. Subsequently, miR-132/212 levels, regulated immediate-early genes (IEGs: C-fos and EGR-1) and Bdnf but not its receptor. -TrkB1were examined following 0' and 60' min after training, and compared with the untrained group. Results We observed that NAM treatment significantly impaired fear memory. Further, the analysis showed that miR-132 level was not altered, but miR-212 level was significantly upregulated after CFC training only in NAM-treated fish. We also found that NAM treatment downregulated IEGs and Bdnf but not its receptor TrkB1. Conclusions Present study suggests that NAM-treatment impaired fear memory and control IEGs, Bdnf and TrkB1 expression by differentially regulating miR-132 and 212.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Vasudevan Shanmugapriya
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Murugan Mukilan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | | | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
136
|
Nesci S, Trombetti F, Ventrella V, Pirini M, Pagliarani A. The inhibition of the mitochondrial F1FO-ATPase activity when activated by Ca2+ opens new regulatory roles for NAD. Biol Chem 2018; 399:197-202. [PMID: 28976891 DOI: 10.1515/hsz-2017-0209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
The mitochondrial F1FO-ATPase is uncompetitively inhibited by NAD+ only when the natural cofactor Mg2+ is replaced by Ca2+, a mode putatively involved in cell death. The Ca2+-dependent F1FO-ATPase is also inhibited when NAD+ concentration in mitochondria is raised by acetoacetate. The enzyme inhibition by NAD+ cannot be ascribed to any de-ac(et)ylation or ADP-ribosylation by sirtuines, as it is not reversed by nicotinamide. Moreover, the addition of acetyl-CoA or palmitate, which would favor the enzyme ac(et)ylation, does not affect the F1FO-ATPase activity. Consistently, NAD+ may play a new role, not associated with redox and non-redox enzymatic reactions, in the Ca2+-dependent regulation of the F1FO-ATPase activity.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (BO), Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (BO), Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (BO), Italy
| | - Maurizio Pirini
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (BO), Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
137
|
Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease. PLoS Negl Trop Dis 2018; 12:e0006180. [PMID: 29357372 PMCID: PMC5794198 DOI: 10.1371/journal.pntd.0006180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/01/2018] [Accepted: 12/19/2017] [Indexed: 11/26/2022] Open
Abstract
Chagas disease remains one of the most neglected diseases in the world despite being the most important parasitic disease in Latin America. The characteristic chronic manifestation of chagasic cardiomyopathy is the region’s leading cause of heart-related illness, causing significant mortality and morbidity. Due to the limited available therapeutic options, new drugs are urgently needed to control the disease. Sirtuins, also called Silent information regulator 2 (Sir2) proteins have long been suggested as interesting targets to treat different diseases, including parasitic infections. Recent studies on Trypanosoma cruzi sirtuins have hinted at the possibility to exploit these enzymes as a possible drug targets. In the present work, the T. cruzi Sir2 related protein 1 (TcSir2rp1) is genetically validated as a drug target and biochemically characterized for its NAD+-dependent deacetylase activity and its inhibition by the classic sirtuin inhibitor nicotinamide, as well as by bisnaphthalimidopropyl (BNIP) derivatives, a class of parasite sirtuin inhibitors. BNIPs ability to inhibit TcSir2rp1, and anti-parasitic activity against T. cruzi amastigotes in vitro were investigated. The compound BNIP Spermidine (BNIPSpd) (9), was found to be the most potent inhibitor of TcSir2rp1. Moreover, this compound showed altered trypanocidal activity against TcSir2rp1 overexpressing epimastigotes and anti-parasitic activity similar to the reference drug benznidazole against the medically important amastigotes, while having the highest selectivity index amongst the compounds tested. Unfortunately, BNIPSpd failed to treat a mouse model of Chagas disease, possibly due to its pharmacokinetic profile. Medicinal chemistry modifications of the compound, as well as alternative formulations may improve activity and pharmacokinetics in the future. Additionally, an initial TcSIR2rp1 model in complex with p53 peptide substrate was obtained from low resolution X-ray data (3.5 Å) to gain insight into the potential specificity of the interaction with the BNIP compounds. In conclusion, the search for TcSir2rp1 specific inhibitors may represent a valuable strategy for drug discovery against T. cruzi. Trypanosoma cruzi is a protozoan parasite belonging to the Kinetoplastida class responsible for Chagas disease, a neglected tropical illness that affects an estimated 6 to 8 million people in Latin America and some Southern regions of the USA, with another 25 million at risk of acquiring the disease and a death toll of 12,000 every year. Commonly transmitted from the feces of the kissing bug, the disease is characterized by a nearly asymptomatic acute phase but a problematic chronic phase in which 20–30% of individuals develop serious cardiac and/or intestinal problems. The therapies currently in use were introduced more than forty years ago, and there are important concerns about adverse effects and lower effectiveness with disease progression. There is, therefore, an urgent need to find better alternatives. In this study, we evaluate the potential of a Trypanosoma cruzi sirtuin protein as a novel drug target and its inhibition by novel members of a known class of sirtuin compound inhibitors.
Collapse
|
138
|
Abstract
SIGNIFICANCE Pyridine dinucleotides, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), were discovered more than 100 years ago as necessary cofactors for fermentation in yeast extracts. Since that time, these molecules have been recognized as fundamental players in a variety of cellular processes, including energy metabolism, redox homeostasis, cellular signaling, and gene transcription, among many others. Given their critical role as mediators of cellular responses to metabolic perturbations, it is unsurprising that dysregulation of NAD and NADP metabolism has been associated with the pathobiology of many chronic human diseases. Recent Advances: A biochemistry renaissance in biomedical research, with its increasing focus on the metabolic pathobiology of human disease, has reignited interest in pyridine dinucleotides, which has led to new insights into the cell biology of NAD(P) metabolism, including its cellular pharmacokinetics, biosynthesis, subcellular localization, and regulation. This review highlights these advances to illustrate the importance of NAD(P) metabolism in the molecular pathogenesis of disease. CRITICAL ISSUES Perturbations of NAD(H) and NADP(H) are a prominent feature of human disease; however, fundamental questions regarding the regulation of the absolute levels of these cofactors and the key determinants of their redox ratios remain. Moreover, an integrated topological model of NAD(P) biology that combines the metabolic and other roles remains elusive. FUTURE DIRECTIONS As the complex regulatory network of NAD(P) metabolism becomes illuminated, sophisticated new approaches to manipulating these pathways in specific organs, cells, or organelles will be developed to target the underlying pathogenic mechanisms of disease, opening doors for the next generation of redox-based, metabolism-targeted therapies. Antioxid. Redox Signal. 28, 180-212.
Collapse
Affiliation(s)
- Joshua P Fessel
- 1 Department of Medicine, Vanderbilt University , Nashville, Tennessee
| | - William M Oldham
- 2 Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts.,3 Department of Medicine, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
139
|
Hwang ES, Hwang SY. Cellular NAD+Level: A Key Determinant of Mitochondrial Quality and Health. Ann Geriatr Med Res 2017. [DOI: 10.4235/agmr.2017.21.4.149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Sung Yun Hwang
- Department of Life Science, University of Seoul, Seoul, Korea
| |
Collapse
|
140
|
Gallego-Jara J, Écija Conesa A, de Diego Puente T, Lozano Terol G, Cánovas Díaz M. Characterization of CobB kinetics and inhibition by nicotinamide. PLoS One 2017; 12:e0189689. [PMID: 29253849 PMCID: PMC5734772 DOI: 10.1371/journal.pone.0189689] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022] Open
Abstract
Lysine acetylation has emerged as a global protein regulation system in all domains of life. Sirtuins, or Sir2-like enzymes, are a family of histone deacetylases characterized by their employing NAD+ as a co-substrate. Sirtuins can deacetylate several acetylated proteins, but a consensus substrate recognition sequence has not yet been established. Product inhibition of many eukaryotic sirtuins by nicotinamide and its analogues has been studied in vitro due to their potential role as anticancer agents. In this work, the kinetics of CobB, the main Escherichia coli deacetylase, have been characterized. To our knowledge, this is the first kinetic characterization of a sirtuin employing a fully acetylated and natively folded protein as a substrate. CobB deacetylated several acetyl-CoA synthetase acetylated lysines with a single kinetic rate. In addition, in vitro nicotinamide inhibition of CobB has been characterized, and the intracellular nicotinamide concentrations have been determined under different growth conditions. The results suggest that nicotinamide can act as a CobB regulator in vivo. A nicotinamidase deletion strain was thus phenotypically characterized, and it behaved similarly to the ΔcobB strain. The results of this work demonstrate the potential regulatory role of the nicotinamide metabolite in vivo.
Collapse
Affiliation(s)
- Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ‘‘Campus Mare Nostrum”, Murcia, Spain
- * E-mail:
| | - Ana Écija Conesa
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ‘‘Campus Mare Nostrum”, Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ‘‘Campus Mare Nostrum”, Murcia, Spain
| | - Gema Lozano Terol
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ‘‘Campus Mare Nostrum”, Murcia, Spain
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ‘‘Campus Mare Nostrum”, Murcia, Spain
| |
Collapse
|
141
|
Williams PA, Harder JM, John SWM. Glaucoma as a Metabolic Optic Neuropathy: Making the Case for Nicotinamide Treatment in Glaucoma. J Glaucoma 2017; 26:1161-1168. [PMID: 28858158 PMCID: PMC5854489 DOI: 10.1097/ijg.0000000000000767] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction may be an important, if not essential, component of human glaucoma. Using transcriptomics followed by molecular and neurobiological techniques, we have recently demonstrated that mitochondrial dysfunction within retinal ganglion cells is an early feature in the DBA/2J mouse model of inherited glaucoma. Guided by these findings, we discovered that the retinal level of nicotinamide adenine dinucleotide (NAD, a key molecule for mitochondrial health) declines in an age-dependent manner. We hypothesized that this decline in NAD renders retinal ganglion cells susceptible to damage during periods of elevated intraocular pressure. To replete NAD levels in this glaucoma, we administered nicotinamide (the amide of vitamin B3). At the lowest dose tested, nicotinamide robustly protected from glaucoma (~70% of eyes had no detectable glaucomatous neurodegeneration). At this dose, nicotinamide had no influence on intraocular pressure and so its effect was neuroprotective. At the highest dose tested, 93% of eyes had no detectable glaucoma. This represents a ~10-fold decrease in the risk of developing glaucoma. At this dose, intraocular pressure still became elevated but there was a reduction in the degree of elevation showing an additional benefit. Thus, nicotinamide is unexpectedly potent at preventing this glaucoma and is an attractive option for glaucoma therapeutics. Our findings demonstrate the promise for both preventing and treating glaucoma by interventions that bolster metabolism during increasing age and during periods of elevated intraocular pressure. Nicotinamide prevents age-related declines in NAD (a decline that occurs in different genetic contexts and species). NAD precursors are reported to protect from a variety of neurodegenerative conditions. Thus, nicotinamide may provide a much needed neuroprotective treatment against human glaucoma. This manuscript summarizes human data implicating mitochondria in glaucoma, and argues for studies to further assess the safety and efficacy of nicotinamide in human glaucoma care.
Collapse
Affiliation(s)
- Pete A Williams
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Jeffrey M Harder
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Simon W M John
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Ophthalmology, Tufts University of Medicine, Boston, MA, USA
| |
Collapse
|
142
|
Pambianco S, Giovarelli M, Perrotta C, Zecchini S, Cervia D, Di Renzo I, Moscheni C, Ripolone M, Violano R, Moggio M, Bassi MT, Puri PL, Latella L, Clementi E, De Palma C. Reversal of Defective Mitochondrial Biogenesis in Limb-Girdle Muscular Dystrophy 2D by Independent Modulation of Histone and PGC-1α Acetylation. Cell Rep 2017; 17:3010-3023. [PMID: 27974213 DOI: 10.1016/j.celrep.2016.11.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 06/10/2016] [Accepted: 11/11/2016] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction occurs in many muscle degenerative disorders. Here, we demonstrate that mitochondrial biogenesis was impaired in limb-girdle muscular dystrophy (LGMD) 2D patients and mice and was associated with impaired OxPhos capacity. Two distinct approaches that modulated histones or peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) acetylation exerted equivalent functional effects by targeting different mitochondrial pathways (mitochondrial biogenesis or fatty acid oxidation[FAO]). The histone deacetylase inhibitor Trichostatin A (TSA) changed chromatin assembly at the PGC-1α promoter, restored mitochondrial biogenesis, and enhanced muscle oxidative capacity. Conversely, nitric oxide (NO) triggered post translation modifications of PGC-1α and induced FAO, recovering the bioenergetics impairment of muscles but shunting the defective mitochondrial biogenesis. In conclusion, a transcriptional blockade of mitochondrial biogenesis occurred in LGMD-2D and could be recovered by TSA changing chromatin conformation, or it could be overcome by NO activating a mitochondrial salvage pathway.
Collapse
Affiliation(s)
- Sarah Pambianco
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, National Research Council-Institute of Neuroscience, Università degli Studi di Milano, 20157 Milano, Italy
| | - Davide Cervia
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy; Department for Innovation in Biological, Agro-food and Forest systems, Università degli Studi della Tuscia, 01100 Viterbo, Italy
| | - Ilaria Di Renzo
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Michela Ripolone
- Neuromuscular Unit, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy
| | - Raffaella Violano
- Neuromuscular Unit, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy
| | - Maurizio Moggio
- Neuromuscular Unit, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy
| | | | - Pier Lorenzo Puri
- Epigenetics and Regenerative Pharmacology, IRCCS Fondazione Santa Lucia, 00142 Roma, Italy; Sanford Children's Health Research Center, Sanford Prebys Burnham Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lucia Latella
- Epigenetics and Regenerative Pharmacology, IRCCS Fondazione Santa Lucia, 00142 Roma, Italy; National Research Council-Institute of Translational Pharmacology, 00179 Roma, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, National Research Council-Institute of Neuroscience, Università degli Studi di Milano, 20157 Milano, Italy; IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy.
| | - Clara De Palma
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, National Research Council-Institute of Neuroscience, Università degli Studi di Milano, 20157 Milano, Italy.
| |
Collapse
|
143
|
Ondracek CR, Frappier V, Ringel AE, Wolberger C, Guarente L. Mutations that Allow SIR2 Orthologs to Function in a NAD +-Depleted Environment. Cell Rep 2017; 18:2310-2319. [PMID: 28273448 DOI: 10.1016/j.celrep.2017.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/22/2016] [Accepted: 02/09/2017] [Indexed: 12/23/2022] Open
Abstract
Sirtuin enzymes depend on NAD+ to catalyze protein deacetylation. Therefore, the lowering of NAD+ during aging leads to decreased sirtuin activity and may speed up aging processes in laboratory animals and humans. In this study, we used a genetic screen to identify two mutations in the catalytic domain of yeast Sir2 that allow the enzyme to function in an NAD+-depleted environment. These mutant enzymes give rise to a significant increase of yeast replicative lifespan and increase deacetylation by the Sir2 ortholog, SIRT1, in mammalian cells. Our data suggest that these mutations increase the stability of the conserved catalytic sirtuin domain, thereby increasing the catalytic efficiency of the mutant enzymes. Our approach to identifying sirtuin mutants that permit function in NAD+-limited environments may inform the design of small molecules that can maintain sirtuin activity in aging organisms.
Collapse
Affiliation(s)
- Caitlin R Ondracek
- Glenn Center for the Science of Aging, Department of Biology, Koch Institute, MIT, Cambridge, MA 02139, USA
| | - Vincent Frappier
- Keating Laboratory, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Alison E Ringel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leonard Guarente
- Glenn Center for the Science of Aging, Department of Biology, Koch Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
144
|
Chini CCS, Tarragó MG, Chini EN. NAD and the aging process: Role in life, death and everything in between. Mol Cell Endocrinol 2017; 455:62-74. [PMID: 27825999 PMCID: PMC5419884 DOI: 10.1016/j.mce.2016.11.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/22/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
Life as we know it cannot exist without the nucleotide nicotinamide adenine dinucleotide (NAD). From the simplest organism, such as bacteria, to the most complex multicellular organisms, NAD is a key cellular component. NAD is extremely abundant in most living cells and has traditionally been described to be a cofactor in electron transfer during oxidation-reduction reactions. In addition to participating in these reactions, NAD has also been shown to play a key role in cell signaling, regulating several pathways from intracellular calcium transients to the epigenetic status of chromatin. Thus, NAD is a molecule that provides an important link between signaling and metabolism, and serves as a key molecule in cellular metabolic sensoring pathways. Importantly, it has now been clearly demonstrated that cellular NAD levels decline during chronological aging. This decline appears to play a crucial role in the development of metabolic dysfunction and age-related diseases. In this review we will discuss the molecular mechanisms responsible for the decrease in NAD levels during aging. Since other reviews on this subject have been recently published, we will concentrate on presenting a critical appraisal of the current status of the literature and will highlight some controversial topics in the field. In particular, we will discuss the potential role of the NADase CD38 as a driver of age-related NAD decline.
Collapse
Affiliation(s)
- Claudia C S Chini
- Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology, Oncology Research, GI Signaling Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mariana G Tarragó
- Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology, Oncology Research, GI Signaling Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Eduardo N Chini
- Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology, Oncology Research, GI Signaling Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
145
|
Long A, Klimova N, Kristian T. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics. Neurochem Int 2017; 109:193-201. [PMID: 28302504 DOI: 10.1016/j.neuint.2017.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 12/19/2022]
Abstract
NAD+ catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD+ catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD+ pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics.
Collapse
Affiliation(s)
- Aaron Long
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States
| | - Nina Klimova
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States; Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States; Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), United States.
| |
Collapse
|
146
|
Sultani G, Samsudeen AF, Osborne B, Turner N. NAD + : A key metabolic regulator with great therapeutic potential. J Neuroendocrinol 2017; 29. [PMID: 28718934 DOI: 10.1111/jne.12508] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/27/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is a ubiquitous metabolite that serves an essential role in the catabolism of nutrients. Recently, there has been a surge of interest in NAD+ biology, with the recognition that NAD+ influences many biological processes beyond metabolism, including transcription, signalling and cell survival. There are a multitude of pathways involved in the synthesis and breakdown of NAD+ , and alterations in NAD+ homeostasis have emerged as a common feature of a range of disease states. Here, we provide an overview of NAD+ metabolism and summarise progress on the development of NAD+ -related therapeutics.
Collapse
Affiliation(s)
- G Sultani
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, NSW, Australia
| | - A F Samsudeen
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, NSW, Australia
| | - B Osborne
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, NSW, Australia
| | - N Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, NSW, Australia
| |
Collapse
|
147
|
Zhang YK, Qu YY, Lin Y, Wu XH, Chen HZ, Wang X, Zhou KQ, Wei Y, Guo F, Yao CF, He XD, Liu LX, Yang C, Guan ZY, Wang SD, Zhao J, Liu DP, Zhao SM, Xu W. Enoyl-CoA hydratase-1 regulates mTOR signaling and apoptosis by sensing nutrients. Nat Commun 2017; 8:464. [PMID: 28878358 PMCID: PMC5587591 DOI: 10.1038/s41467-017-00489-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
The oncogenic mechanisms of overnutrition, a confirmed independent cancer risk factor, remain poorly understood. Herein, we report that enoyl-CoA hydratase-1 (ECHS1), the enzyme involved in the oxidation of fatty acids (FAs) and branched-chain amino acids (BCAAs), senses nutrients and promotes mTOR activation and apoptotic resistance. Nutrients-promoted acetylation of lys101 of ECHS1 impedes ECHS1 activity by impairing enoyl-CoA binding, promoting ECHS1 degradation and blocking its mitochondrial translocation through inducing ubiquitination. As a result, nutrients induce the accumulation of BCAAs and FAs that activate mTOR signaling and stimulate apoptosis, respectively. The latter was overcome by selection of BCL-2 overexpressing cells under overnutrition conditions. The oncogenic effects of nutrients were reversed by SIRT3, which deacetylates lys101 acetylation. Severely decreased ECHS1, accumulation of BCAAs and FAs, activation of mTOR and overexpression of BCL-2 were observed in cancer tissues from metabolic organs. Our results identified ECHS1, a nutrients-sensing protein that transforms nutrient signals into oncogenic signals.Overnutrition has been linked to increased risk of cancer. Here, the authors show that exceeding nutrients suppress Enoyl-CoA hydratase-1 (ECHS1) activity by inducing its acetylation resulting in accumulation of fatty acids and branched-chain amino acids and oncogenic mTOR activation.
Collapse
Affiliation(s)
- Ya-Kun Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Shanghai, 200032, China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Xiao-Hui Wu
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, 200032, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100010, China
| | - Xu Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100010, China
| | - Kai-Qiang Zhou
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Yun Wei
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Fushen Guo
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Cui-Fang Yao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Xia-Di He
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Li-Xia Liu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chen Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zong-Yuan Guan
- Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY, 10031, USA
| | - Shi-Dong Wang
- Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jianyuan Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100010, China.
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China.
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wei Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China.
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
148
|
Nicotinamide inhibits the growth of P. falciparum and enhances the antimalarial effect of artemisinin, chloroquine and pyrimethamine. Mol Biochem Parasitol 2017. [DOI: 10.1016/j.molbiopara.2017.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
149
|
Hwang ES, Song SB. Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell Mol Life Sci 2017; 74:3347-3362. [PMID: 28417163 PMCID: PMC11107671 DOI: 10.1007/s00018-017-2527-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 01/15/2023]
Abstract
Nicotinamide (NAM), a form of vitamin B3, plays essential roles in cell physiology through facilitating NAD+ redox homeostasis and providing NAD+ as a substrate to a class of enzymes that catalyze non-redox reactions. These non-redox enzymes include the sirtuin family proteins which deacetylate target proteins while cleaving NAD+ to yield NAM. Since the finding that NAM exerts feedback inhibition to the sirtuin reactions, NAM has been widely used as an inhibitor in the studies where SIRT1, a key member of sirtuins, may have a role in certain cell physiology. However, once administered to cells, NAM is rapidly converted to NAD+ and, therefore, the cellular concentration of NAM decreases rapidly while that of NAD+ increases. The result would be an inhibition of SIRT1 for a limited duration, followed by an increase in the activity. This possibility raises a concern on the validity of the interpretation of the results in the studies that use NAM as a SIRT1 inhibitor. To understand better the effects of cellular administration of NAM, we reviewed published literature in which treatment with NAM was used to inhibit SIRT1 and found that the expected inhibitory effect of NAM was either unreliable or muted in many cases. In addition, studies demonstrated NAM administration stimulates SIRT1 activity and improves the functions of cells and organs. To determine if NAM administration can generate conditions in cells and tissues that are stimulatory to SIRT1, the changes in the cellular levels of NAM and NAD+ reported in the literature were examined and the factors that are involved in the availability of NAD+ to SIRT1 were evaluated. We conclude that NAM treatment can hypothetically be stimulatory to SIRT1.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemungu, 163 Seoulsiripdaero, Seoul, 02504, Republic of Korea.
| | - Seon Beom Song
- Department of Life Science, University of Seoul, Dongdaemungu, 163 Seoulsiripdaero, Seoul, 02504, Republic of Korea
| |
Collapse
|
150
|
Histone Deacetylase Inhibitor-Induced Autophagy in Tumor Cells: Implications for p53. Int J Mol Sci 2017; 18:ijms18091883. [PMID: 30563957 PMCID: PMC5618532 DOI: 10.3390/ijms18091883] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an essential process of the eukaryotic cell allowing degradation and recycling of dysfunctional cellular components in response to either physiological or pathological changes. Inhibition of autophagy in combination with chemotherapeutic treatment has emerged as a novel approach in cancer treatment leading to cell cycle arrest, differentiation, and apoptosis. Suberoyl hydroxamic acid (SAHA) is a broad-spectrum histone deacetylase inhibitor (HDACi) suppressing family members in multiple HDAC classes. Increasing evidence indicates that SAHA and other HDACi can, in addition to mitochondria-mediated apoptosis, also promote caspase-independent autophagy. SAHA-induced mTOR inactivation as a major regulator of autophagy activating the remaining autophagic core machinery is by far the most reported pathway in several tumor models. However, the question of which upstream mechanisms regulate SAHA-induced mTOR inactivation that consequently initiate autophagy has been mainly left unexplored. To elucidate this issue, we recently initiated a study clarifying different modes of SAHA-induced cell death in two human uterine sarcoma cell lines which led to the conclusion that the tumor suppressor protein p53 could act as a molecular switch between SAHA-triggered autophagic or apoptotic cell death. In this review, we present current research evidence about HDACi-mediated apoptotic and autophagic pathways, in particular with regard to p53 and its therapeutic implications.
Collapse
|