101
|
Zhuo X, Guo X, Zhang X, Jing G, Wang Y, Chen Q, Jiang Q, Liu J, Zhang C. Usp16 regulates kinetochore localization of Plk1 to promote proper chromosome alignment in mitosis. J Cell Biol 2015; 210:727-35. [PMID: 26323689 PMCID: PMC4555819 DOI: 10.1083/jcb.201502044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/16/2015] [Indexed: 12/20/2022] Open
Abstract
During the G2 to M phase transition, a portion of mitotic regulator Plk1 localizes to the kinetochores and regulates the initiation of kinetochore-microtubule attachments for proper chromosome alignment. Once kinetochore-microtubule attachment is achieved, this portion of Plk1 is removed from the kinetochores as a result of ubiquitination. However, the crucial molecular mechanism that promotes the localization and the maintenance of Plk1 on the kinetochores until metaphase is still unclear. We report that ubiquitin-specific peptidase 16 (Usp16) plays a key role during this process. Usp16 deubiquitinates Plk1, resulting in an enhanced interaction with kinetochore-localized proteins such as BubR1, and thereby retains Plk1 on the kinetochores to promote proper chromosome alignment in early mitosis. Down-regulation of Usp16 causes increased ubiquitination and decreased kinetochore localization of Plk1. Thus, our data unveil a unique mechanism by which Usp16 promotes the localization and maintenance of Plk1 on the kinetochores for proper chromosome alignment.
Collapse
Affiliation(s)
- Xiaolong Zhuo
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiao Guo
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoyan Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guihua Jing
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 91768
| | - Yao Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiang Chen
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junjun Liu
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 91768
| | - Chuanmao Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
102
|
Group IVA Cytosolic Phospholipase A2 Regulates the G2-to-M Transition by Modulating the Activity of Tumor Suppressor SIRT2. Mol Cell Biol 2015; 35:3768-84. [PMID: 26303530 DOI: 10.1128/mcb.00184-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/18/2015] [Indexed: 12/26/2022] Open
Abstract
The G2-to-M transition (or prophase) checkpoint of the cell cycle is a critical regulator of mitotic entry. SIRT2, a tumor suppressor gene, contributes to the control of this checkpoint by blocking mitotic entry under cellular stress. However, the mechanism underlying both SIRT2 activation and regulation of the G2-to-M transition remains largely unknown. Here, we report the formation of a multiprotein complex at the G2-to-M transition in vitro and in vivo. Group IVA cytosolic phospholipase A2 (cPLA2α) acts as a bridge in this complex to promote binding of SIRT2 to cyclin A-Cdk2. Cyclin A-Cdk2 then phosphorylates SIRT2 at Ser331. This phosphorylation reduces SIRT2 catalytic activity and its binding affinity to centrosomes and mitotic spindles, promoting G2-to-M transition. We show that the inhibitory effect of cPLA2α on SIRT2 activity impacts various cellular processes, including cellular levels of histone H4 acetylated at K16 (Ac-H4K16) and Ac-α-tubulin. This regulatory effect of cPLA2α on SIRT2 defines a novel function of cPLA2α independent of its phospholipase activity and may have implications for the impact of SIRT2-related effects on tumorigenesis and age-related diseases.
Collapse
|
103
|
Lee HS, Park YY, Cho MY, Chae S, Yoo YS, Kwon MH, Lee CW, Cho H. The chromatin remodeller RSF1 is essential for PLK1 deposition and function at mitotic kinetochores. Nat Commun 2015; 6:7904. [PMID: 26259146 PMCID: PMC4918322 DOI: 10.1038/ncomms8904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/22/2015] [Indexed: 01/04/2023] Open
Abstract
Accumulation of PLK1 at kinetochores is essential for chromosome alignment and segregation; however, the mechanism underlying PLK1 recruitment to kinetochores remains unresolved. The chromatin remodeller RSF1 tightly associates with centromere proteins, but its mitotic function is unknown. Here we show that RSF1 localizes at mitotic kinetochores and directly binds PLK1. RSF1 depletion disrupts localization of PLK1 at kinetochores; the C-terminal fragment of RSF1, which can bind PLK1, is sufficient to restore PLK1 localization. Moreover, CDK1 phosphorylates RSF1 at Ser1375, and this phosphorylation is necessary for PLK1 recruitment. Subsequently, PLK1 phosphorylates RSF1 at Ser1359, stabilizing PLK1 deposition. Importantly, RSF1 depletion mimicks the chromosome misalignment phenotype resulting from PLK1 knockdown; these defects are rescued by RSF1 S1375D or RSF1 S1359D but not RSF1 S1375A, showing a functional link between phosphorylation of RSF1 and chromosome alignment. Together, these data show that RSF1 is an essential centromeric component that recruits PLK1 to kinetochores and plays a crucial role in faithful cell division.
Collapse
Affiliation(s)
- Ho-Soo Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-380, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 443-380, Korea
| | - Yong-Yea Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Mi-Young Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-380, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 443-380, Korea
| | - Sunyoung Chae
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Young-Suk Yoo
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-380, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 443-380, Korea
| | - Myung-Hee Kwon
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 443-380, Korea
- Department of Microbiology, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-380, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 443-380, Korea
| |
Collapse
|
104
|
Meng L, Park JE, Kim TS, Lee EH, Park SY, Zhou M, Bang JK, Lee KS. Bimodal Interaction of Mammalian Polo-Like Kinase 1 and a Centrosomal Scaffold, Cep192, in the Regulation of Bipolar Spindle Formation. Mol Cell Biol 2015; 35:2626-40. [PMID: 26012549 PMCID: PMC4524112 DOI: 10.1128/mcb.00068-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/13/2015] [Accepted: 05/14/2015] [Indexed: 11/20/2022] Open
Abstract
Serving as microtubule-organizing centers, centrosomes play a key role in forming bipolar spindles. The mechanism of how centrosomes promote bipolar spindle assembly in various organisms remains largely unknown. A recent study with Xenopus laevis egg extracts suggested that the Plk1 ortholog Plx1 interacts with the phospho-T46 (p-T46) motif of Xenopus Cep192 (xCep192) to form an xCep192-mediated xAurA-Plx1 cascade that is critical for bipolar spindle formation. Here, we demonstrated that in cultured human cells, Cep192 recruits AurA and Plk1 in a cooperative manner, and this event is important for the reciprocal activation of AurA and Plk1. Strikingly, Plk1 interacted with Cep192 through either the p-T44 (analogous to Xenopus p-T46) or the newly identified p-S995 motif via its C-terminal noncatalytic polo-box domain. The interaction between Plk1 and the p-T44 motif was prevalent in the presence of Cep192-bound AurA, whereas the interaction of Plk1 with the p-T995 motif was preferred in the absence of AurA binding. Notably, the loss of p-T44- and p-S995-dependent Cep192-Plk1 interactions induced an additive defect in recruiting Plk1 and γ-tubulin to centrosomes, which ultimately led to a failure in proper bipolar spindle formation and mitotic progression. Thus, we propose that Plk1 promotes centrosome-based bipolar spindle formation by forming two functionally nonredundant complexes with Cep192.
Collapse
Affiliation(s)
- Lingjun Meng
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tae-Sung Kim
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eun Hye Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Suk-Youl Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeong K. Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, South Korea
| | - Kyung S. Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
105
|
Bruinsma W, Aprelia M, Kool J, Macurek L, Lindqvist A, Medema RH. Spatial Separation of Plk1 Phosphorylation and Activity. Front Oncol 2015; 5:132. [PMID: 26114094 PMCID: PMC4462105 DOI: 10.3389/fonc.2015.00132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/26/2015] [Indexed: 01/05/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is one of the major kinases controlling mitosis and cell division. Plk1 is first recruited to the centrosome in S phase, then appears on the kinetochores in late G2, and at the end of mitosis, it translocates to the central spindle. Activation of Plk1 requires phosphorylation of T210 by Aurora A, an event that critically depends on the co-factor Bora. However, conflicting reports exist as to where Plk1 is first activated. Phosphorylation of T210 is first observed at the centrosomes, but kinase activity seems to be restricted to the nucleus in the earlier phases of G2. Here, we demonstrate that Plk1 activity manifests itself first in the nucleus using a nuclear FRET-based biosensor for Plk1 activity. However, we find that Bora is restricted to the cytoplasm and that Plk1 is phosphorylated on T210 at the centrosomes. Our data demonstrate that while Plk1 activation occurs on centrosomes, downstream target phosphorylation by Plk1 first occurs in the nucleus. We discuss several explanations for this surprising separation of activation and function.
Collapse
Affiliation(s)
- Wytse Bruinsma
- Department of Cell Biology, The Netherlands Cancer Institute , Amsterdam , Netherlands ; Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht , Utrecht , Netherlands
| | - Melinda Aprelia
- Department of Cell Biology, The Netherlands Cancer Institute , Amsterdam , Netherlands ; Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht , Utrecht , Netherlands
| | - Jolanda Kool
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht , Utrecht , Netherlands
| | - Libor Macurek
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht , Utrecht , Netherlands ; Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, v. v. i. , Prague , Czech Republic
| | - Arne Lindqvist
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht , Utrecht , Netherlands ; Department of Cell and Molecular Biology, Karolinska Institute , Stockholm , Sweden
| | - René H Medema
- Department of Cell Biology, The Netherlands Cancer Institute , Amsterdam , Netherlands ; Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht , Utrecht , Netherlands
| |
Collapse
|
106
|
Kazazian K, Brashavitskaya O, Zih FSW, Berger-Richardson D, Xu RSZ, Pacholczyk K, Macmillan J, Swallow CJ. Polo-Like Kinases in Colorectal Cancer: Potential for Targeted Therapy. CURRENT COLORECTAL CANCER REPORTS 2015. [DOI: 10.1007/s11888-015-0275-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
107
|
Liu X. Targeting Polo-Like Kinases: A Promising Therapeutic Approach for Cancer Treatment. Transl Oncol 2015; 8:185-95. [PMID: 26055176 PMCID: PMC4486469 DOI: 10.1016/j.tranon.2015.03.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022] Open
Abstract
Polo-like kinases (Plks) are a family of serine-threonine kinases that regulate multiple intracellular processes including DNA replication, mitosis, and stress response. Plk1, the most well understood family member, regulates numerous stages of mitosis and is overexpressed in many cancers. Plk inhibitors are currently under clinical investigation, including phase III trials of volasertib, a Plk inhibitor, in acute myeloid leukemia and rigosertib, a dual inhibitor of Plk1/phosphoinositide 3-kinase signaling pathways, in myelodysplastic syndrome. Other Plk inhibitors, including the Plk1 inhibitors GSK461364A, TKM-080301, GW843682, purpurogallin, and poloxin and the Plk4 inhibitor CFI-400945 fumarate, are in earlier clinical development. This review discusses the biologic roles of Plks in cell cycle progression and cancer, and the mechanisms of action of Plk inhibitors currently in development as cancer therapies.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
108
|
Connecting the microtubule attachment status of each kinetochore to cell cycle arrest through the spindle assembly checkpoint. Chromosoma 2015; 124:463-80. [PMID: 25917595 DOI: 10.1007/s00412-015-0515-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/12/2022]
Abstract
Kinetochores generate a signal that inhibits anaphase progression until every kinetochore makes proper attachments to spindle microtubules. This spindle assembly checkpoint (SAC) increases the fidelity of chromosome segregation. We will review the molecular mechanisms by which kinetochores generate the SAC and extinguish the signal after making proper attachments, with the goal of identifying unanswered questions and new research directions. We will emphasize recent breakthroughs in how phosphorylation changes drive the activation and inhibition of the signal. We will also emphasize the dramatic changes in kinetochore structure that occur after attaching to microtubules and how these coordinate SAC function with microtubule attachment status. Finally, we will review the emerging cross talk between the DNA damage response and the SAC.
Collapse
|
109
|
Park CH, Park JE, Kim TS, Kang YH, Soung NK, Zhou M, Kim NH, Bang JK, Lee KS. Mammalian Polo-like kinase 1 (Plk1) promotes proper chromosome segregation by phosphorylating and delocalizing the PBIP1·CENP-Q complex from kinetochores. J Biol Chem 2015; 290:8569-81. [PMID: 25670858 PMCID: PMC4375506 DOI: 10.1074/jbc.m114.623546] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/09/2015] [Indexed: 01/10/2023] Open
Abstract
Mammalian Plk1 is critically required for proper M phase progression. Plk1 is self-recruited to prekinetochores/kinetochores by phosphorylating and binding to the Thr-78 motif of a kinetochore scaffold protein, PBIP1 (also called CENP-U/50), which forms a stable complex with another kinetochore component, CENP-Q. However, the mechanism regulating Plk1 localization to this site remains largely unknown. Here, we demonstrate that the PBIP1·CENP-Q complex became hyperphosphorylated and rapidly delocalized from kinetochores as cells entered mitosis. Plk1 phosphorylated the CENP-Q subunit of the PBIP1·CENP-Q complex at multiple sites, and mutation of nine Plk1-dependent phosphorylation sites to Ala (9A) enhanced CENP-Q association with chromatin and prolonged CENP-Q localization to kinetochores. Conversely, mutation of the nine sites to phospho-mimicking Asp/Glu (9D/E) residues dissociated CENP-Q from chromatin and kept the CENP-Q(9D/E) mutant from localizing to interphase prekinetochores. Strikingly, both the 9A and 9D/E mutants induced a defect in proper chromosome segregation, suggesting that both timely localization of the PBIP1·CENP-Q complex to prekinetochores and delocalization from kinetochores are critical for normal M phase progression. Notably, although Plk1 did not alter the level of PBIP1 and CENP-Q ubiquitination, Plk1-dependent phosphorylation and delocalization of these proteins from kinetochores appeared to indirectly lead to their degradation in the cytosol. Thus, we propose that Plk1 regulates the timing of the delocalization and ultimate destruction of the PBIP1·CENP-Q complex and that these processes are important not only for promoting Plk1-dependent mitotic progression, but also for resetting the timing of Plk1 recruitment to prekinetochores in the next cell cycle.
Collapse
Affiliation(s)
- Chi Hoon Park
- From the Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, Maryland 20892-4258
| | - Jung-Eun Park
- From the Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, Maryland 20892-4258
| | - Tae-Sung Kim
- From the Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, Maryland 20892-4258
| | - Young Hwi Kang
- the Immune and Vascular Cell Network Research Center, Department of Life Science and GT5 Program, Ewha Womans University, Seoul 120-750, Korea
| | - Nak-Kyun Soung
- the Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Korea
| | - Ming Zhou
- the Laboratory of Proteomics and Analytical Technologies, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Nam-Hyung Kim
- the Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763 Korea, and
| | - Jeong Kyu Bang
- the Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk, 363-883 Korea
| | - Kyung S Lee
- From the Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, Maryland 20892-4258,
| |
Collapse
|
110
|
Choi M, Kim W, Cheon MG, Lee CW, Kim JE. Polo-like kinase 1 inhibitor BI2536 causes mitotic catastrophe following activation of the spindle assembly checkpoint in non-small cell lung cancer cells. Cancer Lett 2015; 357:591-601. [PMID: 25524551 DOI: 10.1016/j.canlet.2014.12.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 01/01/2023]
Abstract
Polo-like kinase 1 (PLK1), a critical kinase that regulates multiple steps in mitosis, is overexpressed in diverse human cancers; thus many PLK1 inhibitors have been developed as potential cancer therapeutic agents. One of these compounds, the PLK1-specific inhibitor BI2536, has been investigated as a cytotoxic drug in several cancers, including lung cancer; however, the detailed mechanism by which BI2536 induces defects in cell proliferation of non-small cell lung cancer (NSCLC) has not yet been determined. We found that BI2536 treatment resulted in mitotic arrest due to improper formation of the mitotic spindles and mitotic centrosomes. The unattached kinetochores in BI2536-treated NSCLC cells activated the spindle assembly checkpoint (SAC). The prolonged activation of the SAC led to a type of apoptotic cell death referred to as mitotic catastrophe. Finally, BI2536-treated NSCLC cells show a defect in cell proliferation. Overall, these data indicate that PLK1 inhibition via mitotic disruption represents a potential approach for the treatment of NSCLC.
Collapse
Affiliation(s)
- Minji Choi
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea; Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 130-701, Korea
| | - Wootae Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea; Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 130-701, Korea
| | - Min Gyeong Cheon
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea; Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 130-701, Korea
| | - Chang Woo Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi 440-746, Korea
| | - Ja Eun Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea; Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 130-701, Korea.
| |
Collapse
|
111
|
Solc P, Kitajima TS, Yoshida S, Brzakova A, Kaido M, Baran V, Mayer A, Samalova P, Motlik J, Ellenberg J. Multiple requirements of PLK1 during mouse oocyte maturation. PLoS One 2015; 10:e0116783. [PMID: 25658810 PMCID: PMC4319955 DOI: 10.1371/journal.pone.0116783] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Polo-like kinase 1 (PLK1) orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, using specific small molecule inhibition combined with live mouse oocyte imaging, we comprehensively characterize meiotic PLK1's functions. We show that PLK1 becomes activated at meiotic resumption on microtubule organizing centers (MTOCs) and later at kinetochores. PLK1 is required for efficient meiotic resumption by promoting nuclear envelope breakdown. PLK1 is also needed to recruit centrosomal proteins to acentriolar MTOCs to promote normal spindle formation, as well as for stable kinetochore-microtubule attachment. Consequently, PLK1 inhibition leads to metaphase I arrest with misaligned chromosomes activating the spindle assembly checkpoint (SAC). Unlike in mitosis, the metaphase I arrest is not bypassed by the inactivation of the SAC. We show that PLK1 is required for the full activation of the anaphase promoting complex/cyclosome (APC/C) by promoting the degradation of the APC/C inhibitor EMI1 and is therefore essential for entry into anaphase I. Moreover, our data suggest that PLK1 is required for proper chromosome segregation and the maintenance of chromosome condensation during the meiosis I-II transition, independently of the APC/C. Thus, our results define the meiotic roles of PLK1 in oocytes and reveal interesting differential requirements of PLK1 between mitosis and oocyte meiosis in mammals.
Collapse
Affiliation(s)
- Petr Solc
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Tomoya S. Kitajima
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Shuhei Yoshida
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Adela Brzakova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Masako Kaido
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | - Alexandra Mayer
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Pavlina Samalova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
112
|
Liu M, Huang J, Chen DX, Jiang C. Identification of indole-3-carboxylic acids as non-ATP-competitive Polo-like kinase 1 (Plk1) inhibitors. Bioorg Med Chem Lett 2015; 25:431-4. [PMID: 25556101 DOI: 10.1016/j.bmcl.2014.12.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/02/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
A series of indole-3-carboxylic acids were designed as novel small molecular non-ATP-competitive Plk1 inhibitors. The designed compounds were synthesized and evaluated. Most of the targeted compounds showed potent Plk1 inhibitory activities and anti-proliferative characters. Particularly, 4f and 4g showed Plk1 inhibitory activity with IC50 values of 0.41 and 0.13μM, which were about 5 and 17 times more potent compared to thymoquinone, respectively. Compound 4g also showed inhibitory activity to HeLa and MCF-7 cell lines with IC50 values of 0.72 and 1.15μM, which was almost 3 and 4 times more potent than thymoquinone. Study of mechanism of action suggested that 4g was an ATP-independent and substrate-dependent Plk1 inhibitor. Moreover, 4g showed excellent Plk1 inhibitory selectivity against Plk2 and Plk3. Fluorescein isothiocyanate Annexin V/propidium iodide (PI) double-staining assay and western-blot results indicate that induction of apoptosis by 4g is involved in its anti-tumor activity. This study may provide a support for further optimization of non-ATP-competitive Plk1 inhibitors.
Collapse
Affiliation(s)
- Meng Liu
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Jie Huang
- Gansu Institute for Food and Drug Control, Yinan road 7, Lanzhou 730070, China
| | - Dong-Xing Chen
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Cheng Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China.
| |
Collapse
|
113
|
Kim J, Ishiguro KI, Nambu A, Akiyoshi B, Yokobayashi S, Kagami A, Ishiguro T, Pendas AM, Takeda N, Sakakibara Y, Kitajima TS, Tanno Y, Sakuno T, Watanabe Y. Meikin is a conserved regulator of meiosis-I-specific kinetochore function. Nature 2015; 517:466-71. [PMID: 25533956 DOI: 10.1038/nature14097] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/19/2014] [Indexed: 12/11/2022]
Abstract
The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.
Collapse
Affiliation(s)
- Jihye Kim
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Kei-ichiro Ishiguro
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Aya Nambu
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Bungo Akiyoshi
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Shihori Yokobayashi
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Ayano Kagami
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Tadashi Ishiguro
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Alberto M Pendas
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), 37007 Salamanca, Spain
| | - Naoki Takeda
- Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 Japan
| | - Yogo Sakakibara
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yuji Tanno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Takeshi Sakuno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| |
Collapse
|
114
|
Chen DX, Huang J, Liu M, Xu YG, Jiang C. Design, synthesis, and evaluation of non-ATP-competitive small-molecule Polo-like kinase 1 (Plk1) inhibitors. Arch Pharm (Weinheim) 2015; 348:2-9. [PMID: 25430493 DOI: 10.1002/ardp.201400294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/11/2014] [Accepted: 10/17/2014] [Indexed: 02/04/2023]
Abstract
A series of small-molecule Plk1 inhibitors targeting the substrate-binding pocket were designed through rational drug design for the first time. The designed compounds were synthesized and their activities were evaluated in vitro. Some of the targeted compounds showed potent Plk1 inhibitory activities and anti-proliferative characters. Particularly, 5i showed Plk1 inhibitory activity with an IC50 value of 0.68 µM. Compound 5i also showed cell growth inhibitory activity on HeLa cells with an IC50 value of 0.51 µM, which is about four times more potent compared to thymoquinone. The mechanism of action suggested that 5i was an ATP-independent and substrate-dependent Plk1 inhibitor. Compound 5i demonstrated excellent Plk1 inhibitory selectivity against Plk2, Plk3, and five serine/threonine and tyrosine kinases. Our discovery and structure-activity relationship study may provide useful lead compounds for further optimization of non-ATP-competitive Plk1 inhibitors.
Collapse
Affiliation(s)
- Dong-Xing Chen
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | | | | | | |
Collapse
|
115
|
Park JE, Kim TS, Kim BY, Lee KS. Selective blockade of cancer cell proliferation and anchorage-independent growth by Plk1 activity-dependent suicidal inhibition of its polo-box domain. Cell Cycle 2015; 14:3624-34. [PMID: 26513691 PMCID: PMC4825759 DOI: 10.1080/15384101.2015.1104435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/27/2022] Open
Abstract
Polo-like kinase 1 (Plk1) plays a critical role in proper M-phase progression and cell proliferation. Plk1 is overexpressed in a broad spectrum of human cancers and is considered an attractive anticancer drug target. Although a large number of inhibitors targeting the catalytic domain of Plk1 have been developed, these inhibitors commonly exhibit a substantial level of cross-reactivity with other structurally related kinases, thus narrowing their applicable dose for patient treatment. Plk1 contains a C-terminal polo-box domain (PBD) that is essentially required for interacting with its binding targets. However, largely due to the lack of both specific and membrane-permeable inhibitors, whether PBD serves as an alternative target for the development of anticancer therapeutics has not been rigorously examined. Here, we used an intracellularly expressed 29-mer-long PBIP1-derived peptide (i.e., PBIPtide), which can be converted into a "suicidal" PBD inhibitor via Plk1-dependent self-priming and binding. Using this highly specific and potent system, we showed that Plk1 PBD inhibition alone is sufficient for inducing mitotic arrest and apoptotic cell death in cancer cells but not in normal cells, and that cancer cell-selective killing can occur regardless of the presence or absence of oncogenic RAS mutation. Intriguingly, PBD inhibition also effectively prevented anchorage-independent growth of malignant cancer cells. Thus, targeting PBD represents an appealing strategy for anti-Plk1 inhibitor development. Additionally, PBD inhibition-induced cancer cell-selective killing may not simply stem from activated RAS alone but, rather, from multiple altered biochemical and physiological mechanisms, which may have collectively contributed to Plk1 addiction in cancer cells.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Tae-Sung Kim
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Bo Yeon Kim
- Incurable Diseases Therapeutics Research Center; Korea Research Institute of Bioscience and Biotechnology; Ochang, Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
116
|
Strebhardt K, Becker S, Matthess Y. Thoughts on the current assessment of Polo-like kinase inhibitor drug discovery. Expert Opin Drug Discov 2015; 10:1-8. [PMID: 25263688 DOI: 10.1517/17460441.2015.962510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Polo-like kinase 1 (Plk1) plays a key role in regulating a broad spectrum of critical cell cycle events. Plk1 is a marker of cellular proliferation and has prognostic potential in different types of human tumors. In a series of preclinical studies, Plk1 has been validated as a cancer target. This prompted many pharmaceutical companies to develop small-molecule inhibitors targeting the classical ATP-binding site of Plk1 for anticancer drug development. Recently, FDA has granted a Breakthrough Therapy designation to the Plk inhibitor BI 6727 (volasertib), which provided a survival benefit for patients suffering from acute myeloid leukemia. Remarkably, a new generation of Plk1 inhibitors that target the second druggable domain of Plk1, the Polo-box domain, is currently being tested preclinically. Since various ATP-competitive compounds of Plk1 inhibit also the activities of Plk2 and Plk3, which act as tumor suppressors, the roles of closely related Plk-family members in cancer cells need to be considered carefully. In this article, the authors highlight recent insights into the biology of Plks in cancer cells and discuss the progress in the development of small-molecule Plk1 inhibitors. The authors believe that the greatest therapeutic benefit might come through leukemic cells that are in direct contact with the inhibitor in the blood stream. The identification of biomarkers and studies that document Plk activities in treated patients would also be beneficial to better understand the role of Plk inhibition in tumor development and anticancer therapy.
Collapse
Affiliation(s)
- Klaus Strebhardt
- J.W. Goethe University, School of Medicine, Department of Obstetrics and Gynecology , Theodor-Stern-Kai 7, 60590 Frankfurt , Germany +49 69 6301 6894 ; +49 69 6301 6364 ;
| | | | | |
Collapse
|
117
|
Bancroft J, Auckland P, Samora CP, McAinsh AD. Chromosome congression is promoted by CENP-Q- and CENP-E-dependent pathways. J Cell Sci 2015; 128:171-84. [PMID: 25395579 PMCID: PMC4282051 DOI: 10.1242/jcs.163659] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/03/2014] [Indexed: 01/29/2023] Open
Abstract
A key step of mitosis is the congression of chromosomes to the spindle equator. Congression is driven by at least two distinct mechanisms: (1) kinetochores slide along the microtubule lattice using the plus-end directed CENP-E motor, and (2) kinetochores biorientating near the pole move to the equator through microtubule depolymerisation-coupled pulling. Here, we show that CENP-Q - a subunit of the CENP-O complex (comprising CENP-O, CENP-P, CENP-Q and CENP-U) that targets polo-like kinase (Plk1) to kinetochores - is also required for the recruitment of CENP-E to kinetochores. We further reveal a CENP-E recruitment-independent role for CENP-Q in depolymerisation-coupled pulling. Both of these functions are abolished by a single point mutation in CENP-Q (S50A) - a residue that is phosphorylated in vivo. Importantly, the S50A mutant does not affect the loading of Plk1 onto kinetochores and leaves the CENP-O complex intact. Thus, the functions of CENP-Q in CENP-E loading and depolymerisation-coupled pulling are independent from its role in Plk1 recruitment and CENP-O complex stabilisation. Taken together, our data provide evidence that phosphoregulation of CENP-Q plays a central function in coordinating chromosome congression mechanisms.
Collapse
Affiliation(s)
- James Bancroft
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Philip Auckland
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Catarina P Samora
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew D McAinsh
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
118
|
Zheng Y, Guo J, Li X, Xie Y, Hou M, Fu X, Dai S, Diao R, Miao Y, Ren J. An integrated overview of spatiotemporal organization and regulation in mitosis in terms of the proteins in the functional supercomplexes. Front Microbiol 2014; 5:573. [PMID: 25400627 PMCID: PMC4212687 DOI: 10.3389/fmicb.2014.00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/11/2014] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic cells may divide via the critical cellular process of cell division/mitosis, resulting in two daughter cells with the same genetic information. A large number of dedicated proteins are involved in this process and spatiotemporally assembled into three distinct super-complex structures/organelles, including the centrosome/spindle pole body, kinetochore/centromere and cleavage furrow/midbody/bud neck, so as to precisely modulate the cell division/mitosis events of chromosome alignment, chromosome segregation and cytokinesis in an orderly fashion. In recent years, many efforts have been made to identify the protein components and architecture of these subcellular organelles, aiming to uncover the organelle assembly pathways, determine the molecular mechanisms underlying the organelle functions, and thereby provide new therapeutic strategies for a variety of diseases. However, the organelles are highly dynamic structures, making it difficult to identify the entire components. Here, we review the current knowledge of the identified protein components governing the organization and functioning of organelles, especially in human and yeast cells, and discuss the multi-localized protein components mediating the communication between organelles during cell division.
Collapse
Affiliation(s)
- Yueyuan Zheng
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Junjie Guo
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Xu Li
- Orthopaedic Department of Anhui Medical University Affiliated Provincial Hospital Hefei, China
| | - Yubin Xie
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Mingming Hou
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Xuyang Fu
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Shengkun Dai
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Rucheng Diao
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Yanyan Miao
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Jian Ren
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| |
Collapse
|
119
|
Schmucker S, Sumara I. Molecular dynamics of PLK1 during mitosis. Mol Cell Oncol 2014; 1:e954507. [PMID: 27308323 PMCID: PMC4905186 DOI: 10.1080/23723548.2014.954507] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/30/2022]
Abstract
Polo-like kinase 1 (PLK1) is a key regulator of eukaryotic cell division. During mitosis, dynamic regulation of PLK1 is crucial for its roles in centrosome maturation, spindle assembly, microtubule–kinetochore attachment, and cytokinesis. Similar to other members of the PLK family, the molecular architecture of PLK1 protein is characterized by 2 domains—the kinase domain and the regulatory substrate-binding domain (polo-box domain)—that cooperate and control PLK1 function during mitosis. Mitotic cells employ many layers of regulation to activate and target PLK1 to different cellular structures in a timely manner. During the last decade, numerous studies have shed light on the precise molecular mechanisms orchestrating the mitotic activity of PLK1 in time and space. This review aims to discuss available data and concepts related to regulation of the molecular dynamics of human PLK1 during mitotic progression.
Collapse
Affiliation(s)
- Stephane Schmucker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) ; Illkirch, France
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) ; Illkirch, France
| |
Collapse
|
120
|
Srinivasrao G, Park JE, Kim S, Ahn M, Cheong C, Nam KY, Gunasekaran P, Hwang E, Kim NH, Shin SY, Lee KS, Ryu E, Bang JK. Design and synthesis of a cell-permeable, drug-like small molecule inhibitor targeting the polo-box domain of polo-like kinase 1. PLoS One 2014; 9:e107432. [PMID: 25211362 PMCID: PMC4161390 DOI: 10.1371/journal.pone.0107432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Polo-like kinase-1 (Plk1) plays a crucial role in cell proliferation and the inhibition of Plk1 has been considered as a potential target for specific inhibitory drugs in anti-cancer therapy. Several research groups have identified peptide-based inhibitors that target the polo-box domain (PBD) of Plk1 and bind to the protein with high affinity in in vitro assays. However, inadequate proteolytic resistance and cell permeability of the peptides hinder the development of these peptide-based inhibitors into novel therapeutic compounds. METHODOLOGY/PRINCIPAL FINDINGS In order to overcome the shortcomings of peptide-based inhibitors, we designed and synthesized small molecule inhibitors. Among these molecules, bg-34 exhibited a high binding affinity for Plk1-PBD and it could cross the cell membrane in its unmodified form. Furthermore, bg-34-dependent inhibition of Plk1-PBD was sufficient for inducing apoptosis in HeLa cells. Moreover, modeling studies performed on Plk1-PBD in complex with bg-34 revealed that bg-34 can interact effectively with Plk1-PBD. CONCLUSION/SIGNIFICANCE We demonstrated that the molecule bg-34 is a potential drug candidate that exhibits anti-Plk1-PBD activity and possesses the favorable characteristics of high cell permeability and stability. We also determined that bg-34 induced apoptotic cell death by inhibiting Plk1-PBD in HeLa cells at the same concentration as PEGylated 4j peptide, which can inhibit Plk1-PBD activity 1000 times more effectively than bg-34 can in in vitro assays. This study may help to design and develop drug-like small molecule as Plk1-PBD inhibitor for better therapeutic activity.
Collapse
Affiliation(s)
- Ganipisetti Srinivasrao
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sungmin Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Chaejoon Cheong
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Ky-Youb Nam
- Institute for Innovative Cancer Research and Department of Convergence Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Pethaiah Gunasekaran
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Cheongju, Chung-Buk, Republic of Korea
| | - Eunha Hwang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Nam-Hyung Kim
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Cheongju, Chung-Buk, Republic of Korea
| | - Song Yub Shin
- Department of Bio-Materials, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eunkyung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| |
Collapse
|
121
|
Kim JH, Shim J, Ji MJ, Jung Y, Bong SM, Jang YJ, Yoon EK, Lee SJ, Kim KG, Kim YH, Lee C, Lee BI, Kim KT. The condensin component NCAPG2 regulates microtubule-kinetochore attachment through recruitment of Polo-like kinase 1 to kinetochores. Nat Commun 2014; 5:4588. [PMID: 25109385 DOI: 10.1038/ncomms5588] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/03/2014] [Indexed: 12/21/2022] Open
Abstract
The early event of microtubule-kinetochore attachment is a critical stage for precise chromosome segregation. Here we report that NCAPG2, which is a component of the condensin II complex, mediates chromosome segregation through microtubule-kinetochore attachment by recruiting PLK1 to prometaphase kinetochores. NCAPG2 colocalizes with PLK1 at prometaphase kinetochores and directly interacts with the polo-box domain (PBD) of PLK1 via its highly conserved C-terminal region. In both humans and Caenorhabditis elegans, when NCAPG2 is depleted, the attachment of the spindle to the kinetochore is loosened and misoriented. This is caused by the disruption of PLK1 localization to the kinetochore and by the decreased phosphorylation of its kinetochore substrate, BubR1. In addition, the crystal structure of the PBD of PLK1, in complex with the C-terminal region of NCAPG2, (1007)VLS-pT-L(1011), exhibits structural conservation of PBD-phosphopeptides, suggesting that the regulation of NCAPG2 function is phosphorylation-dependent. These findings suggest that NCAPG2 plays an important role in regulating proper chromosome segregation through a functional interaction with PLK1 during mitosis.
Collapse
Affiliation(s)
- Jae Hyeong Kim
- 1] Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea [2]
| | - Jaegal Shim
- 1] Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea [2]
| | - Min-Ju Ji
- Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Yuna Jung
- Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Seoung Min Bong
- Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Young-Joo Jang
- Laboratory of Cell Cycle and Signal Transduction, Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungnam 330-714, Republic of Korea
| | - Eun-Kyung Yoon
- Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Sang-Jin Lee
- Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Kwang Gi Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Yon Hui Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Changwoo Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 440-746, Republic of Korea
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Kyung-Tae Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| |
Collapse
|
122
|
Amin MA, Itoh G, Iemura K, Ikeda M, Tanaka K. CLIP-170 recruits PLK1 to kinetochores during early mitosis for chromosome alignment. J Cell Sci 2014; 127:2818-24. [PMID: 24777477 DOI: 10.1242/jcs.150755] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cytoplasmic linker protein (CLIP)-170, an outer kinetochore protein, has a role in kinetochore-microtubule attachment and chromosome alignment during mitosis. However, the mechanism by which CLIP-170 is involved in chromosome alignment is not known. Here, we show that CLIP-170 colocalizes with Polo-like kinase 1 (PLK1) at kinetochores during early mitosis. Depletion of CLIP-170 results in a significant reduction in PLK1 recruitment to kinetochores and causes kinetochore-fiber (K-fiber) instability and defects in chromosome alignment at the metaphase plate. These phenotypes are dependent on the phosphorylation of CLIP-170 at a CDK1-dependent site, T287, as ectopic expression of wild-type CLIP-170, but not the expression of a non-phosphorylatable mutant, CLIP-170-T287A, restores PLK1 localization at kinetochores and rescues K-fiber stability and chromosome alignment in CLIP-170-depleted cells. These data suggest that CLIP-170 acts as a novel recruiter and spatial regulator of PLK1 at kinetochores during early mitosis, promoting K-fiber stability and chromosome alignment for error-free chromosome segregation.
Collapse
Affiliation(s)
- Mohammed Abdullahel Amin
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Go Itoh
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
123
|
Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 2014; 15:433-52. [PMID: 24954208 DOI: 10.1038/nrm3819] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.
Collapse
Affiliation(s)
- Sihem Zitouni
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Adán Guerrero
- 1] Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal. [2] Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico (UNAM), Avenida Universidad 2001, Col. Chamilpa, C.P. 62210 Cuernavaca Mor., Mexico
| | | |
Collapse
|
124
|
Rajanala K, Sarkar A, Jhingan GD, Priyadarshini R, Jalan M, Sengupta S, Nandicoori VK. Phosphorylation of nucleoporin Tpr governs its differential localization and is required for its mitotic function. J Cell Sci 2014; 127:3505-20. [PMID: 24938596 DOI: 10.1242/jcs.149112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A major constituent of the nuclear basket region of the nuclear pore complex (NPC), nucleoporin Tpr, plays roles in regulating multiple important processes. We have previously established that Tpr is phosphorylated in both a MAP-kinase-dependent and MAP-kinase-independent manner, and that Tpr acts as both a substrate and as a scaffold for ERK2 (also known as MAPK1). Here, we report the identification of S2059 and S2094 as the major novel ERK-independent phosphorylation sites and T1677, S2020, S2023 and S2034 as additional ERK-independent phosphorylation sites found in the Tpr protein in vivo. Our results suggest that protein kinase A phosphorylates the S2094 residue and that the site is hyperphosphorylated during mitosis. Furthermore, we find that Tpr is phosphorylated at the S2059 residue by CDK1 and the phosphorylated form distinctly localizes with chromatin during telophase. Abrogation of S2059 phosphorylation abolishes the interaction of Tpr with Mad1, thus compromising the localization of both Mad1 and Mad2 proteins, resulting in cell cycle defects. The identification of novel phosphorylation sites on Tpr and the observations presented in this study allow better understanding of Tpr functions.
Collapse
Affiliation(s)
- Kalpana Rajanala
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Anshuk Sarkar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Gagan Deep Jhingan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Raina Priyadarshini
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Manisha Jalan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
125
|
Lee KS, Park JE, Kang YH, Kim TS, Bang JK. Mechanisms underlying Plk1 polo-box domain-mediated biological processes and their physiological significance. Mol Cells 2014; 37:286-94. [PMID: 24722413 PMCID: PMC4012076 DOI: 10.14348/molcells.2014.0002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/12/2014] [Indexed: 12/31/2022] Open
Abstract
Mammalian polo-like kinase 1 (Plk1) has been studied intensively as a key regulator of various cell cycle events that are critical for proper M-phase progression. The polobox domain (PBD) present in Plk1's C-terminal noncatalytic region has been shown to play a central role in targeting the N-terminal kinase domain of Plk1 to specific subcellular locations. Subsequent studies reveal that PBD binds to a phosphorylated motif generated by one of the two mechanisms-self-priming by Plk1 itself or non-selfpriming by a Pro-directed kinase, such as Cdc2. Here, we comparatively review the differences in the biochemical steps of these mechanisms and discuss their physiological significance. Considering the diverse functions of Plk1 during the cell cycle, a better understanding of how the catalytic activity of Plk1 functions in concert with its cisacting PBD and how this coordinated process is intricately regulated to promote Plk1 functions will be important for providing new insights into different mechanisms underlying various Plk1-mediated biological events that occur at the multiple stages of the cell cycle.
Collapse
Affiliation(s)
- Kyung S. Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892,
USA
| | - Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892,
USA
| | | | - Tae-Sung Kim
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892,
USA
| | | |
Collapse
|
126
|
Akopyan K, Silva Cascales H, Hukasova E, Saurin AT, Müllers E, Jaiswal H, Hollman DAA, Kops GJPL, Medema RH, Lindqvist A. Assessing kinetics from fixed cells reveals activation of the mitotic entry network at the S/G2 transition. Mol Cell 2014; 53:843-53. [PMID: 24582498 DOI: 10.1016/j.molcel.2014.01.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/02/2013] [Accepted: 01/23/2014] [Indexed: 11/24/2022]
Abstract
During the cell cycle, DNA duplication in S phase must occur before a cell divides in mitosis. In the intervening G2 phase, mitotic inducers accumulate, which eventually leads to a switch-like rise in mitotic kinase activity that triggers mitotic entry. However, when and how activation of the signaling network that promotes the transition to mitosis occurs remains unclear. We have developed a system to reduce cell-cell variation and increase accuracy of fluorescence quantification in single cells. This allows us to use immunofluorescence of endogenous marker proteins to assess kinetics from fixed cells. We find that mitotic phosphorylations initially occur at the completion of S phase, showing that activation of the mitotic entry network does not depend on protein accumulation through G2. Our data show insights into how mitotic entry is linked to the completion of S phase and forms a quantitative resource for mathematical models of the human cell cycle.
Collapse
Affiliation(s)
- Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 171 77 Stockholm, Sweden
| | - Helena Silva Cascales
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 171 77 Stockholm, Sweden
| | - Elvira Hukasova
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 171 77 Stockholm, Sweden
| | - Adrian T Saurin
- Department of Medical Oncology, Department of Molecular Cancer Research, and Cancer Genomics Centre, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Division of Cancer Research, Medical Research Institute, University of Dundee, James Arrot Drive, Dundee DD1 9NT, UK
| | - Erik Müllers
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 171 77 Stockholm, Sweden
| | - Himjyot Jaiswal
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 171 77 Stockholm, Sweden
| | - Danielle A A Hollman
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Geert J P L Kops
- Department of Medical Oncology, Department of Molecular Cancer Research, and Cancer Genomics Centre, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - René H Medema
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Division of Cell Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 171 77 Stockholm, Sweden; Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
127
|
Bruinsma W, Macurek L, Freire R, Lindqvist A, Medema RH. Bora and Aurora-A continue to activate Plk1 in mitosis. J Cell Sci 2014; 127:801-11. [PMID: 24338364 DOI: 10.1242/jcs.137216] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polo-like kinase-1 (Plk1) is required for proper cell division. Activation of Plk1 requires phosphorylation on a conserved threonine in the T-loop of the kinase domain (T210). Plk1 is first phosphorylated on T210 in G2 phase by the kinase Aurora-A, in concert with its cofactor Bora. However, Bora was shown to be degraded prior to entry into mitosis, and it is currently unclear how Plk1 activity is sustained in mitosis. Here we show that the Bora-Aurora-A complex remains the major activator of Plk1 in mitosis. We show that a small amount of Aurora-A activity is sufficient to phosphorylate and activate Plk1 in mitosis. In addition, a fraction of Bora is retained in mitosis, which is essential for continued Aurora-A-dependent T210 phosphorylation of Plk1. We find that once Plk1 is activated, minimal amounts of the Bora-Aurora-A complex are sufficient to sustain Plk1 activity. Thus, the activation of Plk1 by Aurora-A may function as a bistable switch; highly sensitive to inhibition of Aurora-A in its initial activation, but refractory to fluctuations in Aurora-A activity once Plk1 is fully activated. This provides a cell with robust Plk1 activity once it has committed to mitosis.
Collapse
Affiliation(s)
- Wytse Bruinsma
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
128
|
Cheerambathur DK, Desai A. Linked in: formation and regulation of microtubule attachments during chromosome segregation. Curr Opin Cell Biol 2014; 26:113-22. [PMID: 24529253 DOI: 10.1016/j.ceb.2013.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022]
Abstract
Accurate segregation of the replicated genome during cell division depends on dynamic attachments formed between chromosomes and the microtubule polymers of the spindle. Here we review recent advances in mechanistic analysis of microtubule attachment formation and regulation.
Collapse
Affiliation(s)
- Dhanya K Cheerambathur
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
129
|
Silva VC, Cassimeris L. Stathmin and microtubules regulate mitotic entry in HeLa cells by controlling activation of both Aurora kinase A and Plk1. Mol Biol Cell 2013; 24:3819-31. [PMID: 24152729 PMCID: PMC3861079 DOI: 10.1091/mbc.e13-02-0108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 09/18/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022] Open
Abstract
Depletion of stathmin, a microtubule (MT) destabilizer, delays mitotic entry by ∼4 h in HeLa cells. Stathmin depletion reduced the activity of CDC25 and its upstream activators, Aurora A and Plk1. Chemical inhibition of both Aurora A and Plk1 was sufficient to delay mitotic entry by 4 h, while inhibiting either kinase alone did not cause a delay. Aurora A and Plk1 are likely regulated downstream of stathmin, because the combination of stathmin knockdown and inhibition of Aurora A and Plk1 was not additive and again delayed mitotic entry by 4 h. Aurora A localization to the centrosome required MTs, while stathmin depletion spread its localization beyond that of γ-tubulin, indicating an MT-dependent regulation of Aurora A activation. Plk1 was inhibited by excess stathmin, detected in in vitro assays and cells overexpressing stathmin-cyan fluorescent protein. Recruitment of Plk1 to the centrosome was delayed in stathmin-depleted cells, independent of MTs. It has been shown that depolymerizing MTs with nocodazole abrogates the stathmin-depletion induced cell cycle delay; in this study, depolymerization with nocodazole restored Plk1 activity to near normal levels, demonstrating that MTs also contribute to Plk1 activation. These data demonstrate that stathmin regulates mitotic entry, partially via MTs, to control localization and activation of both Aurora A and Plk1.
Collapse
Affiliation(s)
- Victoria C. Silva
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Lynne Cassimeris
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
130
|
Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152. Proc Natl Acad Sci U S A 2013; 110:E4849-57. [PMID: 24277814 DOI: 10.1073/pnas.1319656110] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centrosomes play an important role in various cellular processes, including spindle formation and chromosome segregation. They are composed of two orthogonally arranged centrioles, whose duplication occurs only once per cell cycle. Accurate control of centriole numbers is essential for the maintenance of genomic integrity. Although it is well appreciated that polo-like kinase 4 (Plk4) plays a central role in centriole biogenesis, how it is recruited to centrosomes and whether this step is necessary for centriole biogenesis remain largely elusive. Here we showed that Plk4 localizes to distinct subcentrosomal regions in a temporally and spatially regulated manner, and that Cep192 and Cep152 serve as two distinct scaffolds that recruit Plk4 to centrosomes in a hierarchical order. Interestingly, Cep192 and Cep152 competitively interacted with the cryptic polo box of Plk4 through their homologous N-terminal sequences containing acidic-α-helix and N/Q-rich motifs. Consistent with these observations, the expression of either one of these N-terminal fragments was sufficient to delocalize Plk4 from centrosomes. Furthermore, loss of the Cep192- or Cep152-dependent interaction with Plk4 resulted in impaired centriole duplication that led to delayed cell proliferation. Thus, the spatiotemporal regulation of Plk4 localization by two hierarchical scaffolds, Cep192 and Cep152, is critical for centriole biogenesis.
Collapse
|
131
|
Reinhardt HC, Yaffe MB. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol 2013; 14:563-80. [PMID: 23969844 DOI: 10.1038/nrm3640] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(βTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.
Collapse
Affiliation(s)
- H Christian Reinhardt
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
132
|
Murugan RN, Ahn M, Lee WC, Kim HY, Song JH, Cheong C, Hwang E, Seo JH, Shin SY, Choi SH, Park JE, Bang JK. Exploring the binding nature of pyrrolidine pocket-dependent interactions in the polo-box domain of polo-like kinase 1. PLoS One 2013; 8:e80043. [PMID: 24223211 PMCID: PMC3819306 DOI: 10.1371/journal.pone.0080043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Over the years, a great deal of effort has been focused on the design and synthesis of potent, linear peptide inhibitors targeting the polo-like kinase 1 (Plk1), which is critically involved in multiple mitotic processes and has been established as an adverse prognostic marker for tumor patients. Plk1 localizes to its intracellular anchoring sites via its polo-box domain, and inhibiting the Plk1 polo-box domain has been considered as an approach to circumvent the specificity problems associated with inhibiting the conserved adenosine triphosphate-binding pocket. The polo-box domain consists of two different binding regions, such as the unique, broader pyrrolidine-binding pocket and the conserved, narrow, Tyr-rich hydrophobic channel, among the three Plk polo-box domains (Plks 1-3), respectively. Therefore, the studies that provide insights into the binding nature of the unique, broader pyrrolidine-binding pocket might lead to the development of selective Plk1-inhibitory compounds. METHODOLOGY/PRINCIPAL FINDINGS In an attempt to retain the monospecificity by targeting the unique, broader pyrrolidine-binding pocket, here, for the first time, a systematic approach was undertaken to examine the structure-activity relationship of N-terminal-truncated PLHSpTM derivatives, to apply a site-directed ligand approach using bulky aromatic and non-aromatic systems, and to characterize the binding nature of these analogues using X-ray crystallographic studies. We have identified a new mode of binding interactions, having improved binding affinity and retaining the Plk1 polo-box domain specificity, at the pyrrolidine-binding pocket. Furthermore, our data revealed that the pyrrolidine-binding pocket was very specific to recognize a short and bulky hydrophobic ligand like adamantane, whereas the Tyr-rich hydrophobic channel was specific with lengthy and small hydrophobic groups. CONCLUSION/SIGNIFICANCE The progress made using our site-directed ligands validated this approach to specifically direct the ligand into the unique pyrrolidine-binding region, and it extends the applicability of the strategy for discovering selective protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Ravichandran N. Murugan
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Woo Cheol Lee
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Hye-Yeon Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Jung Hyun Song
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Chaejoon Cheong
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Eunha Hwang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Ji-Hyung Seo
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Song Yub Shin
- Department of Bio-Materials, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Sun Ho Choi
- Dong-A ST, Research Laboratories, YongIn, Gyeonggi-do, Republic of Korea
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| |
Collapse
|
133
|
Xu J, Shen C, Wang T, Quan J. Structural basis for the inhibition of Polo-like kinase 1. Nat Struct Mol Biol 2013; 20:1047-53. [PMID: 23893132 DOI: 10.1038/nsmb.2623] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/30/2013] [Indexed: 01/29/2023]
Abstract
Polo-like kinase 1 (PLK1) is a master regulator of mitosis and is considered a potential drug target for cancer therapy. PLK1 is characterized by an N-terminal kinase domain (KD) and a C-terminal Polo-box domain (PBD). The KD and PBD are mutually inhibited, but the molecular mechanisms of the autoinhibition remain unclear. Here we report the 2.3-Å crystal structure of the complex of the Danio rerio KD and PBD together with a PBD-binding motif of Drosophila melanogaster microtubule-associated protein 205 (Map205(PBM)). The structure reveals that the PBD binds and rigidifies the hinge region of the KD in a distinct conformation from that of the phosphopeptide-bound PBD. This structure provides a framework for understanding the autoinhibitory mechanisms of PLK1 and also sheds light on the activation mechanisms of PLK1 by phosphorylation or phosphopeptide binding.
Collapse
Affiliation(s)
- Jun Xu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | | | | |
Collapse
|
134
|
|
135
|
Bibi N, Parveen Z, Rashid S. Identification of potential Plk1 targets in a cell-cycle specific proteome through structural dynamics of kinase and Polo box-mediated interactions. PLoS One 2013; 8:e70843. [PMID: 23967120 PMCID: PMC3744538 DOI: 10.1371/journal.pone.0070843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/23/2013] [Indexed: 01/15/2023] Open
Abstract
Polo like kinase 1 (Plk1) is a key player in orchestrating the wide variety of cell-cycle events ranging from centrosome maturation, mitotic entry, checkpoint recovery, transcriptional control, spindle assembly, mitotic progression, cytokinesis and DNA damage checkpoints recovery. Due to its versatile nature, Plk1 is considered an imperative regulator to tightly control the diverse aspects of the cell cycle network. Interactions among Plk1 polo box domain (PBD) and its putative binding proteins are crucial for the activation of Plk1 kinase domain (KD). To date, only a few substrate candidates have been characterized through the inclusion of both polo box and kinase domain-mediated interactions. Thus it became compelling to explore precise and specific Plk1 substrates through reassessment and extension of the structure-function paradigm. To narrow this apparently wide gap in knowledge, here we employed a thorough sequence search of Plk1 phosphorylation signature containing proteins and explored their structure-based features like conceptual PBD-binding capabilities and subsequent recruitment of KD directed phosphorylation to dissect novel targets of Plk1. Collectively, we identified 4,521 phosphodependent proteins sharing similarity to the consensus phosphorylation and PBD recognition motifs. Subsequent application of filters including similarity index, Gene Ontology enrichment and protein localization resulted in stringent pre-filtering of irrelevant candidates and isolated unique targets with well-defined roles in cell-cycle machinery and carcinogenesis. These candidates were further refined structurally using molecular docking and dynamic simulation assays. Overall, our screening approach enables the identification of several undefined cell-cycle associated functions of Plk1 by uncovering novel phosphorylation targets.
Collapse
Affiliation(s)
- Nousheen Bibi
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zahida Parveen
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
136
|
Zou J, Rezvani K, Wang H, Lee KS, Zhang D. BRCA1 downregulates the kinase activity of Polo-like kinase 1 in response to replication stress. Cell Cycle 2013; 12:2255-65. [PMID: 24067368 PMCID: PMC3755076 DOI: 10.4161/cc.25349] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/09/2013] [Accepted: 06/10/2013] [Indexed: 01/19/2023] Open
Abstract
In response to DNA damage or replication stress, proliferating cells are arrested at different cell cycle stages for DNA repair by downregulating the activity of both the cyclin-dependent kinases (CDKs) and other important cell cycle kinases, including Polo-like kinase 1 (PLK1) . The signaling pathway to inhibit CDKs is relatively well understood, and breast cancer gene 1 (BRCA1) and other DNA damage response (DDR) factors play a key role in this process. However, the DNA damage-induced inhibition of PLK1 is still largely a mystery. Here we show that DNA damage and replication stress stimulate the association between BRCA1 and PLK1. Most importantly, we demonstrate that BRCA1 downregulates the kinase activity of PLK1 by modulating the dynamic interactions of Aurora A, hBora, and PLK1. Together with previous findings, we propose that in response to replication stress and DNA damage, BRCA1 plays a critical role in downregulating the kinase activity of both CDKs and PLK1.
Collapse
Affiliation(s)
- Jianqiu Zou
- Basic Biomedical Science Division; Sanford School of Medicine; The University of South Dakota; Vermillion, SD USA
| | - Khosrow Rezvani
- Basic Biomedical Science Division; Sanford School of Medicine; The University of South Dakota; Vermillion, SD USA
| | - Hongmin Wang
- Basic Biomedical Science Division; Sanford School of Medicine; The University of South Dakota; Vermillion, SD USA
| | - Kyung S Lee
- Laboratory of Metabolism; Center for Cancer Research; National Cancer Institute of Health; Bethesda, MD USA
| | - Dong Zhang
- Basic Biomedical Science Division; Sanford School of Medicine; The University of South Dakota; Vermillion, SD USA
| |
Collapse
|
137
|
Louwen F, Yuan J. Battle of the eternal rivals: restoring functional p53 and inhibiting Polo-like kinase 1 as cancer therapy. Oncotarget 2013; 4:958-71. [PMID: 23948487 PMCID: PMC3759674 DOI: 10.18632/oncotarget.1096] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/11/2013] [Indexed: 01/09/2023] Open
Abstract
Polo-like kinase 1, a pivotal regulator of mitosis and cytokinesis, is highly expressed in a broad spectrum of tumors and its expression correlates often with poor prognosis, suggesting its potential as a therapeutic target. p53, the guardian of the genome, is the most important tumor suppressor. In this review, we address the intertwined relationship of these two key molecules by fighting each other as eternal rivals in many signaling pathways. p53 represses the promoter of Polo-like kinase 1, whereas Polo-like kinase 1 inhibits p53 and its family members p63 and p73 in cancer cells lacking functional p53. Plk1 inhibitors target all rapidly dividing cells irrespective of tumor cells or non-transformed normal but proliferating cells. Upon treatment with Plk1 inhibitors, p53 in tumor cells is activated and induces strong apoptosis, whereas tumor cells with inactive p53 arrest in mitosis with DNA damage. Thus, inactive p53 is not associated with a susceptible cytotoxicity of Polo-like kinase 1 inhibition and could rather foster the induction of polyploidy/aneuploidy in surviving cells. In addition, compared to the mono-treatment, combination of Polo-like kinase 1 inhibition with anti-mitotic or DNA damaging agents boosts more severe mitotic defects, effectually triggers apoptosis and strongly inhibits proliferation of cancer cells with functional p53. In this regard, restoration of p53 in tumor cells with loss or mutation of p53 will reinforce the cytotoxicity of combined Polo-like kinase 1 therapy and provide a proficient strategy for combating relapse and metastasis of cancer.
Collapse
Affiliation(s)
- Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
138
|
Wang X, Marcinkiewicz M, Gatain Y, Bouchard M, Mao J, Tremblay M, Uetani N, Hanissian S, Qi S, Wu J, Luo H. Investigation of tissue-specific expression and functions of MLF1-IP during development and in the immune system. PLoS One 2013; 8:e63783. [PMID: 23724000 PMCID: PMC3665676 DOI: 10.1371/journal.pone.0063783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/05/2013] [Indexed: 01/22/2023] Open
Abstract
Myeloid leukemia factor 1-interacting protein (MLF1-IP) has been found to exert functions in mitosis, although studies have been conducted only in cell lines up to now. To understand its roles during ontogeny and immunity, we analyzed its mRNA expression pattern by in situ hybridization and generated MLF1-IP gene knockout (KO) mice. MLF1-IP was expressed at elevated levels in most rudimentary tissues during the mid-gestation stage, between embryonic day 9.5 (e9.5) and e15.5. It declined afterwards in these tissues, but was very high in the testes and ovaries in adulthood. At post-natal day 10 (p10), the retina and cerebellum still expressed moderate MLF1-IP levels, although these tissues do not contain fast-proliferating cells at this stage. MLF1-IP expression in lymphoid organs, such as the thymus, lymph nodes, spleen and bone marrow, was high between e15.5 and p10, and decreased in adulthood. MLF1-IP KO embryos failed to develop beyond e6.5. On the other hand, MLF1-IP(+/-) mice were alive and fertile, with no obvious anomalies. Lymphoid organ size, weight, cellularity and cell sub-populations in MLF1-IP(+/-) mice were in the normal range. The functions of MLF1-IP(+/-) T cells and naïve CD4 cells, in terms of TCR-stimulated proliferation and Th1, Th17 and Treg cell differentiation in vitro, were comparable to those of wild type T cells. Our study demonstrates that MLF1-IP performs unique functions during mouse embryonic development, particularly around e6.5, when there was degeneration of epiblasts. However, the cells could proliferate dozens of rounds without MLF1-IP. MLF1-IP expression at about 50% of its normal level is sufficient to sustain mice life and the development of their immune system without apparent abnormalities. Our results also raise an intriguing question that MLF1-IP might have additional functions unrelated to cell proliferation.
Collapse
Affiliation(s)
- Xuehai Wang
- Laboratoire d’Immunologie, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM) – Hôpital Notre-Dame, Montreal, Quebec, Canada
| | | | - Yaned Gatain
- Rosalind and Morris Goodman Cancer Research Centre (GCRC), McGill University, Montreal, Quebec, Canada
| | - Maxime Bouchard
- Rosalind and Morris Goodman Cancer Research Centre (GCRC), McGill University, Montreal, Quebec, Canada
| | - Jianning Mao
- Laboratoire d’Immunologie, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM) – Hôpital Notre-Dame, Montreal, Quebec, Canada
| | - Michel Tremblay
- Rosalind and Morris Goodman Cancer Research Centre (GCRC), McGill University, Montreal, Quebec, Canada
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Centre (GCRC), McGill University, Montreal, Quebec, Canada
| | - Silva Hanissian
- Department of Neurosurgery, University of Tennessee, Memphis, Tennessee, United States of America
| | - Shijie Qi
- Laboratoire d’Immunologie, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM) – Hôpital Notre-Dame, Montreal, Quebec, Canada
| | - Jiangping Wu
- Laboratoire d’Immunologie, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM) – Hôpital Notre-Dame, Montreal, Quebec, Canada
- Service de Nephrologie, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM) – Hôpital Notre-Dame, Montreal, Quebec, Canada
| | - Hongyu Luo
- Laboratoire d’Immunologie, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM) – Hôpital Notre-Dame, Montreal, Quebec, Canada
| |
Collapse
|
139
|
Murugan RN, Park JE, Lim D, Ahn M, Cheong C, Kwon T, Nam KY, Choi SH, Kim BY, Yoon DY, Yaffe MB, Yu DY, Lee KS, Bang JK. Development of cyclic peptomer inhibitors targeting the polo-box domain of polo-like kinase 1. Bioorg Med Chem 2013; 21:2623-34. [PMID: 23498919 PMCID: PMC7561269 DOI: 10.1016/j.bmc.2013.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 01/22/2013] [Accepted: 02/06/2013] [Indexed: 12/13/2022]
Abstract
The polo-box domain (PBD) of polo-like kinase 1 (Plk1) is essentially required for the function of Plk1 in cell proliferation. The availability of the phosphopeptide-binding pocket on PBD provides a unique opportunity to develop novel protein-protein interaction inhibitors. Recent identification of a minimal 5-residue-long phosphopeptide, PLHSpT, as a Plk1 PBD-specific ligand has led to the development of several peptide-based inhibitors, but none of them is cyclic peptide. Through the combination of single-peptoid mimics and thio-ether bridged cyclization, we successfully demonstrated for the first time two cyclic peptomers, PL-116 and PL-120, dramatically improved the binding affinity without losing mono-specificity against Plk1 PBD in comparison with the linear parental peptide, PLHSpT. These cyclic peptomers could serve as promising templates for future drug designs to inhibit Plk1 PBD.
Collapse
Affiliation(s)
- Ravichandran N. Murugan
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk 363-883, Cheongwon, Republic of Korea
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892, United States
| | - Dan Lim
- Department of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk 363-883, Cheongwon, Republic of Korea
| | - Chaejoon Cheong
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk 363-883, Cheongwon, Republic of Korea
| | - Taeho Kwon
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892, United States
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Republic of Korea
| | - Ky-Youb Nam
- Bioinformatics and Molecular Design Research Center, B128A Yonsei University Research Complex, Shinchon-dong, Seoul 120-749, Republic of Korea
| | - Sun Ho Choi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892, United States
- Dong-A Pharmaceutical Co., Ltd., Research Laboratories, Yongin 449-905, Republic of Korea
| | - Bo Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
| | - Michael B. Yaffe
- Department of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Dae-Yeul Yu
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892, United States
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk 363-883, Cheongwon, Republic of Korea
| |
Collapse
|
140
|
Tracking spindle checkpoint signals from kinetochores to APC/C. Trends Biochem Sci 2013; 38:302-11. [PMID: 23598156 DOI: 10.1016/j.tibs.2013.03.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 12/13/2022]
Abstract
Accurate chromosome segregation during mitosis is critical for maintaining genomic stability. The kinetochore--a large protein assembly on centromeric chromatin--functions as the docking site for spindle microtubules and a signaling hub for the spindle checkpoint. At metaphase, spindle microtubules from opposing spindle poles capture each pair of sister kinetochores, exert pulling forces, and create tension across sister kinetochores. The spindle checkpoint detects improper kinetochore-microtubule attachments and translates these defects into biochemical activities that inhibit the anaphase-promoting complex or cyclosome (APC/C) throughout the cell to delay anaphase onset. A deficient spindle checkpoint leads to premature sister-chromatid separation and aneuploidy. Here, we review recent progress on the generation, propagation, transmission, and silencing of the spindle checkpoint signals from kinetochores to APC/C.
Collapse
|
141
|
Yeh TY, Kowalska AK, Scipioni BR, Cheong FKY, Zheng M, Derewenda U, Derewenda ZS, Schroer TA. Dynactin helps target Polo-like kinase 1 to kinetochores via its left-handed beta-helical p27 subunit. EMBO J 2013; 32:1023-35. [PMID: 23455152 PMCID: PMC3616283 DOI: 10.1038/emboj.2013.30] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 01/27/2013] [Indexed: 01/08/2023] Open
Abstract
Dynactin is a protein complex required for the in vivo function of cytoplasmic dynein, a microtubule (MT)-based motor. Dynactin binds both dynein and MTs via its p150(Glued) subunit, but little is known about the 'pointed-end complex' that includes the protein subunits Arp11, p62 and the p27/p25 heterodimer. Here, we show that the p27/p25 heterodimer undergoes mitotic phosphorylation by cyclin-dependent kinase 1 (Cdk1) at a single site, p27 Thr186, to generate an anchoring site for polo-like kinase 1 (Plk1) at kinetochores. Removal of p27/p25 from dynactin results in reduced levels of Plk1 and its phosphorylated substrates at kinetochores in prometaphase, which correlates with aberrant kinetochore-MT interactions, improper chromosome alignment and abbreviated mitosis. To investigate the structural implications of p27 phosphorylation, we determined the structure of human p27. This revealed an unusual left-handed β-helix domain, with the phosphorylation site located within a disordered, C-terminal segment. We conclude that dynactin plays a previously undescribed regulatory role in the spindle assembly checkpoint by recruiting Plk1 to kinetochores and facilitating phosphorylation of important downstream targets.
Collapse
Affiliation(s)
- Ting-Yu Yeh
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Anna K Kowalska
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Brett R Scipioni
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Meiying Zheng
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zygmunt S Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Trina A Schroer
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
142
|
Funabiki H, Wynne DJ. Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 2013; 122:135-58. [PMID: 23512483 DOI: 10.1007/s00412-013-0401-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 01/23/2023]
Abstract
The kinetochore, the proteinaceous structure on the mitotic centromere, functions as a mechanical latch that hooks onto microtubules to support directional movement of chromosomes. The structure also brings in a number of signaling molecules, such as kinases and phosphatases, which regulate microtubule dynamics and cell cycle progression. Erroneous microtubule attachment is destabilized by Aurora B-mediated phosphorylation of multiple microtubule-binding protein complexes at the kinetochore, such as the KMN network proteins and the Ska/Dam1 complex, while Plk-dependent phosphorylation of BubR1 stabilizes kinetochore-microtubule attachment by recruiting PP2A-B56. Spindle assembly checkpoint (SAC) signaling, which is activated by unattached kinetochores and inhibits the metaphase-to-anaphase transition, depends on kinetochore recruitment of the kinase Bub1 through Mps1-mediated phosphorylation of the kinetochore protein KNL1 (also known as Blinkin in mammals, Spc105 in budding yeast, and Spc7 in fission yeast). Recruitment of protein phosphatase 1 to KNL1 is necessary to silence the SAC upon bioriented microtubule attachment. One of the key unsolved questions in the mitosis field is how a mechanical change at the kinetochore upon microtubule attachment is converted to these and other chemical signals that control microtubule attachment and the SAC. Rapid progress in the field is revealing the existence of an intricate signaling network created right on the kinetochore. Here we review the current understanding of phosphorylation-mediated regulation of kinetochore functions and discuss how this signaling network generates an accurate switch that turns on and off the signaling output in response to kinetochore-microtubule attachment.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | | |
Collapse
|
143
|
Porter IM, Schleicher K, Porter M, Swedlow JR. Bod1 regulates protein phosphatase 2A at mitotic kinetochores. Nat Commun 2013; 4:2677. [PMID: 24157919 PMCID: PMC3826647 DOI: 10.1038/ncomms3677] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/26/2013] [Indexed: 12/25/2022] Open
Abstract
Mitotic entry and progression require the activation of several mitotic kinases and the proper regulation and localization of several phosphatases. The activity and localization of each of these enzymes is tightly controlled through a series of specific activators, inhibitors and regulatory subunits. Two proteins, Ensa and Arpp-19, were recently identified as specific inhibitors of PP2A-B55 and are critical for allowing full activity of Cdk1/cyclin B and entry into mitosis. Here we show that Bod1, a protein required for proper chromosome alignment at mitosis, shares sequence similarity with Ensa and Arpp-19 and specifically inhibits the kinetochore-associated PP2A-B56 holoenzyme. PP2A-B56 regulates the stability of kinetochore-microtubule attachments by dephosphorylating several kinetochore proteins. Loss of Bod1 changes the balance of phosphorylation at kinetochores, causing defects in kinetochore function. Bod1, Ensa and Arpp-19 define a family of specific PP2A inhibitors that regulate specific PP2A holoenzymes at distinct locations and points in the cell cycle.
Collapse
Affiliation(s)
- Iain M. Porter
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Katharina Schleicher
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michael Porter
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jason R. Swedlow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
144
|
Qian WJ, Park JE, Lee KS, Burke TR. Non-proteinogenic amino acids in the pThr-2 position of a pentamer peptide that confer high binding affinity for the polo box domain (PBD) of polo-like kinase 1 (Plk1). Bioorg Med Chem Lett 2012; 22:7306-8. [PMID: 23159568 PMCID: PMC3530200 DOI: 10.1016/j.bmcl.2012.10.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/23/2022]
Abstract
We report herein that incorporating long-chain alkylphenyl-containing non-proteinogenic amino acids in place of His at the pT-2 position of the parent polo-like kinase 1 (Plk1) polo box domain (PBD)-binding pentapeptide, PLHSpT (1a) increases affinity. For certain analogs, approximately two orders-of-magnitude improvement in affinity was observed. Although, none of the new analogs was as potent as our previously described peptide 1b, in which the pT-2 histidine imidazole ring is alkylated at its π nitrogen (N3), our current finding that the isomeric His(N1)-analog (1c) binds with approximately 50-fold less affinity than 1b, indicates the positional importance of attachment to the His imidazole ring. Our demonstration that a range of modified residues at the pT-2 position can enhance binding affinity, should facilitate the development of minimally-sized Plk1 PBD-binding antagonists.
Collapse
Affiliation(s)
- Wen-Jian Qian
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, U. S. A
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U. S. A
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U. S. A
| | - Terrence R. Burke
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, U. S. A
| |
Collapse
|
145
|
Abstract
The centromere is essential for accurate chromosome segregation during mitosis and meiosis to achieve transmission of genetic information to daughter cells. To facilitate accurate chromosome segregation, the centromere serves several specific functions, including microtubule binding, spindle-checkpoint control, and sister chromatid cohesion. The kinetochore is formed on the centromere to achieve these functions. To understand kinetochore structure and function, it is critical to identify the protein components of the kinetochore and characterize the functional properties of each component. Here, we review recent progress with regard to the molecular architecture of the kinetochore and discuss the future directions for centromere biology.
Collapse
|
146
|
Bruinsma W, Raaijmakers JA, Medema RH. Switching Polo-like kinase-1 on and off in time and space. Trends Biochem Sci 2012; 37:534-42. [PMID: 23141205 DOI: 10.1016/j.tibs.2012.09.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/16/2012] [Accepted: 09/21/2012] [Indexed: 01/24/2023]
Abstract
Polo-like kinase (Plk)1 executes several essential functions to promote cell division. These functions range from centrosome maturation in late G2 phase to the regulation of cytokinesis, which necessitates precise separation of Plk1-dependent substrate phosphorylation over time. Multiple levels of control are in place to ensure that Plk1-dependent phosphorylation of its various substrates is properly coordinated in time and space. Here, we review the current knowledge on the mechanisms that enforce the temporal and spatial control of Plk1 activity, and how this results in coordinated phosphorylation of its many different substrates. We also review a number of newly discovered functions of Plk1 that provide more insights into the spatiotemporal control of Plk1-dependent substrate phosphorylation.
Collapse
Affiliation(s)
- Wytse Bruinsma
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | |
Collapse
|
147
|
Paschal CR, Maciejowski J, Jallepalli PV. A stringent requirement for Plk1 T210 phosphorylation during K-fiber assembly and chromosome congression. Chromosoma 2012; 121:565-72. [PMID: 22566210 PMCID: PMC3519967 DOI: 10.1007/s00412-012-0375-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
Polo-like kinase 1 (Plk1) is an essential mitotic regulator and undergoes periodic phosphorylation on threonine 210, a conserved residue in the kinase's activation loop. While phosphate-mimicking alterations of T210 stimulate Plk1's kinase activity in vitro, their effects on cell cycle regulation in vivo remain controversial. Using gene targeting, we replaced the native PLK1 locus in human cells with either PLK1 (T210A) or PLK1 (T210D) in both dominant and recessive settings. In contrast to previous reports, PLK1 (T210D) did not accelerate cells prematurely into mitosis, nor could it fulfill the kinase's essential role in chromosome congression. The latter was traced to an unexpected defect in Plk1-dependent phosphorylation of BubR1, a key mediator of stable kinetochore-microtubule attachment. Using chemical genetics to bypass this defect, we found that Plk1(T210D) is nonetheless able to induce equatorial RhoA zones and cleavage furrows during mitotic exit. Collectively, our data indicate that K-fibers are sensitive to even subtle perturbations in T210 phosphorylation and caution against relying on Plk1(T210D) as an in vivo surrogate for the natively activated kinase.
Collapse
Affiliation(s)
- Catherine Randall Paschal
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065 USA
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - John Maciejowski
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Prasad V. Jallepalli
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065 USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| |
Collapse
|
148
|
Jordan PW, Karppinen J, Handel MA. Polo-like kinase is required for synaptonemal complex disassembly and phosphorylation in mouse spermatocytes. J Cell Sci 2012; 125:5061-72. [PMID: 22854038 PMCID: PMC3533391 DOI: 10.1242/jcs.105015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2012] [Indexed: 01/05/2023] Open
Abstract
During meiosis, accurate coordination of the completion of homologous recombination and synaptonemal complex (SC) disassembly during the prophase to metaphase I (G2/MI) transition is essential to avoid aneuploid gametes and infertility. Previous studies have shown that kinase activity is required to promote meiotic prophase exit. The first step of the G2/MI transition is the disassembly of the central element components of the SC; however, the kinase(s) required to trigger this process remains unknown. Here we assess roles of polo-like kinases (PLKs) in mouse spermatocytes, both in vivo and during prophase exit induced ex vivo by the phosphatase inhibitor okadaic acid. All four PLKs are expressed during the first wave of spermatogenesis. Only PLK1 (not PLK2-4) localizes to the SC during the G2/MI transition. The SC central element proteins SYCP1, TEX12 and SYCE1 are phosphorylated during the G2/MI transition. However, treatment of pachytene spermatocytes with the PLK inhibitor BI 2536 prevented the okadaic-acid-induced meiotic prophase exit and inhibited phosphorylation of the central element proteins as well as their removal from the SC. Phosphorylation assays in vitro demonstrated that PLK1, but not PLK2-4, phosphorylates central element proteins SYCP1 and TEX12. These findings provide mechanistic details of the first stage of SC disassembly in mammalian spermatocytes, and reveal that PLK-mediated phosphorylation of central element proteins is required for meiotic prophase exit.
Collapse
Affiliation(s)
| | - Jesse Karppinen
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- College of the Atlantic, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
149
|
Maia AR, Garcia Z, Kabeche L, Barisic M, Maffini S, Macedo-Ribeiro S, Cheeseman IM, Compton DA, Kaverina I, Maiato H. Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore-microtubule attachments. J Cell Biol 2012; 199:285-301. [PMID: 23045552 PMCID: PMC3471233 DOI: 10.1083/jcb.201203091] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022] Open
Abstract
Accurate chromosome segregation during mitosis relies on a dynamic kinetochore (KT)-microtubule (MT) interface that switches from a labile to a stable condition in response to correct MT attachments. This transition is essential to satisfy the spindle-assembly checkpoint (SAC) and couple MT-generated force with chromosome movements, but the underlying regulatory mechanism remains unclear. In this study, we show that during mitosis the MT- and KT-associated protein CLASP2 is progressively and distinctively phosphorylated by Cdk1 and Plk1 kinases, concomitant with the establishment of KT-MT attachments. CLASP2 S1234 was phosphorylated by Cdk1, which primed CLASP2 for association with Plk1. Plk1 recruitment to KTs was enhanced by CLASP2 phosphorylation on S1234. This was specifically required to stabilize KT-MT attachments important for chromosome alignment and to coordinate KT and non-KT MT dynamics necessary to maintain spindle bipolarity. CLASP2 C-terminal phosphorylation by Plk1 was also required for chromosome alignment and timely satisfaction of the SAC. We propose that Cdk1 and Plk1 mediate a fine CLASP2 "phospho-switch" that temporally regulates KT-MT attachment stability.
Collapse
Affiliation(s)
- Ana R.R. Maia
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Zaira Garcia
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Lilian Kabeche
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Lebanon, NH 03766
| | - Marin Barisic
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Stefano Maffini
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Duane A. Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Lebanon, NH 03766
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
150
|
Liu XS, Song B, Tang J, Liu W, Kuang S, Liu X. Plk1 phosphorylates Sgt1 at the kinetochores to promote timely kinetochore-microtubule attachment. Mol Cell Biol 2012; 32:4053-67. [PMID: 22869522 PMCID: PMC3457539 DOI: 10.1128/mcb.00516-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/26/2012] [Indexed: 01/20/2023] Open
Abstract
Accurate chromosome segregation during cell division maintains genomic integrity and requires the proper establishment of kinetochore-microtubule attachment in mitosis. As a key regulator of mitosis, Polo-like kinase 1 (Plk1) is essential for this attachment process, but the molecular mechanism remains elusive. Here we identify Sgt1, a cochaperone for Hsp90, as a novel Plk1 substrate during mitosis. We show that Sgt1 dynamically localizes at the kinetochores, which lack microtubule attachments during prometaphase. Plk1 is required for the kinetochore localization of Sgt1 and phosphorylates serine 331 of Sgt1 at the kinetochores. This phosphorylation event enhances the association of the Hsp90-Sgt1 chaperone with the MIS12 complex to stabilize this complex at the kinetochores and thus coordinates the recruitment of the NDC80 complex to form efficient microtubule-binding sites. Disruption of Sgt1 phosphorylation reduces the MIS12 and NDC80 complexes at the kinetochores, impairs stable microtubule attachment, and eventually results in chromosome misalignment to delay the anaphase onset. Our results demonstrate a mechanism for Plk1 in promoting kinetochore-microtubule attachment to ensure chromosome stability.
Collapse
Affiliation(s)
- X. Shawn Liu
- Department of Biochemistry
- Center for Cancer Research
| | - Bing Song
- Department of Biological Sciences
- Center for Cancer Research
| | | | - Weiyi Liu
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Xiaoqi Liu
- Department of Biochemistry
- Center for Cancer Research
| |
Collapse
|