101
|
Duan HY, Zhou KY, Wang T, Zhang Y, Li YF, Hua YM, Wang C. Disruption of Planar Cell Polarity Pathway Attributable to Valproic Acid-Induced Congenital Heart Disease through Hdac3 Participation in Mice. Chin Med J (Engl) 2018. [PMID: 30127218 DOI: 10.4103/0366-6999.239311.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Valproic acid (VPA) exposure during pregnancy has been proven to contribute to congenital heart disease (CHD). Our previous findings implied that disruption of planar cell polarity (PCP) signaling pathway in cardiomyocytes might be a factor for the cardiac teratogenesis of VPA. In addition, the teratogenic ability of VPA is positively correlated to its histone deacetylase (HDAC) inhibition activity. This study aimed to investigate the effect of the VPA on cardiac morphogenesis, HDAC1/2/3, and PCP key genes (Vangl2/Scrib/Rac1), subsequently screening out the specific HDACs regulating PCP pathway. Methods VPA was administered to pregnant C57BL mice at 700 mg/kg intraperitoneally on embryonic day 10.5. Dams were sacrificed on E15.5, and death/absorption rates of embryos were evaluated. Embryonic hearts were observed by hematoxylin-eosin staining to identify cardiac abnormalities. H9C2 cells (undifferentiated rat cardiomyoblasts) were transfected with Hdac1/2/3 specific small interfering RNA (siRNA). Based on the results of siRNA transfection, cells were transfected with Hdac3 expression plasmid and subsequently mock-treated or treated with 8.0 mmol/L VPA. Hdac1/2/3 as well as Vangl2/Scrib/Rac1 mRNA and protein levels were determined by real-time quantitative polymerase chain reaction and Western blotting, respectively. Total HDAC activity was detected by colorimetric assay. Results VPA could induce CHD (P < 0.001) and inhibit mRNA or protein expression of Hdac1/2/3 as well as Vangl2/Scrib in fetal hearts, in association with total Hdac activity repression (all P < 0.05). In vitro, Hdac3 inhibition could significantly decrease Vangl2/Scrib expression (P < 0.01), while knockdown of Hdac1/2 had no influence (P > 0.05); VPA exposure dramatically decreased the expression of Vanlg2/Scrib together with Hdac activity (P < 0.01), while overexpression of Hdac3 could rescue the VPA-induced inhibition (P > 0.05). Conclusion VPA could inhibit Hdac1/2/3, Vangl2/Scrib, or total Hdac activity both in vitro and in vivo and Hdac3 might participate in the process of VPA-induced cardiac developmental anomalies.
Collapse
Affiliation(s)
- Hong-Yu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai-Yu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Fei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Min Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
102
|
Adhikari N, Amin SA, Trivedi P, Jha T, Ghosh B. HDAC3 is a potential validated target for cancer: An overview on the benzamide-based selective HDAC3 inhibitors through comparative SAR/QSAR/QAAR approaches. Eur J Med Chem 2018; 157:1127-1142. [DOI: 10.1016/j.ejmech.2018.08.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
|
103
|
Bhaskara S. Histone deacetylase 11 as a key regulator of metabolism and obesity. EBioMedicine 2018; 35:27-28. [PMID: 30126820 PMCID: PMC6154867 DOI: 10.1016/j.ebiom.2018.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 01/10/2023] Open
Abstract
In this thought commentary, I highlight the discoveries made by Seto and colleagues related to HDAC11 and obesity. I discuss how their reported work fills a gap in the HDAC field and comment on the clinical implications of their findings. Overall, selective inhibition of HDAC11 could be a novel potential therapeutic avenue for both obesity and diabesity, the diabetes caused by obesity. Future studies to further dissect this mechanistic link between HDAC11 and metabolic programs will pave the way for designing mechanism-based combination therapeutic strategies for these two life style diseases.
Collapse
Affiliation(s)
- Srividya Bhaskara
- Department of Radiation Oncology and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| |
Collapse
|
104
|
Manic G, Sistigu A, Corradi F, Musella M, De Maria R, Vitale I. Replication stress response in cancer stem cells as a target for chemotherapy. Semin Cancer Biol 2018; 53:31-41. [PMID: 30081229 DOI: 10.1016/j.semcancer.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs) are subpopulations of multipotent stem cells (SCs) responsible for the initiation, long-term clonal maintenance, growth and spreading of most human neoplasms. Reportedly, CSCs share a very robust DNA damage response (DDR) with embryonic and adult SCs, which allows them to survive endogenous and exogenous genotoxins. A range of experimental evidence indicates that CSCs have high but heterogeneous levels of replication stress (RS), arising from, and being boosted by, endogenous causes, such as specific genetic backgrounds (e.g., p53 deficiency) and/or aberrant karyotypes (e.g., supernumerary chromosomes). A multipronged RS response (RSR) is put in place by CSCs to limit and ensure tolerability to RS. The characteristics of such dedicated cascade have two opposite consequences, both relevant for cancer therapy. On the one hand, RSR efficiency often increases the reliance of CSCs on specific DDR components. On the other hand, the functional redundancy of pathways of the RSR can paradoxically promote the acquisition of resistance to RS- and/or DNA damage-inducing agents. Here, we provide an overview of the molecular mechanisms of the RSR in cancer cells and CSCs, focusing on the role of CHK1 and some emerging players, such as PARP1 and components of the homologous recombination repair, whose targeting can represent a long-term effective anti-CSC strategy.
Collapse
Affiliation(s)
- Gwenola Manic
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.
| | - Antonella Sistigu
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy; Institute of General Pathology, Catholic University and Gemelli Polyclinic, Rome, Italy
| | - Francesca Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Martina Musella
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy; Department of Molecular Medicine, University "La Sapienza", Rome, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University and Gemelli Polyclinic, Rome, Italy.
| | - Ilio Vitale
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
105
|
Liao J, Jiang J, Jun H, Qiao X, Emont MP, Kim DI, Wu J. HDAC3-Selective Inhibition Activates Brown and Beige Fat Through PRDM16. Endocrinology 2018; 159:2520-2527. [PMID: 29757434 PMCID: PMC6456926 DOI: 10.1210/en.2018-00257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/04/2018] [Indexed: 11/19/2022]
Abstract
It has been reported that class I histone deacetylase (HDAC) inhibition increases thermogenesis in fat, but adipocyte-specific Hdac3 deletions have presented inconsistent results. In this study, we observed that HDAC3 protein levels were lower in brown fat compared with inguinal subcutaneous adipose tissue, and they decreased in both fat depots upon cold exposure. PR domain-containing 16 (PRDM16) physically interacted with HDAC3, and treatment with HDAC3-selective inhibitor RGFP966 induced thermogenic gene expression in murine and human fat cultures. This induction was blunted in the absence of PRDM16. Our results provide evidence that HDAC3 is involved in thermogenesis, suggesting selective inhibition of HDAC3 in brown and beige fat might hold therapeutic potential for counteracting human obesity and metabolic disorders.
Collapse
Affiliation(s)
- Jiling Liao
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Juan Jiang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Respiratory Medicine, Key Site of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Heejin Jun
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Xiaona Qiao
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Margo P Emont
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Dong-il Kim
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Correspondence: Jun Wu, PhD, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Room 5115A, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
106
|
Hung KC, Lin ML, Hsu SW, Lee CC, Huang RY, Wu TS, Chen SS. Suppression of Akt-mediated HDAC3 expression and CDK2 T39 phosphorylation by a bichalcone analog contributes to S phase retardation of cancer cells. Eur J Pharmacol 2018; 829:141-150. [DOI: 10.1016/j.ejphar.2018.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/23/2022]
|
107
|
Meier-Soelch J, Jurida L, Weber A, Newel D, Kim J, Braun T, Schmitz ML, Kracht M. RNAi-Based Identification of Gene-Specific Nuclear Cofactor Networks Regulating Interleukin-1 Target Genes. Front Immunol 2018; 9:775. [PMID: 29755455 PMCID: PMC5934416 DOI: 10.3389/fimmu.2018.00775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
The potent proinflammatory cytokine interleukin (IL)-1 triggers gene expression through the NF-κB signaling pathway. Here, we investigated the cofactor requirements of strongly regulated IL-1 target genes whose expression is impaired in p65 NF-κB-deficient murine embryonic fibroblasts. By two independent small-hairpin (sh)RNA screens, we examined 170 genes annotated to encode nuclear cofactors for their role in Cxcl2 mRNA expression and identified 22 factors that modulated basal or IL-1-inducible Cxcl2 levels. The functions of 16 of these factors were validated for Cxcl2 and further analyzed for their role in regulation of 10 additional IL-1 target genes by RT-qPCR. These data reveal that each inducible gene has its own (quantitative) requirement of cofactors to maintain basal levels and to respond to IL-1. Twelve factors (Epc1, H2afz, Kdm2b, Kdm6a, Mbd3, Mta2, Phf21a, Ruvbl1, Sin3b, Suv420h1, Taf1, and Ube3a) have not been previously implicated in inflammatory cytokine functions. Bioinformatics analysis indicates that they are components of complex nuclear protein networks that regulate chromatin functions and gene transcription. Collectively, these data suggest that downstream from the essential NF-κB signal each cytokine-inducible target gene has further subtle requirements for individual sets of nuclear cofactors that shape its transcriptional activation profile.
Collapse
Affiliation(s)
- Johanna Meier-Soelch
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Liane Jurida
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Axel Weber
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Doris Newel
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Johnny Kim
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
108
|
Thomas EA, D'Mello SR. Complex neuroprotective and neurotoxic effects of histone deacetylases. J Neurochem 2018; 145:96-110. [PMID: 29355955 DOI: 10.1111/jnc.14309] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
By their ability to shatter quality of life for both patients and caregivers, neurodegenerative diseases are the most devastating of human disorders. Unfortunately, there are no effective or long-terms treatments capable of slowing down the relentless loss of neurons in any of these diseases. One impediment is the lack of detailed knowledge of the molecular mechanisms underlying the processes of neurodegeneration. While some neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, are mostly sporadic in nature, driven by both environment and genetic susceptibility, many others, including Huntington's disease, spinocerebellar ataxias, and spinal-bulbar muscular atrophy, are genetically inherited disorders. Surprisingly, given their different roots and etiologies, both sporadic and genetic neurodegenerative disorders have been linked to disease mechanisms involving histone deacetylase (HDAC) proteins, which consists of 18 family members with diverse functions. While most studies have implicated certain HDAC subtypes in promoting neurodegeneration, a substantial body of literature suggests that other HDAC proteins can preserve neuronal viability. Of particular interest, however, is the recent realization that a single HDAC subtype can have both neuroprotective and neurotoxic effects. Diverse mechanisms, beyond transcriptional regulation have been linked to these effects, including deacetylation of non-histone proteins, protein-protein interactions, post-translational modifications of the HDAC proteins themselves and direct interactions with disease proteins. The roles of these HDACs in both sporadic and genetic neurodegenerative diseases will be discussed in the current review.
Collapse
Affiliation(s)
- Elizabeth A Thomas
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
109
|
Lu XF, Cao XY, Zhu YJ, Wu ZR, Zhuang X, Shao MY, Xu Q, Zhou YJ, Ji HJ, Lu QR, Shi YJ, Zeng Y, Bu H. Histone deacetylase 3 promotes liver regeneration and liver cancer cells proliferation through signal transducer and activator of transcription 3 signaling pathway. Cell Death Dis 2018; 9:398. [PMID: 29540666 PMCID: PMC5852132 DOI: 10.1038/s41419-018-0428-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 02/05/2023]
Abstract
Histone deacetylase 3 (HDAC3) plays pivotal roles in cell cycle regulation and is often aberrantly expressed in various cancers including hepatocellular carcinoma (HCC), but little is known about its role in liver regeneration and liver cancer cells proliferation. Using an inducible hepatocyte-selective HDAC3 knockout mouse, we find that lack of HDAC3 dramatically impaired liver regeneration and blocked hepatocyte proliferation in the G1 phase entry. HDAC3 inactivation robustly disrupted the signal transducer and activator of transcription 3 (STAT3) cascade. HDAC3 silencing impaired the ac-STAT3-to-p-STAT3 transition in the cytoplasm, leading to the subsequent breakdown of STAT3 signaling. Furthermore, overexpressed HDAC3 was further associated with increased tumor growth and a poor prognosis in HCC patients. Inhibition of HDAC3 expression reduced liver cancer cells growth and inhibited xenograft tumor growth. Our results suggest that HDAC3 is an important regulator of STAT3-dependent cell proliferation in liver regeneration and cancer. These findings provide novel insights into the HDAC3-STAT3 pathway in liver pathophysiological processes.
Collapse
Affiliation(s)
- Xu-Feng Lu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Yue Cao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong-Jie Zhu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen-Ru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Zhuang
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ming-Yang Shao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Xu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong-Jie Zhou
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong-Jie Ji
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing-Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 25229, USA
| | - Yu-Jun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Zeng
- Department of Liver and Vascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Bu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
110
|
Chen WB, Gao L, Wang J, Wang YG, Dong Z, Zhao J, Mi QS, Zhou L. Conditional ablation of HDAC3 in islet beta cells results in glucose intolerance and enhanced susceptibility to STZ-induced diabetes. Oncotarget 2018; 7:57485-57497. [PMID: 27542279 PMCID: PMC5295367 DOI: 10.18632/oncotarget.11295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate gene expression by modifying chromatin structure through removal of acetyl groups from target histones or non-histone proteins. Previous in vitro studies suggest that HDACs may be novel pharmacological targets in immune-mediated islet β-cell destruction. However, the role of specific HDAC in islet β-cell development and function remain unclear. Here, we generated a conditional islet β-cells specific HDAC3 deletion mouse model to determine the consequences of HDAC3 depletion on islet β-cell differentiation, maintenance and function. Islet morphology, insulin secretion, glucose tolerance, and multiple low-dose streptozotocin (STZ)-induced diabetes incidence were evaluated and compared between HDAC3 knockout and wild type littermate controls. Mice with β-cell-specific HDAC3 deletion displayed decreased pancreatic insulin content, disrupted glucose-stimulated insulin secretion, with intermittent spontaneous diabetes and dramatically enhanced susceptibility to STZ-induced diabetes. Furthermore, islet β-cell line, MIN6 cells with siRNA-mediated HDAC3 silence, showed decreased insulin gene transcription, which was mediated, at least partially, through the upregulation of suppressors of cytokine signaling 3 (SOCS3). These results indicate the critical role of HDAC3 in normal β-cell differentiation, maintenance and function.
Collapse
Affiliation(s)
- Wen-Bin Chen
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Ling Gao
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jie Wang
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Gang Wang
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Augusta University, GA, USA
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
111
|
Xie R, Tang P, Yuan Q. Rational design and characterization of a DNA/HDAC dual-targeting inhibitor containing nitrogen mustard and 2-aminobenzamide moieties. MEDCHEMCOMM 2018; 9:344-352. [PMID: 30108928 PMCID: PMC6083786 DOI: 10.1039/c7md00476a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/26/2017] [Indexed: 01/01/2023]
Abstract
Histone deacetylases (HDACs) play a key role not only in gene expression but also in DNA repair. Herein, we report the rational design and characterization of a compound named chlordinaline containing nitrogen mustard and 2-aminobenzamide moieties as a DNA/HDAC dual-targeting inhibitor. Chlordinaline exhibited moderate total HDAC inhibitory activity. The HDAC isoform selectivity assay indicated that chlordinaline mostly inhibits HDAC3. Chlordinaline exhibited both DNA and HDAC inhibitory activities and showed potent antiproliferative activity against all the six test cancer cell lines with IC50 values of as low as 3.1-14.2 μM, which is significantly more potent than reference drugs chlorambucil and tacedinaline. Chlordinaline could induce the apoptosis and G2/M phase cell cycle arrest of A375 cancer cells. This study demonstrates that combining nitrogen mustard and 2-aminobenzamide moieties into one molecule is an effective method to obtain DNA/HDAC dual-targeting inhibitors as potent antitumor agents. Chlordinaline as the first example of such DNA/HDAC dual-targeting inhibitors could be a promising candidate for cancer therapy and could also be a lead compound for further optimization.
Collapse
Affiliation(s)
- Rui Xie
- Beijing Laboratory of Biomedical Materials , College of Life Science and Technology , Beijing University of Chemical Technology , 15 Beisanhuan East Road , Beijing 100029 , China .
| | - Pingwah Tang
- Beijing Laboratory of Biomedical Materials , College of Life Science and Technology , Beijing University of Chemical Technology , 15 Beisanhuan East Road , Beijing 100029 , China .
| | - Qipeng Yuan
- Beijing Laboratory of Biomedical Materials , College of Life Science and Technology , Beijing University of Chemical Technology , 15 Beisanhuan East Road , Beijing 100029 , China .
| |
Collapse
|
112
|
Tharkar-Promod S, Johnson DP, Bennett SE, Dennis EM, Banowsky BG, Jones SS, Shearstone JR, Quayle SN, Min C, Jarpe M, Mosbruger T, Pomicter AD, Miles RR, Chen WY, Bhalla KN, Zweidler-McKay PA, Shrieve DC, Deininger MW, Chandrasekharan MB, Bhaskara S. HDAC1,2 inhibition and doxorubicin impair Mre11-dependent DNA repair and DISC to override BCR-ABL1-driven DSB repair in Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukemia. Leukemia 2018; 32:49-60. [PMID: 28579617 PMCID: PMC5716937 DOI: 10.1038/leu.2017.174] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/16/2017] [Accepted: 05/15/2017] [Indexed: 12/15/2022]
Abstract
Philadelphia chromosome-positive (Ph+) B-cell precursor acute lymphoblastic leukemia (ALL) expressing BCR-ABL1 oncoprotein is a major subclass of ALL with poor prognosis. BCR-ABL1-expressing leukemic cells are highly dependent on double-strand break (DSB) repair signals for their survival. Here we report that a first-in-class HDAC1,2 selective inhibitor and doxorubicin (a hyper-CVAD chemotherapy regimen component) impair DSB repair networks in Ph+ B-cell precursor ALL cells using common as well as distinct mechanisms. The HDAC1,2 inhibitor but not doxorubicin alters nucleosomal occupancy to impact chromatin structure, as revealed by MNase-Seq. Quantitative mass spectrometry of the chromatin proteome along with functional assays showed that the HDAC1,2 inhibitor and doxorubicin either alone or in combination impair the central hub of DNA repair, the Mre11-Rad51-DNA ligase 1 axis, involved in BCR-ABL1-specific DSB repair signaling in Ph+ B-cell precursor ALL cells. HDAC1,2 inhibitor and doxorubicin interfere with DISC (DNA damage-induced transcriptional silencing in cis)) or transcriptional silencing program in cis around DSB sites via chromatin remodeler-dependent and -independent mechanisms, respectively, to further impair DSB repair. HDAC1,2 inhibitor either alone or when combined with doxorubicin decreases leukemia burden in vivo in refractory Ph+ B-cell precursor ALL patient-derived xenograft mouse models. Overall, our novel mechanistic and preclinical studies together demonstrate that HDAC1,2 selective inhibition can overcome DSB repair 'addiction' and provide an effective therapeutic option for Ph+ B-cell precursor ALL.
Collapse
Affiliation(s)
- S Tharkar-Promod
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - D P Johnson
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - S E Bennett
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - E M Dennis
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - B G Banowsky
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - S S Jones
- Acetylon Pharmaceuticals Inc., Boston, MA, USA
- Regenacy Pharmaceuticals Inc., Boston, MA, USA
| | | | - S N Quayle
- Acetylon Pharmaceuticals Inc., Boston, MA, USA
| | - C Min
- Acetylon Pharmaceuticals Inc., Boston, MA, USA
| | - M Jarpe
- Regenacy Pharmaceuticals Inc., Boston, MA, USA
| | - T Mosbruger
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - A D Pomicter
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - R R Miles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - W Y Chen
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, CA, USA
| | - K N Bhalla
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P A Zweidler-McKay
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D C Shrieve
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - M W Deininger
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - M B Chandrasekharan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - S Bhaskara
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
113
|
Bao M, Xie J, Piruska A, Huck WTS. 3D microniches reveal the importance of cell size and shape. Nat Commun 2017; 8:1962. [PMID: 29213086 PMCID: PMC5719012 DOI: 10.1038/s41467-017-02163-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/09/2017] [Indexed: 12/22/2022] Open
Abstract
Geometrical cues have been shown to alter gene expression and differentiation on 2D substrates. However, little is known about how geometrical cues affect cell function in 3D. One major reason for this lack of understanding is rooted in the difficulties of controlling cell geometry in a complex 3D setting and for long periods of culture. Here, we present a robust method to control cell volume and shape of individual human mesenchymal stem cells (hMSCs) inside 3D microniches with a range of different geometries (e.g., cylinder, triangular prism, cubic, and cuboid). We find that the actin filaments, focal adhesions, nuclear shape, YAP/TAZ localization, cell contractility, nuclear accumulation of histone deacetylase 3, and lineage selection are all sensitive to cell volume. Our 3D microniches enable fundamental studies on the impact of biophysical cues on cell fate, and have potential applications in investigating how multicellular architectures organize within geometrically well-defined 3D spaces.
Collapse
Affiliation(s)
- Min Bao
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Jing Xie
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Aigars Piruska
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
114
|
Janardhan HP, Milstone ZJ, Shin M, Lawson ND, Keaney JF, Trivedi CM. Hdac3 regulates lymphovenous and lymphatic valve formation. J Clin Invest 2017; 127:4193-4206. [PMID: 29035278 PMCID: PMC5663362 DOI: 10.1172/jci92852] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/31/2017] [Indexed: 12/29/2022] Open
Abstract
Lymphedema, the most common lymphatic anomaly, involves defective lymphatic valve development; yet the epigenetic modifiers underlying lymphatic valve morphogenesis remain elusive. Here, we showed that during mouse development, the histone-modifying enzyme histone deacetylase 3 (Hdac3) regulates the formation of both lymphovenous valves, which maintain the separation of the blood and lymphatic vascular systems, and the lymphatic valves. Endothelium-specific ablation of Hdac3 in mice led to blood-filled lymphatic vessels, edema, defective lymphovenous valve morphogenesis, improper lymphatic drainage, defective lymphatic valve maturation, and complete lethality. Hdac3-deficient lymphovenous valves and lymphatic vessels exhibited reduced expression of the transcription factor Gata2 and its target genes. In response to oscillatory shear stress, the transcription factors Tal1, Gata2, and Ets1/2 physically interacted with and recruited Hdac3 to the evolutionarily conserved E-box–GATA–ETS composite element of a Gata2 intragenic enhancer. In turn, Hdac3 recruited histone acetyltransferase Ep300 to form an enhanceosome complex that promoted Gata2 expression. Together, these results identify Hdac3 as a key epigenetic modifier that maintains blood-lymph separation and integrates both extrinsic forces and intrinsic cues to regulate lymphatic valve development.
Collapse
Affiliation(s)
| | | | - Masahiro Shin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - John F Keaney
- Division of Cardiovascular Medicine.,Department of Medicine, and
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine.,Department of Medicine, and.,Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
115
|
Poleshko A, Shah PP, Gupta M, Babu A, Morley MP, Manderfield LJ, Ifkovits JL, Calderon D, Aghajanian H, Sierra-Pagán JE, Sun Z, Wang Q, Li L, Dubois NC, Morrisey EE, Lazar MA, Smith CL, Epstein JA, Jain R. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction. Cell 2017; 171:573-587.e14. [PMID: 29033129 DOI: 10.1016/j.cell.2017.09.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 01/15/2023]
Abstract
Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery.
Collapse
Affiliation(s)
- Andrey Poleshko
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parisha P Shah
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mudit Gupta
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren J Manderfield
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie L Ifkovits
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Damelys Calderon
- Department of Cell, Developmental, and Regenerative Biology, Mindich Child Health and Development Institute, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haig Aghajanian
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Javier E Sierra-Pagán
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qiaohong Wang
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole C Dubois
- Department of Cell, Developmental, and Regenerative Biology, Mindich Child Health and Development Institute, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Edward E Morrisey
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl L Smith
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
116
|
Xie R, Li Y, Tang P, Yuan Q. Rational design, synthesis and preliminary antitumor activity evaluation of a chlorambucil derivative with potent DNA/HDAC dual-targeting inhibitory activity. Bioorg Med Chem Lett 2017; 27:4415-4420. [DOI: 10.1016/j.bmcl.2017.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 12/29/2022]
|
117
|
Age-related alterations in histone deacetylase expression in Purkinje neurons of ethanol-fed rats. Brain Res 2017; 1675:8-19. [PMID: 28855102 DOI: 10.1016/j.brainres.2017.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
Ethanol and age-induced pathologies of the Purkinje neuron (PN) may result from histone deacetylases (HDACs), enzymes which repress transcription through coiling of the DNA. The purposes of this study were to investigate expression patterns of Class 1 and IIa HDACs in PN and the effects of aging and alcohol on the density of HDACs and histone acetylation in PN. Ninety, eight month old rats (30/diet) were fed a liquid ethanol, liquid control, or rat chow diet for 10, 20, or 40weeks (30/treatment duration). Double immunocytochemical labeling on tissue sections from these rats used antibodies against HDAC isoforms or acetylated histones, and calbindin, a marker for PN. Fluorescent intensities were also measured. Results showed a significant age but not an alcohol-related decrease in the densities of HDACs 2, 3, and 7. In contrast, there were age related-increases in the densities of phosphorylated form of HDAC (4, 5, 7) PN and in PN nuclei expressing HDAC 7. There were also a trend towards ethanol-induced inhibition of acetylation as the density of AH2b PN nuclei and AH3 and AH2b fluorescent intensity was significantly lower in the EF compared to the PF rats. This study presents unique data concerning which HDACs are commonly expressed in PN and indicates that aging rather than lengthy alcohol expression alters expression of the HDACs studied here. These results also suggest that lengthy ethanol consumption may inhibit histone deacetylation in PN.
Collapse
|
118
|
Tian J, Lin Y, Yu J. E2F8 confers cisplatin resistance to ER+ breast cancer cells via transcriptionally activating MASTL. Biomed Pharmacother 2017; 92:919-926. [DOI: 10.1016/j.biopha.2017.05.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 12/01/2022] Open
|
119
|
Deacetylase activity of histone deacetylase 3 is required for productive VDJ recombination and B-cell development. Proc Natl Acad Sci U S A 2017; 114:8608-8613. [PMID: 28739911 DOI: 10.1073/pnas.1701610114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase 3 (HDAC3) is the catalytic component of NCoR/SMRT corepressor complexes that mediate the actions of transcription factors implicated in the regulation of B-cell development and function. We crossed Hdac3 conditional knockout mice with Mb1-Cre knockin animals to delete Hdac3 in early progenitor B cells. The spleens of Hdac3F/-Mb1-Cre+/- mice were virtually devoid of mature B cells, and B220+CD43+ B-cell progenitors accumulated within the bone marrow. Quantitative deep sequencing of the Ig heavy chain locus from B220+CD43+ populations identified a defect in VHDJH recombination with a severe reduction in productive rearrangements, which directly corresponded to the loss of pre-B cells from Hdac3Δ/- bone marrow. For Hdac3Δ/- B cells that did show productive VDJ rearrangement, there was significant skewing toward the incorporation of proximal VH gene segments and a corresponding reduction in distal VH gene segment use. Although transcriptional effects within these loci were modest, Hdac3Δ/- progenitor cells displayed global changes in chromatin structure that likely hindered effective distal V-DJ recombination. Reintroduction of wild-type Hdac3 restored normal B-cell development, whereas an Hdac3 point mutant lacking deacetylase activity failed to complement this defect. Thus, the deacetylase activity of Hdac3 is required for the generation of mature B cells.
Collapse
|
120
|
Thapa P, Romero Arocha S, Chung JY, Sant'Angelo DB, Shapiro VS. Histone deacetylase 3 is required for iNKT cell development. Sci Rep 2017; 7:5784. [PMID: 28724935 PMCID: PMC5517478 DOI: 10.1038/s41598-017-06102-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
NKT cells are a distinct subset that have developmental requirements that often differ from conventional T cells. Here, we show that NKT-specific deletion of Hdac3 results in a severe reduction in the number of iNKT cells, particularly of NKT1 cells. In addition, there is decreased cytokine production by Hdac3-deficient NKT2 and NKT17 cells. Hdac3-deficient iNKT cells have increased cell death that is not rescued by transgenic expression of Bcl-2 or Bcl-xL. Hdac3-deficient iNKT cells have less Cyto-ID staining and lower LC3A/B expression, indicative of reduced autophagy. Interestingly, Hdac3-deficient iNKT cells also have lower expression of the nutrient receptors GLUT1, CD71 and CD98, which would increase the need for autophagy when nutrients are limiting. Therefore, Hdac3 is required for iNKT cell development and differentiation.
Collapse
Affiliation(s)
- Puspa Thapa
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Ji Young Chung
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Derek B Sant'Angelo
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School and The Children's Health Institute of New Jersey, 89 French Street, Room 4273, New Brunswick, NJ, 08901, USA
| | | |
Collapse
|
121
|
Emmett MJ, Lim HW, Jager J, Richter HJ, Adlanmerini M, Peed LC, Briggs ER, Steger DJ, Ma T, Sims CA, Baur JA, Pei L, Won KJ, Seale P, Gerhart-Hines Z, Lazar MA. Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge. Nature 2017; 546:544-548. [PMID: 28614293 PMCID: PMC5826652 DOI: 10.1038/nature22819] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 05/03/2017] [Indexed: 12/18/2022]
Abstract
Brown adipose tissue is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease. However, the transcriptional mechanisms that determine the thermogenic capacity of brown adipose tissue before environmental cold are unknown. Here we show that histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude. Mice with brown adipose tissue-specific genetic ablation of HDAC3 become severely hypothermic and succumb to acute cold exposure. Uncoupling protein 1 (UCP1) is nearly absent in brown adipose tissue lacking HDAC3, and there is also marked downregulation of mitochondrial oxidative phosphorylation genes resulting in diminished mitochondrial respiration. Remarkably, although HDAC3 acts canonically as a transcriptional corepressor, it functions as a coactivator of oestrogen-related receptor α (ERRα) in brown adipose tissue. HDAC3 coactivation of ERRα is mediated by deacetylation of PGC-1α and is required for the transcription of Ucp1, Ppargc1a (encoding PGC-1α), and oxidative phosphorylation genes. Importantly, HDAC3 promotes the basal transcription of these genes independently of adrenergic stimulation. Thus, HDAC3 uniquely primes Ucp1 and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in brown adipose tissue that can be rapidly engaged upon exposure to dangerously cold temperature.
Collapse
Affiliation(s)
- Matthew J. Emmett
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Jager
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah J. Richter
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marine Adlanmerini
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsey C. Peed
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika R. Briggs
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J. Steger
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tao Ma
- Section for Metabolic Receptology at the Novo Nordisk Foundation Center for Basic Metabolic Research, and Institute for Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, 2200, DK
| | - Carrie A. Sims
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- The Trauma Center at Penn, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Joseph A. Baur
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liming Pei
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, and Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zachary Gerhart-Hines
- Section for Metabolic Receptology at the Novo Nordisk Foundation Center for Basic Metabolic Research, and Institute for Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, 2200, DK
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
122
|
Targeting HDAC3, a new partner protein of AKT in the reversal of chemoresistance in acute myeloid leukemia via DNA damage response. Leukemia 2017; 31:2761-2770. [PMID: 28462918 DOI: 10.1038/leu.2017.130] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 01/21/2023]
Abstract
Resistance to cytotoxic chemotherapy drugs remains as the major cause of treatment failure in acute myeloid leukemia. Histone deacetylases (HDAC) are important regulators to maintain chromatin structure and control DNA damage; nevertheless, how each HDAC regulates genome stability remains unclear, especially under genome stress conditions. Here, we identified a mechanism by which HDAC3 regulates DNA damage repair and mediates resistance to chemotherapy drugs. In addition to inducing DNA damage, chemotherapy drugs trigger upregulation of HDAC3 expression in leukemia cells. Using genetic and pharmacological approaches, we show that HDAC3 contributes to chemotherapy resistance by regulating the activation of AKT, a well-documented factor in drug resistance development. HDAC3 binds to AKT and deacetylates it at the site Lys20, thereby promoting the phosphorylation of AKT. Chemotherapy drug exposure enhances the interaction between HDAC3 and AKT, resulting in decrease in AKT acetylation and increase in AKT phosphorylation. Whereas HDAC3 depletion or inhibition abrogates these responses and meanwhile sensitizes leukemia cells to chemotoxicity-induced apoptosis. Importantly, in vivo HDAC3 suppression reduces leukemia progression and sensitizes MLL-AF9+ leukemia to chemotherapy. Our findings suggest that combination therapy with HDAC3 inhibitor and genotoxic agents may constitute a successful strategy for overcoming chemotherapy resistance.
Collapse
|
123
|
Liu T, Wang R, Xu H, Song Y, Qi Y. A Highly Potent and Selective Histone Deacetylase 6 Inhibitor Prevents DSS-Induced Colitis in Mice. Biol Pharm Bull 2017; 40:936-940. [PMID: 28321036 DOI: 10.1248/bpb.b16-01023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammatory bowel disease (IBD) is a refractory illness with remarkably increasing incidence rate all over the world. However, no desirable treatment scheme is available. Therefore, research and development of new drugs for treating IBD are urgently needed. Histone deacetylase 6 (HDAC6) is considered to be a pro-inflammatory factor, thus the inhibitors specifically-targeting HDAC6 may find their way in IBD treatment. In this study, we evaluated the anti-inflammatory activity of a novel potent and selective HDAC6 inhibitor, LTB2, in dextran sulfate sodium (DSS)-induced colitis mouse model. It was found that LTB2 treatment significantly alleviated DSS-induced colitis in mice, as evidenced by body weight, colon length, histological examination, and the disease activity index (DAI) scores of rectal bleeding and diarrhea. More importantly, it showed a better protective effect on the DSS-induced colitis mice than the commonly used mesalazine in the clinic. Our results demonstrated that selective HDAC6 inhibitors may have a good prospect for IBD treatment.
Collapse
Affiliation(s)
- Ting Liu
- School of Pharmacy, Second Military Medical University
| | - Renping Wang
- School of Pharmacy, Second Military Medical University
| | - Haojie Xu
- School of Pharmacy, Second Military Medical University
| | - Yunlong Song
- School of Pharmacy, Second Military Medical University
| | - Yunpeng Qi
- School of Pharmacy, Second Military Medical University
| |
Collapse
|
124
|
Selective Inhibitors of Histone Deacetylases 1 and 2 Synergize with Azacitidine in Acute Myeloid Leukemia. PLoS One 2017; 12:e0169128. [PMID: 28060870 PMCID: PMC5218480 DOI: 10.1371/journal.pone.0169128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of hematopoietic stem cell disorders characterized by defects in myeloid differentiation and increased proliferation of neoplastic hematopoietic precursor cells. Outcomes for patients with AML remain poor, highlighting the need for novel treatment options. Aberrant epigenetic regulation plays an important role in the pathogenesis of AML, and inhibitors of DNA methyltransferase or histone deacetylase (HDAC) enzymes have exhibited activity in preclinical AML models. Combination studies with HDAC inhibitors plus DNA methyltransferase inhibitors have potential beneficial clinical activity in AML, however the toxicity profiles of non-selective HDAC inhibitors in the combination setting limit their clinical utility. In this work, we describe the preclinical development of selective inhibitors of HDAC1 and HDAC2, which are hypothesized to have improved safety profiles, for combination therapy in AML. We demonstrate that selective inhibition of HDAC1 and HDAC2 is sufficient to achieve efficacy both as a single agent and in combination with azacitidine in preclinical models of AML, including established AML cell lines, primary leukemia cells from AML patient bone marrow samples and in vivo xenograft models of human AML. Gene expression profiling of AML cells treated with either an HDAC1/2 inhibitor, azacitidine, or the combination of both have identified a list of genes involved in transcription and cell cycle regulation as potential mediators of the combinatorial effects of HDAC1/2 inhibition with azacitidine. Together, these findings support the clinical evaluation of selective HDAC1/2 inhibitors in combination with azacitidine in AML patients.
Collapse
|
125
|
Carpio LR, Bradley EW, Westendorf JJ. Histone deacetylase 3 suppresses Erk phosphorylation and matrix metalloproteinase (Mmp)-13 activity in chondrocytes. Connect Tissue Res 2017; 58:27-36. [PMID: 27662443 PMCID: PMC5609188 DOI: 10.1080/03008207.2016.1236088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Histone deacetylase (Hdac3) inhibitors are emerging therapies for many diseases including cancers and neurological disorders; however, these drugs are teratogens to the developing skeleton. Hdac3 is essential for proper endochondral ossification as its deletion in chondrocytes increases cytokine signaling and the expression of matrix remodeling enzymes. Here we explored the mechanism by which Hdac3 controls matrix metalloproteinase (Mmp)-13 expression in chondrocytes. In Hdac3-depleted chondrocytes, extracellular signal-regulated kinase (Erk)1/2 as well as its downstream substrate, Runx2, were hyperphosphorylated as a result of decreased expression and activity of the Erk1/2 specific phosphatase, Dusp6. Erk1/2 kinase inhibitors and Dusp6 adenoviruses reduced Mmp13 expression and partially rescued matrix production in Hdac3-deficient chondrocytes. Postnatal chondrocyte-specific deletion of Hdac3 with an inducible Col2a1-Cre caused premature production of pErk1/2 and Mmp13 in the growth plate. Thus, Hdac3 controls the temporal and spatial expression of tissue-remodeling genes in chondrocytes to ensure proper endochondral ossification during development.
Collapse
Affiliation(s)
- Lomeli R. Carpio
- Mayo Graduate School, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Jennifer J. Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
126
|
Zhu KT, Wu ZR, Lu XF, Ji HJ, Zhou YJ, Cao XY, Zhu YJ, Bu H, Shi YJ. Clinical significance of expression of histone deacetylase 3 in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2017; 25:922. [DOI: 10.11569/wcjd.v25.i10.922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
127
|
Osipovich AB, Gangula R, Vianna PG, Magnuson MA. Setd5 is essential for mammalian development and the co-transcriptional regulation of histone acetylation. Development 2016; 143:4595-4607. [PMID: 27864380 PMCID: PMC5201031 DOI: 10.1242/dev.141465] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/06/2016] [Indexed: 02/02/2023]
Abstract
SET domain-containing proteins play a vital role in regulating gene expression during development through modifications in chromatin structure. Here we show that SET domain-containing 5 (Setd5) is divergently transcribed with Gt(ROSA26)Sor, is necessary for mammalian development, and interacts with the PAF1 co-transcriptional complex and other proteins. Setd5-deficient mouse embryos exhibit severe defects in neural tube formation, somitogenesis and cardiac development, have aberrant vasculogenesis in embryos, yolk sacs and placentas, and die between embryonic day 10.5 and 11.5. Setd5-deficient embryonic stem cells have impaired cellular proliferation, increased apoptosis, defective cell cycle progression, a diminished ability to differentiate into cardiomyocytes and greatly perturbed gene expression. SETD5 co-immunoprecipitates with multiple components of the PAF1 and histone deacetylase-containing NCoR complexes and is not solely required for major histone lysine methylation marks. In the absence of Setd5, histone acetylation is increased at transcription start sites and near downstream regions. These findings suggest that SETD5 functions in a manner similar to yeast Set3p and Drosophila UpSET, and that it is essential for regulating histone acetylation during gene transcription.
Collapse
Affiliation(s)
- Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Rama Gangula
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Pedro G Vianna
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A Magnuson
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
128
|
Roos WP, Krumm A. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Nucleic Acids Res 2016; 44:10017-10030. [PMID: 27738139 PMCID: PMC5137451 DOI: 10.1093/nar/gkw922] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/02/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022] Open
Abstract
Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD+ dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair. Furthermore, we discuss possible mechanisms whereby these histone/protein deacetylases facilitate the switch between DNA double-strand break (DSB) repair pathways, how SIRTs play a central role in the crosstalk between DNA repair and cell death pathways due to their dependence on NAD+, and the influence of small molecule HDAC inhibitors (HDACi) on cancer cell resistance to genotoxin based therapies. Throughout the review, we endeavor to identify the specific HDAC targeted by HDACi leading to therapy sensitization.
Collapse
Affiliation(s)
- Wynand Paul Roos
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Andrea Krumm
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
129
|
Watanabe S, Kuwabara Y, Suehiro S, Yamashita D, Tanaka M, Tanaka A, Ohue S, Araki H. Valproic acid reduces hair loss and improves survival in patients receiving temozolomide-based radiation therapy for high-grade glioma. Eur J Clin Pharmacol 2016; 73:357-363. [PMID: 27889835 DOI: 10.1007/s00228-016-2167-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is also used to manage seizures in glioblastoma patients. HDAC inhibitors can protect normal cells and tissues from the deleterious effects of radiotherapy, and VPA is reported to improve the survival of glioblastoma patients receiving chemoradiation therapy. VPA also promotes hair growth, and thus has the potential to reduce the radiotherapy side effect of hair loss while improving the survival of patients with glioblastoma. The purpose of this study was to determine whether VPA use during radiotherapy for high-grade glioma is associated with decreased side effects of radiotherapy and an improvement in overall survival (OS) and progression-free survival (PFS). METHODS Medical records of 112 patients with high-grade glioma were retrospectively reviewed. We grouped patients by VPA use or non-use during radiotherapy, and evaluated hair loss, OS, and PFS. RESULTS The radiation dose and fractionation at the onset of hair loss were 4 Gy and two fractions higher, respectively, in the VPA group compared with the VPA non-use group (P < 0.01). Median OS was 42.2 and 20.3 months in the VPA use and non-use groups, respectively (P < 0.01; hazard ratio [HR], 0.36; 95% confidence interval [CI], 0.18-0.74). Median PFS was 22.7 and 11.0 months in the VPA use and non-use groups, respectively (P = 0.099; HR, 0.62; 95% CI, 0.36-1.09). CONCLUSIONS VPA use during radiotherapy for glioma is associated with delayed hair loss and improvement in survival. Hair loss prevention benefits patients suffering from the deleterious effects of radiation.
Collapse
Affiliation(s)
- Shinichi Watanabe
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yui Kuwabara
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Satoshi Suehiro
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Daisuke Yamashita
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mamoru Tanaka
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Akihiro Tanaka
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Shiro Ohue
- Department of Neurosurgery, Ehime Prefecture Central Hospital, 83 Kasuga-cho, Matsuyama, Ehime, 790-0024, Japan
| | - Hiroaki Araki
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
130
|
Bose P, Verstovsek S. Investigational histone deacetylase inhibitors (HDACi) in myeloproliferative neoplasms. Expert Opin Investig Drugs 2016; 25:1393-1403. [PMID: 27756180 DOI: 10.1080/13543784.2016.1250882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The Philadelphia chromosome negative myeloproliferative neoplasms (MPN) mainly comprise polycythemia vera (PV), essential thrombocythemia (ET) and myelofibrosis (MF, primary or post-PV/ET). Therapy in PV and ET focuses on minimizing thrombosis and bleeding risk, while in MF, prolongation of survival is an important goal. Different cytoreductive agents are employed in high risk PV and ET, while the JAK inhibtior ruxolitinib is the cornerstone of therapy in MF. Histone deacetylase inhibitors (HDACi) are pleiotropic agents with diverse epigenetic and non-epigenetic actions, selectively in transformed cells. A number of HDACi have been or are being investigated in MPN. Areas covered: The mechanisms of action of HDACI in neoplastic cells are summarized, and the preclinical rationale and data supporting their development in MPN specifically examined, particularly their synergism with JAK inhibitors. Major findings of clinical trials of HDACi, both alone and in combination with ruxolitinib, in MPN are then discussed, with particular attention to their toxicities and disease-modifying effects. Expert opinion: HDACi are clearly active in MPN, and there is good preclinical rationale for this. Their combination with ruxolitinib in MF is promising, but the long-term tolerability of these agents is an important concern. Further development in PV or ET appears unlikely.
Collapse
Affiliation(s)
- Prithviraj Bose
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Srdan Verstovsek
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
131
|
Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine. Cell Oncol (Dordr) 2016; 40:21-32. [PMID: 27766591 DOI: 10.1007/s13402-016-0301-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Glioblastoma (GBM) ranks among the deadliest solid cancers worldwide and its prognosis has remained dismal, despite the use of aggressive chemo-irradiation treatment regimens. Limited drug delivery into the brain parenchyma and frequent resistance to currently available therapies are problems that call for a prompt development of novel therapeutic strategies. While only displaying modest efficacies as mono-therapy in pre-clinical settings, histone deacetylase inhibitors (HDACi) have shown promising sensitizing effects to a number of cytotoxic agents. Here, we sought to investigate the sensitizing effect of the HDACi trichostatin A (TSA) to the alkylating agent lomustine (CCNU), which is used in the clinic for the treatment of GBM. METHODS Twelve primary GBM cell cultures grown as neurospheres were used in this study, as well as one established GBM-derived cell line (U87 MG). Histone deacetylase (HDAC) expression levels were determined using quantitative real-time PCR and Western blotting. The efficacy of either CCNU alone or its combination with TSA was assessed using various assays, i.e., cell viability assays (MTT), cell cycle assays (flow cytometry, FACS), double-strand DNA break (DSB) quantification assays (microscopy/immunofluorescence) and expression profiling assays of proteins involved in apoptosis and cell stress (Western blotting and protein array). RESULTS We found that the HDAC1, 3 and 6 expression levels were significantly increased in GBM samples compared to non-neoplastic brain control samples. Additionally, we found that pre-treatment of GBM cells with TSA resulted in an enhancement of their sensitivity to CCNU, possibly via the accumulation of DSBs, decreased cell proliferation and viability rates, and an increased apoptotic rate. CONCLUSION From our data we conclude that the combined administration of TSA and CCNU eradicates GBM cells with a higher efficacy than either drug alone, thereby opening a novel avenue for the treatment of GBM.
Collapse
|
132
|
Marini F, Cianferotti L, Brandi ML. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices? Int J Mol Sci 2016; 17:ijms17081329. [PMID: 27529237 PMCID: PMC5000726 DOI: 10.3390/ijms17081329] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2), the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs). Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine's principles.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Surgery and Translational Medicine, University of Florence and Metabolic Bone Diseases Unit, University Hospital of Florence, Largo Palagi 1, 50139 Florence, Italy.
| | - Luisella Cianferotti
- Department of Surgery and Translational Medicine, University of Florence and Metabolic Bone Diseases Unit, University Hospital of Florence, Largo Palagi 1, 50139 Florence, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence and Metabolic Bone Diseases Unit, University Hospital of Florence, Largo Palagi 1, 50139 Florence, Italy.
| |
Collapse
|
133
|
Carpio LR, Bradley EW, McGee-Lawrence ME, Weivoda MM, Poston DD, Dudakovic A, Xu M, Tchkonia T, Kirkland JL, van Wijnen AJ, Oursler MJ, Westendorf JJ. Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling. Sci Signal 2016; 9:ra79. [PMID: 27507649 PMCID: PMC5409103 DOI: 10.1126/scisignal.aaf3273] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are efficacious epigenetic-based therapies for some cancers and neurological disorders; however, each of these drugs inhibits multiple HDACs and has detrimental effects on the skeleton. To better understand how HDAC inhibitors affect endochondral bone formation, we conditionally deleted one of their targets, Hdac3, pre- and postnatally in type II collagen α1 (Col2α1)-expressing chondrocytes. Embryonic deletion was lethal, but postnatal deletion of Hdac3 delayed secondary ossification center formation, altered maturation of growth plate chondrocytes, and increased osteoclast activity in the primary spongiosa. HDAC3-deficient chondrocytes exhibited increased expression of cytokine and matrix-degrading genes (Il-6, Mmp3, Mmp13, and Saa3) and a reduced abundance of genes related to extracellular matrix production, bone development, and ossification (Acan, Col2a1, Ihh, and Col10a1). Histone acetylation increased at and near genes that had increased expression. The acetylation and activation of nuclear factor κB (NF-κB) were also increased in HDAC3-deficient chondrocytes. Increased cytokine signaling promoted autocrine activation of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and NF-κB pathways to suppress chondrocyte maturation, as well as paracrine activation of osteoclasts and bone resorption. Blockade of interleukin-6 (IL-6)-JAK-STAT signaling, NF-κB signaling, and bromodomain extraterminal proteins, which recognize acetylated lysines and promote transcriptional elongation, significantly reduced Il-6 and Mmp13 expression in HDAC3-deficient chondrocytes and secondary activation in osteoclasts. The JAK inhibitor ruxolitinib also reduced osteoclast activity in Hdac3 conditional knockout mice. Thus, HDAC3 controls the temporal and spatial expression of tissue-remodeling genes and inflammatory responses in chondrocytes to ensure proper endochondral ossification during development.
Collapse
Affiliation(s)
- Lomeli R Carpio
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA. Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. Institute of Regenerative and Reparative Medicine, Augusta University, Augusta, GA 30912, USA
| | - Megan M Weivoda
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D Poston
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA. Creighton University, Omaha, NE 68102, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming Xu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre J van Wijnen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA. Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Merry Jo Oursler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA. Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA. Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
134
|
Abstract
The involvement of the epigenome in complex diseases is becoming increasingly clear and more feasible to study due to new genomic and computational technologies. Moreover, therapies altering the activities of proteins that modify and interpret the epigenome are available to treat cancers and neurological disorders. Many additional uses have been proposed for these drugs based on promising preclinical results, including in arthritis models. Understanding the effects of epigenomic drugs on the skeleton is of interest because of its importance in maintaining overall health and fitness. In this review, we summarize ongoing advancements in how one class of epigenetic modifiers, histone deacetylases (Hdacs), controls normal cartilage development and homeostasis, as well as recent work aimed at understanding the alterations in the expression and activities of these enzymes in osteoarthritis (OA). We also review recent studies utilizing Hdac inhibitors and discuss the potential therapeutic benefits and limitations of these drugs for preventing cartilage destruction in OA.
Collapse
|
135
|
Wilson AJ, Sarfo-Kantanka K, Barrack T, Steck A, Saskowski J, Crispens MA, Khabele D. Panobinostat sensitizes cyclin E high, homologous recombination-proficient ovarian cancer to olaparib. Gynecol Oncol 2016; 143:143-151. [PMID: 27444036 DOI: 10.1016/j.ygyno.2016.07.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Homologous recombination (HR) proficient ovarian cancers, including CCNE1 (cyclin E)-amplified tumors, are resistant to poly (ADP-ribose) polymerase inhibitors (PARPi). Histone deacetylase inhibitors (HDACi) are effective in overcoming tumor resistance to DNA damaging drugs. Our goal was to determine whether panobinostat, a newly FDA-approved HDACi, can sensitize cyclin E, HR-proficient ovarian cancer cells to the PARPi olaparib. METHODS Expression levels of CCNE1 (cyclin E), BRCA1, RAD51 and E2F1 in ovarian tumors and cell lines were extracted from The Cancer Genome Atlas (TCGA) and Broad-Novartis Cancer Cell Line Encyclopedia (CCLE). In HR-proficient ovarian cancer cell line models (OVCAR-3, OVCAR-4, SKOV-3, and UWB1.289+BRCA1 wild-type), cell growth and viability were assessed by sulforhodamine B and xenograft assays. DNA damage and repair (pH2AX and RAD51 co-localization and DRGFP reporter activity) and apoptosis (cleaved PARP and cleaved caspase-3) were assessed by immunofluorescence and Western blot assays. RESULTS TCGA and CCLE data revealed positive correlations (Spearman) between cyclin E E2F1, and E2F1 gene targets related to DNA repair (BRCA1 and RAD51). Panobinostat downregulated cyclin E and HR repair pathway genes, and reduced HR efficiency in cyclin E-amplified OVCAR-3 cells. Further, panobinostat synergized with olaparib in reducing cell growth and viability in HR-proficient cells. Similar co-operative effects were observed in xenografts, and on pharmacodynamic markers of HR repair, DNA damage and apoptosis. CONCLUSIONS These results provide preclinical rationale for using HDACi to reduce HR in cyclin E-overexpressing and other types of HR-proficient ovarian cancer as a means of enhancing PARPi activity.
Collapse
Affiliation(s)
- Andrew J Wilson
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Toby Barrack
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alexandra Steck
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jeanette Saskowski
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Marta A Crispens
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| | - Dineo Khabele
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt-Ingram Cancer Center, Nashville, TN, United States.
| |
Collapse
|
136
|
Nott A, Cheng J, Gao F, Lin YT, Gjoneska E, Ko T, Minhas P, Zamudio AV, Meng J, Zhang F, Jin P, Tsai LH. Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nat Neurosci 2016; 19:1497-1505. [PMID: 27428650 PMCID: PMC5083138 DOI: 10.1038/nn.4347] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/23/2016] [Indexed: 12/12/2022]
Abstract
Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT). The RTT missense MECP2R306C mutation prevents MeCP2 interaction with NCoR/Histone deacetylase 3 (HDAC3); however, the neuronal function of HDAC3 is incompletely understood. We report that neuronal deletion of Hdac3 in mice elicits abnormal locomotor coordination, sociability, and cognition. Transcriptional and chromatin profiling revealed HDAC3 positively regulates a subset of genes and is recruited to active gene promoters via MeCP2. HDAC3-associated promoters are enriched for the FOXO transcription factors, and FOXO acetylation is elevated in Hdac3 KO and Mecp2 KO neurons. Human RTT patient-derived MECP2R306C neural progenitor cells have deficits in HDAC3 and FOXO recruitment and gene expression. Gene editing of MECP2R306C cells to generate isogenic controls rescued HDAC3-FOXO-mediated impairments in gene expression. Our data suggests that HDAC3 interaction with MeCP2 positively regulates a subset of neuronal genes through FOXO deacetylation, and disruption of HDAC3 contributes to cognitive and social impairment.
Collapse
Affiliation(s)
- Alexi Nott
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jemmie Cheng
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Fan Gao
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yuan-Ta Lin
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Elizabeta Gjoneska
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tak Ko
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Paras Minhas
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Present addresses: Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA (P.M.), and Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China (J.M.)
| | - Alicia Viridiana Zamudio
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jia Meng
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Present addresses: Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA (P.M.), and Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China (J.M.)
| | - Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
137
|
Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1372-401. [PMID: 27296530 DOI: 10.1016/j.bbapap.2016.06.007] [Citation(s) in RCA: 563] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022]
Abstract
Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Line M Myklebust
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Rasmus Ree
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
138
|
Kyle SM, Saha PK, Brown HM, Chan LC, Justice MJ. MeCP2 co-ordinates liver lipid metabolism with the NCoR1/HDAC3 corepressor complex. Hum Mol Genet 2016; 25:3029-3041. [PMID: 27288453 PMCID: PMC5181597 DOI: 10.1093/hmg/ddw156] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/18/2016] [Indexed: 01/11/2023] Open
Abstract
Rett syndrome (RTT; OMIM 312750), a progressive neurological disorder, is caused by mutations in methyl-CpG-binding protein 2 (MECP2; OMIM 300005), a ubiquitously expressed factor. A genetic suppressor screen designed to identify therapeutic targets surprisingly revealed that downregulation of the cholesterol biosynthesis pathway improves neurological phenotypes in Mecp2 mutant mice. Here, we show that MeCP2 plays a direct role in regulating lipid metabolism. Mecp2 deletion in mice results in a host of severe metabolic defects caused by lipid accumulation, including insulin resistance, fatty liver, perturbed energy utilization, and adipose inflammation by macrophage infiltration. We show that MeCP2 regulates lipid homeostasis by anchoring the repressor complex containing NCoR1 and HDAC3 to its lipogenesis targets in hepatocytes. Consistently, we find that liver targeted deletion of Mecp2 causes fatty liver disease and dyslipidemia similar to HDAC3 liver-specific deletion. These findings position MeCP2 as a novel component in metabolic homeostasis. Rett syndrome patients also show signs of peripheral dyslipidemia; thus, together these data suggest that RTT should be classified as a neurological disorder with systemic metabolic components. We previously showed that treatment of Mecp2 mice with statin drugs alleviated motor symptoms and improved health and longevity. Lipid metabolism is a highly treatable target; therefore, our results shed light on new metabolic pathways for treatment of Rett syndrome.
Collapse
Affiliation(s)
- Stephanie M Kyle
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada.,Department of Molecular and Human Genetics
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Lawrence C Chan
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Monica J Justice
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada .,Department of Molecular and Human Genetics.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
139
|
Newbold A, Falkenberg KJ, Prince HM, Johnstone RW. How do tumor cells respond to HDAC inhibition? FEBS J 2016; 283:4032-4046. [PMID: 27112360 DOI: 10.1111/febs.13746] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/30/2016] [Accepted: 04/22/2016] [Indexed: 02/06/2023]
Abstract
It is now well recognized that mutations, deregulated expression, and aberrant recruitment of epigenetic readers, writers, and erasers are fundamentally important processes in the onset and maintenance of many human tumors. The molecular, biological, and biochemical characteristics of a particular class of epigenetic erasers, the histone deacetylases (HDACs), have been extensively studied and small-molecule HDAC inhibitors (HDACis) have now been clinically approved for the treatment of human hemopoietic malignancies. This review explores our current understanding of the biological and molecular effects on tumor cells following HDACi treatment. The predominant responses include induction of tumor cell death and inhibition of proliferation that in experimental models have been linked to therapeutic efficacy. However, tumor cell-intrinsic responses to HDACi, including modulating tumor immunogenicity have also been described and may have substantial roles in mediating the antitumor effects of HDACi. We posit that the field has failed to fully reconcile the biological consequences of exposure to HDACis with the molecular events that underpin these responses, however progress is being made. Understanding the pleiotrophic activities of HDACis on tumor cells will hopefully fast track the development of more potent and selective HDACi that may be used alone or in combination to improve patient outcomes.
Collapse
Affiliation(s)
- Andrea Newbold
- Cancer Therapeutics Program, The Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | | | - H Miles Prince
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia.,Division of Cancer Medicine, The Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia
| | - Ricky W Johnstone
- Cancer Therapeutics Program, The Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
140
|
Almouzni G, Cedar H. Maintenance of Epigenetic Information. Cold Spring Harb Perspect Biol 2016; 8:8/5/a019372. [PMID: 27141050 DOI: 10.1101/cshperspect.a019372] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The genome is subject to a diverse array of epigenetic modifications from DNA methylation to histone posttranslational changes. Many of these marks are somatically stable through cell division. This article focuses on our knowledge of the mechanisms governing the inheritance of epigenetic marks, particularly, repressive ones, when the DNA and chromatin template are duplicated in S phase. This involves the action of histone chaperones, nucleosome-remodeling enzymes, histone and DNA methylation binding proteins, and chromatin-modifying enzymes. Last, the timing of DNA replication is discussed, including the question of whether this constitutes an epigenetic mark that facilitates the propagation of epigenetic marks.
Collapse
Affiliation(s)
- Geneviève Almouzni
- Department of Nuclear Dynamics and Genome Plasticity, Institut Curie, Section de recherche, 75231 Paris Cedex 05, France
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Ein Kerem, Jerusalem, Israel 91120
| |
Collapse
|
141
|
Bhaskara S. Histone deacetylases 1 and 2 regulate DNA replication and DNA repair: potential targets for genome stability-mechanism-based therapeutics for a subset of cancers. Cell Cycle 2016; 14:1779-85. [PMID: 25942572 PMCID: PMC4614045 DOI: 10.1080/15384101.2015.1042634] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Histone deacetylases 1 and 2 (HDAC1,2) belong to the class I HDAC family, which are targeted by the FDA-approved small molecule HDAC inhibitors currently used in cancer therapy. HDAC1,2 are recruited to DNA break sites during DNA repair and to chromatin around forks during DNA replication. Cancer cells use DNA repair and DNA replication as survival mechanisms and to evade chemotherapy-induced cytotoxicity. Hence, it is vital to understand how HDAC1,2 function during the genome maintenance processes (DNA replication and DNA repair) in order to gain insights into the mode-of-action of HDAC inhibitors in cancer therapeutics. The first-in-class HDAC1,2-selective inhibitors and Hdac1,2 conditional knockout systems greatly facilitated dissecting the precise mechanisms by which HDAC1,2 control genome stability in normal and cancer cells. In this perspective, I summarize the findings on the mechanistic functions of class I HDACs, specifically, HDAC1,2 in genome maintenance, unanswered questions for future investigations and views on how this knowledge could be harnessed for better-targeted cancer therapeutics for a subset of cancers.
Collapse
Affiliation(s)
- Srividya Bhaskara
- a Department of Radiation Oncology and Department of Oncological Sciences; Huntsman Cancer Institute; University of Utah School of Medicine ; Salt Lake City , UT , USA
| |
Collapse
|
142
|
Astapova I. Role of co-regulators in metabolic and transcriptional actions of thyroid hormone. J Mol Endocrinol 2016; 56:73-97. [PMID: 26673411 DOI: 10.1530/jme-15-0246] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 12/18/2022]
Abstract
Thyroid hormone (TH) controls a wide range of physiological processes through TH receptor (TR) isoforms. Classically, TRs are proposed to function as tri-iodothyronine (T3)-dependent transcription factors: on positively regulated target genes, unliganded TRs mediate transcriptional repression through recruitment of co-repressor complexes, while T3 binding leads to dismissal of co-repressors and recruitment of co-activators to activate transcription. Co-repressors and co-activators were proposed to play opposite roles in the regulation of negative T3 target genes and hypothalamic-pituitary-thyroid axis, but exact mechanisms of the negative regulation by TH have remained elusive. Important insights into the roles of co-repressors and co-activators in different physiological processes have been obtained using animal models with disrupted co-regulator function. At the same time, recent studies interrogating genome-wide TR binding have generated compelling new data regarding effects of T3, local chromatin structure, and specific response element configuration on TR recruitment and function leading to the proposal of new models of transcriptional regulation by TRs. This review discusses data obtained in various mouse models with manipulated function of nuclear receptor co-repressor (NCoR or NCOR1) and silencing mediator of retinoic acid receptor and thyroid hormone receptor (SMRT or NCOR2), and family of steroid receptor co-activators (SRCs also known as NCOAs) in the context of TH action, as well as insights into the function of co-regulators that may emerge from the genome-wide TR recruitment analysis.
Collapse
Affiliation(s)
- Inna Astapova
- Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
143
|
Johnson DP, Spitz GS, Tharkar S, Quayle SN, Shearstone JR, Jones S, McDowell ME, Wellman H, Tyler JK, Cairns BR, Chandrasekharan MB, Bhaskara S. HDAC1,2 inhibition impairs EZH2- and BBAP-mediated DNA repair to overcome chemoresistance in EZH2 gain-of-function mutant diffuse large B-cell lymphoma. Oncotarget 2016; 6:4863-87. [PMID: 25605023 PMCID: PMC4467121 DOI: 10.18632/oncotarget.3120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/28/2014] [Indexed: 12/13/2022] Open
Abstract
Gain-of-function mutations in the catalytic site of EZH2 (Enhancer of Zeste Homologue 2), is observed in about 22% of diffuse large B-cell lymphoma (DLBCL) cases. Here we show that selective inhibition of histone deacetylase 1,2 (HDAC1,2) activity using a small molecule inhibitor causes cytotoxic or cytostatic effects in EZH2 gain-of-function mutant (EZH2GOF) DLBCL cells. Our results show that blocking the activity of HDAC1,2 increases global H3K27ac without causing a concomitant global decrease in H3K27me3 levels. Our data shows that inhibition of HDAC1,2 is sufficient to decrease H3K27me3 present at DSBs, decrease DSB repair and activate the DNA damage response in these cells. In addition to increased H3K27me3, we found that the EZH2GOF DLBCL cells overexpress another chemotherapy resistance factor − B-lymphoma and BAL-associated protein (BBAP). BBAP monoubiquitinates histone H4K91, a residue that is also subjected to acetylation. Our results show that selective inhibition of HDAC1,2 increases H4K91ac, decreases BBAP-mediated H4K91 monoubiquitination, impairs BBAP-dependent DSB repair and sensitizes the refractory EZH2GOF DLBCL cells to treatment with doxorubicin, a chemotherapy agent. Hence, selective HDAC1,2 inhibition provides a novel DNA repair mechanism-based therapeutic approach as it can overcome both EZH2- and BBAP-mediated DSB repair in the EZH2GOF DLBCL cells.
Collapse
Affiliation(s)
- Danielle P Johnson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gabriella S Spitz
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Shweta Tharkar
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | - Simon Jones
- Acetylon Pharmaceuticals, Inc., Boston, MA, USA
| | - Maria E McDowell
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hannah Wellman
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jessica K Tyler
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bradley R Cairns
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Srividya Bhaskara
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
144
|
Shi G, Xie P, Qu Z, Zhang Z, Dong Z, An Y, Xing L, Liu Z, Dong Y, Xu G, Yang L, Liu Y, Xu Y. Distinct Roles of HDAC3 in the Core Circadian Negative Feedback Loop Are Critical for Clock Function. Cell Rep 2016; 14:823-834. [PMID: 26776516 DOI: 10.1016/j.celrep.2015.12.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/11/2015] [Accepted: 12/15/2015] [Indexed: 01/30/2023] Open
Abstract
In the core mammalian circadian negative feedback loop, the BMAL1-CLOCK complex activates the transcription of the genes Period (Per) and Cryptochrome (Cry). To close the negative feedback loop, the PER-CRY complex interacts with the BMAL1-CLOCK complex to repress its activity. These two processes are separated temporally to ensure clock function. Here, we show that histone deacetylase 3 (HDAC3) is a critical component of the circadian negative feedback loop by regulating both the activation and repression processes in a deacetylase activity-independent manner. Genetic depletion of Hdac3 results in low-amplitude circadian rhythms and dampened E-box-driven transcription. In subjective morning, HDAC3 is required for the efficient transcriptional activation process by regulating BMAL1 stability. In subjective night, however, HDAC3 blocks FBXL3-mediated CRY1 degradation and strongly promotes BMAL1 and CRY1 association. Therefore, these two opposing but temporally separated roles of HDAC3 in the negative feedback loop provide a mechanism for robust circadian gene expression.
Collapse
Affiliation(s)
- Guangsen Shi
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Pancheng Xie
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhipeng Qu
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhihui Zhang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhen Dong
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Yang An
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Lijuan Xing
- Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yingying Dong
- Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Guoqiang Xu
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Ling Yang
- Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ying Xu
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China; Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200433, China.
| |
Collapse
|
145
|
Histone modifications in DNA damage response. SCIENCE CHINA-LIFE SCIENCES 2016; 59:257-70. [PMID: 26825946 DOI: 10.1007/s11427-016-5011-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
DNA damage is a relatively common event in eukaryotic cell and may lead to genetic mutation and even cancer. DNA damage induces cellular responses that enable the cell either to repair the damaged DNA or cope with the damage in an appropriate way. Histone proteins are also the fundamental building blocks of eukaryotic chromatin besides DNA, and many types of post-translational modifications often occur on tails of histones. Although the function of these modifications has remained elusive, there is ever-growing studies suggest that histone modifications play vital roles in several chromatin-based processes, such as DNA damage response. In this review, we will discuss the main histone modifications, and their functions in DNA damage response.
Collapse
|
146
|
Bhaskara S. Examination of Proteins Bound to Nascent DNA in Mammalian Cells Using BrdU-ChIP-Slot-Western Technique. J Vis Exp 2016:e53647. [PMID: 26863264 DOI: 10.3791/53647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylases 1 and 2 (HDAC1,2) localize to the sites of DNA replication. In the previous study, using a selective inhibitor and a genetic knockdown system, we showed novel functions for HDAC1,2 in replication fork progression and nascent chromatin maintenance in mammalian cells. Additionally, we used a BrdU-ChIP-Slot-Western technique that combines chromatin immunoprecipitation (ChIP) of bromo-deoxyuridine (BrdU)-labeled DNA with slot blot and Western analyses to quantitatively measure proteins or histone modification associated with nascent DNA. Actively dividing cells were treated with HDAC1,2 selective inhibitor or transfected with siRNAs against Hdac1 and Hdac2 and then newly synthesized DNA was labeled with the thymidine analog bromodeoxyuridine (BrdU). The BrdU labeling was done at a time point when there was no significant cell cycle arrest or apoptosis due to the loss of HDAC1,2 functions. Following labeling of cells with BrdU, chromatin immunoprecipitation (ChIP) of histone acetylation marks or the chromatin-remodeler was performed with specific antibodies. BrdU-labeled input DNA and the immunoprecipitated (or ChIPed) DNA was then spotted onto a membrane using the slot blot technique and immobilized using UV. The amount of nascent DNA in each slot was then quantitatively assessed using Western analysis with an anti-BrdU antibody. The effect of loss of HDAC1,2 functions on the levels of newly synthesized DNA-associated histone acetylation marks and chromatin remodeler was then determined by normalizing the BrdU-ChIP signal obtained from the treated samples to the control samples.
Collapse
Affiliation(s)
- Srividya Bhaskara
- Department of Radiation Oncology, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine;
| |
Collapse
|
147
|
Patil H, Wilks C, Gonzalez RW, Dhanireddy S, Conrad-Webb H, Bergel M. Mitotic Activation of a Novel Histone Deacetylase 3-Linker Histone H1.3 Protein Complex by Protein Kinase CK2. J Biol Chem 2015; 291:3158-72. [PMID: 26663086 PMCID: PMC4751364 DOI: 10.1074/jbc.m115.643874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase 3 (HDAC3) and linker histone H1 are involved in both chromatin compaction and the regulation of mitotic progression. However, the mechanisms by which HDAC3 and H1 regulate mitosis and the factors controlling HDAC3 and H1 activity during mitosis are unclear. Furthermore, as of now, no association between class I, II, or IV (non-sirtuin) HDACs and linker histones has been reported. Here we describe a novel HDAC3-H1.3 complex containing silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and nuclear receptor corepressor 1 (N-CoR) that accumulated in synchronized HeLa cells in late G2 phase and mitosis. Nonetheless, the deacetylation activity by HDAC3 in the complex was evident only in mitotic complexes. HDAC3 associated with H1.3 was highly phosphorylated on Ser-424 only during mitosis. Isolation of inactive HDAC3-H1.3 complexes from late G2 phase cells, and phosphorylation of HDAC3 in the complexes at serine 424 by protein kinase CK2 (also known as casein kinase 2) activated the HDAC3 in vitro. In vivo, CK2α and CK2α' double knockdown cells demonstrated a significant decrease in HDAC3 Ser-424 phosphorylation during mitosis. HDAC3 and H1.3 co-localized in between the chromosomes, with polar microtubules and spindle poles during metaphase through telophase, and partially co-localized with chromatin during prophase and interphase. H1 has been reported previously to associate with microtubules and, therefore, could potentially function in targeting HDAC3 to the microtubules. We suggest that phosphorylation of HDAC3 in the complex by CK2 during mitosis activates the complex for a dual role: compaction of the mitotic chromatin and regulation of polar microtubules dynamic instability.
Collapse
Affiliation(s)
- Hemangi Patil
- From the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Carrie Wilks
- From the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Rhiannon W Gonzalez
- From the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Sudheer Dhanireddy
- From the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Heather Conrad-Webb
- From the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Michael Bergel
- From the Department of Biology, Texas Woman's University, Denton, Texas 76204
| |
Collapse
|
148
|
Pérez-Campo FM, Riancho JA. Epigenetic Mechanisms Regulating Mesenchymal Stem Cell Differentiation. Curr Genomics 2015; 16:368-383. [PMID: 27019612 PMCID: PMC4765524 DOI: 10.2174/1389202916666150817202559] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 12/28/2022] Open
Abstract
Human Mesenchymal Stem Cells (hMSCs) have emerged in the last few years as one of the most promising therapeutic cell sources and, in particular, as an important tool for regenerative medicine of skeletal tissues. Although they present a more restricted potency than Embryonic Stem (ES) cells, the use of hMCS in regenerative medicine avoids many of the drawbacks characteristic of ES cells or induced pluripotent stem cells. The challenge in using these cells lies into developing precise protocols for directing cellular differentiation to generate a specific cell lineage. In order to achieve this goal, it is of the upmost importance to be able to control de process of fate decision and lineage commitment. This process requires the coordinate regulation of different molecular layers at transcriptional, posttranscriptional and translational levels. At the transcriptional level, switching on and off different sets of genes is achieved not only through transcriptional regulators, but also through their interplay with epigenetic modifiers. It is now well known that epigenetic changes take place in an orderly way through development and are critical in the determination of lineage-specific differentiation. More importantly, alteration of these epigenetic changes would, in many cases, lead to disease generation and even tumour formation. Therefore, it is crucial to elucidate how epigenetic factors, through their interplay with transcriptional regulators, control lineage commitment in hMSCs.
Collapse
Affiliation(s)
- Flor M. Pérez-Campo
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL Universidad de Cantabria, 39008 Santander, Cantabria, Spain
| | | |
Collapse
|
149
|
Nakashima H, Nguyen T, Chiocca EA. Combining HDAC inhibitors with oncolytic virotherapy for cancer therapy. Oncolytic Virother 2015; 4:183-91. [PMID: 27512681 PMCID: PMC4918398 DOI: 10.2147/ov.s66081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase (HDAC) enzymes play a critical role in the epigenetic regulation of cellular functions and signaling pathways in many cancers. HDAC inhibitors (HDACi) have been validated for single use or in combination with other drugs in oncologic therapeutics. An even more novel combination therapy with HDACi is to use them with an oncolytic virus. HDACi may lead to an amplification of tumor-specific lytic effects by facilitating increased cycles of viral replication, but there may also be direct anticancer effects of the drug by itself. Here, we review the molecular mechanisms of anti-cancer effects of the combination of oncolytic viruses with HDACi.
Collapse
Affiliation(s)
- Hiroshi Nakashima
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tran Nguyen
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | | |
Collapse
|
150
|
Bradley EW, Carpio LR, van Wijnen AJ, McGee-Lawrence ME, Westendorf JJ. Histone Deacetylases in Bone Development and Skeletal Disorders. Physiol Rev 2015; 95:1359-81. [PMID: 26378079 PMCID: PMC4600951 DOI: 10.1152/physrev.00004.2015] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn(2+) for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2(+). Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the utility of this knowledge for orthopedic applications and bone tissue engineering.
Collapse
Affiliation(s)
- Elizabeth W Bradley
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Lomeli R Carpio
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Andre J van Wijnen
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Meghan E McGee-Lawrence
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Jennifer J Westendorf
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| |
Collapse
|