101
|
p38β Mitogen-Activated Protein Kinase Modulates Its Own Basal Activity by Autophosphorylation of the Activating Residue Thr180 and the Inhibitory Residues Thr241 and Ser261. Mol Cell Biol 2016; 36:1540-54. [PMID: 26976637 DOI: 10.1128/mcb.01105-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/03/2016] [Indexed: 11/20/2022] Open
Abstract
Many enzymes are self-regulated and can either inhibit or enhance their own catalytic activity. Enzymes that do both are extremely rare. Many protein kinases autoactivate by autophosphorylating specific sites at their activation loop and are inactivated by phosphatases. Although mitogen-activated protein kinases (MAPKs) are usually activated by dual phosphorylation catalyzed by MAPK kinases (MAPKKs), the MAPK p38β is exceptional and is capable of self-activation by cis autophosphorylation of its activation loop residue T180. We discovered that p38β also autophosphorylates in trans two previously unknown sites residing within a MAPK-specific structural element known as the MAPK insert: T241 and S261. Whereas phosphorylation of T180 evokes catalytic activity, phosphorylation of S261 reduces the activity of T180-phosphorylated p38β, and phosphorylation of T241 reduces its autophosphorylation in trans Both phosphorylations do not affect the activity of dually phosphorylated p38β. T241 of p38β is found phosphorylated in vivo in bone and muscle tissues. In myogenic cell lines, phosphorylation of p38β residue T241 is correlated with differentiation to myotubes. T241 and S261 are also autophosphorylated in intrinsically active variants of p38α, but in this protein, they probably play a different role. We conclude that p38β is an unusual enzyme that automodulates its basal, MAPKK-independent activity by several autophosphorylation events, which enhance and suppress its catalytic activity.
Collapse
|
102
|
Soubeyrand S, Martinuk A, Lau P, McPherson R. TRIB1 Is Regulated Post-Transcriptionally by Proteasomal and Non-Proteasomal Pathways. PLoS One 2016; 11:e0152346. [PMID: 27019349 PMCID: PMC4809572 DOI: 10.1371/journal.pone.0152346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/11/2016] [Indexed: 11/19/2022] Open
Abstract
The TRIB1 gene has been associated with multiple malignancies, plasma triglycerides and coronary artery disease (CAD). Despite the clinical significance of this pseudo-kinase, there is little information on the regulation of TRIB1. Previous studies reported TRIB1 mRNA to be unstable, hinting that TRIB1 might be subject to post-transcriptional regulation. This work explores TRIB1 regulation, focusing on its post-transcriptional aspects. In 3 distinct model systems (HEK293T, HeLa and arterial smooth muscle cells) TRIB1 was undetectable as assessed by western blot. Using recombinant TRIB1 as a proxy, we demonstrate TRIB1 to be highly unstable at the protein and RNA levels. By contrast, recombinant TRIB1 was stable in cellular extracts. Blocking proteasome function led to increased protein steady state levels but failed to rescue protein instability, demonstrating that the 2 processes are uncoupled. Unlike as shown for TRIB2, CUL1 and TRCPβ did not play a role in mediating TRIB1 instability although TRCPβ suppression increased TRIB1 expression. Lastly, we demonstrate that protein instability is independent of TRIB1 subcellular localization. Following the identification of TRIB1 nuclear localization signal, a cytosolic form was engineered. Despite being confined to the cytosol, TRIB1 remained unstable, suggesting that instability occurs at a stage that precedes its nuclear translocation and downstream nuclear function. These results uncover possible avenues of intervention to regulate TRIB1 function by identifying two distinct regulatory axes that control TRIB1 at the post-transcriptional level.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
- * E-mail: (RM); (SS)
| | - Amy Martinuk
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Paulina Lau
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Ruth McPherson
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
- * E-mail: (RM); (SS)
| |
Collapse
|
103
|
Importin-7 mediates memory consolidation through regulation of nuclear translocation of training-activated MAPK in Drosophila. Proc Natl Acad Sci U S A 2016; 113:3072-7. [PMID: 26929354 DOI: 10.1073/pnas.1520401113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Translocation of signaling molecules, MAPK in particular, from the cytosol to nucleus represents a universal key element in initiating the gene program that determines memory consolidation. Translocation mechanisms and their behavioral impact, however, remain to be determined. Here, we report that a highly conserved nuclear transporter, Drosophila importin-7 (DIM-7), regulates import of training-activated MAPK for consolidation of long-term memory (LTM). We show that silencing DIM-7 functions results in impaired LTM, whereas overexpression of DIM-7 enhances LTM. This DIM-7-dependent regulation of LTM is confined to a consolidation time window and in mushroom body neurons. Image data show that bidirectional alteration in DIM-7 expression results in proportional changes in the intensity of training-activated MAPK accumulated within the nuclei of mushroom body neurons during LTM consolidation. Such DIM-7-regulated nuclear accumulation of activated MAPK is observed only in the training specified for LTM induction and determines the amplitude, but not the time course, of memory consolidation.
Collapse
|
104
|
The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles. Curr Opin Cell Biol 2016; 39:15-20. [PMID: 26827288 DOI: 10.1016/j.ceb.2016.01.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 12/27/2022]
Abstract
The dynamic subcellular localization of ERK in resting and stimulated cells plays an important role in its regulation. In resting cells, ERK localizes in the cytoplasm, and upon stimulation, it translocates to its target substrates and organelles. ERK signaling initiated from different places in resting cells has distinct outcomes. In this review, we summarize the mechanisms of ERK1/2 translocation to the nucleus and mitochondria, and of ERK1c to the Golgi. We also show that ERK1/2 translocation to the nucleus is a useful anti cancer target. Unraveling the complex subcellular localization of ERK and its dynamic changes upon stimulation provides a better understanding of the regulation of ERK signaling and may result in the development of new strategies to combat ERK-related diseases.
Collapse
|
105
|
de Groot TE, Veserat KS, Berthier E, Beebe DJ, Theberge AB. Surface-tension driven open microfluidic platform for hanging droplet culture. LAB ON A CHIP 2016; 16:334-44. [PMID: 26660268 PMCID: PMC4712910 DOI: 10.1039/c5lc01353d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The hanging droplet technique for three-dimensional tissue culture has been used for decades in biology labs, with the core technology remaining relatively unchanged. Recently microscale approaches have expanded the capabilities of the hanging droplet method, making it more user-friendly. We present a spontaneously driven, open hanging droplet culture platform to address many limitations of current platforms. Our platform makes use of two interconnected hanging droplet wells, a larger well where cells are cultured and a smaller well for user interface via a pipette. The two-well system results in lower shear stress in the culture well during fluid exchange, enabling shear sensitive or non-adherent cells to be cultured in a droplet. The ability to perform fluid exchanges in-droplet enables long-term culture, treatment, and characterization without disruption of the culture. The open well format of the platform was utilized to perform time-dependent coculture, enabling culture configurations with bone tissue scaffolds and cells grown in suspension. The open nature of the system allowed the direct addition or removal of tissue over the course of an experiment, manipulations that would be impractical in other microfluidic or hanging droplet culture platforms.
Collapse
Affiliation(s)
- T E de Groot
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - K S Veserat
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - E Berthier
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - D J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - A B Theberge
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
106
|
Shindo Y, Iwamoto K, Mouri K, Hibino K, Tomita M, Kosako H, Sako Y, Takahashi K. Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling. Nat Commun 2016; 7:10485. [PMID: 26786866 PMCID: PMC4736105 DOI: 10.1038/ncomms10485] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022] Open
Abstract
The phosphorylation cascade in the extracellular signal-regulated kinase (ERK) pathway is a versatile reaction network motif that can potentially act as a switch, oscillator or memory. Nevertheless, there is accumulating evidence that the phosphorylation response is mostly linear to extracellular signals in mammalian cells. Here we find that subsequent nuclear translocation gives rise to a switch-like increase in nuclear ERK concentration in response to signal input. The switch-like response disappears in the presence of ERK inhibitor, suggesting the existence of autoregulatory mechanisms for ERK nuclear translocation involved in conversion from a graded to a switch-like response. In vitro reconstruction of ERK nuclear translocation indicates that ERK-mediated phosphorylation of nucleoporins regulates ERK translocation. A mathematical model and knockdown experiments suggest a contribution of nucleoporins to regulation of the ERK nuclear translocation response. Taken together, this study provides evidence that nuclear translocation with autoregulatory mechanisms acts as a switch in ERK signalling. While ERK signalling can produce switch-like cell behaviour, phosphorylation of ERK increases linearly with extracellular signals. Here, the authors solve this seeming contradiction by showing that nuclear translocation of ERK behaves in a switch-like manner and is controlled by ERK activity.
Collapse
Affiliation(s)
- Yuki Shindo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Suita, Osaka 565-0874, Japan
| | - Kazunari Iwamoto
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Suita, Osaka 565-0874, Japan
| | - Kazunari Mouri
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Kayo Hibino
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.,Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center, Suita, Osaka 565-0874, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Koichi Takahashi
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Suita, Osaka 565-0874, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
107
|
Roggero VR, Zhang J, Parente LE, Doshi Y, Dziedzic RC, McGregor EL, Varjabedian AD, Schad SE, Bondzi C, Allison LA. Nuclear import of the thyroid hormone receptor α1 is mediated by importin 7, importin β1, and adaptor importin α1. Mol Cell Endocrinol 2016; 419:185-97. [PMID: 26525414 PMCID: PMC4684427 DOI: 10.1016/j.mce.2015.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 01/27/2023]
Abstract
The thyroid hormone receptor α1 (TRα1) is a nuclear receptor for thyroid hormone that shuttles rapidly between the nucleus and cytoplasm. Our prior studies showed that nuclear import of TRα1 is directed by two nuclear localization signals, one in the N-terminal A/B domain and the other in the hinge domain. Here, we showed using in vitro nuclear import assays that TRα1 nuclear localization is temperature and energy-dependent and can be reconstituted by the addition of cytosol. In HeLa cells expressing green fluorescent protein (GFP)-tagged TRα1, knockdown of importin 7, importin β1 and importin α1 by RNA interference, or treatment with an importin β1-specific inhibitor, significantly reduced nuclear localization of TRα1, while knockdown of other importins had no effect. Coimmunoprecipitation assays confirmed that TRα1 interacts with importin 7, as well as importin β1 and the adapter importin α1, suggesting that TRα1 trafficking into the nucleus is mediated by two distinct pathways.
Collapse
Affiliation(s)
- Vincent R Roggero
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Jibo Zhang
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Laura E Parente
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Yazdi Doshi
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Rose C Dziedzic
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Emma L McGregor
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Arev D Varjabedian
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Sara E Schad
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Cornelius Bondzi
- Department of Biological Sciences, Hampton University, Hampton, VA, 23668, USA
| | - Lizabeth A Allison
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
108
|
Maik-Rachline G, Seger R. The ERK cascade inhibitors: Towards overcoming resistance. Drug Resist Updat 2016; 25:1-12. [PMID: 27155372 DOI: 10.1016/j.drup.2015.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/22/2015] [Accepted: 12/25/2015] [Indexed: 12/24/2022]
Abstract
The RAS-ERK pathway plays a major regulatory role in various cellular processes. This pathway is hyperactivated and takes an active part in the malignant transformation of more than 85% of cancers. The hyperactivation is mainly due to oncogenic activating mutations in the pathway's components RAS, RAF and MEK, but also due to indirect mechanisms in cells transformed by other oncogenes. Various inhibitors targeting the different tiers of the cascade have been successfully developed and clinically approved, while some are still undergoing preclinical and clinical evaluation. Treatments with the clinically approved RAF and MEK inhibitors have substantially improved the clinical outcome of metastatic mutated-BRAF melanoma. However, the rapid emergence of drug resistance of initially responsive cancers and limited efficacy towards other cancers has led to only marginal patient benefit. Deciphering the molecular mechanisms underlying intrinsic or acquired resistance is a necessity in order to enhance the treatment efficacy of ERK-addicted cancers. Therefore, many studies in the past 5 years embarked on this campaign, revealing several resistance mechanisms. These include, expression of drug-resistant RAF isoforms, molecular or genetic alterations of active downstream components, overexpression of upstream components of the cascade that can reactivate ERK and other survival-related pathways. The understanding of these molecular resistance mechanisms led to further development of drugs that can overcome drug resistance, including our own effort aiming to prevent the nuclear translocation of ERK without affecting its activation. In this review we will focus on the mechanisms underlying drug resistance and efforts to develop activity-independent, more efficacious, antitumor drugs.
Collapse
Affiliation(s)
- Galia Maik-Rachline
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
109
|
Giacomini C, Mahajani S, Ruffilli R, Marotta R, Gasparini L. Lamin B1 protein is required for dendrite development in primary mouse cortical neurons. Mol Biol Cell 2016; 27:35-47. [PMID: 26510501 PMCID: PMC4694760 DOI: 10.1091/mbc.e15-05-0307] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/07/2015] [Accepted: 10/23/2015] [Indexed: 01/15/2023] Open
Abstract
Lamin B1, a key component of the nuclear lamina, plays an important role in brain development and function. A duplication of the human lamin B1 (LMNB1) gene has been linked to adult-onset autosomal dominant leukodystrophy, and mouse and human loss-of-function mutations in lamin B1 are susceptibility factors for neural tube defects. In the mouse, experimental ablation of endogenous lamin B1 (Lmnb1) severely impairs embryonic corticogenesis. Here we report that in primary mouse cortical neurons, LMNB1 overexpression reduces axonal outgrowth, whereas deficiency of endogenous Lmnb1 results in aberrant dendritic development. In the absence of Lmnb1, both the length and complexity of dendrites are reduced, and their growth is unresponsive to KCl stimulation. This defective dendritic outgrowth stems from impaired ERK signaling. In Lmnb1-null neurons, ERK is correctly phosphorylated, but phospho-ERK fails to translocate to the nucleus, possibly due to delocalization of nuclear pore complexes (NPCs) at the nuclear envelope. Taken together, these data highlight a previously unrecognized role of lamin B1 in dendrite development of mouse cortical neurons through regulation of nuclear shuttling of specific signaling molecules and NPC distribution.
Collapse
Affiliation(s)
- Caterina Giacomini
- Molecular Neurodegeneration Lab, Neuroscience and Brain Technologies Department, 16163 Genoa, Italy
| | - Sameehan Mahajani
- Molecular Neurodegeneration Lab, Neuroscience and Brain Technologies Department, 16163 Genoa, Italy
| | - Roberta Ruffilli
- Electron Microscopy Lab, Nanochemistry Department, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Roberto Marotta
- Electron Microscopy Lab, Nanochemistry Department, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Laura Gasparini
- Molecular Neurodegeneration Lab, Neuroscience and Brain Technologies Department, 16163 Genoa, Italy
| |
Collapse
|
110
|
Luberg K, Park R, Aleksejeva E, Timmusk T. Novel transcripts reveal a complex structure of the human TRKA gene and imply the presence of multiple protein isoforms. BMC Neurosci 2015; 16:78. [PMID: 26581861 PMCID: PMC4652384 DOI: 10.1186/s12868-015-0215-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 11/09/2015] [Indexed: 11/21/2022] Open
Abstract
Background Tropomyosin-related kinase A (TRKA) is a nerve growth factor (NGF) receptor that belongs to the tyrosine kinase receptor family. It is critical for the correct development of many types of neurons including pain-mediating sensory neurons and also controls proliferation, differentiation and survival of many neuronal and non-neuronal cells. TRKA (also known as NTRK1) gene is a target of alternative splicing which can result in several different protein isoforms. Presently, three human isoforms (TRKAI, TRKAII and TRKAIII) and two rat isoforms (TRKA L0 and TRKA L1) have been described. Results We show here that human TRKA gene is overlapped by two genes and spans 67 kb—almost three times the size that has been previously described. Numerous transcription initiation sites from eight different 5′ exons and a sophisticated splicing pattern among exons encoding the extracellular part of TRKA receptor indicate that there might be a large variety of alternative protein isoforms. TrkA genes in rat and mouse appear to be considerably shorter, are not overlapped by other genes and display more straightforward splicing patterns. We describe the expression profile of alternatively spliced TRKA transcripts in different tissues of human, rat and mouse, as well as analyze putative endogenous TRKA protein isoforms in human SH-SY5Y and rat PC12 cells. We also characterize a selection of novel putative protein isoforms by portraying their phosphorylation, glycosylation and intracellular localization patterns. Our findings show that an isoform comprising mainly of TRKA kinase domain is capable of entering the nucleus. Conclusions Results obtained in this study refer to the existence of a multitude of TRKA mRNA and protein isoforms, with some putative proteins possessing very distinct properties. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0215-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristi Luberg
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia. .,Competence Center for Cancer Research, Tallinn, Estonia.
| | - Rahel Park
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia. .,Competence Center for Cancer Research, Tallinn, Estonia. .,VIB lab for Systems Biology & CMPG Lab for Genetics and Genomics, Leuven, Belgium.
| | - Elina Aleksejeva
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia. .,Competence Center for Cancer Research, Tallinn, Estonia. .,French National Institute for Agricultural Research, Paris, France.
| | - Tõnis Timmusk
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia. .,Competence Center for Cancer Research, Tallinn, Estonia.
| |
Collapse
|
111
|
Wortzel I, Hanoch T, Porat Z, Hausser A, Seger R. Mitotic Golgi translocation of ERK1c is mediated by a PI4KIIIβ-14-3-3γ shuttling complex. J Cell Sci 2015; 128:4083-95. [PMID: 26459638 DOI: 10.1242/jcs.170910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 10/05/2015] [Indexed: 01/01/2023] Open
Abstract
Golgi fragmentation is a highly regulated process that allows division of the Golgi complex between the two daughter cells. The mitotic reorganization of the Golgi is accompanied by a temporary block in Golgi functioning, as protein transport in and out of the Golgi stops. Our group has previously demonstrated the involvement of the alternatively spliced variants ERK1c and MEK1b (ERK1 is also known as MAPK3, and MEK1 as MAP2K1) in mitotic Golgi fragmentation. We had also found that ERK1c translocates to the Golgi at the G2 to M phase transition, but the molecular mechanism underlying this recruitment remains unknown. In this study, we narrowed the translocation timing to prophase and prometaphase, and elucidated its molecular mechanism. We found that CDK1 phosphorylates Ser343 of ERK1c, thereby allowing the binding of phosphorylated ERK1c to a complex that consists of PI4KIIIβ (also known as PI4KB) and the 14-3-3γ dimer (encoded by YWHAB). The stability of the complex is regulated by protein kinase D (PKD)-mediated phosphorylation of PI4KIIIβ. The complex assembly induces the Golgi shuttling of ERK1c, where it is activated by MEK1b, and induces Golgi fragmentation. Our work shows that protein shuttling to the Golgi is not completely abolished at the G2 to M phase transition, thus integrating several independent Golgi-regulating processes into one coherent pathway.
Collapse
Affiliation(s)
- Inbal Wortzel
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Hanoch
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Porat
- Department of Biological Services, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Angelika Hausser
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70550, Germany
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
112
|
Lim PS, Sutton CR, Rao S. Protein kinase C in the immune system: from signalling to chromatin regulation. Immunology 2015; 146:508-22. [PMID: 26194700 DOI: 10.1111/imm.12510] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/29/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022] Open
Abstract
Protein kinase C (PKC) form a key family of enzymes involved in signalling pathways that specifically phosphorylates substrates at serine/threonine residues. Phosphorylation by PKC is important in regulating a variety of cellular events such as cell proliferation and the regulation of gene expression. In the immune system, PKCs are involved in regulating signal transduction pathways important for both innate and adaptive immunity, ultimately resulting in the expression of key immune genes. PKCs act as mediators during immune cell signalling through the immunological synapse. PKCs are traditionally known to be cytoplasmic signal transducers and are well embedded in the signalling pathways of cells to mediate the cells' response to a stimulus from the plasma membrane to the nucleus. PKCs are also found to transduce signals within the nucleus, a process that is distinct from the cytoplasmic signalling pathway. There is now growing evidence suggesting that PKC can directly regulate gene expression programmes through a non-traditional role as nuclear kinases. In this review, we will focus on the role of PKCs as key cytoplasmic signal transducers in immune cell signalling, as well as its role in nuclear signal transduction. We will also highlight recent evidence for its newly discovered regulatory role in the nucleus as a chromatin-associated kinase.
Collapse
Affiliation(s)
- Pek Siew Lim
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Christopher Ray Sutton
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Sudha Rao
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
113
|
Abstract
The developmental mechanisms that control head muscle formation are distinct from those that operate in the trunk. Head and neck muscles derive from various mesoderm populations in the embryo and are regulated by distinct transcription factors and signaling molecules. Throughout the last decade, developmental, and lineage studies in vertebrates and invertebrates have revealed the peculiar nature of the pharyngeal mesoderm that forms certain head muscles and parts of the heart. Studies in chordates, the ancestors of vertebrates, revealed an evolutionarily conserved cardiopharyngeal field that progressively facilitates the development of both heart and craniofacial structures during vertebrate evolution. This ancient regulatory circuitry preceded and facilitated the emergence of myogenic cell types and hierarchies that exist in vertebrates. This chapter summarizes studies related to the origins, signaling circuits, genetics, and evolution of the head musculature, highlighting its heterogeneous characteristics in all these aspects, with a special focus on the FGF-ERK pathway. Additionally, we address the processes of head muscle regeneration, and the development of stem cell-based therapies for treatment of muscle disorders.
Collapse
Affiliation(s)
- Inbal Michailovici
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Eigler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
114
|
Bauer NC, Doetsch PW, Corbett AH. Mechanisms Regulating Protein Localization. Traffic 2015; 16:1039-61. [PMID: 26172624 DOI: 10.1111/tra.12310] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022]
Abstract
Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Current address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
115
|
DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015; 302:174-203. [PMID: 25242643 PMCID: PMC4366367 DOI: 10.1016/j.neuroscience.2014.09.027] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
Peripheral nerves regenerate following injury due to the effective activation of the intrinsic growth capacity of the neurons and the formation of a permissive pathway for outgrowth due to Wallerian degeneration (WD). WD and subsequent regeneration are significantly influenced by various immune cells and the cytokines they secrete. Although macrophages have long been known to play a vital role in the degenerative process, recent work has pointed to their importance in influencing the regenerative capacity of peripheral neurons. In this review, we focus on the various immune cells, cytokines, and chemokines that make regeneration possible in the peripheral nervous system, with specific attention placed on the role macrophages play in this process.
Collapse
Affiliation(s)
| | - J A Lindborg
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - J P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - R E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| |
Collapse
|
116
|
Schneider P, Miguel Bayo-Fina J, Singh R, Kumar Dhanyamraju P, Holz P, Baier A, Fendrich V, Ramaswamy A, Baumeister S, Martinez ED, Lauth M. Identification of a novel actin-dependent signal transducing module allows for the targeted degradation of GLI1. Nat Commun 2015; 6:8023. [PMID: 26310823 PMCID: PMC4552080 DOI: 10.1038/ncomms9023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
The Down syndrome-associated DYRK1A kinase has been reported as a stimulator of the developmentally important Hedgehog (Hh) pathway, but cells from Down syndrome patients paradoxically display reduced Hh signalling activity. Here we find that DYRK1A stimulates GLI transcription factor activity through phosphorylation of general nuclear localization clusters. In contrast, in vivo and in vitro experiments reveal that DYRK1A kinase can also function as an inhibitor of endogenous Hh signalling by negatively regulating ABLIM proteins, the actin cytoskeleton and the transcriptional co-activator MKL1 (MAL). As a final effector of the DYRK1A-ABLIM-actin-MKL1 sequence, we identify the MKL1 interactor Jumonji domain demethylase 1A (JMJD1A) as a novel Hh pathway component stabilizing the GLI1 protein in a demethylase-independent manner. Furthermore, a Jumonji-specific small-molecule antagonist represents a novel and powerful inhibitor of Hh signal transduction by inducing GLI1 protein degradation in vitro and in vivo.
Collapse
Affiliation(s)
- Philipp Schneider
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Juan Miguel Bayo-Fina
- Department of Pharmacology, UT Southwestern Medical Center, 6000 Harry Hines boulevard, Dallas, Texas 75390-8593, USA
| | - Rajeev Singh
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Pavan Kumar Dhanyamraju
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Philipp Holz
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Aninja Baier
- Department of Surgery, Philipps University, Baldingerstraße 1, 35033 Marburg, Germany
| | - Volker Fendrich
- Department of Surgery, Philipps University, Baldingerstraße 1, 35033 Marburg, Germany
| | - Annette Ramaswamy
- Department of Pathology, Philipps University, Baldingerstraße 1, 35033 Marburg, Germany
| | - Stefan Baumeister
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Elisabeth D. Martinez
- Department of Pharmacology, UT Southwestern Medical Center, 6000 Harry Hines boulevard, Dallas, Texas 75390-8593, USA
| | - Matthias Lauth
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| |
Collapse
|
117
|
Abstract
Scaffold proteins play a central role in DNA repair by recruiting and organizing sets of enzymes required to perform multi-step repair processes. X-ray cross complementing group 1 protein (XRCC1) forms enzyme complexes optimized for single-strand break repair, but participates in other repair pathways as well. Available structural data for XRCC1 interactions is summarized and evaluated in terms of its proposed roles in DNA repair. Mutational approaches related to the abrogation of specific XRCC1 interactions are also discussed. Although substantial progress has been made in elucidating the structural basis for XRCC1 function, the molecular mechanisms of XRCC1 recruitment related to several proposed roles of the XRCC1 DNA repair complex remain undetermined.
Collapse
Affiliation(s)
- Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
118
|
Jia QJ, Fan ZJ, Yao CL. Identification and expression profiles of ERK2 and ERK5 in large yellow croaker (Larimichthys crocea) after temperature stress and immune challenge. FISH & SHELLFISH IMMUNOLOGY 2015; 44:410-419. [PMID: 25772549 DOI: 10.1016/j.fsi.2015.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
Fish is highly affected by many environmental stresses such as temperature and invasive infection. The extracellular signal-regulated kinase (ERK) pathway, part of the mitogen-activated protein kinase (MAPK) family, is found to act as crucial mediators for cell differentiation, proliferation and cell response to various stresses. In the present study, ERK2 (LcERK2) and ERK5 (LcERK2) were cloned and characterized from large yellow croaker, Larimichthys crocea. The full length cDNA sequence of LcERK2 was of 1910 bp, including an ORF of 1110bp encoding a polypeptide of 369 amino acids. The full length cDNA sequence of LcERK5 was of 3720bp, including an ORF of 3375bp encoding a polypeptide of 1124 amino acids. Multiple alignments showed that both LcERK2 and LcERK5 contained highly conserved TEY motif and S_TKc domain in MAPK family and the unique catalytic and active structures of ERK2 and ERK5. Subcellular localization revealed that both LcERK2 and LcERK5 expressed in the cytoplasm and cell nucleus. The expression of LcERK2 and LcERK5 were detected in most tissues of large yellow croaker, with the most predominant expression of LcERK2 in brain and LcERK5 in gill, and the weakest expression of LcERK2 in liver and LcERK5 in intestine, respectively. The expression levels of LcERK2 and LcERK5 after temperature stress and poly I:C and flagellin challenge were investigated in LCK (L. crocea kidney) cells. After temperature stress, significant down-regulations of LcERK2 transcripts were detected after 10 °C stress (p < 0.05) whereas LcERK2 transcripts increased significantly after 35 °C stress (p < 0.05). However, significant down-regulations of LcERK5 expression were detected at most time points after both cold and heat stress (p < 0.05). However, significant up-regulations of LcERK2 and LcERK5 transcripts were found after immune challenge (p < 0.05). Our results showed that LcERK2 transcripts enhanced after heat stress and both LcERK2 and LcERK5 transcripts could be induced by immune challenge. These findings indicated that LcERK2 might be more important in fish response to high temperature stress and both LcERK2 and LcERK5 might play an important role in fish immune response.
Collapse
Affiliation(s)
- Qiao-Jing Jia
- Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Ze-Jun Fan
- Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Cui-Luan Yao
- Fisheries College, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
119
|
Schevzov G, Kee AJ, Wang B, Sequeira VB, Hook J, Coombes JD, Lucas CA, Stehn JR, Musgrove EA, Cretu A, Assoian R, Fath T, Hanoch T, Seger R, Pleines I, Kile BT, Hardeman EC, Gunning PW. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Mol Biol Cell 2015; 26:2475-90. [PMID: 25971798 PMCID: PMC4571302 DOI: 10.1091/mbc.e14-10-1453] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/07/2015] [Indexed: 12/27/2022] Open
Abstract
Tropomyosin Tm5NM1 regulates cell proliferation and organ size. It mediates this effect by regulating the interaction of pERK and Imp7, leading to the regulation of pERK nuclear translocation. This demonstrates a role for a specific population of actin filaments in regulating a critical step in the MAPK/ERK signaling pathway. ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Anthony J Kee
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Bin Wang
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Vanessa B Sequeira
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jeff Hook
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jason D Coombes
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Christine A Lucas
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Justine R Stehn
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Elizabeth A Musgrove
- Kinghorn Cancer Centre, Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alexandra Cretu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Richard Assoian
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Thomas Fath
- Neurodegeneration and Repair Laboratory, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irina Pleines
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Benjamin T Kile
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
120
|
The nuclear translocation of ERK1/2 as an anticancer target. Nat Commun 2015; 6:6685. [PMID: 25819065 DOI: 10.1038/ncomms7685] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/18/2015] [Indexed: 12/22/2022] Open
Abstract
A hallmark of the ERK1/2 functioning is their nuclear translocation, which is mainly required for the induction of proliferation. Activated ERK1/2 molecules that remain in the cytoplasm initiate other activities, including immediate feedback loops. Prevention of the nuclear translocation should therefore inhibit proliferation, without affecting cytoplasm-induced cellular processes. Here we present an NTS-derived myristoylated phosphomimetic peptide, which blocks the interaction of importin7 and ERK1/2, and consequently the nuclear translocation of the latter. In culture, the peptide induces apoptosis of melanoma cells inhibits the viability of other cancer cells, but has no effect on non-transformed, immortalized cells. It even inhibits the viability of PLX4032- and U0126-resistant melanoma cells. In xenograft models, the peptide inhibits several cancers, and acts much better than PLX4032 in preventing melanoma recurrence. This study provides a proof of concept for using the nuclear translocation of ERK1/2 as a drug target for the combat of various ERK1/2-related cancers.
Collapse
|
121
|
Wang CI, Wang CL, Wu YC, Feng HP, Liu PJ, Chang YS, Yu JS, Yu CJ. Quantitative Proteomics Reveals a Novel Role of Karyopherin Alpha 2 in Cell Migration through the Regulation of Vimentin–pErk Protein Complex Levels in Lung Cancer. J Proteome Res 2015; 14:1739-51. [DOI: 10.1021/pr501097a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chun-I Wang
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Chih-Liang Wang
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Yi-Cheng Wu
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Hsiang-Pu Feng
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Pei-Jun Liu
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Yu-Sun Chang
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Jau-Song Yu
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Chia-Jung Yu
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| |
Collapse
|
122
|
Putker M, Vos HR, van Dorenmalen K, de Ruiter H, Duran AG, Snel B, Burgering BMT, Vermeulen M, Dansen TB. Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling. Antioxid Redox Signal 2015; 22:15-28. [PMID: 25069953 PMCID: PMC4270166 DOI: 10.1089/ars.2014.6056] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
UNLABELLED Reduction-oxidation (redox) signaling, the translation of an oxidative intracellular environment into a cellular response, is mediated by the reversible oxidation of specific cysteine thiols. The latter can result in disulfide formation between protein hetero- or homodimers that alter protein function until the local cellular redox environment has returned to the basal state. We have previously shown that this mechanism promotes the nuclear localization and activity of the Forkhead Box O4 (FOXO4) transcription factor. AIMS In this study, we sought to investigate whether redox signaling differentially controls the human FOXO3 and FOXO4 paralogs. RESULTS We present evidence that FOXO3 and FOXO4 have acquired paralog-specific cysteines throughout vertebrate evolution. Using a proteome-wide screen, we identified previously unknown redox-dependent FOXO3 interaction partners. The nuclear import receptors Importin-7 (IPO7) and Importin-8 (IPO8) form a disulfide-dependent heterodimer with FOXO3, which is required for its reactive oxygen species-induced nuclear translocation. FOXO4 does not interact with IPO7 or IPO8. INNOVATION AND CONCLUSION IPO7 and IPO8 control the nuclear import of FOXO3, but not FOXO4, in a redox-sensitive and disulfide-dependent manner. Our findings suggest that evolutionary acquisition of cysteines has contributed to regulatory divergence of FOXO paralogs, and that phylogenetic analysis can aid in the identification of cysteines involved in redox signaling.
Collapse
Affiliation(s)
- Marrit Putker
- 1 Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht , Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Macromolecular transport in synapse to nucleus communication. Trends Neurosci 2014; 38:108-16. [PMID: 25534890 DOI: 10.1016/j.tins.2014.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Local signaling events at synapses or axon terminals must be communicated to the nucleus to elicit transcriptional responses. The lengths of neuronal processes pose a significant challenge for such intracellular communication. This challenge is met by mechanisms ranging from rapid signals encoded in calcium waves to slower macromolecular signaling complexes carried by molecular motors. Here we summarize recent findings on macromolecular signaling from the synapse to the nucleus, in comparison to those employed in injury signaling along axons. A number of common themes emerge, including combinatorial signal encoding by post-translational mechanisms such as differential phosphorylation and proteolysis, and conserved roles for importins in coordinating signaling complexes. Neurons may integrate ionic flux with motor-transported signals as a temporal code for synaptic plasticity signaling.
Collapse
|
124
|
Amsterdam A, Shpigner L, Raanan C, Schreiber L, Melzer E, Seger R. Dynamic distribution of ERK, p38 and JNK during the development of pancreatic ductal adenocarcinoma. Acta Histochem 2014; 116:1434-42. [PMID: 25440531 DOI: 10.1016/j.acthis.2014.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022]
Abstract
We recently discovered that oncogenic c-kit is highly expressed concomitantly with the development of pancreatic ductal adenocarcinoma (PDAC). Since oncogenic c-kit may activate major pathways of protein tyrosine phosphorylation, we decided to investigate this issue in the major protein phosphorylation cascades. In normal pancreas labeling with antiphosphorylated ERK1/2 (pERK1/2) antibody was mainly confined to islets of Langerhans in close overlapping with insulin containing cells. Phosphorylated p38 (pp38) showed a similar pattern of distribution, while only weak labeling was evident for pJNK and no labeling of pMEK was observed. As expected, general ERK1/2 (gERK1/2), general p38 (gp38), general JNK (gJNK) as well as general MEK (gMEK) were all evident in islets of Langerhans and in the exocrine tissue. In early development of PDAC, pERK1/2 and pp38 retained their localization in islets of Langerhans. Intensive staining of pERK1/2 was also evident in the cancerous ducts, while the labeling with antibodies to pp38 was more moderate. While pJNK staining in islets of Langerhans was weak, with no labeling in the cancerous ducts, antibodies to gJNK revealed intensive staining suggesting the weak staining of pJNK is not due to the lack of the enzyme. In a more advanced stage of PDAC the carcinomas were clearly stained with pERK1/2 and pp38, while moderate staining with pJNK was also evident. In liver metastases, the cancer cells were heavily labeled with all three phospho-MAPKs. It should be noted that the localization of all three kinases was mainly in the cell nuclei. In the more advanced stage of PDAC, heavy labeling was evident using antibodies to gERK1/2, gp38, gJNK and gMEK. However, no labeling to pMEK was evident in parallel sections. Our data suggest that both in normal and cancerous pancreas, most of the MAPK activities are located in islets of Langerhans and cancerous ducts. It is suggested that using inhibitors to protein kinases may attenuate the progression of the disease.
Collapse
Affiliation(s)
- Abraham Amsterdam
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel.
| | - Lotem Shpigner
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Calanit Raanan
- Department of Veterinary Resources, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | | | - Ehud Melzer
- Department of Gastroentrology, Kaplan Medical Center, Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| |
Collapse
|
125
|
Kaushik R, Grochowska KM, Butnaru I, Kreutz MR. Protein trafficking from synapse to nucleus in control of activity-dependent gene expression. Neuroscience 2014; 280:340-50. [PMID: 25230285 DOI: 10.1016/j.neuroscience.2014.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/18/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
Abstract
Long-lasting changes in neuronal excitability require activity-dependent gene expression and therefore the transduction of synaptic signals to the nucleus. Synaptic activity is rapidly relayed to the nucleus by membrane depolarization and the propagation of Ca(2+)-waves. However, it is unlikely that Ca(2+)-transients alone can explain the specific genomic response to the plethora of extracellular stimuli that control gene expression. In recent years a steadily growing number of studies report the transport of proteins from synapse to nucleus. Potential mechanisms for active retrograde transport and nuclear targets for these proteins have been identified and recent reports assigned first functions to this type of long-distance signaling. In this review we will discuss how the dissociation of synapto-nuclear protein messenger from synaptic and extrasynaptic sites, their transport, nuclear import and the subsequent genomic response relate to the prevailing concept behind this signaling mechanism, the encoding of signals at their site of origin and their decoding in the nucleus.
Collapse
Affiliation(s)
- R Kaushik
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - K M Grochowska
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - I Butnaru
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - M R Kreutz
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
126
|
Differential subcellular and extracellular localisations of proteins required for insulin-like growth factor- and extracellular matrix-induced signalling events in breast cancer progression. BMC Cancer 2014; 14:627. [PMID: 25167778 PMCID: PMC4158058 DOI: 10.1186/1471-2407-14-627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 08/21/2014] [Indexed: 12/22/2022] Open
Abstract
Background Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I: IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. Methods Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. Results The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while β1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and β1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. Conclusion This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-627) contains supplementary material, which is available to authorized users.
Collapse
|
127
|
Beenstock J, Ben-Yehuda S, Melamed D, Admon A, Livnah O, Ahn NG, Engelberg D. The p38β mitogen-activated protein kinase possesses an intrinsic autophosphorylation activity, generated by a short region composed of the α-G helix and MAPK insert. J Biol Chem 2014; 289:23546-56. [PMID: 25006254 DOI: 10.1074/jbc.m114.578237] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinases are regulated by a large number of mechanisms that vary from one kinase to another. However, a fundamental activation mechanism shared by all protein kinases is phosphorylation of a conserved activation loop threonine residue. This is achieved in many cases via autophosphorylation. The mechanism and structural basis for autophosphorylation are not clear and are in fact enigmatic because this phosphorylation occurs when the kinase is in its inactive conformation. Unlike most protein kinases, MAP kinases are not commonly activated by autophosphorylation but rather by MEK-dependent phosphorylation. Here we show that p38β, a p38 isoform that is almost identical to p38α, is exceptional and spontaneously autoactivates by autophosphorylation. We identified a 13-residue-long region composed of part of the αG-helix and the MAPK insert that triggers the intrinsic autophosphorylation activity of p38β. When inserted into p38α, this fragment renders it spontaneously active in vitro and in mammalian cells. We further found that an interaction between the N terminus and a particular region of the C-terminal extension suppresses the intrinsic autophosphorylation of p38β in mammalian cells. Thus, this study identified the structural motif responsible for the unique autophosphorylation capability of p38β and the motif inhibiting this activity in living cells. It shows that the MAPK insert and C-terminal extension, structural motifs that are unique to MAPKs, play a critical role in controlling autophosphorylation.
Collapse
Affiliation(s)
- Jonah Beenstock
- From the Department of Biological Chemistry, Institute of Life Science and
| | - Sheer Ben-Yehuda
- From the Department of Biological Chemistry, Institute of Life Science and
| | - Dganit Melamed
- the Faculty of Biology, Smoler Proteomics Center, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Arie Admon
- the Faculty of Biology, Smoler Proteomics Center, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Oded Livnah
- From the Department of Biological Chemistry, Institute of Life Science and the Wolfson Centre for applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Natalie G Ahn
- the Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309, and
| | - David Engelberg
- From the Department of Biological Chemistry, Institute of Life Science and the CREATE-NUS-HUJ, Cellular & Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602
| |
Collapse
|
128
|
Michailovici I, Harrington HA, Azogui HH, Yahalom-Ronen Y, Plotnikov A, Ching S, Stumpf MPH, Klein OD, Seger R, Tzahor E. Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/progenitor cells. Development 2014; 141:2611-20. [PMID: 24924195 DOI: 10.1242/dev.107078] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The transition between the proliferation and differentiation of progenitor cells is a key step in organogenesis, and alterations in this process can lead to developmental disorders. The extracellular signal-regulated kinase 1/2 (ERK) signaling pathway is one of the most intensively studied signaling mechanisms that regulates both proliferation and differentiation. How a single molecule (e.g. ERK) can regulate two opposing cellular outcomes is still a mystery. Using both chick and mouse models, we shed light on the mechanism responsible for the switch from proliferation to differentiation of head muscle progenitors and implicate ERK subcellular localization. Manipulation of the fibroblast growth factor (FGF)-ERK signaling pathway in chick embryos in vitro and in vivo demonstrated that blockage of this pathway accelerated myogenic differentiation, whereas its activation diminished it. We next examined whether the spatial subcellular localization of ERK could act as a switch between proliferation (nuclear ERK) and differentiation (cytoplasmic ERK) of muscle progenitors. A myristoylated peptide that blocks importin 7-mediated ERK nuclear translocation induced robust myogenic differentiation of muscle progenitor/stem cells in both head and trunk. In the mouse, analysis of Sprouty mutant embryos revealed that increased ERK signaling suppressed both head and trunk myogenesis. Our findings, corroborated by mathematical modeling, suggest that ERK shuttling between the nucleus and the cytoplasm provides a switch-like transition between proliferation and differentiation of muscle progenitors.
Collapse
Affiliation(s)
- Inbal Michailovici
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Heather A Harrington
- Theoretical Systems Biology, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | - Hadar Hay Azogui
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yfat Yahalom-Ronen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Plotnikov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Saunders Ching
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA 94143-0430, USA
| | - Michael P H Stumpf
- Theoretical Systems Biology, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA 94143-0430, USA Department of Pediatrics, Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143-0442, USA
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
129
|
Frohnert C, Hutten S, Wälde S, Nath A, Kehlenbach RH. Importin 7 and Nup358 promote nuclear import of the protein component of human telomerase. PLoS One 2014; 9:e88887. [PMID: 24586428 PMCID: PMC3930611 DOI: 10.1371/journal.pone.0088887] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/13/2014] [Indexed: 01/18/2023] Open
Abstract
In actively dividing eukaryotic cells, chromosome ends (telomeres) are subject to progressive shortening, unless they are maintained by the action of telomerase, a dedicated enzyme that adds DNA sequence repeats to chromosomal 3′end. For its enzymatic function on telomeres, telomerase requires nuclear import of its protein component (hTERT in human cells) and assembly with the RNA component, TERC. We now confirm a major nuclear localization signal (NLS) in the N-terminal region of hTERT and describe a novel one in the C-terminal part. Using an siRNA approach to deplete several import receptors, we identify importin 7 as a soluble nuclear transport factor that is required for efficient import. At the level of the nuclear pore complex (NPC), Nup358, a nucleoporin that forms the cytoplasmic filaments of the NPC, plays an important role in nuclear import of hTERT. A structure-function analysis of Nup358 revealed that the zinc finger region of the nucleoporin is of particular importance for transport of hTERT. Together, our study sheds light on the nuclear import pathway of hTERT.
Collapse
Affiliation(s)
- Cornelia Frohnert
- Institute of Molecular Biology, Faculty of Medicine, University of Göttingen, Göttingen, Germany
| | - Saskia Hutten
- Institute of Molecular Biology, Faculty of Medicine, University of Göttingen, Göttingen, Germany
| | - Sarah Wälde
- Institute of Molecular Biology, Faculty of Medicine, University of Göttingen, Göttingen, Germany
| | - Annegret Nath
- Institute of Molecular Biology, Faculty of Medicine, University of Göttingen, Göttingen, Germany
| | - Ralph H. Kehlenbach
- Institute of Molecular Biology, Faculty of Medicine, University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
130
|
Qu X, Li X, Zheng Y, Ren Y, Puelles VG, Caruana G, Nikolic-Paterson DJ, Li J. Regulation of renal fibrosis by Smad3 Thr388 phosphorylation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:944-952. [PMID: 24485922 DOI: 10.1016/j.ajpath.2013.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 01/08/2023]
Abstract
Transforming growth factor-β (TGF-β) promotes tissue fibrosis via receptor-mediated phosphorylation of the receptor-activated Smad2/3, together with Smad4. Of these, Smad3 plays a major profibrotic role in mouse models of tissue fibrosis. Transcriptional activity of the Smad3 protein is regulated by phosphorylation of residues in the C-terminal domain and the linker region. Herein, we examined the role of a novel phosphorylation site within the MH2 domain (T388) in the regulation of Smad3 activity. Confocal microscopy using an Smad3 phosphorylated T388-specific antibody identified phosphorylation of Smad3 T388 in myofibroblasts and tubular epithelial cells in human focal and segmental glomerulosclerosis and mouse models of unilateral ureteric obstruction and diabetic nephropathy, whereas phosphorylated T388 was largely absent in normal kidney. In vitro, TGF-β1 induced phosphorylation of Smad3 T388 in a biphasic pattern. A point mutation of T388/V in an Smad3 construct demonstrated that phosphorylation of T388 promotes Smad3 binding to Smad4 and CDK8, but was not necessary for nuclear translocation. Furthermore, T388 phosphorylation was required for TGF-β-induced collagen I gene promoter activity and extracellular matrix production in cultured fibroblasts. In conclusion, our study identifies phosphorylation of T388 in the Smad3 MH2 domain as an important mechanism that regulates the profibrotic TGF-β/Smad3 signaling pathway, which has direct relevance to human and experimental fibrotic kidney disease.
Collapse
Affiliation(s)
- Xinli Qu
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Xueling Li
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Yaowu Zheng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Georgina Caruana
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and the Department of Medicine, Monash University, Clayton, Australia
| | - Jinhua Li
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia.
| |
Collapse
|
131
|
Abstract
The extensive lengths of neuronal processes necessitate efficient mechanisms for communication with the cell body. Neuronal regeneration after nerve injury requires new transcription; thus, long-distance retrograde signalling from axonal lesion sites to the soma and nucleus is required. In recent years, considerable progress has been made in elucidating the mechanistic basis of this system. This has included the discovery of a priming role for early calcium waves; confirmation of central roles for mitogen-activated protein kinase signalling effectors, the importin family of nucleocytoplasmic transport factors and molecular motors such as dynein; and demonstration of the importance of local translation as a key regulatory mechanism. These recent findings provide a coherent mechanistic framework for axon-soma communication in the injured nerve and shed light on the integration of cytoplasmic and nuclear transport in all eukaryotic cells.
Collapse
Affiliation(s)
- Ida Rishal
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Mike Fainzilber
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
132
|
Beta-like importins mediate the nuclear translocation of mitogen-activated protein kinases. Mol Cell Biol 2013; 34:259-70. [PMID: 24216760 DOI: 10.1128/mcb.00799-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The rapid nuclear translocation of signaling proteins upon stimulation is important for the regulation of de novo gene expression. We have studied the stimulated nuclear shuttling of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs) and found that they translocate into the nucleus in a Ran-dependent, but NLS- or NTS-independent, manner, unrelated to their catalytic activity. We show that this translocation involves three β-like importins, importins 3, 7, and 9 (Imp3/7/9). Knockdown of these importins inhibits the nuclear translocation of the MAPKs and, thereby, activation of their transcription factor targets. We further demonstrate that the translocation requires the stimulated formation of heterotrimers composed of Imp3/Imp7/MAPK or Imp3/Imp9/MAPK. JNK1/2 and p38α/β bind to either Imp7 or Imp9 upon stimulated posttranslational modification of the two Imps, while Imp3 joins the complex after its stimulation-induced phosphorylation. Once formed, these heterotrimers move to the nuclear envelope, where importin 3 remains, while importins 7 and 9 escort the MAPKs into the nucleus. These results suggest that β-like importins are central mediators of stimulated nuclear translocation of signaling proteins and therefore add a central level of regulation to stimulated transcription.
Collapse
|
133
|
Androgen induces a switch from cytoplasmic retention to nuclear import of the androgen receptor. Mol Cell Biol 2013; 33:4766-78. [PMID: 24100013 DOI: 10.1128/mcb.00647-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The androgen receptor (AR) has critical functions as a transcription factor in both normal and cancer cells, but the specific mechanisms that regulate its nuclear localization are not well defined. We found that an AR mutation commonly reported in prostate cancer generates an androgen-independent gain of function for nuclear import. The substitution, Thr877Ala, is within the ligand-binding domain, but the nuclear import gain of function is mediated by the bipartite nuclear localization signal (NLS) spanning the DNA-binding domain (DBD) and hinge region. Bipartite NLS activity depends on the structure provided by the DBD, and protein interactions with the bipartite NLS are repressed by the hinge region. The bipartite NLS is recognized by importin 7, a nuclear import receptor for several proteins. Importin 7 binding to AR, however, inhibits import by shielding the bipartite NLS. Androgen binding relieves the inhibition by inducing a switch that promotes exchange of importin 7 for karyopherin alpha import receptors. Importin 7 contributes to the regulation of AR import by restraining import until androgen is detected in the cytoplasm.
Collapse
|
134
|
Abstract
Classic nuclear shuttling is mediated by an importin-α∙β heterodimer that binds to cargoes containing a nuclear localization signal, and shuttles most nuclear proteins immediately after their translation. Aside from this canonical mechanism, kariopheryn-βs or β-like importins operate by binding to non-canonical nuclear localization signals to mediate translocation without the assistance of importin-α. The mechanism by which these components operate is much less understood and is currently under investigation. Recently, several β-like importins have been implicated in the stimulated nuclear translocation of signaling proteins. Here, we propose that this group of importins might be responsible for the swift nuclear shuttling of many proteins following various stimuli.
Collapse
|
135
|
Ahmed SBM, Prigent SA. A nuclear export signal and oxidative stress regulate ShcD subcellular localisation: a potential role for ShcD in the nucleus. Cell Signal 2013; 26:32-40. [PMID: 24036217 DOI: 10.1016/j.cellsig.2013.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/16/2013] [Accepted: 09/02/2013] [Indexed: 01/23/2023]
Abstract
Tumour cells alter their gene expression profile to acquire a more invasive and resistant phenotype. Overexpression of the signalling adaptor protein ShcD in melanoma was found to be a prerequisite for melanoma migration and invasion. In common with other Shc proteins, ShcD has been shown to be involved in coupling receptor tyrosine kinases to the Ras-mitogen activated protein kinase signalling pathway, and to have a predominant cytoplasmic distribution. Here we report that ShcD can exist within the nucleus, and show that its CH2 domain has a critical role in nuclear export of ShcD. Analysis of GFP-tagged ShcD mutants containing deletions or amino acid substitutions within the CH2 domain revealed (83)LCTLIPRM(90) as a functional nuclear export signal. We have further demonstrated that ShcD accumulates in the nucleus upon hydrogen peroxide treatment in FLAG-ShcD expressing HEK293 cells, as well as 518.A2 melanoma cells. Cross linking experiments showed that a proportion of ShcD is associated with DNA. Moreover we have shown that ShcD fused to the GAL4 DNA binding domain can drive transcription of a GAL4 site-driven luciferase reporter, suggesting a role for ShcD in regulating gene transcription. We suggest that ShcD nuclear translocation might provide melanoma cells with a mechanism that enables them to resist DNA damage due to oxidative stress.
Collapse
Affiliation(s)
- Samrein B M Ahmed
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester, LE1 9HN, United Kingdom
| | | |
Collapse
|
136
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
137
|
Eishingdrelo H, Kongsamut S. Minireview: Targeting GPCR Activated ERK Pathways for Drug Discovery. Curr Chem Genom Transl Med 2013; 7:9-15. [PMID: 24396730 PMCID: PMC3854659 DOI: 10.2174/2213988501307010009] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 02/07/2023] Open
Abstract
It has become clear in recent years that multiple signal transduction pathways are employed upon GPCR
activation. One of the major cellular effectors activated by GPCRs is extracellular signal-regulated kinase (ERK). Both G-protein and β-arrestin mediated signaling pathways can lead to ERK activation. However, depending on activation
pathway, the subcellular destination of activated ERK1/2 may be different. G-protein -dependent ERK activation results in the translocation of active ERK to the nucleus, whereas ERK activated via an arrestin-dependent mechanism remains largely in the cytoplasm. The subcellular location of activated ERK1/2 determines the downstream signaling cascade. Many substrates of ERK1/2 are found in the nucleus: nuclear transcription factors that participate in gene transcription, cell proliferation and differentiation. ERK1/2 substrates are also found in cytosol and other cellular organelles: they may play roles in translation, mitosis, apoptosis and cross-talk with other signaling pathways. Therefore, determining specific subcellular locations of activated ERK1/2 mediated by GPCR ligands would be important in correlating signaling pathways with cellular physiological functions. While GPCR-stimulated selective ERK pathway activation has been studied in several receptor systems, exploitation of these different signaling cascades for therapeutics has not yet been seriously
pursued. Many old drug candidates were identified from screens based on G-protein signaling assays, and their activity on β-arrestin signaling pathways being mostly unknown, especially regarding their subcellular ERK pathways. With today’s knowledge of complicated GPCR signaling pathways, drug discovery can no longer rely on single-pathway approaches. Since ERK activation is an important signaling pathway and associated with many physiological functions, targeting the ERK pathway, especially specific subcellular activation pathways should provide new avenues for GPCR drug discovery.
Collapse
Affiliation(s)
- Haifeng Eishingdrelo
- BioInvenu Corporation, 50 Williams Parkway, East Hanover, New Jersey, 07936, USA
| | | |
Collapse
|
138
|
Ju JH, Yang W, Lee KM, Oh S, Nam K, Shim S, Shin SY, Gye MC, Chu IS, Shin I. Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells. Clin Cancer Res 2013; 19:4335-46. [PMID: 23833298 DOI: 10.1158/1078-0432.ccr-12-3295] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Keratin19 (KRT19) is the smallest known type I intermediate filament and is used as a marker for reverse transcriptase PCR-mediated detection of disseminated tumors. In this study, we investigated the functional analysis of KRT19 in human breast cancer. EXPERIMENTAL DESIGN Using a short hairpin RNA system, we silenced KRT19 in breast cancer cells. KRT19 silencing was verified by Western blot analysis and immunocytochemistry. We further examined the effect of KRT19 silencing on breast cancer cells by cell proliferation, migration, invasion, colony formation assay, cell-cycle analysis, immunocytochemistry, immunohistochemistry, and mouse xenograft assay. RESULTS Silencing of KRT19 resulted in increased cell proliferation, migration, invasion, and survival. These effects were mediated by upregulation of Akt signaling as a result of reduced PTEN mRNA expression. Silencing of KRT19 decreased the nuclear import of early growth response-1 (Egr1), a transcriptional factor for PTEN transcription, through reduced association between Egr1 and importin-7. We also confirmed that silencing of KRT19 increased tumor formation in a xenograft model. CONCLUSIONS KRT19 is a potential tumor suppressor that negatively regulates Akt signaling through modulation of Egr1 nuclear localization.
Collapse
Affiliation(s)
- Ji-Hyun Ju
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Amsterdam A, Shezen E, Raanan C, Schreiber L, Slilat Y, Fabrikant Y, Melzer E, Seger R. Two initiation sites of early detection of colon cancer revealed by localization of pERK1/2 in the nuclei or in aggregates at the perinuclear region of the tumor cells. Acta Histochem 2013; 115:569-76. [PMID: 23357054 DOI: 10.1016/j.acthis.2012.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/09/2012] [Accepted: 12/12/2012] [Indexed: 11/30/2022]
Abstract
We have used human specimens and antibodies to pERK1/2 to detect early development of colon cancer using indirect immunocytochemistry. Two distinct sites were stained; one at the tip of the colon crypts and the other in the stromal tissue associated with the colonic tissue. These foci represent early stages of colon cancer initiation sites as established by enhanced Kirsten Rat Sarcoma Virus (KRAS) and the lack of p53 staining. The enhanced KRAS coincides with the initiation of tumor growth revealed by pERK1/2, both in the tip of the colon crypts, as well as in the stromal initiation site of the colon tumors. Foci of pERK1/2 staining were also detected in 50% of stromal tissue and tips of colon crypts, which were classified as normal tissues, adjacent to the malignant tissue according to general morphology. However, in colon specimens, where no malignancy was observed, no accumulation of pERK1/2 was observed. The staining of pERK1/2 at the stromal foci of the apparently non-malignant tissue appeared as aggregates in the perinuclear region, while in the colon epithelium it appeared in the cell nuclei. In low-grade colon cancer that was still free of induced mutated p53, staining of pERK1/2 was prominent in the cell nuclei, both in the stroma tissue and the tip of the colon crypts. In the intermediate stage, that exhibited significant p53 staining, only a fraction of p53-free tumor cells was labeled with pERK1/2 antibody, while in high-grade tumors, all cells of tumors were labeled with antibodies to p53, but not with antibodies to pERK1/2. We suggest that the down regulation in pERK1/2 labeling is due to the mitogenic capacity of the tumor cells, which are shifted from being driven by nuclear pERK1/2 to mutated p53 expression. We also found that the cytoplasm of low grade tumors was positive for epiregulin, while this labeling decreased in high-grade tumors. We found that the tumors arising from the stroma demonstrated poor structural differentiation, while the tumors initiating from the epithelial cells of the colon demonstrated high structural differentiation. We conclude that pERK1/2 is a sensitive marker of early colon cancer, which disappears at later stages of cancer development. Moreover, pERK1/2 staining can distinguish between tumor cells originating from the tip of the colon crypts and those developing in the stroma, which is present in the close vicinity to colon epithelial tissue, and thus can assist in selecting the appropriate therapy.
Collapse
Affiliation(s)
- Abraham Amsterdam
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Bar-Gill AB, Efergan A, Seger R, Fukuda M, Sagi-Eisenberg R. The extra-cellular signal regulated kinases ERK1 and ERK2 segregate displaying distinct spatiotemporal characteristics in activated mast cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2070-82. [PMID: 23651922 DOI: 10.1016/j.bbamcr.2013.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/27/2013] [Accepted: 04/29/2013] [Indexed: 11/26/2022]
Abstract
ERK1 and ERK2 are highly homologous isoforms that often play redundant roles in regulating cellular functions. We analyzed the spatiotemporal patterns of ERK1 and ERK2 in resting and activated mast cells. Strikingly, we identified distinct pathways for these kinases. ERK1 localized to the cytosol and translocated to the nucleus upon cell activation and kinase phosphorylation. In contrast, ERK2 distributed between the cytosol and near the microtubule organizing center (MTOC) in resting cells and accumulated further at a pericentrosomal region upon cell trigger. Pericentrosomal accumulation of ERK2 was phosphorylation independent, required an intact microtubule network and was significantly enhanced by the overexpression of Neuronal Calcium Sensor-1 (NCS-1). We also identified γ-tubulin and phosphatidylinositol 4 kinaseβ (PI4Kβ), a downstream effector of NCS-1, as novel partner proteins of ERK2. Taken together, our results imply non-redundant functions of ERK1 and ERK2 in mast cells and implicate NCS-1 and PΙ4Κβ as regulators of ERK2 trafficking.
Collapse
Affiliation(s)
- Anat Benado Bar-Gill
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
141
|
p90 ribosomal S6 kinases play a significant role in early gene regulation in the cardiomyocyte response to G(q)-protein-coupled receptor stimuli, endothelin-1 and α(1)-adrenergic receptor agonists. Biochem J 2013; 450:351-63. [PMID: 23215897 PMCID: PMC3573779 DOI: 10.1042/bj20121371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ERK1/2 (extracellular-signal-regulated kinase 1/2) and their substrates RSKs (p90 ribosomal S6 kinases) phosphorylate different transcription factors, contributing differentially to transcriptomic profiles. In cardiomyocytes ERK1/2 are required for >70% of the transcriptomic response to endothelin-1. In the present study we investigated the role of RSKs in the transcriptomic responses to the Gq-protein-coupled receptor agonists endothelin-1, phenylephrine (a generic α1-adrenergic receptor agonist) and A61603 (α1A-adrenergic receptor selective). Phospho-ERK1/2 and phospho-RSKs appeared in cardiomyocyte nuclei within 2–3 min of stimulation (endothelin-1>A61603≈phenylephrine). All agonists increased nuclear RSK2, but only endothelin-1 increased the nuclear RSK1 content. PD184352 (inhibits ERK1/2 activation) and BI-D1870 (inhibits RSKs) were used to dissect the contribution of RSKs to the endothelin-1-responsive transcriptome. Of the 213 RNAs up-regulated after 1 h, 51% required RSKs for their up-regulation, whereas 29% required ERK1/2 but not RSKs. The transcriptomic response to phenylephrine overlapped with, but was not identical with, endothelin-1. As with endothelin-1, PD184352 inhibited the up-regulation of most phenylephrine-responsive transcripts, but the greater variation in the effects of BI-D1870 suggests that differential RSK signalling influences global gene expression. A61603 induced similar changes in RNA expression in cardiomyocytes as phenylephrine, indicating that the signal was mediated largely through α1A-adrenergic receptors. A61603 also increased expression of immediate early genes in perfused adult rat hearts and, as in cardiomyocytes, up-regulation of the majority of genes was inhibited by PD184352. PD184352 or BI-D1870 prevented the increased surface area induced by endothelin-1 in cardiomyocytes. Thus RSKs play a significant role in regulating cardiomyocyte gene expression and hypertrophy in response to Gq-protein-coupled receptor stimulation.
Collapse
|
142
|
Meister M, Tomasovic A, Banning A, Tikkanen R. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Int J Mol Sci 2013; 14:4854-84. [PMID: 23455463 PMCID: PMC3634400 DOI: 10.3390/ijms14034854] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is the canonical signaling pathway for many receptor tyrosine kinases, such as the Epidermal Growth Factor Receptor. Downstream of the receptors, this pathway involves the activation of a kinase cascade that culminates in a transcriptional response and affects processes, such as cell migration and adhesion. In addition, the strength and duration of the upstream signal also influence the mode of the cellular response that is switched on. Thus, the same components can in principle coordinate opposite responses, such as proliferation and differentiation. In recent years, it has become evident that MAPK signaling is regulated and fine-tuned by proteins that can bind to several MAPK signaling proteins simultaneously and, thereby, affect their function. These so-called MAPK scaffolding proteins are, thus, important coordinators of the signaling response in cells. In this review, we summarize the recent advances in the research on MAPK/extracellular signal-regulated kinase (ERK) pathway scaffolders. We will not only review the well-known members of the family, such as kinase suppressor of Ras (KSR), but also put a special focus on the function of the recently identified or less studied scaffolders, such as fibroblast growth factor receptor substrate 2, flotillin-1 and mitogen-activated protein kinase organizer 1.
Collapse
Affiliation(s)
- Melanie Meister
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ana Tomasovic
- Department of Molecular Hematology, University of Frankfurt, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; E-Mail:
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-641-9947-420; Fax: +49-641-9947-429
| |
Collapse
|
143
|
Šamajová O, Komis G, Šamaj J. Emerging topics in the cell biology of mitogen-activated protein kinases. TRENDS IN PLANT SCIENCE 2013; 18:140-8. [PMID: 23291243 DOI: 10.1016/j.tplants.2012.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 10/31/2012] [Accepted: 11/26/2012] [Indexed: 05/20/2023]
Abstract
Signaling through mitogen-activated protein kinase (MAPK) cascades is organized in complex interconnected subcellular networks. Upon MAPK activation, signals are transferred to targets in different subcellular compartments able to regulate various cellular processes. Therefore, subcellular dissection of individual MAPK modules is vital to understand how a single MAPK can simultaneously mediate many tasks and how a single stimulus can direct different MAPK modules to separated tasks. In this opinion article, we present a subcellular localization prediction of all members of Arabidopsis thaliana MAPK modules validated wherever possible with experimental data. Furthermore, we propose, that at least in part, the complexity of plant MAPK signaling can be explained by unique strategies of subcellular targeting, which will be worth investigating in the near future.
Collapse
Affiliation(s)
- Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Department of Cell Biology, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | |
Collapse
|
144
|
Faure C, Ramos M, Girault JA. Pyk2 cytonuclear localization: mechanisms and regulation by serine dephosphorylation. Cell Mol Life Sci 2013; 70:137-52. [PMID: 22802128 PMCID: PMC11113809 DOI: 10.1007/s00018-012-1075-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 06/13/2012] [Accepted: 06/25/2012] [Indexed: 11/25/2022]
Abstract
Cytonuclear signaling is essential for long-term alterations of cellular properties. Several pathways involving regulated nuclear accumulation of Ser/Thr kinases have been described but little is known about cytonuclear trafficking of tyrosine kinases. Proline-rich tyrosine kinase 2 (Pyk2) is a cytoplasmic non-receptor tyrosine kinase enriched in neurons and involved in functions ranging from synaptic plasticity to bone resorption, as well as in cancer. We previously showed the Ca(2+)-induced, calcineurin-dependent, nuclear localization of Pyk2. Here, we characterize the molecular mechanisms of Pyk2 cytonuclear localization in transfected PC12 cells. The 700-841 linker region of Pyk2 recapitulates its depolarization-induced nuclear accumulation. This region includes a nuclear export motif regulated by phosphorylation at residue S778, a substrate of cAMP-dependent protein kinase and calcineurin. Nuclear import is controlled by a previously identified sequence in the N-terminal domain and by a novel nuclear targeting signal in the linker region. Regulation of cytonuclear trafficking is independent of Pyk2 activity. The region regulating nuclear localization is absent from the non-neuronal shorter splice isoform of Pyk2. Our results elucidate the mechanisms of Ca(2+)-induced nuclear accumulation of Pyk2. They also suggest that Pyk2 nuclear accumulation is a novel type of signaling response that may contribute to specific long-term adaptations in neurons.
Collapse
Affiliation(s)
- Camille Faure
- Inserm, UMR-S 839, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Mariana Ramos
- Inserm, UMR-S 839, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Jean-Antoine Girault
- Inserm, UMR-S 839, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| |
Collapse
|
145
|
Guo L, Chen C, Liang Q, Karim MZ, Gorska MM, Alam R. Nuclear translocation of MEK1 triggers a complex T cell response through the corepressor silencing mediator of retinoid and thyroid hormone receptor. THE JOURNAL OF IMMUNOLOGY 2012; 190:159-67. [PMID: 23225884 DOI: 10.4049/jimmunol.1201657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MEK1 phosphorylates ERK1/2 and regulates T cell generation, differentiation, and function. MEK1 has recently been shown to translocate to the nucleus. Its nuclear function is largely unknown. By studying human CD4 T cells, we demonstrate that a low level of MEK1 is present in the nucleus of CD4 T cells under basal conditions. T cell activation further increases the nuclear translocation of MEK1. MEK1 interacts with the nuclear receptor corepressor silencing mediator of retinoid and thyroid hormone receptor (SMRT). MEK1 reduces the nuclear level of SMRT in an activation-dependent manner. MEK1 is recruited to the promoter of c-Fos upon TCR stimulation. Conversely, SMRT is bound to the c-Fos promoter under basal conditions and is removed upon TCR stimulation. We examined the role of SMRT in regulation of T cell function. Small interfering RNA-mediated knockdown of SMRT results in a biphasic effect on cytokine production. The production of the cytokines IL-2, IL-4, IL-10, and IFN-γ increases in the early phase (8 h) and then decreases in the late phase (48 h). The late-phase decrease is associated with inhibition of T cell proliferation. The late-phase inhibition of T cell activation is, in part, mediated by IL-10 that is produced in the early phase and, in part, by β-catenin signaling. Thus, we have identified a novel nuclear function of MEK1. MEK1 triggers a complex pattern of early T cell activation, followed by a late inhibition through its interaction with SMRT. This biphasic dual effect most likely reflects a homeostatic regulation of T cell function by MEK1.
Collapse
Affiliation(s)
- Lei Guo
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
146
|
Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene 2012; 513:1-13. [PMID: 23123731 DOI: 10.1016/j.gene.2012.10.033] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023]
Abstract
The MAP kinase (MAPK) signalling pathways play fundamental roles in a wide range of cellular processes and are often deregulated in disease states. One major mode of action for these pathways is in controlling gene expression, in particular through regulating transcription. In this review, we discuss recent significant advances in this area. In particular we focus on the mechanisms by which MAPKs are targeted to the nucleus and chromatin, and once there, how they impact on chromatin structure and subsequent gene regulation. We also discuss how systems biology approaches have contributed to our understanding of MAPK signaling networks, and also how the MAPK pathways intersect with other regulatory pathways in the nucleus. Finally, we summarise progress in studying the physiological functions of key MAPK transcriptional targets.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
147
|
The Crystal Structure of the MAP Kinase LmaMPK10 from Leishmania Major Reveals Parasite-Specific Features and Regulatory Mechanisms. Structure 2012; 20:1649-60. [DOI: 10.1016/j.str.2012.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/23/2012] [Accepted: 07/09/2012] [Indexed: 12/23/2022]
|
148
|
Sutcliffe EL, Li J, Zafar A, Hardy K, Ghildyal R, McCuaig R, Norris NC, Lim PS, Milburn PJ, Casarotto MG, Denyer G, Rao S. Chromatinized Protein Kinase C-θ: Can It Escape the Clutches of NF-κB? Front Immunol 2012; 3:260. [PMID: 22969762 PMCID: PMC3428636 DOI: 10.3389/fimmu.2012.00260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/01/2012] [Indexed: 12/11/2022] Open
Abstract
We recently provided the first description of a nuclear mechanism used by Protein Kinase C-theta (PKC-θ) to mediate T cell gene expression. In this mode, PKC-θ tethers to chromatin to form an active nuclear complex by interacting with proteins including RNA polymerase II, the histone kinase MSK-1, the demethylase LSD1, and the adaptor molecule 14-3-3ζ at regulatory regions of inducible immune response genes. Moreover, our genome-wide analysis identified many novel PKC-θ target genes and microRNAs implicated in T cell development, differentiation, apoptosis, and proliferation. We have expanded our ChIP-on-chip analysis and have now identified a transcription factor motif containing NF-κB binding sites that may facilitate recruitment of PKC-θ to chromatin at coding genes. Furthermore, NF-κB association with chromatin appears to be a prerequisite for the assembly of the PKC-θ active complex. In contrast, a distinct NF-κB-containing module appears to operate at PKC-θ targeted microRNA genes, and here NF-κB negatively regulates microRNA gene transcription. Our efforts are also focusing on distinguishing between the nuclear and cytoplasmic functions of PKCs to ascertain how these kinases may synergize their roles as both cytoplasmic signaling proteins and their functions on the chromatin template, together enabling rapid induction of eukaryotic genes. We have identified an alternative sequence within PKC-θ that appears to be important for nuclear translocation of this kinase. Understanding the molecular mechanisms used by signal transduction kinases to elicit specific and distinct transcriptional programs in T cells will enable scientists to refine current therapeutic strategies for autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Elissa L Sutcliffe
- Discipline of Biomedical Sciences, Faculty of Applied Science, The University of Canberra Canberra, ACT, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Acid ceramidase (ASAH1) represses steroidogenic factor 1-dependent gene transcription in H295R human adrenocortical cells by binding to the receptor. Mol Cell Biol 2012; 32:4419-31. [PMID: 22927646 DOI: 10.1128/mcb.00378-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adrenocorticotropin (ACTH) signaling increases glucocorticoid production by promoting the interaction of transcription factors and coactivator proteins with the promoter of steroidogenic genes. The nuclear receptor steroidogenic factor 1 (SF-1) is essential for steroidogenic gene transcription. Sphingosine (SPH) is a ligand for SF-1. Moreover, suppression of expression of acid ceramidase (ASAH1), an enzyme that produces SPH, increases the transcription of multiple steroidogenic genes. Given that SF-1 is a nuclear protein, we sought to define the molecular mechanisms by which ASAH1 regulates SF-1 function. We show that ASAH1 is localized in the nuclei of H295R adrenocortical cells and that cyclic AMP (cAMP) signaling promotes nuclear sphingolipid metabolism in an ASAH1-dependent manner. ASAH1 suppresses SF-1 activity by directly interacting with the receptor. Chromatin immunoprecipitation (ChIP) assays revealed that ASAH1 is recruited to the promoter of various SF-1 target genes and that ASAH1 and SF-1 colocalize on the same promoter region of the CYP17A1 and steroidogenic acute regulatory protein (StAR) genes. Taken together, these results demonstrate that ASAH1 is a novel coregulatory protein that represses SF-1 function by directly binding to the receptor on SF-1 target gene promoters and identify a key role for nuclear lipid metabolism in regulating gene transcription.
Collapse
|
150
|
Vidal M, Wieland T, Lohse MJ, Lorenz K. β-Adrenergic receptor stimulation causes cardiac hypertrophy via a Gβγ/Erk-dependent pathway. Cardiovasc Res 2012; 96:255-64. [PMID: 22843704 DOI: 10.1093/cvr/cvs249] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Activation of the β(1)-adrenergic receptor and its G protein, G(s), induces cardiac hypertrophy. However, activation of classic Gα(s) effectors, adenylyl cyclases (AC) and protein kinase A, is not sufficient for induction of hypertrophy, which suggests the involvement of additional pathway(s) activated by G(s). Recently, we discovered that βγ subunits of G(q) induce phosphorylation of the extracellular regulated kinases 1 and 2 (Erk1/2) at threonine188 and thereby induce hypertrophy. Here we investigated whether β-adrenergic receptors might also induce cardiac hypertrophy via Erk(Thr188) phosphorylation. METHODS AND RESULTS β-Adrenergic receptor activation induced Erk(Thr188) phosphorylation in mouse hearts and in neonatal cardiomyocytes. Inhibition of Erk1/2 or overexpression of Erk(Thr188) phosphorylation-deficient mutants (Erk2(T188A) and Erk2(T188S)) significantly attenuated β-adrenergic cardiomyocyte hypertrophy in vitro. Erk activity was stimulated by both isoproterenol and the direct AC activator forskolin, but only isoproterenol induced Erk(Thr188) phosphorylation. Erk(Thr188) phosphorylation required Gβγ released from G(s) and was prevented by Gβγ inhibition. Similarly, isoproterenol, but not forskolin, induced nuclear accumulation of Erk and cardiomyocyte hypertrophy. Long-term application of isoproterenol in mice caused left ventricular hypertrophy and cardiac remodelling, and this was reduced in Erk2(T188S) transgenic mice, supporting the physiological relevance of Erk(Thr188) phosphorylation. CONCLUSIONS Activation of G(s) by β-adrenergic receptors leads to (i) canonical Erk1/2 activation via AC, and (ii) release of Gβγ, which then associates with activated Erk1/2 and induces Erk(Thr188) phosphorylation, causing nuclear accumulation of Erk and ultimately cardiomyocyte hypertrophy. These findings reveal a new pathway critically involved in β-adrenergically mediated cardiac hypertrophy and may yield new therapeutic strategies against hypertrophic remodelling.
Collapse
Affiliation(s)
- Marie Vidal
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | | | | | | |
Collapse
|