101
|
Ali MZ, Choubey S. Decoding the grammar of transcriptional regulation from RNA polymerase measurements: models and their applications. Phys Biol 2019; 16:061001. [PMID: 31603077 DOI: 10.1088/1478-3975/ab45bf] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The genomic revolution has indubitably brought about a paradigm shift in the field of molecular biology, wherein we can sequence, write and re-write genomes. In spite of achieving such feats, we still lack a quantitative understanding of how cells integrate environmental and intra-cellular signals at the promoter and accordingly regulate the production of messenger RNAs. This current state of affairs is being redressed by recent experimental breakthroughs which enable the counting of RNA polymerase molecules (or the corresponding nascent RNAs) engaged in the process of transcribing a gene at the single-cell level. Theorists, in conjunction, have sought to unravel the grammar of transcriptional regulation by harnessing the various statistical properties of these measurements. In this review, we focus on the recent progress in developing falsifiable models of transcription that aim to connect the molecular mechanisms of transcription to single-cell polymerase measurements. We discuss studies where the application of such models to the experimental data have led to novel mechanistic insights into the process of transcriptional regulation. Such interplay between theory and experiments will likely contribute towards the exciting journey of unfurling the governing principles of transcriptional regulation ranging from bacteria to higher organisms.
Collapse
Affiliation(s)
- Md Zulfikar Ali
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA, United States of America. Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | | |
Collapse
|
102
|
Krüger J, Richter P, Stoltze J, Strauch SM, Krüger M, Daiker V, Prasad B, Sonnewald S, Reid S, Lebert M. Changes of Gene Expression in Euglena gracilis Obtained During the 29 th DLR Parabolic Flight Campaign. Sci Rep 2019; 9:14260. [PMID: 31582787 PMCID: PMC6776534 DOI: 10.1038/s41598-019-50611-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/02/2019] [Indexed: 01/14/2023] Open
Abstract
Parabolic flight maneuvers of Novespace's Airbus A310 ZERO-G produce subsequent phases of hypergravity (about 20 s), microgravity (about 22 s) and another 20 s hypergravity on experiments located in the experiment area of the aircraft. The 29th DLR parabolic flight campaign consisted of four consecutive flight days with thirty-one parabolas each day. Euglena gracilis cells were fixed with TRIzol during different acceleration conditions at the first and the last parabola of each flight. Samples were collected and analyzed with microarrays for one-color gene expression analysis. The data indicate significant changes in gene expression in E. gracilis within short time. Hierarchical clustering shows that changes induced by the different accelerations yield reproducible effects at independent flight days. Transcription differed between the first and last parabolas indicating adaptation effects in the course of the flight. Different gene groups were found to be affected in different phases of the parabolic flight, among others, genes involved in signal transduction, calcium signaling, transport mechanisms, metabolic pathways, and stress-response as well as membrane and cytoskeletal proteins. In addition, transcripts of other areas, e.g., DNA and protein modification, were altered. The study contributes to the understanding of short-term effects of microgravity and different accelerations on cells at a molecular level.
Collapse
Affiliation(s)
- Julia Krüger
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Peter Richter
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Julia Stoltze
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Sebastian M Strauch
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89219-710, Brazil
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Viktor Daiker
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Binod Prasad
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Sophia Sonnewald
- Biochemistry Division, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Stephen Reid
- Biochemistry Division, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Michael Lebert
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany.
| |
Collapse
|
103
|
Shin J, Cheng H, Tian B. New means to an end: mRNA export activity impacts alternative polyadenylation. Transcription 2019; 10:207-211. [PMID: 31474181 DOI: 10.1080/21541264.2019.1658557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Gene expression involves multiple co- and post-transcriptional processes that have been increasingly found intertwined. A recent work by our groups (Chen et al. Mol Cell, 2019) indicates that expression of alternative polyadenylation isoforms in mammalian cells can be controlled by nuclear export activities. This regulation has distinct impacts on genes having different sizes and nucleotide contents, and involves RNA polymerase II distribution toward the 3' end of genes. This work raises a number of intriguing questions concerning how 3' end processing and nuclear export are integrated and how their regulation feeds back to transcription.
Collapse
Affiliation(s)
- Jihae Shin
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
104
|
Tonsing-Carter E, Hernandez KM, Kim CR, Harkless RV, Oh A, Bowie KR, West-Szymanski DC, Betancourt-Ponce MA, Green BD, Lastra RR, Fleming GF, Chandarlapaty S, Conzen SD. Glucocorticoid receptor modulation decreases ER-positive breast cancer cell proliferation and suppresses wild-type and mutant ER chromatin association. Breast Cancer Res 2019; 21:82. [PMID: 31340854 PMCID: PMC6651939 DOI: 10.1186/s13058-019-1164-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022] Open
Abstract
Background Non-ER nuclear receptor activity can alter estrogen receptor (ER) chromatin association and resultant ER-mediated transcription. Consistent with GR modulation of ER activity, high tumor glucocorticoid receptor (GR) expression correlates with improved relapse-free survival in ER+ breast cancer (BC) patients. Methods In vitro cell proliferation assays were used to assess ER-mediated BC cell proliferation following GR modulation. ER chromatin association following ER/GR co-liganding was measured using global ChIP sequencing and directed ChIP analysis of proliferative gene enhancers. Results We found that GR liganding with either a pure agonist or a selective GR modulator (SGRM) slowed estradiol (E2)-mediated proliferation in ER+ BC models. SGRMs that antagonized transcription of GR-unique genes both promoted GR chromatin association and inhibited ER chromatin localization at common DNA enhancer sites. Gene expression analysis revealed that ER and GR co-activation decreased proliferative gene activation (compared to ER activation alone), specifically reducing CCND1, CDK2, and CDK6 gene expression. We also found that ligand-dependent GR occupancy of common ER-bound enhancer regions suppressed both wild-type and mutant ER chromatin association and decreased corresponding gene expression. In vivo, treatment with structurally diverse SGRMs also reduced MCF-7 Y537S ER-expressing BC xenograft growth. Conclusion These studies demonstrate that liganded GR can suppress ER chromatin occupancy at shared ER-regulated enhancers, including CCND1 (Cyclin D1), regardless of whether the ligand is a classic GR agonist or antagonist. Resulting GR-mediated suppression of ER+ BC proliferative gene expression and cell division suggests that SGRMs could decrease ER-driven gene expression. Electronic supplementary material The online version of this article (10.1186/s13058-019-1164-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Tonsing-Carter
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Kyle M Hernandez
- Center for Research Informatics, The University of Chicago, Chicago, IL, 60637, USA.,Department of Pediatrics, The University of Chicago, Chicago, IL, 60637, USA
| | - Caroline R Kim
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Ryan V Harkless
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Alyce Oh
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Kathleen R Bowie
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | | | | | - Bradley D Green
- Ben May Department for Cancer Research, The University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA
| | - Ricardo R Lastra
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Gini F Fleming
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suzanne D Conzen
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA. .,Ben May Department for Cancer Research, The University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA.
| |
Collapse
|
105
|
Abstract
Elongation factor Paf1C regulates several stages of the RNA polymerase II (Pol II) transcription cycle, although it is unclear how it modulates Pol II distribution and progression in mammalian cells. We found that conditional ablation of Paf1 resulted in the accumulation of unphosphorylated and Ser5 phosphorylated Pol II around promoter-proximal regions and within the first 20 to 30 kb of gene bodies, respectively. Paf1 ablation did not impact the recruitment of other key elongation factors, namely, Spt5, Spt6, and the FACT complex, suggesting that Paf1 function may be mechanistically distinguishable from each of these factors. Moreover, loss of Paf1 triggered an increase in TSS-proximal nucleosome occupancy, which could impose a considerable barrier to Pol II elongation past TSS-proximal regions. Remarkably, accumulation of Ser5P in the first 20 to 30 kb coincided with reductions in histone H2B ubiquitylation within this region. Furthermore, we show that nascent RNA species accumulate within this window, suggesting a mechanism whereby Paf1 loss leads to aberrant, prematurely terminated transcripts and diminution of full-length transcripts. Importantly, we found that loss of Paf1 results in Pol II elongation rate defects with significant rate compression. Our findings suggest that Paf1C is critical for modulating Pol II elongation rates by functioning beyond the pause-release step as an "accelerator" over specific early gene body regions.
Collapse
|
106
|
Scheidegger A, Dunn CJ, Samarakkody A, Koney NKK, Perley D, Saha RN, Nechaev S. Genome-wide RNA pol II initiation and pausing in neural progenitors of the rat. BMC Genomics 2019; 20:477. [PMID: 31185909 PMCID: PMC6558777 DOI: 10.1186/s12864-019-5829-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/23/2019] [Indexed: 12/29/2022] Open
Abstract
Background Global RNA sequencing technologies have revealed widespread RNA polymerase II (Pol II) transcription outside of gene promoters. Small 5′-capped RNA sequencing (Start-seq) originally developed for the detection of promoter-proximal Pol II pausing has helped improve annotation of Transcription Start Sites (TSSs) of genes as well as identification of non-genic regulatory elements. However, apart from the most well studied genomes of human and mouse, mammalian transcription has not been profiled with sufficiently high precision. Results We prepared and sequenced Start-seq libraries from rat (Rattus norgevicus) primary neural progenitor cells. Over 48 million uniquely mappable reads from two independent biological replicates allowed us to define the TSSs of 7365 known genes in the rn6 genome, reannotating 2503 TSSs by more than 5 base pairs, characterize promoter-associated antisense transcription, and profile Pol II pausing. By combining TSS data with polyA-selected RNA sequencing, we also identified thousands of potential new genes producing stable RNA as well as non-genic transcripts representing possible regulatory elements. Conclusions Our study has produced the first Start-seq dataset for the rat. Apart from profiling transcription initiation, our data reaffirm the prevalence of Pol II pausing across the rat genome and indicate conservation of pausing mechanisms across metazoan genomes. We suggest that pausing location, at least in mammals, is constrained by a distance from initiation of transcription, whether it occurs at or outside of a gene promoter. Abundant antisense transcription initiation around protein coding genes indicates that Pol II recruited to the vicinity of a promoter is distributed to available start sites of transcription at either DNA strand. Transcriptome profiling of neural progenitors presented here will facilitate further studies of other rat cell types as well as other organisms. Electronic supplementary material The online version of this article (10.1186/s12864-019-5829-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam Scheidegger
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA.,Present address: Omega Therapeutics, Cambridge, MA, 02139, USA
| | - Carissa J Dunn
- Molecular and Cell Biology Department, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Ann Samarakkody
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA.,Present address: Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nii Koney-Kwaku Koney
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
| | - Danielle Perley
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Sergei Nechaev
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA.
| |
Collapse
|
107
|
Abstract
In this review, Core et al. discuss the recent advances in our understanding of the early steps in Pol II transcription, highlighting the events and factors involved in the establishment and release of paused Pol II. They also discuss a number of unanswered questions about the regulation and function of Pol II pausing. Precise spatio–temporal control of gene activity is essential for organismal development, growth, and survival in a changing environment. Decisive steps in gene regulation involve the pausing of RNA polymerase II (Pol II) in early elongation, and the controlled release of paused polymerase into productive RNA synthesis. Here we describe the factors that enable pausing and the events that trigger Pol II release into the gene. We also discuss open questions in the field concerning the stability of paused Pol II, nucleosomes as obstacles to elongation, and potential roles of pausing in defining the precision and dynamics of gene expression.
Collapse
Affiliation(s)
- Leighton Core
- Department of Molecular and Cell Biology, Institute of Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
108
|
Millar AJ, Urquiza U, Freeman PL, Hume A, Plotkin GD, Sorokina O, Zardilis A, Zielinski T. Practical steps to digital organism models, from laboratory model species to 'Crops in silico. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2403-2418. [PMID: 30615184 DOI: 10.1093/jxb/ery435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/28/2018] [Indexed: 05/20/2023]
Abstract
A recent initiative named 'Crops in silico' proposes that multi-scale models 'have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts' in plant science, particularly directed to crop species. To that end, the group called for 'a paradigm shift in plant modelling, from largely isolated efforts to a connected community'. 'Wet' (experimental) research has been especially productive in plant science, since the adoption of Arabidopsis thaliana as a laboratory model species allowed the emergence of an Arabidopsis research community. Parts of this community invested in 'dry' (theoretical) research, under the rubric of Systems Biology. Our past research combined concepts from Systems Biology and crop modelling. Here we outline the approaches that seem most relevant to connected, 'digital organism' initiatives. We illustrate the scale of experimental research required, by collecting the kinetic parameter values that are required for a quantitative, dynamic model of a gene regulatory network. By comparison with the Systems Biology Markup Language (SBML) community, we note computational resources and community structures that will help to realize the potential for plant Systems Biology to connect with a broader crop science community.
Collapse
Affiliation(s)
- Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Uriel Urquiza
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Alastair Hume
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- EPCC, Bayes Centre, University of Edinburgh, Edinburgh, UK
| | - Gordon D Plotkin
- Laboratory for the Foundations of Computer Science, School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Oxana Sorokina
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Argyris Zardilis
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tomasz Zielinski
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
109
|
Wachutka L, Caizzi L, Gagneur J, Cramer P. Global donor and acceptor splicing site kinetics in human cells. eLife 2019; 8:45056. [PMID: 31025937 PMCID: PMC6548502 DOI: 10.7554/elife.45056] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
RNA splicing is an essential part of eukaryotic gene expression. Although the mechanism of splicing has been extensively studied in vitro, in vivo kinetics for the two-step splicing reaction remain poorly understood. Here, we combine transient transcriptome sequencing (TT-seq) and mathematical modeling to quantify RNA metabolic rates at donor and acceptor splice sites across the human genome. Splicing occurs in the range of minutes and is limited by the speed of RNA polymerase elongation. Splicing kinetics strongly depends on the position and nature of nucleotides flanking splice sites, and on structural interactions between unspliced RNA and small nuclear RNAs in spliceosomal intermediates. Finally, we introduce the 'yield' of splicing as the efficiency of converting unspliced to spliced RNA and show that it is highest for mRNAs and independent of splicing kinetics. These results lead to quantitative models describing how splicing rates and yield are encoded in the human genome.
Collapse
Affiliation(s)
- Leonhard Wachutka
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Livia Caizzi
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
110
|
Shao W, Alcantara SGM, Zeitlinger J. Reporter-ChIP-nexus reveals strong contribution of the Drosophila initiator sequence to RNA polymerase pausing. eLife 2019; 8:41461. [PMID: 31021316 PMCID: PMC6483594 DOI: 10.7554/elife.41461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
RNA polymerase II (Pol II) pausing is a general regulatory step in transcription, yet the stability of paused Pol II varies widely between genes. Although paused Pol II stability correlates with core promoter elements, the contribution of individual sequences remains unclear, in part because no rapid assay is available for measuring the changes in Pol II pausing as a result of altered promoter sequences. Here, we overcome this hurdle by showing that ChIP-nexus captures the endogenous Pol II pausing on transfected plasmids. Using this reporter-ChIP-nexus assay in Drosophila cells, we show that the pausing stability is influenced by downstream promoter sequences, but that the strongest contribution to Pol II pausing comes from the initiator sequence, in which a single nucleotide, a G at the +2 position, is critical for stable Pol II pausing. These results establish reporter-ChIP-nexus as a valuable tool to analyze Pol II pausing.
Collapse
Affiliation(s)
- Wanqing Shao
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, United States
| |
Collapse
|
111
|
Krajewska M, Dries R, Grassetti AV, Dust S, Gao Y, Huang H, Sharma B, Day DS, Kwiatkowski N, Pomaville M, Dodd O, Chipumuro E, Zhang T, Greenleaf AL, Yuan GC, Gray NS, Young RA, Geyer M, Gerber SA, George RE. CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. Nat Commun 2019; 10:1757. [PMID: 30988284 PMCID: PMC6465371 DOI: 10.1038/s41467-019-09703-y] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) modulates transcription elongation by phosphorylating the carboxy-terminal domain of RNA polymerase II and selectively affects the expression of genes involved in the DNA damage response (DDR) and mRNA processing. Yet, the mechanisms underlying such selectivity remain unclear. Here we show that CDK12 inhibition in cancer cells lacking CDK12 mutations results in gene length-dependent elongation defects, inducing premature cleavage and polyadenylation (PCPA) and loss of expression of long (>45 kb) genes, a substantial proportion of which participate in the DDR. This early termination phenotype correlates with an increased number of intronic polyadenylation sites, a feature especially prominent among DDR genes. Phosphoproteomic analysis indicated that CDK12 directly phosphorylates pre-mRNA processing factors, including those regulating PCPA. These results support a model in which DDR genes are uniquely susceptible to CDK12 inhibition primarily due to their relatively longer lengths and lower ratios of U1 snRNP binding to intronic polyadenylation sites. Cdk12 is primarily involved in the regulation of DNA damage response (DDR) gene transcription as well as mRNA processing. Here, the authors demonstrate that CDK12 suppresses intronic polyadenylation, and that inhibition of this kinase primarily affects the expression of long genes with higher numbers of polyA sites, features common to many DDR genes.
Collapse
Affiliation(s)
- Malgorzata Krajewska
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruben Dries
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.,Departments of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Andrew V Grassetti
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Sofia Dust
- Institute of Structural Biology, University of Bonn, 53127, Bonn, Germany
| | - Yang Gao
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Hao Huang
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Bandana Sharma
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, 02115, USA
| | - Daniel S Day
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Monica Pomaville
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, 02115, USA
| | - Oliver Dodd
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, 02115, USA
| | - Edmond Chipumuro
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, 02115, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Arno L Greenleaf
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Guo-Cheng Yuan
- Departments of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Harvard School of Public Health, Boston, MA, 02115, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, 53127, Bonn, Germany
| | - Scott A Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Rani E George
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
112
|
Maslon MM, Braunschweig U, Aitken S, Mann AR, Kilanowski F, Hunter CJ, Blencowe BJ, Kornblihtt AR, Adams IR, Cáceres JF. A slow transcription rate causes embryonic lethality and perturbs kinetic coupling of neuronal genes. EMBO J 2019; 38:embj.2018101244. [PMID: 30988016 PMCID: PMC6484407 DOI: 10.15252/embj.2018101244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
The rate of RNA polymerase II (RNAPII) elongation has an important role in the control of alternative splicing (AS); however, the in vivo consequences of an altered elongation rate are unknown. Here, we generated mouse embryonic stem cells (ESCs) knocked in for a slow elongating form of RNAPII We show that a reduced transcriptional elongation rate results in early embryonic lethality in mice. Focusing on neuronal differentiation as a model, we observed that slow elongation impairs development of the neural lineage from ESCs, which is accompanied by changes in AS and in gene expression along this pathway. In particular, we found a crucial role for RNAPII elongation rate in transcription and splicing of long neuronal genes involved in synapse signaling. The impact of the kinetic coupling of RNAPII elongation rate with AS is greater in ESC-differentiated neurons than in pluripotent cells. Our results demonstrate the requirement for an appropriate transcriptional elongation rate to ensure proper gene expression and to regulate AS during development.
Collapse
Affiliation(s)
- Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ulrich Braunschweig
- Donnelly Centre, Department of Molecular Genetics University of Toronto, Toronto, ON, Canada
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Abigail R Mann
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Fiona Kilanowski
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Chris J Hunter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Benjamin J Blencowe
- Donnelly Centre, Department of Molecular Genetics University of Toronto, Toronto, ON, Canada
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ian R Adams
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
113
|
Lee J, Crickard JB, Reese JC, Lee TH. Single-molecule FRET method to investigate the dynamics of transcription elongation through the nucleosome by RNA polymerase II. Methods 2019; 159-160:51-58. [PMID: 30660864 PMCID: PMC6589119 DOI: 10.1016/j.ymeth.2019.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Transcription elongation through the nucleosome is a precisely coordinated activity to ensure timely production of RNA and accurate regulation of co-transcriptional histone modifications. Nucleosomes actively participate in transcription regulation at various levels and impose physical barriers to RNA polymerase II (RNAPII) during transcription elongation. Despite its high significance, the detailed dynamics of how RNAPII translocates along nucleosomal DNA during transcription elongation and how the nucleosome structure dynamically conforms to the changes necessary for RNAPII progression remain poorly understood. Transcription elongation through the nucleosome is a complex process and investigating the changes of the nucleosome structure during this process by ensemble measurements is daunting. This is because it is nearly impossible to synchronize elongation complexes within a nucleosome or a sub-nucleosome to a designated location at a high enough efficiency for desired sample homogeneity. Here we review our recently developed single-molecule FRET experimental system and method that has fulfilled this deficiency. With our method, one can follow the changes in the structure of individual nucleosomes during transcription elongation. We demonstrated that this method enables the detailed measurements of the kinetics of transcription elongation through the nucleosome and its regulation by a transcription factor, which can be easily extended to investigations of the roles of environmental variables and histone post-translational modifications in regulating transcription elongation.
Collapse
Affiliation(s)
- Jaehyoun Lee
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - J Brooks Crickard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Joseph C Reese
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
114
|
Baluapuri A, Hofstetter J, Dudvarski Stankovic N, Endres T, Bhandare P, Vos SM, Adhikari B, Schwarz JD, Narain A, Vogt M, Wang SY, Düster R, Jung LA, Vanselow JT, Wiegering A, Geyer M, Maric HM, Gallant P, Walz S, Schlosser A, Cramer P, Eilers M, Wolf E. MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation. Mol Cell 2019; 74:674-687.e11. [PMID: 30928206 PMCID: PMC6527870 DOI: 10.1016/j.molcel.2019.02.031] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/27/2018] [Accepted: 02/21/2019] [Indexed: 01/17/2023]
Abstract
The MYC oncoprotein binds to promoter-proximal regions of virtually all transcribed genes and enhances RNA polymerase II (Pol II) function, but its precise mode of action is poorly understood. Using mass spectrometry of both MYC and Pol II complexes, we show here that MYC controls the assembly of Pol II with a small set of transcription elongation factors that includes SPT5, a subunit of the elongation factor DSIF. MYC directly binds SPT5, recruits SPT5 to promoters, and enables the CDK7-dependent transfer of SPT5 onto Pol II. Consistent with known functions of SPT5, MYC is required for fast and processive transcription elongation. Intriguingly, the high levels of MYC that are expressed in tumors sequester SPT5 into non-functional complexes, thereby decreasing the expression of growth-suppressive genes. Altogether, these results argue that MYC controls the productive assembly of processive Pol II elongation complexes and provide insight into how oncogenic levels of MYC permit uncontrolled cellular growth. MYC enhances productive transcription by defining the protein composition of Pol II MYC directly binds SPT5 and hands it over to Pol II in a CDK7-dependent manner Transfer of SPT5 increases speed and processivity of Pol II MYC’s effects on Pol II function shape its tumor-specific gene expression profile
Collapse
Affiliation(s)
- Apoorva Baluapuri
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nevenka Dudvarski Stankovic
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa Endres
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Seychelle Monique Vos
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bikash Adhikari
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jessica Denise Schwarz
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ashwin Narain
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Vogt
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Shuang-Yan Wang
- Rudolf Virchow Center for Experimental Biomedicine, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Robert Düster
- Institute of Structural Biology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Lisa Anna Jung
- Karolinska Institutet, Department of Biosciences and Nutrition, Hälsovägen 7C, 14157 Huddinge, Sweden
| | - Jens Thorsten Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center for Experimental Biomedicine, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Susanne Walz
- Core Unit Bioinformatics, Comprehensive Cancer Center Mainfranken, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Karolinska Institutet, Department of Biosciences and Nutrition, Hälsovägen 7C, 14157 Huddinge, Sweden
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
115
|
Peck SA, Hughes KD, Victorino JF, Mosley AL. Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1529. [PMID: 30848101 PMCID: PMC6570551 DOI: 10.1002/wrna.1529] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/27/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022]
Abstract
Processing and maturation of precursor RNA species is coupled to RNA polymerase II transcription. Co-transcriptional RNA processing helps to ensure efficient and proper capping, splicing, and 3' end processing of different RNA species to help ensure quality control of the transcriptome. Many improperly processed transcripts are not exported from the nucleus, are restricted to the site of transcription, and are in some cases degraded, which helps to limit any possibility of aberrant RNA causing harm to cellular health. These critical quality control pathways are regulated by the highly dynamic protein-protein interaction network at the site of transcription. Recent work has further revealed the extent to which the processes of transcription and RNA processing and quality control are integrated, and how critically their coupling relies upon the dynamic protein interactions that take place co-transcriptionally. This review focuses specifically on the intricate balance between 3' end processing and RNA decay during transcription termination. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Sarah A Peck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katlyn D Hughes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
116
|
Perreault AA, Sprunger DM, Venters BJ. Epigenetic and transcriptional profiling of triple negative breast cancer. Sci Data 2019; 6:190033. [PMID: 30835260 PMCID: PMC6400101 DOI: 10.1038/sdata.2019.33] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
The human HCC1806 cell line is frequently used as a preclinical model for triple negative breast cancer (TNBC). Given that dysregulated epigenetic mechanisms are involved in cancer pathogenesis, emerging therapeutic strategies target chromatin regulators, such as histone deacetylases. A comprehensive understanding of the epigenome and transcription profiling in HCC1806 provides the framework for evaluating efficacy and molecular mechanisms of epigenetic therapies. Thus, to study the interplay of transcription and chromatin in the HCC1806 preclinical model, we performed nascent transcription profiling using Precision Run-On coupled to sequencing (PRO-seq). Additionally, we mapped the genome-wide locations for RNA polymerase II (Pol II), the histone variant H2A.Z, seven histone modifications, and CTCF using ChIP-exo. ChIP-exonuclease (ChIP-exo) is a refined version of ChIP-seq with near base pair precision mapping of protein-DNA interactions. In this Data Descriptor, we present detailed information on experimental design, data generation, quality control analysis, and data validation. We discuss how these data lay the foundation for future analysis to understand the relationship between the nascent transcription and chromatin.
Collapse
Affiliation(s)
- Andrea A. Perreault
- Chemical and Physical Biology Program at Vanderbilt University, Nashville, TN, USA
| | - Danielle M. Sprunger
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Bryan J. Venters
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
117
|
Light Regulates Plant Alternative Splicing through the Control of Transcriptional Elongation. Mol Cell 2019; 73:1066-1074.e3. [DOI: 10.1016/j.molcel.2018.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/19/2018] [Accepted: 12/07/2018] [Indexed: 01/25/2023]
|
118
|
Bartman CR, Hamagami N, Keller CA, Giardine B, Hardison RC, Blobel GA, Raj A. Transcriptional Burst Initiation and Polymerase Pause Release Are Key Control Points of Transcriptional Regulation. Mol Cell 2019; 73:519-532.e4. [PMID: 30554946 PMCID: PMC6368450 DOI: 10.1016/j.molcel.2018.11.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/06/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022]
Abstract
Transcriptional regulation occurs via changes to rates of different biochemical steps of transcription, but it remains unclear which rates are subject to change upon biological perturbation. Biochemical studies have suggested that stimuli predominantly affect the rates of RNA polymerase II (Pol II) recruitment and polymerase release from promoter-proximal pausing. Single-cell studies revealed that transcription occurs in discontinuous bursts, suggesting that features of such bursts like frequency and intensity could also be regulated. We combined Pol II chromatin immunoprecipitation sequencing (ChIP-seq) and single-cell transcriptional measurements to show that an independently regulated burst initiation step is required before polymerase recruitment can occur. Using a number of global and targeted transcriptional regulatory perturbations, we showed that biological perturbations regulated both burst initiation and polymerase pause release rates but seemed not to regulate polymerase recruitment rate. Our results suggest that transcriptional regulation primarily acts by changing the rates of burst initiation and polymerase pause release.
Collapse
Affiliation(s)
- Caroline R Bartman
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole Hamagami
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
119
|
Wang Z, Chu T, Choate LA, Danko CG. Identification of regulatory elements from nascent transcription using dREG. Genome Res 2019; 29:293-303. [PMID: 30573452 PMCID: PMC6360809 DOI: 10.1101/gr.238279.118] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 12/18/2018] [Indexed: 02/02/2023]
Abstract
Our genomes encode a wealth of transcription initiation regions (TIRs) that can be identified by their distinctive patterns of actively elongating RNA polymerase. We previously introduced dREG to identify TIRs using PRO-seq data. Here, we introduce an efficient new implementation of dREG that uses PRO-seq data to identify both uni- and bidirectionally transcribed TIRs with 70% improvement in accuracy, three- to fourfold higher resolution, and >100-fold increases in computational efficiency. Using a novel strategy to identify TIRs based on their statistical confidence reveals extensive overlap with orthogonal assays, yet also reveals thousands of additional weakly transcribed TIRs that were not identified by H3K27ac ChIP-seq or DNase-seq. Novel TIRs discovered by dREG were often associated with RNA polymerase III initiation, bound by pioneer transcription factors, or located in broad domains marked by repressive chromatin modifications. Our results suggest that transcription initiation can be a powerful tool for expanding the catalog of functional elements.
Collapse
Affiliation(s)
- Zhong Wang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Tinyi Chu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Computational Biology, Cornell University, Ithaca, New York 14853, USA
| | - Lauren A Choate
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
120
|
Gurova KV. Chromatin Stability as a Target for Cancer Treatment. Bioessays 2019; 41:e1800141. [PMID: 30566250 PMCID: PMC6522245 DOI: 10.1002/bies.201800141] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/29/2018] [Indexed: 12/14/2022]
Abstract
In this essay, I propose that DNA-binding anti-cancer drugs work more via chromatin disruption than DNA damage. Success of long-awaited drugs targeting cancer-specific drivers is limited by the heterogeneity of tumors. Therefore, chemotherapy acting via universal targets (e.g., DNA) is still the mainstream treatment for cancer. Nevertheless, the problem with targeting DNA is insufficient efficacy due to high toxicity. I propose that this problem stems from the presumption that DNA damage is critical for the anti-cancer activity of these drugs. DNA in cells exists as chromatin, and many DNA-targeting drugs alter chromatin structure by destabilizing nucleosomes and inducing histone eviction from chromatin. This effect has been largely ignored because DNA damage is seen as the major reason for anti-cancer activity. I discuss how DNA-binding molecules destabilize chromatin, why this effect is more toxic to tumoral than normal cells, and why cells die as a result of chromatin destabilization.
Collapse
Affiliation(s)
- Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263. Tel 1-716-845-4760,
| |
Collapse
|
121
|
Widespread Backtracking by RNA Pol II Is a Major Effector of Gene Activation, 5' Pause Release, Termination, and Transcription Elongation Rate. Mol Cell 2018; 73:107-118.e4. [PMID: 30503775 DOI: 10.1016/j.molcel.2018.10.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 10/17/2018] [Indexed: 10/27/2022]
Abstract
In addition to phosphodiester bond formation, RNA polymerase II has an RNA endonuclease activity, stimulated by TFIIS, which rescues complexes that have arrested and backtracked. How TFIIS affects transcription under normal conditions is poorly understood. We identified backtracking sites in human cells using a dominant-negative TFIIS (TFIISDN) that inhibits RNA cleavage and stabilizes backtracked complexes. Backtracking is most frequent within 2 kb of start sites, consistent with slow elongation early in transcription, and in 3' flanking regions where termination is enhanced by TFIISDN, suggesting that backtracked pol II is a favorable substrate for termination. Rescue from backtracking by RNA cleavage also promotes escape from 5' pause sites, prevents premature termination of long transcripts, and enhances activation of stress-inducible genes. TFIISDN slowed elongation rates genome-wide by half, suggesting that rescue of backtracked pol II by TFIIS is a major stimulus of elongation under normal conditions.
Collapse
|
122
|
Chu T, Rice EJ, Booth GT, Salamanca HH, Wang Z, Core LJ, Longo SL, Corona RJ, Chin LS, Lis JT, Kwak H, Danko CG. Chromatin run-on and sequencing maps the transcriptional regulatory landscape of glioblastoma multiforme. Nat Genet 2018; 50:1553-1564. [PMID: 30349114 PMCID: PMC6204104 DOI: 10.1038/s41588-018-0244-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 08/21/2018] [Indexed: 11/09/2022]
Abstract
The human genome encodes a variety of poorly understood RNA species that remain challenging to identify using existing genomic tools. We developed chromatin run-on and sequencing (ChRO-seq) to map the location of RNA polymerase for almost any input sample, including samples with degraded RNA that are intractable to RNA sequencing. We used ChRO-seq to map nascent transcription in primary human glioblastoma (GBM) brain tumors. Enhancers identified in primary GBMs resemble open chromatin in the normal human brain. Rare enhancers that are activated in malignant tissue drive regulatory programs similar to the developing nervous system. We identified enhancers that regulate groups of genes that are characteristic of each known GBM subtype and transcription factors that drive them. Finally we discovered a core group of transcription factors that control the expression of genes associated with clinical outcomes. This study characterizes the transcriptional landscape of GBM and introduces ChRO-seq as a method to map regulatory programs that contribute to complex diseases.
Collapse
Affiliation(s)
- Tinyi Chu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Graduate field of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - H Hans Salamanca
- Department of Anesthesiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Zhong Wang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Leighton J Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Sharon L Longo
- Department of Neurological Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Robert J Corona
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Lawrence S Chin
- Department of Neurological Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
123
|
Liang K, Smith ER, Aoi Y, Stoltz KL, Katagi H, Woodfin AR, Rendleman EJ, Marshall SA, Murray DC, Wang L, Ozark PA, Mishra RK, Hashizume R, Schiltz GE, Shilatifard A. Targeting Processive Transcription Elongation via SEC Disruption for MYC-Induced Cancer Therapy. Cell 2018; 175:766-779.e17. [PMID: 30340042 PMCID: PMC6422358 DOI: 10.1016/j.cell.2018.09.027] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/02/2018] [Accepted: 09/13/2018] [Indexed: 11/15/2022]
Abstract
The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. SEC is required for induction of heat-shock genes and treating cells with KL-1 and KL-2 attenuates the heat-shock response from Drosophila to human. SEC inhibition downregulates MYC and MYC-dependent transcriptional programs in mammalian cells and delays tumor progression in a mouse xenograft model of MYC-driven cancer, indicating that small-molecule disruptors of SEC could be used for targeted therapy of MYC-induced cancer.
Collapse
Affiliation(s)
- Kaiwei Liang
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Edwin R. Smith
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Yuki Aoi
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kristen L. Stoltz
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Hiroaki Katagi
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Ashley R. Woodfin
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Emily J. Rendleman
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stacy A. Marshall
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David C. Murray
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lu Wang
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick A. Ozark
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rama K. Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA,Department of Pharmacology, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Rintaro Hashizume
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Gary E. Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA,Department of Pharmacology, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg, School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
124
|
Tauber S, Christoffel S, Thiel CS, Ullrich O. Transcriptional Homeostasis of Oxidative Stress-Related Pathways in Altered Gravity. Int J Mol Sci 2018; 19:E2814. [PMID: 30231541 PMCID: PMC6164947 DOI: 10.3390/ijms19092814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 02/07/2023] Open
Abstract
Whereby several types of cultured cells are sensitive to gravity, the immune system belongs to the most affected systems during spaceflight. Since reactive oxygen species/reactive nitrogen species (ROS/RNS) are serving as signals of cellular homeostasis, particularly in the cells of the immune system, we investigated the immediate effect of altered gravity on the transcription of 86 genes involved in reactive oxygen species metabolism, antioxidative systems, and cellular response to oxidative stress, using parabolic flight and suborbital ballistic rocket experiments and microarray analysis. In human myelomonocytic U937 cells, we detected a rapid response of 19.8% of all of the investigated oxidative stress-related transcripts to 1.8 g of hypergravity and 1.1% to microgravity as early as after 20 s. Nearly all (97.2%) of the initially altered transcripts adapted after 75 s of hypergravity (max. 13.5 g), and 100% adapted after 5 min of microgravity. After the almost complete adaptation of initially altered transcripts, a significant second pool of differentially expressed transcripts appeared. In contrast, we detected nearly no response of oxidative stress-related transcripts in human Jurkat T cells to altered gravity. In conclusion, we assume a very well-regulated homeostasis and transcriptional stability of oxidative stress-related pathways in altered gravity in cells of the human immune system.
Collapse
Affiliation(s)
- Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
| | - Swantje Christoffel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Cora Sandra Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
125
|
Heinz S, Texari L, Hayes MGB, Urbanowski M, Chang MW, Givarkes N, Rialdi A, White KM, Albrecht RA, Pache L, Marazzi I, García-Sastre A, Shaw ML, Benner C. Transcription Elongation Can Affect Genome 3D Structure. Cell 2018; 174:1522-1536.e22. [PMID: 30146161 PMCID: PMC6130916 DOI: 10.1016/j.cell.2018.07.047] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/23/2018] [Accepted: 07/26/2018] [Indexed: 11/25/2022]
Abstract
How transcription affects genome 3D organization is not well understood. We found that during influenza A (IAV) infection, rampant transcription rapidly reorganizes host cell chromatin interactions. These changes occur at the ends of highly transcribed genes, where global inhibition of transcription termination by IAV NS1 protein causes readthrough transcription for hundreds of kilobases. In these readthrough regions, elongating RNA polymerase II disrupts chromatin interactions by inducing cohesin displacement from CTCF sites, leading to locus decompaction. Readthrough transcription into heterochromatin regions switches them from the inert (B) to the permissive (A) chromatin compartment and enables transcription factor binding. Data from non-viral transcription stimuli show that transcription similarly affects cohesin-mediated chromatin contacts within gene bodies. Conversely, inhibition of transcription elongation allows cohesin to accumulate at previously transcribed intragenic CTCF sites and to mediate chromatin looping and compaction. Our data indicate that transcription elongation by RNA polymerase II remodels genome 3D architecture.
Collapse
Affiliation(s)
- Sven Heinz
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0640, USA.
| | - Lorane Texari
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0640, USA
| | - Michael G B Hayes
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0640, USA
| | - Matthew Urbanowski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Max W Chang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0640, USA
| | - Ninvita Givarkes
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0640, USA
| | - Alexander Rialdi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Lars Pache
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Megan L Shaw
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0640, USA.
| |
Collapse
|
126
|
Thiel CS, Tauber S, Christoffel S, Huge A, Lauber BA, Polzer J, Paulsen K, Lier H, Engelmann F, Schmitz B, Schütte A, Raig C, Layer LE, Ullrich O. Rapid coupling between gravitational forces and the transcriptome in human myelomonocytic U937 cells. Sci Rep 2018; 8:13267. [PMID: 30185876 PMCID: PMC6125427 DOI: 10.1038/s41598-018-31596-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
The gravitational force has been constant throughout Earth's evolutionary history. Since the cell nucleus is subjected to permanent forces induced by Earth's gravity, we addressed the question, if gene expression homeostasis is constantly shaped by the gravitational force on Earth. We therefore investigated the transcriptome in force-free conditions of microgravity, determined the time frame of initial gravitational force-transduction to the transcriptome and assessed the role of cation channels. We combined a parabolic flight experiment campaign with a suborbital ballistic rocket experiment employing the human myelomonocytic cell line U937 and analyzed the whole gene transcription by microarray, using rigorous controls for exclusion of effects not related to gravitational force and cross-validation through two fully independent research campaigns. Experiments with the wide range ion channel inhibitor SKF-96365 in combination with whole transcriptome analysis were conducted to study the functional role of ion channels in the transduction of gravitational forces at an integrative level. We detected profound alterations in the transcriptome already after 20 s of microgravity or hypergravity. In microgravity, 99.43% of all initially altered transcripts adapted after 5 min. In hypergravity, 98.93% of all initially altered transcripts adapted after 75 s. Only 2.4% of all microgravity-regulated transcripts were sensitive to the cation channel inhibitor SKF-96365. Inter-platform comparison of differentially regulated transcripts revealed 57 annotated gravity-sensitive transcripts. We assume that gravitational forces are rapidly and constantly transduced into the nucleus as omnipresent condition for nuclear and chromatin structure as well as homeostasis of gene expression.
Collapse
Affiliation(s)
- Cora S Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Swantje Christoffel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Andreas Huge
- Core Facility Genomic, Medical Faculty of Muenster, University of Muenster, Albert-Schweitzer-Campus 1, D3, Domagstrasse 3, 48149, Muenster, Germany
| | - Beatrice A Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Hartwin Lier
- KEK GmbH, Kemberger Str. 5, 06905, Bad Schmiedeberg, Germany
| | - Frank Engelmann
- KEK GmbH, Kemberger Str. 5, 06905, Bad Schmiedeberg, Germany
- Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745, Jena, Germany
| | | | | | - Christiane Raig
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Liliana E Layer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
127
|
Duffy EE, Canzio D, Maniatis T, Simon MD. Solid phase chemistry to covalently and reversibly capture thiolated RNA. Nucleic Acids Res 2018; 46:6996-7005. [PMID: 29986098 PMCID: PMC6101502 DOI: 10.1093/nar/gky556] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/04/2018] [Accepted: 06/14/2018] [Indexed: 12/26/2022] Open
Abstract
Here, we describe an approach to enrich newly transcribed RNAs from primary mouse neurons using 4-thiouridine (s4U) metabolic labeling and solid phase chemistry. This one-step enrichment procedure captures s4U-RNA by using highly efficient methane thiosulfonate (MTS) chemistry in an immobilized format. Like solution-based methods, this solid-phase enrichment can distinguish mature RNAs (mRNA) with differential stability, and can be used to reveal transient RNAs such as enhancer RNAs (eRNAs) and primary microRNAs (pri-miRNAs) from short metabolic labeling. Most importantly, the efficiency of this solid-phase chemistry made possible the first large scale measurements of RNA polymerase II (RNAPII) elongation rates in mouse cortical neurons. Thus, our approach provides the means to study regulation of RNA metabolism in specific tissue contexts as a means to better understand gene expression in vivo.
Collapse
Affiliation(s)
- Erin E Duffy
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Daniele Canzio
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
128
|
Zhang QQ, Li Y, Fu ZY, Liu XB, Yuan K, Fang Y, Liu Y, Li G, Zhang XS, Chong K, Ge L. Intact Arabidopsis RPB1 functions in stem cell niches maintenance and cell cycling control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:150-167. [PMID: 29752751 DOI: 10.1111/tpj.13939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/07/2018] [Accepted: 03/27/2018] [Indexed: 05/14/2023]
Abstract
Plant meristem activity depends on accurate execution of transcriptional networks required for establishing optimum functioning of stem cell niches. An Arabidopsis mutant card1-1 (constitutive auxin response with DR5:GFP) that encodes a truncated RPB1 (RNA Polymerase II's largest subunit) with shortened C-terminal domain (CTD) was identified. Phosphorylation of the CTD repeats of RPB1 is coupled to transcription in eukaryotes. Here we uncover that the truncated CTD of RPB1 disturbed cell cycling and enlarged the size of shoot and root meristem. The defects in patterning of root stem cell niche in card1-1 indicates that intact CTD of RPB1 is necessary for fine-tuning the specific expression of genes responsible for cell-fate determination. The gene-edited plants with different CTD length of RPB1, created by CRISPR-CAS9 technology, confirmed that both the full length and the DK-rich tail of RPB1's CTD play roles in the accurate transcription of CYCB1;1 encoding a cell-cycle marker protein in root meristem and hence participate in maintaining root meristem size. Our experiment proves that the intact RPB1 CTD is necessary for stem cell niche maintenance, which is mediated by transcriptional regulation of cell cycling genes.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ying Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhao-Ying Fu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xun-Biao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ying Fang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lei Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
129
|
Amodio N, Raimondi L, Juli G, Stamato MA, Caracciolo D, Tagliaferri P, Tassone P. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol 2018; 11:63. [PMID: 29739426 PMCID: PMC5941496 DOI: 10.1186/s13045-018-0606-4] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
The deeper understanding of non-coding RNAs has recently changed the dogma of molecular biology assuming protein-coding genes as unique functional biological effectors, while non-coding genes as junk material of doubtful significance. In the last decade, an exciting boom of experimental research has brought to light the pivotal biological functions of long non-coding RNAs (lncRNAs), representing more than the half of the whole non-coding transcriptome, along with their dysregulation in many diseases, including cancer.In this review, we summarize the emerging insights on lncRNA expression and functional role in cancer, focusing on the evolutionary conserved and abundantly expressed metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) that currently represents the best characterized lncRNA. Altogether, literature data indicate aberrant expression and dysregulated activity of MALAT1 in human malignancies and envision MALAT1 targeting as a novel treatment strategy against cancer.
Collapse
Affiliation(s)
- Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy.
| | - Lavinia Raimondi
- IRCSS Rizzoli Orthopedic Institute, Bologna, Italy
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopedic Institute, Palermo, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Angelica Stamato
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
130
|
Fudenberg G, Abdennur N, Imakaev M, Goloborodko A, Mirny LA. Emerging Evidence of Chromosome Folding by Loop Extrusion. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:45-55. [PMID: 29728444 PMCID: PMC6512960 DOI: 10.1101/sqb.2017.82.034710] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chromosome organization poses a remarkable physical problem with many biological consequences: How can molecular interactions between proteins at the nanometer scale organize micron-long chromatinized DNA molecules, insulating or facilitating interactions between specific genomic elements? The mechanism of active loop extrusion holds great promise for explaining interphase and mitotic chromosome folding, yet remains difficult to assay directly. We discuss predictions from our polymer models of loop extrusion with barrier elements and review recent experimental studies that provide strong support for loop extrusion, focusing on perturbations to CTCF and cohesin assayed via Hi-C in interphase. Finally, we discuss a likely molecular mechanism of loop extrusion by structural maintenance of chromosomes complexes.
Collapse
Affiliation(s)
- Geoffrey Fudenberg
- Gladstone Institute of Data Science and Technology, University of California, San Francisco, California 94158
| | - Nezar Abdennur
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Maxim Imakaev
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Anton Goloborodko
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Leonid A Mirny
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
131
|
Acetylation-Dependent Recruitment of the FACT Complex and Its Role in Regulating Pol II Occupancy Genome-Wide in Saccharomyces cerevisiae. Genetics 2018; 209:743-756. [PMID: 29695490 DOI: 10.1534/genetics.118.300943] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
Histone chaperones, chromatin remodelers, and histone modifying complexes play a critical role in alleviating the nucleosomal barrier for DNA-dependent processes. Here, we have examined the role of two highly conserved yeast (Saccharomyces cerevisiae) histone chaperones, facilitates chromatin transcription (FACT) and Spt6, in regulating transcription. We show that the H3 tail contributes to the recruitment of FACT to coding sequences in a manner dependent on acetylation. We found that deleting a H3 histone acetyltransferase Gcn5 or mutating lysines on the H3 tail impairs FACT recruitment at ADH1 and ARG1 genes. However, deleting the H4 tail or mutating the H4 lysines failed to dampen FACT occupancy in coding regions. Additionally, we show that FACT depletion reduces RNA polymerase II (Pol II) occupancy genome-wide. Spt6 depletion leads to a reduction in Pol II occupancy toward the 3'-end, in a manner dependent on the gene length. Severe transcription and histone-eviction defects were also observed in a strain that was impaired for Spt6 recruitment (spt6Δ202) and depleted of FACT. Importantly, the severity of the defect strongly correlated with wild-type Pol II occupancies at these genes, indicating critical roles for Spt6 and Spt16 in promoting high-level transcription. Collectively, our results show that both FACT and Spt6 are important for transcription globally and may participate during different stages of transcription.
Collapse
|
132
|
Horibata S, Rice EJ, Zheng H, Mukai C, Chu T, Marks BA, Coonrod SA, Danko CG. A bi-stable feedback loop between GDNF, EGR1, and ERα contribute to endocrine resistant breast cancer. PLoS One 2018; 13:e0194522. [PMID: 29614078 PMCID: PMC5882141 DOI: 10.1371/journal.pone.0194522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/05/2018] [Indexed: 01/06/2023] Open
Abstract
Discovering regulatory interactions between genes that specify the behavioral properties of cells remains an important challenge. We used the dynamics of transcriptional changes resolved by PRO-seq to identify a regulatory network responsible for endocrine resistance in breast cancer. We show that GDNF leads to endocrine resistance by switching the active state in a bi-stable feedback loop between GDNF, EGR1, and the master transcription factor ERα. GDNF stimulates MAP kinase, activating the transcription factors SRF and AP-1. SRF initiates an immediate transcriptional response, activating EGR1 and suppressing ERα. Newly translated EGR1 protein activates endogenous GDNF, leading to constitutive GDNF and EGR1 up-regulation, and the sustained down-regulation of ERα. Endocrine resistant MCF-7 cells are constitutively in the GDNF-high/ ERα-low state, suggesting that the state in the bi-stable feedback loop may provide a 'memory' of endocrine resistance. Thus, we identified a regulatory network switch that contributes to drug resistance in breast cancer.
Collapse
Affiliation(s)
- Sachi Horibata
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Edward J. Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Hui Zheng
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Tinyi Chu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
- Graduate Field of Computational Biology, Cornell University, Ithaca, NY, United States of America
| | - Brooke A. Marks
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Scott A. Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Charles G. Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
133
|
Horibata S, Rice EJ, Mukai C, Marks BA, Sams K, Zheng H, Anguish LJ, Coonrod SA, Danko CG. ER-positive breast cancer cells are poised for RET-mediated endocrine resistance. PLoS One 2018; 13:e0194023. [PMID: 29608602 PMCID: PMC5880349 DOI: 10.1371/journal.pone.0194023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/22/2018] [Indexed: 01/13/2023] Open
Abstract
The RET tyrosine kinase signaling pathway is involved in the development of endocrine resistant ER+ breast cancer. However, we know little about how ER+ cells activate RET signaling and initiate an endocrine resistant phenotype. Here we show that both ER+ endocrine resistant and sensitive breast cancers have a functional RET tyrosine kinase signaling pathway, but that endocrine sensitive breast cancer cells lack RET ligands that are necessary to drive endocrine resistance. Transcription of one RET ligand, GDNF, is necessary and sufficient to confer resistance in the ER+ MCF-7 cell line. Endogenous GDNF produced by endocrine resistant cells is translated, secreted into the media, and activates RET signaling in nearby cells. In patients, RET ligand expression predicts responsiveness to endocrine therapies and correlates with survival. Collectively, our findings show that ER+ tumor cells are "poised" for RET mediated endocrine resistance, expressing all components of the RET signaling pathway, but endocrine sensitive cells lack high expression of RET ligands that are necessary to initiate the resistance phenotype.
Collapse
Affiliation(s)
- Sachi Horibata
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Edward J. Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Brooke A. Marks
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Kelly Sams
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Hui Zheng
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lynne J. Anguish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Scott A. Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Charles G. Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
134
|
Anvar SY, Allard G, Tseng E, Sheynkman GM, de Klerk E, Vermaat M, Yin RH, Johansson HE, Ariyurek Y, den Dunnen JT, Turner SW, 't Hoen PAC. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing. Genome Biol 2018; 19:46. [PMID: 29598823 PMCID: PMC5877393 DOI: 10.1186/s13059-018-1418-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/08/2018] [Indexed: 01/30/2023] Open
Abstract
Background The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. Results In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Conclusions Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing. Electronic supplementary material The online version of this article (10.1186/s13059-018-1418-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seyed Yahya Anvar
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands. .,Leiden Genome Technology Center, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands. .,Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands.
| | - Guy Allard
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Elizabeth Tseng
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA, 94025, USA
| | - Gloria M Sheynkman
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eleonora de Klerk
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands.,Department of Microbiology and Immunology, UCSF Diabetes Center, University of California San Francisco (UCSF), San Francisco, CA, 94143-0534, USA
| | - Martijn Vermaat
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Raymund H Yin
- LGC Biosearch Technologies, Petaluma, CA, 94954-6904, USA
| | | | - Yavuz Ariyurek
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Johan T den Dunnen
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Stephen W Turner
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA, 94025, USA
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
135
|
Herpes Simplex Virus 1 Dramatically Alters Loading and Positioning of RNA Polymerase II on Host Genes Early in Infection. J Virol 2018; 92:JVI.02184-17. [PMID: 29437966 DOI: 10.1128/jvi.02184-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) transcription is mediated by cellular RNA polymerase II (Pol II). Recent studies investigating how Pol II transcription of host genes is altered after HSV-1 are conflicting. Chromatin immunoprecipitation sequencing (ChIP-seq) studies suggest that Pol II is almost completely removed from host genes at 4 h postinfection (hpi), while 4-thiouridine (4SU) labeling experiments show that host transcription termination is extended at 7 hpi, implying that a significant amount of Pol II remains associated with host genes in infected cells. To address this discrepancy, we used precision nuclear run-on analysis (PRO-seq) to determine the location of Pol II to single-base-pair resolution in combination with quantitative reverse transcription-PCR (qRT-PCR) analysis at 3 hpi. HSV-1 decreased Pol II on approximately two-thirds of cellular genes but increased Pol II on others. For more than 85% of genes for which transcriptional termination could be statistically assessed, Pol II was displaced to positions downstream of the normal termination zone, suggesting extensive termination defects. Pol II amounts at the promoter, promoter-proximal pause site, and gene body were also modulated in a gene-specific manner. qRT-PCR of selected RNAs showed that HSV-1-induced extension of the termination zone strongly correlated with decreased RNA and mRNA accumulation. However, HSV-1-induced increases of Pol II occupancy on genes without termination zone extension correlated with increased cytoplasmic mRNA. Functional grouping of genes with increased Pol II occupancy suggested an upregulation of exosome secretion and downregulation of apoptosis, both of which are potentially beneficial to virus production.IMPORTANCE This study provides a map of RNA polymerase II location on host genes after infection with HSV-1 with greater detail than previous ChIP-seq studies and rectifies discrepancies between ChIP-seq data and 4SU labeling experiments with HSV-1. The data show the effects that a given change in RNA Pol II location on host genes has on the abundance of different RNA types, including nuclear, polyadenylated mRNA and cytoplasmic, polyadenylated mRNA. It gives a clearer understanding of how HSV-1 augments host transcription of some genes to provide an environment favorable to HSV-1 replication.
Collapse
|
136
|
Fitz J, Neumann T, Pavri R. Regulation of RNA polymerase II processivity by Spt5 is restricted to a narrow window during elongation. EMBO J 2018. [PMID: 29514850 PMCID: PMC5897773 DOI: 10.15252/embj.201797965] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spt5 is a highly conserved RNA polymerase II (Pol II)‐associated pausing and elongation factor. However, its impact on global elongation and Pol II processivity in mammalian cells has not been clarified. Here, we show that depleting Spt5 in mouse embryonic fibroblasts (MEFs) does not cause global elongation defects or decreased elongation rates. Instead, in Spt5‐depleted cells, a fraction of Pol II molecules are dislodged during elongation, thus decreasing the number of Pol II complexes that complete the transcription cycle. Most strikingly, this decrease is restricted to a narrow window between 15 and 20 kb from the promoter, a distance which coincides with the stage where accelerating Pol II attains maximum elongation speed. Consequently, long genes show a greater dependency on Spt5 for optimal elongation efficiency and overall gene expression than short genes. We propose that an important role of Spt5 in mammalian elongation is to promote the processivity of those Pol II complexes that are transitioning toward maximum elongation speed 15–20 kb from the promoter.
Collapse
Affiliation(s)
- Johanna Fitz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
137
|
Azofeifa JG, Allen MA, Hendrix JR, Read T, Rubin JD, Dowell RD. Enhancer RNA profiling predicts transcription factor activity. Genome Res 2018; 28:334-344. [PMID: 29449408 PMCID: PMC5848612 DOI: 10.1101/gr.225755.117] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
Transcription factors (TFs) exert their regulatory influence through the binding of enhancers, resulting in coordination of gene expression programs. Active enhancers are often characterized by the presence of short, unstable transcripts termed enhancer RNAs (eRNAs). While their function remains unclear, we demonstrate that eRNAs are a powerful readout of TF activity. We infer sites of eRNA origination across hundreds of publicly available nascent transcription data sets and show that eRNAs initiate from sites of TF binding. By quantifying the colocalization of TF binding motif instances and eRNA origins, we derive a simple statistic capable of inferring TF activity. In doing so, we uncover dozens of previously unexplored links between diverse stimuli and the TFs they affect.
Collapse
Affiliation(s)
- Joseph G Azofeifa
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Josephina R Hendrix
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA
- Department of Molecular, Cellular and Developmental Biology
| | - Timothy Read
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Jonathan D Rubin
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Robin D Dowell
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
- Department of Molecular, Cellular and Developmental Biology
| |
Collapse
|
138
|
Danko CG, Choate LA, Marks BA, Rice EJ, Wang Z, Chu T, Martins AL, Dukler N, Coonrod SA, Tait Wojno ED, Lis JT, Kraus WL, Siepel A. Dynamic evolution of regulatory element ensembles in primate CD4 + T cells. Nat Ecol Evol 2018; 2:537-548. [PMID: 29379187 PMCID: PMC5957490 DOI: 10.1038/s41559-017-0447-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
How evolutionary changes at enhancers affect the transcription of target genes remains an important open question. Previous comparative studies of gene expression have largely measured the abundance of messenger RNA, which is affected by post-transcriptional regulatory processes, hence limiting inferences about the mechanisms underlying expression differences. Here, we directly measured nascent transcription in primate species, allowing us to separate transcription from post-transcriptional regulation. We used precision run-on and sequencing to map RNA polymerases in resting and activated CD4+ T cells in multiple human, chimpanzee and rhesus macaque individuals, with rodents as outgroups. We observed general conservation in coding and non-coding transcription, punctuated by numerous differences between species, particularly at distal enhancers and non-coding RNAs. Genes regulated by larger numbers of enhancers are more frequently transcribed at evolutionarily stable levels, despite reduced conservation at individual enhancers. Adaptive nucleotide substitutions are associated with lineage-specific transcription and at one locus, SGPP2, we predict and experimentally validate that multiple substitutions contribute to human-specific transcription. Collectively, our findings suggest a pervasive role for evolutionary compensation across ensembles of enhancers that jointly regulate target genes.
Collapse
Affiliation(s)
- Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Lauren A Choate
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Brooke A Marks
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Zhong Wang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Tinyi Chu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Graduate Field of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Andre L Martins
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Graduate Field of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Noah Dukler
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - Scott A Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Elia D Tait Wojno
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
139
|
Saldi T, Fong N, Bentley DL. Transcription elongation rate affects nascent histone pre-mRNA folding and 3' end processing. Genes Dev 2018; 32:297-308. [PMID: 29483154 PMCID: PMC5859970 DOI: 10.1101/gad.310896.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
In this study, Saldi et al. investigated how transcription elongation rate influences cotranscriptional pre-mRNA maturation. Their findings show that regulation of transcription speed can modulate pre-mRNA processing by changing nascent RNA structure and suggest a mechanism by which alternative processing could be controlled. Transcription elongation rate influences cotranscriptional pre-mRNA maturation, but how such kinetic coupling works is poorly understood. The formation of nonadenylated histone mRNA 3′ ends requires recognition of an RNA structure by stem–loop-binding protein (SLBP). We report that slow transcription by mutant RNA polymerase II (Pol II) caused accumulation of polyadenylated histone mRNAs that extend past the stem–loop processing site. UV irradiation, which decelerates Pol II elongation, also induced long poly(A)+ histone transcripts. Inhibition of 3′ processing by slow Pol II correlates with failure to recruit SLBP to histone genes. Chemical probing of nascent RNA structure showed that the stem–loop fails to fold in transcripts made by slow Pol II, thereby explaining the absence of SLBP and failure to process 3′ ends. These results show that regulation of transcription speed can modulate pre-mRNA processing by changing nascent RNA structure and suggest a mechanism by which alternative processing could be controlled.
Collapse
Affiliation(s)
- Tassa Saldi
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Nova Fong
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
140
|
Dasmeh P. Multi-step regulation of transcription kinetics explains the non-linear relation between RNA polymerase II density and mRNA expression in dosage compensation. J Theor Biol 2018; 438:92-95. [PMID: 29162446 DOI: 10.1016/j.jtbi.2017.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/16/2017] [Accepted: 11/08/2017] [Indexed: 12/01/2022]
Abstract
In heterogametic organisms, expression of unequal number of X chromosomes in males and females is balanced by a process called dosage compensation. In Drosophila and mammals, dosage compensation involves nearly two-fold up-regulation of the X chromosome mediated by dosage compensation complex (DCC). Experimental studies on the role of DCC on RNA polymerase II (Pol II) transcription in mammals disclosed a non-linear relationship between Pol II densities at different transcription steps and mRNA expression. An ∼20-30% increase in Pol II densities corresponds to a rough 200% increase in mRNA expression and two-fold up-regulation. Here, using a simple kinetic model of Pol II transcription calibrated by in vivo measured rate constants of different transcription steps in mammalian cells, we demonstrate how this non-linearity can be explained by multi-step transcriptional regulation. Moreover, we show how multi-step enhancement of Pol II transcription can increase mRNA production while leaving Pol II densities unaffected. Our theoretical analysis not only recapitulates experimentally observed Pol II densities upon two-fold up-regulation but also points to erroneous interpretations of Pol II profiles from chromatin immunoprecipitation sequencing (ChIP-seq) or global run-on assays.
Collapse
Affiliation(s)
- Pouria Dasmeh
- Departement de Biochimie, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec H3T 1J4, Canada; Centre Robert Cedergren en Bioinformatique et Génomique, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec H3T 1J4, Canada; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
141
|
Booth GT, Parua PK, Sansó M, Fisher RP, Lis JT. Cdk9 regulates a promoter-proximal checkpoint to modulate RNA polymerase II elongation rate in fission yeast. Nat Commun 2018; 9:543. [PMID: 29416031 PMCID: PMC5803247 DOI: 10.1038/s41467-018-03006-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/12/2018] [Indexed: 12/25/2022] Open
Abstract
Post-translational modifications of the transcription elongation complex provide mechanisms to fine-tune gene expression, yet their specific impacts on RNA polymerase II regulation remain difficult to ascertain. Here, in Schizosaccharomyces pombe, we examine the role of Cdk9, and related Mcs6/Cdk7 and Lsk1/Cdk12 kinases, on transcription at base-pair resolution with Precision Run-On sequencing (PRO-seq). Within a minute of Cdk9 inhibition, phosphorylation of Pol II-associated factor, Spt5 is undetectable. The effects of Cdk9 inhibition are more severe than inhibition of Cdk7 and Cdk12, resulting in a shift of Pol II toward the transcription start site (TSS). A time course of Cdk9 inhibition reveals that early transcribing Pol II can escape promoter-proximal regions, but with a severely reduced elongation rate of only ~400 bp/min. Our results in fission yeast suggest the existence of a conserved global regulatory checkpoint that requires Cdk9 kinase activity.
Collapse
Affiliation(s)
- Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, 107 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853-2703, USA
| | - Pabitra K Parua
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Miriam Sansó
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, 107 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853-2703, USA.
| |
Collapse
|
142
|
Enuka Y, Feldman ME, Chowdhury A, Srivastava S, Lindzen M, Sas-Chen A, Massart R, Cheishvili D, Suderman MJ, Zaltsman Y, Mazza CA, Shukla K, Körner C, Furth N, Lauriola M, Oren M, Wiemann S, Szyf M, Yarden Y. Epigenetic mechanisms underlie the crosstalk between growth factors and a steroid hormone. Nucleic Acids Res 2018; 45:12681-12699. [PMID: 29036586 PMCID: PMC5727445 DOI: 10.1093/nar/gkx865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Crosstalk between growth factors (GFs) and steroid hormones recurs in embryogenesis and is co-opted in pathology, but underlying mechanisms remain elusive. Our data from mammary cells imply that the crosstalk between the epidermal GF and glucocorticoids (GCs) involves transcription factors like p53 and NF-κB, along with reduced pausing and traveling of RNA polymerase II (RNAPII) at both promoters and bodies of GF-inducible genes. Essentially, GCs inhibit positive feedback loops activated by GFs and stimulate the reciprocal inhibitory loops. As expected, no alterations in DNA methylation accompany the transcriptional events instigated by either stimulus, but forced demethylation of regulatory regions broadened the repertoire of GF-inducible genes. We report that enhancers, like some promoters, are poised for activation by GFs and GCs. In addition, within the cooperative interface of the crosstalk, GFs enhance binding of the GC receptor to DNA and, in synergy with GCs, promote productive RNAPII elongation. Reciprocally, within the antagonistic interface GFs hyper-acetylate chromatin at unmethylated promoters and enhancers of genes involved in motility, but GCs hypoacetylate the corresponding regions. In conclusion, unmethylated genomic regions that encode feedback regulatory modules and differentially recruit RNAPII and acetylases/deacetylases underlie the crosstalk between GFs and a steroid hormone.
Collapse
Affiliation(s)
- Yehoshua Enuka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Morris E Feldman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Animesh Chowdhury
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Swati Srivastava
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aldema Sas-Chen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Renaud Massart
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - David Cheishvili
- Department of Pharmacology and Therapeutics, Sackler Program for Epigenetics and Developmental Psychobiology and McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada.,Department of Epigenetics and Developmental Psychobiology, McGill University, Montreal, Quebec H3A 0E7, Canada
| | - Matthew J Suderman
- Department of Pharmacology and Therapeutics, Sackler Program for Epigenetics and Developmental Psychobiology and McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Yoav Zaltsman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Chiara A Mazza
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna 40126, Italy
| | - Kirti Shukla
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Noa Furth
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna 40126, Italy
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, Sackler Program for Epigenetics and Developmental Psychobiology and McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada.,Department of Epigenetics and Developmental Psychobiology, McGill University, Montreal, Quebec H3A 0E7, Canada
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
143
|
Lesne A, Victor JM, Bertrand E, Basyuk E, Barbi M. The Role of Supercoiling in the Motor Activity of RNA Polymerases. Methods Mol Biol 2018; 1805:215-232. [PMID: 29971720 DOI: 10.1007/978-1-4939-8556-2_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA polymerase (RNAP) is, in its elongation phase, an emblematic example of a molecular motor whose activity is highly sensitive to DNA supercoiling. After a review of DNA supercoiling basic features, we discuss how supercoiling controls polymerase velocity, while being itself modified by polymerase activity. This coupling is supported by single-molecule measurements. Physical modeling allows us to describe quantitatively how supercoiling and torsional constraints mediate a mechanical coupling between adjacent polymerases. On this basis, we obtain a description that may explain the existence and functioning of RNAP convoys.
Collapse
Affiliation(s)
- Annick Lesne
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France.,Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France.,GDR 3536 CNRS, Sorbonne Université, Paris, France
| | - Jean-Marc Victor
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France. .,Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France. .,Université de Montpellier, Montpellier, France. .,GDR 3536 CNRS, Sorbonne Université, Paris, France.
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Eugenia Basyuk
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Maria Barbi
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France.,GDR 3536 CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
144
|
Franco HL, Nagari A, Malladi VS, Li W, Xi Y, Richardson D, Allton KL, Tanaka K, Li J, Murakami S, Keyomarsi K, Bedford MT, Shi X, Li W, Barton MC, Dent SYR, Kraus WL. Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis. Genome Res 2017; 28:159-170. [PMID: 29273624 PMCID: PMC5793780 DOI: 10.1101/gr.226019.117] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022]
Abstract
Noncoding transcription is a defining feature of active enhancers, linking transcription factor (TF) binding to the molecular mechanisms controlling gene expression. To determine the relationship between enhancer activity and biological outcomes in breast cancers, we profiled the transcriptomes (using GRO-seq and RNA-seq) and epigenomes (using ChIP-seq) of 11 different human breast cancer cell lines representing five major molecular subtypes of breast cancer, as well as two immortalized (“normal”) human breast cell lines. In addition, we developed a robust and unbiased computational pipeline that simultaneously identifies putative subtype-specific enhancers and their cognate TFs by integrating the magnitude of enhancer transcription, TF mRNA expression levels, TF motif P-values, and enrichment of H3K4me1 and H3K27ac. When applied across the 13 different cell lines noted above, the Total Functional Score of Enhancer Elements (TFSEE) identified key breast cancer subtype-specific TFs that act at transcribed enhancers to dictate gene expression patterns determining growth outcomes, including Forkhead TFs, FOSL1, and PLAG1. FOSL1, a Fos family TF, (1) is highly enriched at the enhancers of triple negative breast cancer (TNBC) cells, (2) acts as a key regulator of the proliferation and viability of TNBC cells, but not Luminal A cells, and (3) is associated with a poor prognosis in TNBC breast cancer patients. Taken together, our results validate our enhancer identification pipeline and reveal that enhancers transcribed in breast cancer cells direct critical gene regulatory networks that promote pathogenesis.
Collapse
Affiliation(s)
- Hector L Franco
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Anusha Nagari
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Venkat S Malladi
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Wenqian Li
- Department of Epigenetics and Molecular Carcinogenesis and The Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Yuanxin Xi
- Department of Molecular and Cellular Biology and Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dana Richardson
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kendra L Allton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences and The Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kaori Tanaka
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences and The Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jing Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences and The Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shino Murakami
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis and The Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences and The Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wei Li
- Department of Molecular and Cellular Biology and Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences and The Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis and The Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
145
|
Global unleashing of transcription elongation waves in response to genotoxic stress restricts somatic mutation rate. Nat Commun 2017; 8:2076. [PMID: 29233992 PMCID: PMC5727188 DOI: 10.1038/s41467-017-02145-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/08/2017] [Indexed: 01/11/2023] Open
Abstract
Complex molecular responses preserve gene expression accuracy and genome integrity in the face of environmental perturbations. Here we report that, in response to UV irradiation, RNA polymerase II (RNAPII) molecules are dynamically and synchronously released from promoter-proximal regions into elongation to promote uniform and accelerated surveillance of the whole transcribed genome. The maximised influx of de novo released RNAPII correlates with increased damage-sensing, as confirmed by RNAPII progressive accumulation at dipyrimidine sites and by the average slow-down of elongation rates in gene bodies. In turn, this transcription elongation ‘safe’ mode guarantees efficient DNA repair regardless of damage location, gene size and transcription level. Accordingly, we detect low and homogenous rates of mutational signatures associated with UV exposure or cigarette smoke across all active genes. Our study reveals a novel advantage for transcription regulation at the promoter-proximal level and provides unanticipated insights into how active transcription shapes the mutagenic landscape of cancer genomes. Precise orchestration of gene expression regulation upon DNA damage is essential for genome integrity. Here the authors identify a novel widespread stress-triggered defence mechanism that promotes rapid transcription-driven genomic surveillance thus limiting mutagenesis and shaping cancer genomes.
Collapse
|
146
|
Dukler N, Booth GT, Huang YF, Tippens N, Waters CT, Danko CG, Lis JT, Siepel A. Nascent RNA sequencing reveals a dynamic global transcriptional response at genes and enhancers to the natural medicinal compound celastrol. Genome Res 2017; 27:1816-1829. [PMID: 29025894 PMCID: PMC5668940 DOI: 10.1101/gr.222935.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022]
Abstract
Most studies of responses to transcriptional stimuli measure changes in cellular mRNA concentrations. By sequencing nascent RNA instead, it is possible to detect changes in transcription in minutes rather than hours and thereby distinguish primary from secondary responses to regulatory signals. Here, we describe the use of PRO-seq to characterize the immediate transcriptional response in human cells to celastrol, a compound derived from traditional Chinese medicine that has potent anti-inflammatory, tumor-inhibitory, and obesity-controlling effects. Celastrol is known to elicit a cellular stress response resembling the response to heat shock, but the transcriptional basis of this response remains unclear. Our analysis of PRO-seq data for K562 cells reveals dramatic transcriptional effects soon after celastrol treatment at a broad collection of both coding and noncoding transcription units. This transcriptional response occurred in two major waves, one within 10 min, and a second 40-60 min after treatment. Transcriptional activity was generally repressed by celastrol, but one distinct group of genes, enriched for roles in the heat shock response, displayed strong activation. Using a regression approach, we identified key transcription factors that appear to drive these transcriptional responses, including members of the E2F and RFX families. We also found sequence-based evidence that particular transcription factors drive the activation of enhancers. We observed increased polymerase pausing at both genes and enhancers, suggesting that pause release may be widely inhibited during the celastrol response. Our study demonstrates that a careful analysis of PRO-seq time-course data can disentangle key aspects of a complex transcriptional response, and it provides new insights into the activity of a powerful pharmacological agent.
Collapse
Affiliation(s)
- Noah Dukler
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10065, USA
| | - Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Yi-Fei Huang
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nathaniel Tippens
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10065, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Colin T Waters
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, New York 14850, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
147
|
WITHDRAWN: Long noncoding RNAs in liver metabolism and liver disease: Current Status. LIVER RESEARCH 2017. [DOI: 10.1016/j.livres.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
148
|
Cinghu S, Yang P, Kosak JP, Conway AE, Kumar D, Oldfield AJ, Adelman K, Jothi R. Intragenic Enhancers Attenuate Host Gene Expression. Mol Cell 2017; 68:104-117.e6. [PMID: 28985501 DOI: 10.1016/j.molcel.2017.09.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/10/2017] [Accepted: 09/06/2017] [Indexed: 01/06/2023]
Abstract
Eukaryotic gene transcription is regulated at many steps, including RNA polymerase II (Pol II) recruitment, transcription initiation, promoter-proximal Pol II pause release, and transcription termination; however, mechanisms regulating transcription during productive elongation remain poorly understood. Enhancers, which activate gene transcription, themselves undergo Pol II-mediated transcription, but our understanding of enhancer transcription and enhancer RNAs (eRNAs) remains incomplete. Here we show that transcription at intragenic enhancers interferes with and attenuates host gene transcription during productive elongation. While the extent of attenuation correlates positively with nascent eRNA expression, the act of intragenic enhancer transcription alone, but not eRNAs, explains the attenuation. Through CRISPR/Cas9-mediated deletions, we demonstrate a physiological role for intragenic enhancer-mediated transcription attenuation in cell fate determination. We propose that intragenic enhancers not only enhance transcription of one or more genes from a distance but also fine-tune transcription of their host gene through transcription interference, facilitating differential utilization of the same regulatory element for disparate functions.
Collapse
Affiliation(s)
- Senthilkumar Cinghu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Pengyi Yang
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Justin P Kosak
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Amanda E Conway
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Dhirendra Kumar
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Andrew J Oldfield
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Karen Adelman
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Raja Jothi
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
149
|
van den Berg AA, Depken M. Crowding-induced transcriptional bursts dictate polymerase and nucleosome density profiles along genes. Nucleic Acids Res 2017; 45:7623-7632. [PMID: 28586463 PMCID: PMC5737439 DOI: 10.1093/nar/gkx513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/03/2017] [Indexed: 12/20/2022] Open
Abstract
During eukaryotic transcription, RNA polymerase (RNAP) translocates along DNA molecules covered with nucleosomes and other DNA binding proteins. Though the interactions between a single nucleosome and RNAP are by now fairly well understood, this understanding has not been synthesized into a description of transcription on crowded genes, where multiple RNAP transcribe through nucleosomes while preserving the nucleosome coverage. We here take a deductive modeling approach to establish the consequences of RNAP–nucleosome interactions for transcription in crowded environments. We show that under physiologically crowded conditions, the interactions of RNAP with nucleosomes induce a strong kinetic attraction between RNAP molecules, causing them to self-organize into stable and moving pelotons. The peloton formation quantitatively explains the observed nucleosome and RNAP depletion close to the initiation site on heavily transcribed genes. Pelotons further translate into short-timescale transcriptional bursts at termination, resulting in burst characteristics consistent with instances of bursty transcription observed in vivo. To facilitate experimental testing of our proposed mechanism, we present several analytic relations that make testable quantitative predictions.
Collapse
Affiliation(s)
- Aafke A van den Berg
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
150
|
Coons LA, Hewitt SC, Burkholder AB, McDonnell DP, Korach KS. DNA Sequence Constraints Define Functionally Active Steroid Nuclear Receptor Binding Sites in Chromatin. Endocrinology 2017; 158:3212-3234. [PMID: 28977594 PMCID: PMC5659708 DOI: 10.1210/en.2017-00468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022]
Abstract
Gene regulatory programs are encoded in the sequence of the DNA. Since the completion of the Human Genome Project, millions of gene regulatory elements have been identified in the human genome. Understanding how each of those sites functionally contributes to gene regulation, however, remains a challenge for nearly every field of biology. Transcription factors influence cell function by interpreting information contained within cis-regulatory elements in chromatin. Whereas chromatin immunoprecipitation-sequencing has been used to identify and map transcription factor-DNA interactions, it has been difficult to assign functionality to the binding sites identified. Thus, in this study, we probed the transcriptional activity, DNA-binding competence, and functional activity of select nuclear receptor mutants in cellular and animal model systems and used this information to define the sequence constraints of functional steroid nuclear receptor cis-regulatory elements. Analysis of the architecture within sNR chromatin interacting sites revealed that only a small fraction of all sNR chromatin-interacting events is associated with transcriptional output and that this functionality is restricted to elements that vary from the consensus palindromic elements by one or two nucleotides. These findings define the transcriptional grammar necessary to predict functionality from regulatory sequences, with a multitude of future implications.
Collapse
Affiliation(s)
- Laurel A Coons
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Sylvia C Hewitt
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Adam B Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|