101
|
Zang Y, Gong Y, Wang Q, Guo H, Xiao W. Arabidopsis OTU1, a linkage-specific deubiquitinase, is required for endoplasmic reticulum-associated protein degradation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:141-155. [PMID: 31491807 DOI: 10.1111/tpj.14524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is part of the ER protein quality-control system (ERQC), which is critical for the conformation fidelity of most secretory and membrane proteins in eukaryotic organisms. ERAD is thought to operate in plants with core machineries highly conserved to those in human and yeast; however, little is known about the plant ERAD system. Here we report the characterization of a close homolog of human OTUB1 in Arabidopsis thaliana, designated as AtOTU1. AtOTU1 selectively hydrolyzes several types of ubiquitin chains and these activities depend on its conserved protease domain and/or the unique N-terminus. The otu1 null mutant is sensitive to high salinity stress, and particularly agents that cause protein misfolding. It turns out that AtOTU1 is required for the processing of known plant ERAD substrates such as barley powdery mildew O (MLO) alleles by virtue of its association with the CDC48 complex through its N-terminal region. These observations collectively define AtOTU1 as an OTU domain-containing deubiquitinase involved in Arabidopsis ERAD.
Collapse
Affiliation(s)
- Yuepeng Zang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yingya Gong
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Huiping Guo
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| |
Collapse
|
102
|
Martínez-Torres RJ, Chamaillard M. The Ubiquitin Code of NODs Signaling Pathways in Health and Disease. Front Immunol 2019; 10:2648. [PMID: 31803185 PMCID: PMC6877504 DOI: 10.3389/fimmu.2019.02648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
NOD1 and NOD2 belong to the family of intracellular Nod-like receptors (NLRs) that are involved in the maintenance of tissue homeostasis and host defense against bacteria and some viruses. When sensing such microbes, those NLRs act as hitherto scaffolding proteins for activating multiple downstream inflammatory signaling pathways to promote the production of cytokines and chemokines that are ultimately important for pathogen clearance. In recent years, substantial advances have been made on our understanding of a contextual series of intracellular processes that regulate such group of innate immune molecules, including phosphorylation and ubiquitination. Specifically, we will herein discuss those recently described posttranslational modifications of either NOD1 or NOD2 that fundamentally contribute to the robustness of protective responses within specific tissues through either internal domain association or external interactions with various proteins. From a public health perspective, it is then anticipated that a better understanding how genetic mutations and deregulation of these activating and repressing mechanisms might break down in diseases would open up new therapeutic avenues for humanity.
Collapse
Affiliation(s)
- Rubén Julio Martínez-Torres
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Mathias Chamaillard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
103
|
Inactivity of YGL082W in vitro due to impairment of conformational change in the catalytic center loop. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9623-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
104
|
Heim VJ, Stafford CA, Nachbur U. NOD Signaling and Cell Death. Front Cell Dev Biol 2019; 7:208. [PMID: 31632962 PMCID: PMC6783575 DOI: 10.3389/fcell.2019.00208] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/11/2019] [Indexed: 01/18/2023] Open
Abstract
Innate immune signaling and programmed cell death are intimately linked, and many signaling pathways can regulate and induce both, transcription of inflammatory mediators or autonomous cell death. The best-characterized examples for these dual outcomes are members of the TNF superfamily, the inflammasome receptors, and the toll-like receptors. Signaling via the intracellular peptidoglycan receptors NOD1 and NOD2, however, does not appear to follow this trend, despite involving signaling proteins, or proteins with domains that are linked to programmed cell death, such as RIP kinases, inhibitors of apoptosis (IAP) proteins or the CARD domains on NOD1/2. To better understand the connections between NOD signaling and cell death induction, we here review the latest findings on the molecular regulation of signaling downstream of the NOD receptors and explore the links between this immune signaling pathway and the regulation of cell death.
Collapse
Affiliation(s)
- Valentin J Heim
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Che A Stafford
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ueli Nachbur
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
105
|
Fujita H, Tokunaga A, Shimizu S, Whiting AL, Aguilar-Alonso F, Takagi K, Walinda E, Sasaki Y, Shimokawa T, Mizushima T, Ohki I, Ariyoshi M, Tochio H, Bernal F, Shirakawa M, Iwai K. Cooperative Domain Formation by Homologous Motifs in HOIL-1L and SHARPIN Plays A Crucial Role in LUBAC Stabilization. Cell Rep 2019; 23:1192-1204. [PMID: 29694895 PMCID: PMC6044281 DOI: 10.1016/j.celrep.2018.03.112] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/19/2018] [Accepted: 03/25/2018] [Indexed: 01/06/2023] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) participates in inflammatory and oncogenic signaling by conjugating linear ubiquitin chains to target proteins. LUBAC consists of the catalytic HOIP subunit and two accessory subunits, HOIL-1L and SHARPIN. Interactions between the ubiquitin-associated (UBA) domains of HOIP and the ubiquitin-like (UBL) domains of two accessory subunits are involved in LUBAC stabilization, but the precise molecular mechanisms underlying the formation of stable trimeric LUBAC remain elusive. We solved the co-crystal structure of the binding regions of the trimeric LUBAC complex and found that LUBAC-tethering motifs (LTMs) located N terminally to the UBL domains of HOIL-1L and SHARPIN heterodimerize and fold into a single globular domain. This interaction is resistant to dissociation and plays a critical role in stabilizing trimeric LUBAC. Inhibition of LTM-mediated HOIL-1L/SHARPIN dimerization profoundly attenuated the function of LUBAC, suggesting LTM as a superior target of LUBAC destabilization for anticancer therapeutics. Fujita et al. report a crystal structure of the trimeric LUBAC core and show that motifs in HOIL-1L and SHARPIN fold into a single domain critical for LUBAC stabilization. The authors also develop an inhibitor of this interaction that destabilizes LUBAC and kills cancer cells.
Collapse
Affiliation(s)
- Hiroaki Fujita
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto 606-8501, Japan
| | - Akira Tokunaga
- Department of Molecular Engineering, Kyoto University School of Engineering, Kyoto 615-8510, Japan
| | - Satoshi Shimizu
- Department of Anesthesia, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Amanda L Whiting
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Francisco Aguilar-Alonso
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kenji Takagi
- Department of Picobiology, University of Hyogo School of Life Science, Hyogo 678-1297, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto 606-8501, Japan
| | - Yoshiteru Sasaki
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto 606-8501, Japan
| | - Taketo Shimokawa
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto 606-8501, Japan
| | - Tsunehiro Mizushima
- Department of Picobiology, University of Hyogo School of Life Science, Hyogo 678-1297, Japan
| | - Izuru Ohki
- Department of Molecular Engineering, Kyoto University School of Engineering, Kyoto 615-8510, Japan
| | - Mariko Ariyoshi
- Department of Molecular Engineering, Kyoto University School of Engineering, Kyoto 615-8510, Japan
| | - Hidehito Tochio
- Department of Biophysics, Kyoto University School of Science, Kyoto 606-8502, Japan
| | - Federico Bernal
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Kyoto University School of Engineering, Kyoto 615-8510, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto 606-8501, Japan.
| |
Collapse
|
106
|
Abstract
OTULIN (OTU Deubiquitinase With Linear Linkage Specificity) specifically hydrolyzes methionine1 (Met1)-linked ubiquitin chains conjugated by LUBAC (linear ubiquitin chain assembly complex). Here we report on the mass spectrometric identification of the OTULIN interactor SNX27 (sorting nexin 27), an adaptor of the endosomal retromer complex responsible for protein recycling to the cell surface. The C-terminal PDZ-binding motif (PDZbm) in OTULIN associates with the cargo-binding site in the PDZ domain of SNX27. By solving the structure of the OTU domain in complex with the PDZ domain, we demonstrate that a second interface contributes to the selective, high affinity interaction of OTULIN and SNX27. SNX27 does not affect OTULIN catalytic activity, OTULIN-LUBAC binding or Met1-linked ubiquitin chain homeostasis. However, via association, OTULIN antagonizes SNX27-dependent cargo loading, binding of SNX27 to the VPS26A-retromer subunit and endosome-to-plasma membrane trafficking. Thus, we define an additional, non-catalytic function of OTULIN in the regulation of SNX27-retromer assembly and recycling to the cell surface. OTULIN is a linear ubiquitin hydrolase that regulates ubiquitin homeostasis. Here the authors identify the adaptor of the endosomal retromer complex sorting nexin 27 (SNX27) as a binding partner of OTULIN and determine the structure of the OTULIN-SNX27 complex, which reveals a secondary interface through which OTULIN non-catalytically antagonizes SNX27 retromer assembly and cargo loading.
Collapse
|
107
|
Bushell SR, Pike ACW, Falzone ME, Rorsman NJG, Ta CM, Corey RA, Newport TD, Christianson JC, Scofano LF, Shintre CA, Tessitore A, Chu A, Wang Q, Shrestha L, Mukhopadhyay SMM, Love JD, Burgess-Brown NA, Sitsapesan R, Stansfeld PJ, Huiskonen JT, Tammaro P, Accardi A, Carpenter EP. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nat Commun 2019; 10:3956. [PMID: 31477691 PMCID: PMC6718402 DOI: 10.1038/s41467-019-11753-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 08/01/2019] [Indexed: 11/20/2022] Open
Abstract
Membranes in cells have defined distributions of lipids in each leaflet, controlled by lipid scramblases and flip/floppases. However, for some intracellular membranes such as the endoplasmic reticulum (ER) the scramblases have not been identified. Members of the TMEM16 family have either lipid scramblase or chloride channel activity. Although TMEM16K is widely distributed and associated with the neurological disorder autosomal recessive spinocerebellar ataxia type 10 (SCAR10), its location in cells, function and structure are largely uncharacterised. Here we show that TMEM16K is an ER-resident lipid scramblase with a requirement for short chain lipids and calcium for robust activity. Crystal structures of TMEM16K show a scramblase fold, with an open lipid transporting groove. Additional cryo-EM structures reveal extensive conformational changes from the cytoplasmic to the ER side of the membrane, giving a state with a closed lipid permeation pathway. Molecular dynamics simulations showed that the open-groove conformation is necessary for scramblase activity. TMEM16K is a member of the TMEM16 family of integral membrane proteins that are either lipid scramblases or chloride channels. Here the authors combine cell biology, electrophysiology measurements, X-ray crystallography, cryo-EM and MD simulations to structurally characterize TMEM16K and show that it is an ER-resident lipid scramblase.
Collapse
Affiliation(s)
- Simon R Bushell
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Ashley C W Pike
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical School, 1300 York Avenue, New York, NY, 10065, USA
| | - Nils J G Rorsman
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.,OxSyBio, Atlas Building, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Chau M Ta
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.,Department of Cardiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Thomas D Newport
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK.,Oxford Nanopore Technologies, Oxford Science Park, Oxford, OX4 4DQ, UK
| | - John C Christianson
- Nuffield Department of Rheumatology, Orthopaedics and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Lara F Scofano
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Chitra A Shintre
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Vertex Pharmaceuticals Ltd, Milton Park, Oxfordshire, OX14 4RW, UK
| | - Annamaria Tessitore
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Nuffield Division of Clinical Laboratory Sciences, Oxford University, Oxford, OX3 9DU, UK
| | - Amy Chu
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Department of Biochemistry, Oxford University, Oxford, OX1 3QT, UK
| | - Qinrui Wang
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Leela Shrestha
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Shubhashish M M Mukhopadhyay
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - James D Love
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461-1602, USA.,Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Nicola A Burgess-Brown
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Rebecca Sitsapesan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Alessio Accardi
- Department of Biochemistry, Weill Cornell Medical School, 1300 York Avenue, New York, NY, 10065, USA.,Department of Anesthesiology, Weill Cornell Medical School, 25 East 68th Street, New York, NY, 10065, USA.,Department of Physiology and Biophysics, Weill Cornell Medical School, 1300 York Avenue, New York, NY, 10065, USA
| | - Elisabeth P Carpenter
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
108
|
Mukherjee T, Hovingh ES, Foerster EG, Abdel-Nour M, Philpott DJ, Girardin SE. NOD1 and NOD2 in inflammation, immunity and disease. Arch Biochem Biophys 2019; 670:69-81. [DOI: 10.1016/j.abb.2018.12.022] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
|
109
|
Griewahn L, Köser A, Maurer U. Keeping Cell Death in Check: Ubiquitylation-Dependent Control of TNFR1 and TLR Signaling. Front Cell Dev Biol 2019; 7:117. [PMID: 31316982 PMCID: PMC6609852 DOI: 10.3389/fcell.2019.00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/11/2019] [Indexed: 01/05/2023] Open
Abstract
Pro-inflammatory signaling pathways, induced by pathogens, tissue damage or cytokines, depend on the ubiquitylation of various subunits of receptor signaling complexes, controlled by ubiquitin ligases and deubiquitinases. Ubiquitylation sets the stage for the activation of kinases within these receptor complexes, which ultimately regulate pro-inflammatory gene expression. The receptors, which transduce pro-inflammatory signals, can often induce cell death, which is controlled by ubiquitylation as well. In this review, we discuss the key role of ubiquitylation in pro-inflammatory signaling by TNFR1 and TLRs and its role in setting the threshold for cell death induced by these pro-inflammatory triggers.
Collapse
Affiliation(s)
- Laura Griewahn
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg im Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Aaron Köser
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ulrich Maurer
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg im Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,BIOSS Centre for Biological Signalling Studies, Freiburg im Breisgau, Germany
| |
Collapse
|
110
|
The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells. Proc Natl Acad Sci U S A 2019; 116:13293-13298. [PMID: 31209050 PMCID: PMC6613137 DOI: 10.1073/pnas.1905873116] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The linear ubiquitin assembly complex (LUBAC) comprises 3 components: HOIP, HOIL-1, and Sharpin, of which HOIP and HOIL-1 are both members of the RBR subfamily of E3 ubiquitin ligases. HOIP catalyses the formation of Met1-linked ubiquitin oligomers (also called linear ubiquitin), but the function of the E3 ligase activity of HOIL-1 is unknown. Here, we report that HOIL-1 is an atypical E3 ligase that forms oxyester bonds between the C terminus of ubiquitin and serine and threonine residues in its substrates. Exploiting the sensitivity of HOIL-1-generated oxyester bonds to cleavage by hydroxylamine, and macrophages from knock-in mice expressing the E3 ligase-inactive HOIL-1[C458S] mutant, we identify IRAK1, IRAK2, and MyD88 as physiological substrates of the HOIL-1 E3 ligase during Toll-like receptor signaling. HOIL-1 is a monoubiquitylating E3 ubiquitin ligase that initiates the de novo synthesis of polyubiquitin chains that are attached to these proteins in macrophages. HOIL-1 also catalyses its own monoubiquitylation in cells and most probably the monoubiquitylation of Sharpin, in which ubiquitin is also attached by an oxyester bond. Our study establishes that oxyester-linked ubiquitylation is used as an intracellular signaling mechanism.
Collapse
|
111
|
Hrdinka M, Yabal M. Inhibitor of apoptosis proteins in human health and
disease. Genes Immun 2019; 20:641-650. [DOI: 10.1038/s41435-019-0078-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
|
112
|
Garcia-Carbonell R, Yao SJ, Das S, Guma M. Dysregulation of Intestinal Epithelial Cell RIPK Pathways Promotes Chronic Inflammation in the IBD Gut. Front Immunol 2019; 10:1094. [PMID: 31164887 PMCID: PMC6536010 DOI: 10.3389/fimmu.2019.01094] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are common intestinal bowel diseases (IBD) characterized by intestinal epithelial injury including extensive epithelial cell death, mucosal erosion, ulceration, and crypt abscess formation. Several factors including activated signaling pathways, microbial dysbiosis, and immune deregulation contribute to disease progression. Although most research efforts to date have focused on immune cells, it is becoming increasingly clear that intestinal epithelial cells (IEC) are important players in IBD pathogenesis. Aberrant or exacerbated responses to how IEC sense IBD-associated microbes, respond to TNF stimulation, and regenerate and heal the injured mucosa are critical to the integrity of the intestinal barrier. The role of several genes and pathways in which single nucleotide polymorphisms (SNP) showed strong association with IBD has recently been studied in the context of IEC. In patients with IBD, it has been shown that the expression of specific dysregulated genes in IECs plays an important role in TNF-induced cell death and microbial sensing. Among them, the NF-κB pathway and its target gene TNFAIP3 promote TNF-induced and receptor interacting protein kinase (RIPK1)-dependent intestinal epithelial cell death. On the other hand, RIPK2 functions as a key signaling protein in host defense responses induced by activation of the cytosolic microbial sensors nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1 and NOD2). The RIPK2-mediated signaling pathway leads to the activation of NF-κB and MAP kinases that induce autophagy following infection. This article will review these dysregulated RIPK pathways in IEC and their role in promoting chronic inflammation. It will also highlight future research directions and therapeutic approaches involving RIPKs in IBD.
Collapse
Affiliation(s)
| | - Shih-Jing Yao
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Monica Guma
- Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
113
|
van Well EM, Bader V, Patra M, Sánchez-Vicente A, Meschede J, Furthmann N, Schnack C, Blusch A, Longworth J, Petrasch-Parwez E, Mori K, Arzberger T, Trümbach D, Angersbach L, Showkat C, Sehr DA, Berlemann LA, Goldmann P, Clement AM, Behl C, Woerner AC, Saft C, Wurst W, Haass C, Ellrichmann G, Gold R, Dittmar G, Hipp MS, Hartl FU, Tatzelt J, Winklhofer KF. A protein quality control pathway regulated by linear ubiquitination. EMBO J 2019; 38:e100730. [PMID: 30886048 PMCID: PMC6484417 DOI: 10.15252/embj.2018100730] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins in the brain. Insights into protein quality control mechanisms to prevent neuronal dysfunction and cell death are crucial in developing causal therapies. Here, we report that various disease-associated protein aggregates are modified by the linear ubiquitin chain assembly complex (LUBAC). HOIP, the catalytic component of LUBAC, is recruited to misfolded Huntingtin in a p97/VCP-dependent manner, resulting in the assembly of linear polyubiquitin. As a consequence, the interactive surface of misfolded Huntingtin species is shielded from unwanted interactions, for example with the low complexity sequence domain-containing transcription factor Sp1, and proteasomal degradation of misfolded Huntingtin is facilitated. Notably, all three core LUBAC components are transcriptionally regulated by Sp1, linking defective LUBAC expression to Huntington's disease. In support of a protective activity of linear ubiquitination, silencing of OTULIN, a deubiquitinase with unique specificity for linear polyubiquitin, decreases proteotoxicity, whereas silencing of HOIP has the opposite effect. These findings identify linear ubiquitination as a protein quality control mechanism and hence a novel target for disease-modifying strategies in proteinopathies.
Collapse
Affiliation(s)
- Eva M van Well
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Maria Patra
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ana Sánchez-Vicente
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jens Meschede
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Nikolas Furthmann
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Cathrin Schnack
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Alina Blusch
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Joseph Longworth
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | | | - Kohji Mori
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
- Centre for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lena Angersbach
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Cathrin Showkat
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Dominik A Sehr
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Lena A Berlemann
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Petra Goldmann
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Albrecht M Clement
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christian Behl
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Andreas C Woerner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Carsten Saft
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Developmental Genetics, Technical University Munich, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Haass
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gisa Ellrichmann
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Gunnar Dittmar
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jörg Tatzelt
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Konstanze F Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| |
Collapse
|
114
|
Ye L, Zhang Q, Liuyu T, Xu Z, Zhang MX, Luo MH, Zeng WB, Zhu Q, Lin D, Zhong B. USP49 negatively regulates cellular antiviral responses via deconjugating K63-linked ubiquitination of MITA. PLoS Pathog 2019; 15:e1007680. [PMID: 30943264 PMCID: PMC6464240 DOI: 10.1371/journal.ppat.1007680] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/15/2019] [Accepted: 03/04/2019] [Indexed: 01/02/2023] Open
Abstract
Mediator of IRF3 activation (MITA, also known as STING and ERIS) is an essential adaptor protein for cytoplasmic DNA-triggered signaling and involved in innate immune responses, autoimmunity and tumorigenesis. The activity of MITA is critically regulated by ubiquitination and deubiquitination. Here, we report that USP49 interacts with and deubiquitinates MITA after HSV-1 infection, thereby turning down cellular antiviral responses. Knockdown or knockout of USP49 potentiated HSV-1-, cytoplasmic DNA- or cGAMP-induced production of type I interferons (IFNs) and proinflammatory cytokines and impairs HSV-1 replication. Consistently, Usp49-/- mice exhibit resistance to lethal HSV-1 infection and attenuated HSV-1 replication compared to Usp49+/+ mice. Mechanistically, USP49 removes K63-linked ubiquitin chains from MITA after HSV-1 infection which inhibits the aggregation of MITA and the subsequent recruitment of TBK1 to the signaling complex. These findings suggest a critical role of USP49 in terminating innate antiviral responses and provide insights into the complex regulatory mechanisms of MITA activation.
Collapse
Affiliation(s)
- Liya Ye
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiang Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Tianzi Liuyu
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhigao Xu
- Department of Pathology, Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng-Xin Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
115
|
Clague MJ, Urbé S, Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 2019; 20:338-352. [DOI: 10.1038/s41580-019-0099-1] [Citation(s) in RCA: 561] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
116
|
Abstract
Ubiquitination (also known as ubiquitylation) is a post-translational modification that creates versatility in cell signalling and regulates a multitude of cellular processes. Its versatility lies in the capacity to form eight different inter-ubiquitin linkages through the seven lysine residues of ubiquitin and through its N-terminal methionine (M1). The latter, referred to as linear or M1 linkage, is created by the linear ubiquitin chain assembly complex (LUBAC), the only E3 ligase known to date that is capable of forming linear ubiquitin chains de novo Linear ubiquitin chains are crucial modulators of innate and adaptive immune responses, and act by regulating inflammatory and cell death signalling. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge on the role of LUBAC and linear ubiquitination in immune signalling and human physiology. We specifically focus on the role for LUBAC in signalling that is induced by the cytokine tumour necrosis factor (TNF) and its role in inflammation, gene activation and cell death. Furthermore, we highlight the roles of deubiquitinases (DUBs) that cleave M1 linkages and add an additional layer in the control of LUBAC-mediated immune signalling.
Collapse
Affiliation(s)
- Maureen Spit
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Eva Rieser
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
117
|
Wu M, Chang Y, Hu H, Mu R, Zhang Y, Qin X, Duan X, Li W, Tu H, Zhang W, Wang G, Han Q, Li A, Zhou T, Iwai K, Zhang X, Li H. LUBAC controls chromosome alignment by targeting CENP-E to attached kinetochores. Nat Commun 2019; 10:273. [PMID: 30655516 PMCID: PMC6336796 DOI: 10.1038/s41467-018-08043-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 12/07/2018] [Indexed: 11/30/2022] Open
Abstract
Faithful chromosome segregation requires proper chromosome congression at prometaphase and dynamic maintenance of the aligned chromosomes at metaphase. Chromosome missegregation can result in aneuploidy, birth defects and cancer. The kinetochore-bound KMN network and the kinesin motor CENP-E are critical for kinetochore-microtubule attachment and chromosome stability. The linear ubiquitin chain assembly complex (LUBAC) attaches linear ubiquitin chains to substrates, with well-established roles in immune response. Here, we identify LUBAC as a key player of chromosome alignment during mitosis. LUBAC catalyzes linear ubiquitination of the kinetochore motor CENP-E, which is specifically required for the localization of CENP-E at attached kinetochores, but not unattached ones. KNL1 acts as a receptor of linear ubiquitin chains to anchor CENP-E at attached kinetochores in prometaphase and metaphase. Thus, linear ubiquitination promotes chromosome congression and dynamic chromosome alignment by coupling the dynamic kinetochore microtubule receptor CENP-E to the static one, the KMN network. During cell division, faithful chromosome segregation requires proper chromosome congression and dynamic maintenance of the aligned chromosomes. Here, the authors find that LUBAC promotes dynamic chromosome congression and alignment by targeting kinetochore motor CENP-E to the KMN network.
Collapse
Affiliation(s)
- Min Wu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Yan Chang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Huaibin Hu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Rui Mu
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yucheng Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Xuanhe Qin
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Weihua Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Haiqing Tu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Weina Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Guang Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Qiuying Han
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Ailing Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Xuemin Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China.
| | - Huiyan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, 100850, Beijing, China. .,School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
118
|
Volkmar N, Thezenas ML, Louie SM, Juszkiewicz S, Nomura DK, Hegde RS, Kessler BM, Christianson JC. The ER membrane protein complex promotes biogenesis of sterol-related enzymes maintaining cholesterol homeostasis. J Cell Sci 2019; 132:jcs.223453. [PMID: 30578317 PMCID: PMC6362398 DOI: 10.1242/jcs.223453] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022] Open
Abstract
The eukaryotic endoplasmic reticulum (ER) membrane contains essential complexes that oversee protein biogenesis and lipid metabolism, impacting nearly all aspects of cell physiology. The ER membrane protein complex (EMC) is a newly described transmembrane domain (TMD) insertase linked with various phenotypes, but whose clients and cellular responsibilities remain incompletely understood. We report that EMC deficiency limits the cellular boundaries defining cholesterol tolerance, reflected by diminished viability with limiting or excessive extracellular cholesterol. Lipidomic and proteomic analyses revealed defective biogenesis and concomitant loss of the TMD-containing ER-resident enzymes sterol-O-acyltransferase 1 (SOAT1) and squalene synthase (SQS, also known as FDFT1), which serve strategic roles in the adaptation of cells to changes in cholesterol availability. Insertion of the weakly hydrophobic tail-anchor (TA) of SQS into the ER membrane by the EMC ensures sufficient flux through the sterol biosynthetic pathway while biogenesis of polytopic SOAT1 promoted by the EMC provides cells with the ability to store free cholesterol as inert cholesteryl esters. By facilitating insertion of TMDs that permit essential mammalian sterol-regulating enzymes to mature accurately, the EMC is an important biogenic determinant of cellular robustness to fluctuations in cholesterol availability. This article has an associated First Person interview with the first author of the paper. Highlighted Article: The ER membrane protein complex promotes biogenesis of key membrane-bound enzymes responsible for regulation of cholesterol biosynthesis and storage, an important determinant of mammalian cell viability.
Collapse
Affiliation(s)
- Norbert Volkmar
- Ludwig Institute for Cancer Research, University of Oxford, ORCRB, Headington, Oxford, OX3 7DQ, UK
| | - Maria-Laetitia Thezenas
- Target Discovery Institute (TDI) Mass Spectrometry Laboratory, Nuffield Department of Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Sharon M Louie
- Dept. of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Szymon Juszkiewicz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Daniel K Nomura
- Dept. of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Benedikt M Kessler
- Target Discovery Institute (TDI) Mass Spectrometry Laboratory, Nuffield Department of Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - John C Christianson
- Ludwig Institute for Cancer Research, University of Oxford, ORCRB, Headington, Oxford, OX3 7DQ, UK .,Oxford Centre for Translational Myeloma Research, NDORMS, University of Oxford, Botnar Research Centre, Headington, Oxford, OX3 7LD, UK
| |
Collapse
|
119
|
TUBE and UbiCRest assays for elucidating polyubiquitin modifications in protein complexes. Methods Enzymol 2019; 625:339-350. [DOI: 10.1016/bs.mie.2019.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
120
|
Seo J, Kim MW, Bae KH, Lee SC, Song J, Lee EW. The roles of ubiquitination in extrinsic cell death pathways and its implications for therapeutics. Biochem Pharmacol 2018; 162:21-40. [PMID: 30452908 DOI: 10.1016/j.bcp.2018.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/14/2018] [Indexed: 01/24/2023]
Abstract
Regulation of cell survival and death, including apoptosis and necroptosis, is important for normal development and tissue homeostasis, and disruption of these processes can cause cancer, inflammatory diseases, and degenerative diseases. Ubiquitination is a cellular process that induces proteasomal degradation by covalently attaching ubiquitin to the substrate protein. In addition to proteolytic ubiquitination, nonproteolytic ubiquitination, such as M1-linked and K63-linked ubiquitination, has been shown to be important in recent studies, which have demonstrated its function in cell signaling pathways that regulate inflammation and cell death pathways. In this review, we summarize the TRAIL- and TNF-induced death receptor signaling pathways along with recent advances in this field and illustrate how different types of ubiquitination control cell death and survival. In particular, we provide an overview of the different types of ubiquitination, target residues, and modifying enzymes, including E3 ligases and deubiquitinating enzymes. Given the relevance of these regulatory pathways in human disease, we hope that a better understanding of the regulatory mechanisms of cell death pathways will provide insights into and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Jinho Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Min Wook Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| |
Collapse
|
121
|
Panda S, Gekara NO. The deubiquitinase MYSM1 dampens NOD2-mediated inflammation and tissue damage by inactivating the RIP2 complex. Nat Commun 2018; 9:4654. [PMID: 30405132 PMCID: PMC6220254 DOI: 10.1038/s41467-018-07016-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
NOD2 is essential for antimicrobial innate immunity and tissue homeostasis, but require tight regulation to avert pathology. A focal point of NOD2 signaling is RIP2, which upon polyubiquitination nucleates the NOD2:RIP2 complex, enabling signaling events leading to inflammation, yet the precise nature and the regulation of the polyubiquitins coordinating this process remain unclear. Here we show that NOD2 signaling involves conjugation of RIP2 with lysine 63 (K63), K48 and M1 polyubiquitin chains, as well as with non-canonical K27 chains. In addition, we identify MYSM1 as a proximal deubiquitinase that attenuates NOD2:RIP2 complex assembly by selectively removing the K63, K27 and M1 chains, but sparing the K48 chains. Consequently, MYSM1 deficient mice have unrestrained NOD2-mediated peritonitis, systemic inflammation and liver injury. This study provides a complete overview of the polyubiquitins in NOD2:RIP2 signaling and reveal MYSM1 as a central negative regulator restricting these polyubiquitins to prevent excessive inflammation. The innate immune receptor NOD2 is tightly regulated to ensure beneficial antimicrobial immunity. Here the authors show that the H2A deubiquitinase MYSM1 restrains NOD2 signaling by removing lysine 63 (K63), K27, M1 but not K48 polyubiquitin chains from its downstream adaptor protein RIP2.
Collapse
Affiliation(s)
- Swarupa Panda
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, 90 187, Umeå, Sweden
| | - Nelson O Gekara
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, 90 187, Umeå, Sweden.
| |
Collapse
|
122
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
123
|
Shi JH, Sun SC. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways. Front Immunol 2018; 9:1849. [PMID: 30140268 PMCID: PMC6094638 DOI: 10.3389/fimmu.2018.01849] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jian-Hong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
124
|
Hrdinka M, Schlicher L, Dai B, Pinkas DM, Bufton JC, Picaud S, Ward JA, Rogers C, Suebsuwong C, Nikhar S, Cuny GD, Huber KV, Filippakopoulos P, Bullock AN, Degterev A, Gyrd-Hansen M. Small molecule inhibitors reveal an indispensable scaffolding role of RIPK2 in NOD2 signaling. EMBO J 2018; 37:embj.201899372. [PMID: 30026309 PMCID: PMC6120666 DOI: 10.15252/embj.201899372] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 01/06/2023] Open
Abstract
RIPK2 mediates inflammatory signaling by the bacteria‐sensing receptors NOD1 and NOD2. Kinase inhibitors targeting RIPK2 are a proposed strategy to ameliorate NOD‐mediated pathologies. Here, we reveal that RIPK2 kinase activity is dispensable for NOD2 inflammatory signaling and show that RIPK2 inhibitors function instead by antagonizing XIAP‐binding and XIAP‐mediated ubiquitination of RIPK2. We map the XIAP binding site on RIPK2 to the loop between β2 and β3 of the N‐lobe of the kinase, which is in close proximity to the ATP‐binding pocket. Through characterization of a new series of ATP pocket‐binding RIPK2 inhibitors, we identify the molecular features that determine their inhibition of both the RIPK2‐XIAP interaction, and of cellular and in vivoNOD2 signaling. Our study exemplifies how targeting of the ATP‐binding pocket in RIPK2 can be exploited to interfere with the RIPK2‐XIAP interaction for modulation of NOD signaling.
Collapse
Affiliation(s)
- Matous Hrdinka
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Lisa Schlicher
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Bing Dai
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Daniel M Pinkas
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Joshua C Bufton
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Sarah Picaud
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Jennifer A Ward
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Catherine Rogers
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Sameer Nikhar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Kilian Vm Huber
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Panagis Filippakopoulos
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Alexei Degterev
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Mads Gyrd-Hansen
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
125
|
Aalto AL, Mohan AK, Schwintzer L, Kupka S, Kietz C, Walczak H, Broemer M, Meinander A. M1-linked ubiquitination by LUBEL is required for inflammatory responses to oral infection in Drosophila. Cell Death Differ 2018; 26:860-876. [PMID: 30026495 PMCID: PMC6462001 DOI: 10.1038/s41418-018-0164-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 01/04/2023] Open
Abstract
Post-translational modifications such as ubiquitination play a key role in regulation of inflammatory nuclear factor-κB (NF-κB) signalling. The Drosophila IκB kinase γ (IKKγ) Kenny is a central regulator of the Drosophila Imd pathway responsible for activation of the NF-κB Relish. We found the Drosophila E3 ligase and HOIL-1L interacting protein (HOIP) orthologue linear ubiquitin E3 ligase (LUBEL) to catalyse formation of M1-linked linear ubiquitin (M1-Ub) chains in flies in a signal-dependent manner upon bacterial infection. Upon activation of the Imd pathway, LUBEL modifies Kenny with M1-Ub chains. Interestingly, the LUBEL-mediated M1-Ub chains seem to be targeted both directly to Kenny and to K63-linked ubiquitin chains conjugated to Kenny by DIAP2. This suggests that DIAP2 and LUBEL work together to promote Kenny-mediated activation of Relish. We found LUBEL-mediated M1-Ub chain formation to be required for flies to survive oral infection with Gram-negative bacteria, for activation of Relish-mediated expression of antimicrobial peptide genes and for pathogen clearance during oral infection. Interestingly, LUBEL is not required for mounting an immune response against systemic infection, as Relish-mediated antimicrobial peptide genes can be expressed in the absence of LUBEL during septic injury. Finally, transgenic induction of LUBEL-mediated M1-Ub drives expression of antimicrobial peptide genes and hyperplasia in the midgut in the absence of infection. This suggests that M1-Ub chains are important for Imd signalling and immune responses in the intestinal epithelia, and that enhanced M1-Ub chain formation is able to drive chronic intestinal inflammation in flies.
Collapse
Affiliation(s)
- Anna L Aalto
- Department of Cell Biology, Faculty of Science and Engineering, BioCity, Åbo Akademi University, 20520, Turku, Finland
| | - Aravind K Mohan
- Department of Cell Biology, Faculty of Science and Engineering, BioCity, Åbo Akademi University, 20520, Turku, Finland
| | - Lukas Schwintzer
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Sebastian Kupka
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, London, WC1E 6BT, UK
| | - Christa Kietz
- Department of Cell Biology, Faculty of Science and Engineering, BioCity, Åbo Akademi University, 20520, Turku, Finland
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, London, WC1E 6BT, UK
| | - Meike Broemer
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Annika Meinander
- Department of Cell Biology, Faculty of Science and Engineering, BioCity, Åbo Akademi University, 20520, Turku, Finland.
| |
Collapse
|
126
|
Liu J, Pan L. Structural bases of the assembly, recognition and disassembly of linear ubiquitin chain. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1410-1422. [PMID: 29981772 DOI: 10.1016/j.bbamcr.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
Abstract
Linear ubiquitin chain is a latest discovered type of poly-ubiquitin chain that is broadly involved in innate immune and inflammatory pathways. Dysfunctions in its assembly, recognition or disassembly are intimately related with numerous immunodeficiency or autoimmune diseases. Our understanding of the molecular mechanism for linear ubiquitin chain formation, recognition and disassembly has being significantly evolved in recent years, with particular contribution from the biochemical and structural characterizations of related proteins. Here, we focus on the relevant proteins for the synthesis, recognition and digestion of linear ubiquitin chain, and review recent findings to summarize currently known molecular mechanism from a perspective of structural biology.
Collapse
Affiliation(s)
- Jianping Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China; Collaborative Innovation Center of Chemistry for Life Sciences, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|
127
|
OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature 2018; 559:120-124. [DOI: 10.1038/s41586-018-0256-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/15/2018] [Indexed: 01/23/2023]
|
128
|
Genomics, Biology, and Human Illness: Advances in the Monogenic Autoinflammatory Diseases. Rheum Dis Clin North Am 2018; 43:327-345. [PMID: 28711137 DOI: 10.1016/j.rdc.2017.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The monogenic autoinflammatory diseases are a group of illnesses with prominent rheumatic manifestations that are characterized by genetically determined recurrent sterile inflammation and are thus inborn errors of innate immunity. Molecular targeted therapies against inflammatory cytokines, such as interleukin 1 and tumor necrosis factor, and intracellular cytokine signaling pathways have proved effective in many cases. Emerging next-generation sequencing technologies have accelerated the identification of previously unreported genes causing autoinflammatory diseases. This review covers several of the prominent recent advances in the field of autoinflammatory diseases, including gene discoveries, the elucidation of new pathogenic mechanisms, and the development of effective targeted therapies.
Collapse
|
129
|
The Superimposed Deubiquitination Effect of OTULIN and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Nsp11 Promotes Multiplication of PRRSV. J Virol 2018; 92:JVI.00175-18. [PMID: 29444948 DOI: 10.1128/jvi.00175-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023] Open
Abstract
Linear ubiquitination plays an important role in the regulation of the immune response by regulating nuclear factor κB (NF-κB). The linear ubiquitination-specific deubiquitinase ovarian tumor domain deubiquitinase with linear linkage specificity (OTULIN) can control the immune signaling transduction pathway by restricting the Met1-linked ubiquitination process. In our study, the porcine OTLLIN gene was cloned and deubiquitin functions were detected in a porcine reproductive and respiratory syndrome virus (PRRSV)-infected-cell model. PRRSV infection promotes the expression of the OTULIN gene; in turn, overexpression of OTULIN contributes to PRRSV proliferation. There is negative regulation of innate immunity with OTULIN during viral infection. The cooperative effects of swine OTULIN and PRRSV Nsp11 potentiate the ability to reduce levels of cellular protein ubiquitin associated with innate immunity. Importantly, PRRSV Nsp11 recruits OTULIN through a nonenzymatic combination to enhance its ability to remove linear ubiquitination targeting NEMO, resulting in a superimposed effect that inhibits the production of type I interferons (IFNs). Our report presents a new model of virus utilization of the ubiquitin-protease system in vivo from the perspective of the viral proteins that interact with cell deubiquitination enzymes, providing new ideas for prevention and control of PRRSV.IMPORTANCE Deubiquitination effects of swine OTULIN were identified. The interaction between porcine OTULIN and PRRSV Nsp11 is dependent on the OTU domain. PRRSV Nsp11 recruits OTULIN through a nonenzymatic combination to promote removal of linear ubiquitination targeting NEMO, resulting in a superimposed effect that inhibits the production of type I IFNs.
Collapse
|
130
|
Courtois G, Fauvarque MO. The Many Roles of Ubiquitin in NF-κB Signaling. Biomedicines 2018; 6:E43. [PMID: 29642643 PMCID: PMC6027159 DOI: 10.3390/biomedicines6020043] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling pathway ubiquitously controls cell growth and survival in basic conditions as well as rapid resetting of cellular functions following environment changes or pathogenic insults. Moreover, its deregulation is frequently observed during cell transformation, chronic inflammation or autoimmunity. Understanding how it is properly regulated therefore is a prerequisite to managing these adverse situations. Over the last years evidence has accumulated showing that ubiquitination is a key process in NF-κB activation and its resolution. Here, we examine the various functions of ubiquitin in NF-κB signaling and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF-κB regulated cellular processes.
Collapse
|
131
|
Critchley WR, Pellet-Many C, Ringham-Terry B, Harrison MA, Zachary IC, Ponnambalam S. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Cells 2018; 7:E22. [PMID: 29543760 PMCID: PMC5870354 DOI: 10.3390/cells7030022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.
Collapse
Affiliation(s)
- William R Critchley
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Caroline Pellet-Many
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Benjamin Ringham-Terry
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | | | - Ian C Zachary
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
132
|
Xu H, Qin W, Hu X, Mu S, Zhu J, Lu W, Luo Y. Lentivirus-mediated overexpression of OTULIN ameliorates microglia activation and neuroinflammation by depressing the activation of the NF-κB signaling pathway in cerebral ischemia/reperfusion rats. J Neuroinflammation 2018; 15:83. [PMID: 29544517 PMCID: PMC5856386 DOI: 10.1186/s12974-018-1117-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/06/2018] [Indexed: 01/05/2023] Open
Abstract
Background Ischemic stroke-induced neuroinflammation is mainly mediated by microglial cells. The nuclear factor kappa B (NF-κB) pathway is the key transcriptional pathway that initiates inflammatory responses following cerebral ischemia. OTULIN, a critical negative regulator of the NF-κΒ signaling pathway, exerts robust effects on peripheral immune cell-mediated inflammation and is regarded as an essential mediator for repressing inflammation in vivo. The effect of OTULIN on inflammatory responses in the central nervous system (CNS) was previously unstudied. This current study investigated the anti-inflammatory effect of OTULIN both in vitro and in vivo in ischemic stroke models. Methods Sprague-Dawley (SD) rats were subjected to transient middle cerebral artery occlusion (tMCAO) or an intraperitoneal injection of lipopolysaccharide (LPS). Overexpression of the OTULIN gene was utilized to observe the effect of OTULIN on ischemic stroke outcomes. The effect of OTULIN overexpression on microglia-mediated neuroinflammation was examined in rat primary microglia (PM) and in the microglial cell line N9 after induction by oxygen-glucose deprivation (OGD)-treated neuronal medium. The activation and inflammatory responses of microglia were detected using immunofluorescence, ELISA, and qRT-PCR. The details of molecular mechanism were assessed using Western blotting. Results In the tMCAO rats, the focal cerebral ischemia/reperfusion injury induced a continuous increase in OTULIN expression within 72 h, and OTULIN expression was increased in activated microglial cells. OTULIN overexpression obviously decreased the cerebral infarct volume, improved the neurological function deficits, and reduced neuronal loss at 72 h after reperfusion, and it also inhibited the activation of microglia and attenuated the release of TNF-α, IL-1β, and IL-6 by suppressing the NF-κB pathway at 24 h after tMCAO. In vitro, OTULIN overexpression inhibited the microglia-mediated neuroinflammation by reducing the production of TNF-α, IL-1β, and IL-6 via depressing the NF-κB pathway in both PM and N9 cells. Conclusions OTULIN provides a potential therapeutic target for ischemic brain injury by ameliorating the excessive activation of microglial cells and neuroinflammation through repressing the NF-κB signaling pathway. Electronic supplementary material The online version of this article (10.1186/s12974-018-1117-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongbei Xu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenyi Qin
- Department of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiao Hu
- Department of Neurology, Guizhou Provincial People's hospital, Guizhou, 50002, China
| | - Song Mu
- Department of Anus & Intestine surgery, the Affiliated Hospital of Guizhou Medical University, Guizhou, 550004, China
| | - Jun Zhu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenhao Lu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yong Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
133
|
Wu Y, Kang J, Zhang L, Liang Z, Tang X, Yan Y, Qian H, Zhang X, Xu W, Mao F. Ubiquitination regulation of inflammatory responses through NF-κB pathway. Am J Transl Res 2018; 10:881-891. [PMID: 29636878 PMCID: PMC5883129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
The development of inflammation is mutually affected with damaged DNA and the abnormal expression of protein modification. Ubiquitination, a way of protein modification, plays a key role in regulating various biological functions including inflammation responses. The ubiquitin enzymes and deubiquitinating enzymes (DUBs) jointly control the ubiquitination. The fact that various ubiquitin linkage chains control the fate of the substrate suggests that the regulatory mechanisms of ubiquitin enzymes are central for ubiquitination. In inflammation diseases, the pro-inflammatory transcription factor NF-κB regulates transcription of pro-labour mediators in response to inflammatory stimuli and expression of numerous genes that control inflammation which is associated with ubiquitination. The ubiquitination regulates NF-κB signaling pathway with many receptor families, including NOD-like receptors (NLR), Toll-like receptors (TLR) and RIG-I-like receptors (RLR), mainly by K63-linked polyubiquitin chains. In this review, we highlight the study of ubiquitination in the inflammatory signaling pathway including NF-κB signaling regulated by ubiquitin enzymes and DUBs. Furthermore, it is emphasized that the interaction of ubiquitin-mediated inflammatory signaling system accurately regulates the inflammatory responses.
Collapse
Affiliation(s)
- Yunbing Wu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Jingjing Kang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Lu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Zhaofeng Liang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Xudong Tang
- Jiangsu University of Science and TechnologyZhenjiang 212018, Jiangsu, China
| | - Yongmin Yan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| |
Collapse
|
134
|
Prabakaran T, Bodda C, Krapp C, Zhang BC, Christensen MH, Sun C, Reinert L, Cai Y, Jensen SB, Skouboe MK, Nyengaard JR, Thompson CB, Lebbink RJ, Sen GC, van Loo G, Nielsen R, Komatsu M, Nejsum LN, Jakobsen MR, Gyrd-Hansen M, Paludan SR. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J 2018; 37:embj.201797858. [PMID: 29496741 DOI: 10.15252/embj.201797858] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/18/2022] Open
Abstract
Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62-deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy-associated vesicles. Thus, DNA sensing induces the cGAS-STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response.
Collapse
Affiliation(s)
- Thaneas Prabakaran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Chiranjeevi Bodda
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark.,Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Christian Krapp
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Bao-Cun Zhang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Maria H Christensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Chenglong Sun
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Line Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Yujia Cai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Søren B Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Morten K Skouboe
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Jens R Nyengaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert Jan Lebbink
- Medical Microbiology, University Medical Center, Utrecht, The Netherlands
| | - Ganes C Sen
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Geert van Loo
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin R Jakobsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Mads Gyrd-Hansen
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark .,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| |
Collapse
|
135
|
Abstract
The nucleotide-binding oligomerization domain (NOD) protein, NOD2, belonging to the intracellular NOD-like receptor family, detects conserved motifs in bacterial peptidoglycan and promotes their clearance through activation of a proinflammatory transcriptional program and other innate immune pathways, including autophagy and endoplasmic reticulum stress. An inactive form due to mutations or a constitutive high expression of NOD2 is associated with several inflammatory diseases, suggesting that balanced NOD2 signaling is critical for the maintenance of immune homeostasis. In this review, we discuss recent developments about the pathway and mechanisms of regulation of NOD2 and illustrate the principal functions of the gene, with particular emphasis on its central role in maintaining the equilibrium between intestinal microbiota and host immune responses to control inflammation. Furthermore, we survey recent studies illustrating the role of NOD2 in several inflammatory diseases, in particular, inflammatory bowel disease, of which it is the main susceptibility gene.
Collapse
Affiliation(s)
- Anna Negroni
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| | - Maria Pierdomenico
- Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | - Salvatore Cucchiara
- Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | - Laura Stronati
- Department of Cellular Biotechnology and Hematology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
136
|
Stafford CA, Lawlor KE, Heim VJ, Bankovacki A, Bernardini JP, Silke J, Nachbur U. IAPs Regulate Distinct Innate Immune Pathways to Co-ordinate the Response to Bacterial Peptidoglycans. Cell Rep 2018; 22:1496-1508. [DOI: 10.1016/j.celrep.2018.01.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/02/2017] [Accepted: 01/08/2018] [Indexed: 12/19/2022] Open
|
137
|
Sarhan M, von Mässenhausen A, Hugo C, Oberbauer R, Linkermann A. Immunological consequences of kidney cell death. Cell Death Dis 2018; 9:114. [PMID: 29371597 PMCID: PMC5833784 DOI: 10.1038/s41419-017-0057-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Death of renal cells is central to the pathophysiology of acute tubular necrosis, autoimmunity, necrotizing glomerulonephritis, cystic kidney disease, urosepsis, delayed graft function and transplant rejection. By means of regulated necrosis, immunogenic damage-associated molecular patterns (DAMPs) and highly reactive organelles such as lysosomes, peroxisomes and mitochondria are released from the dying cells, thereby causing an overwhelming immunologic response. The rupture of the plasma membrane exhibits the "point of no return" for the immunogenicity of regulated cell death, explaining why apoptosis, a highly organized cell death subroutine with long-lasting plasma membrane integrity, elicits hardly any immune response. Ferroptosis, an iron-dependent necrotic type cell death, results in the release of DAMPs and large amounts of lipid peroxides. In contrast, anti-inflammatory cytokines are actively released from cells that die by necroptosis, limiting the DAMP-induced immune response to a surrounding microenvironment, whereas at the same time, inflammasome-associated caspases drive maturation of intracellularly expressed interleukin-1β (IL-1β). In a distinct setting, additionally interleukin-18 (IL-18) is expressed during pyroptosis, initiated by gasdermin-mediated plasma membrane rupture. As all of these pathways are druggable, we provide an overview of regulated necrosis in kidney diseases with a focus on immunogenicity and potential therapeutic interventions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
138
|
Determinants of E2-ubiquitin conjugate recognition by RBR E3 ligases. Sci Rep 2018; 8:68. [PMID: 29311602 PMCID: PMC5758712 DOI: 10.1038/s41598-017-18513-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/13/2017] [Indexed: 12/25/2022] Open
Abstract
RING-between-RING (RBR) ubiquitin ligases work with multiple E2 enzymes and function through an E3-ubiquitin thioester intermediate. The RBR module comprises three domains, RING1, IBR and RING2 that collaborate to transfer ubiquitin from the E2~Ub conjugate, recognised by RING1, onto a catalytic cysteine in RING2 and finally onto the substrate in a multi-step reaction. Recent studies have shown that RING1 domains bind E2~Ub conjugates in an open conformation to supress ubiquitin transfer onto lysine residues and promote formation of the E3 thioester intermediate. However, how the nature of the E2 influences the ubiquitin transfer process is currently unclear. We report here a detailed characterization of the RBR/E2-conjugate recognition step that indicates that this mechanism depends on the nature of the E2 enzyme and differs between UbcH5 and UbcH7. In the case of UbcH5~Ub an interaction with ubiquitin is necessary to stabilize the transfer complex while recognition of UbcH7~Ub is driven primarily by E2-RING1 contacts. Furthermore our analysis suggests that RBRs, in isolation and in complex with ubiquitin-loaded E2s, are dynamic species and that their intrinsic flexibility might be a key aspect of their catalytic mechanism.
Collapse
|
139
|
Na L, Tang YD, Wang C, Liu C, Wang X. Rhesus monkey TRIM5α protein SPRY domain contributes to AP-1 activation. J Biol Chem 2017; 293:2661-2674. [PMID: 29196608 DOI: 10.1074/jbc.ra117.000127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/11/2017] [Indexed: 01/13/2023] Open
Abstract
TRIM5α is an important host restriction factor that could potently block retrovirus infection. The SPRY domain of TRIM5α mediates post-entry restriction by recognition of and binding to the retroviral capsid. Human TRIM5α also functions as an innate immune sensor to activate AP-1 and NF-κB signaling, which subsequently restrict virus replication. Previous studies have shown that the AP-1 and NF-κB signaling activation relies on the RING motif of TRIM5α. In this study, we have demonstrated that the SPRY domain is essential for rhesus macaque TRIM5α to activate AP-1 but not NF-κB signaling. The AP-1 activation mainly depends on all of the β-sheet barrel on SPRY structure of TRIM5α. Furthermore, the SPRY-mediated auto-ubiquitination of TRIM5α is required for AP-1 activation. This study reports that rhesus macaque TRIM5α mainly undergoes Lys27-linked and Met1-linked auto-polyubiquitination. Finally, we found that the TRIM5α signaling function was positively correlated with its retroviral restriction activity. This study discovered an important role of the SPRY domain in immune signaling and antiviral activity and further expanded our knowledge of the antiviral mechanism of TRIM5α.
Collapse
Affiliation(s)
- Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Cuihui Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Cong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
140
|
Hrdinka M, Gyrd-Hansen M. The Met1-Linked Ubiquitin Machinery: Emerging Themes of (De)regulation. Mol Cell 2017; 68:265-280. [PMID: 29053955 DOI: 10.1016/j.molcel.2017.09.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/21/2017] [Accepted: 08/31/2017] [Indexed: 01/24/2023]
Abstract
The linear ubiquitin chain assembly complex, LUBAC, is the only known mammalian ubiquitin ligase that makes methionine 1 (Met1)-linked polyubiquitin (also referred to as linear ubiquitin). A decade after LUBAC was discovered as a cellular activity of unknown function, there are now many lines of evidence connecting Met1-linked polyubiquitin to NF-κB signaling, cell death, inflammation, immunity, and cancer. We now know that Met1-linked polyubiquitin has potent signaling functions and that its deregulation is connected to disease. Indeed, mutations and deficiencies in several factors involved in conjugation and deconjugation of Met1-linked polyubiquitin have been implicated in immune-related disorders. Here, we discuss current knowledge and recent insights into the role and regulation of Met1-linked polyubiquitin, with an emphasis on the mechanisms controlling the function of LUBAC.
Collapse
Affiliation(s)
- Matous Hrdinka
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
141
|
Weber A, Elliott PR, Pinto-Fernandez A, Bonham S, Kessler BM, Komander D, El Oualid F, Krappmann D. A Linear Diubiquitin-Based Probe for Efficient and Selective Detection of the Deubiquitinating Enzyme OTULIN. Cell Chem Biol 2017; 24:1299-1313.e7. [PMID: 28919039 PMCID: PMC5658516 DOI: 10.1016/j.chembiol.2017.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 11/19/2022]
Abstract
The methionine 1 (M1)-specific deubiquitinase (DUB) OTULIN acts as a negative regulator of nuclear factor κB signaling and immune homeostasis. By replacing Gly76 in distal ubiquitin (Ub) by dehydroalanine we designed the diubiquitin (diUb) activity-based probe UbG76Dha-Ub (OTULIN activity-based probe [ABP]) that couples to the catalytic site of OTULIN and thereby captures OTULIN in its active conformation. The OTULIN ABP displays high selectivity for OTULIN and does not label other M1-cleaving DUBs, including CYLD. The only detectable cross-reactivities were the labeling of USP5 (Isopeptidase T) and an ATP-dependent assembly of polyOTULIN ABP chains via Ub-activating E1 enzymes. Both cross-reactivities were abolished by the removal of the C-terminal Gly in the ABP's proximal Ub, yielding the specific OTULIN probe UbG76Dha-UbΔG76 (OTULIN ABPΔG76). Pull-downs demonstrate that substrate-bound OTULIN associates with the linear ubiquitin chain assembly complex (LUBAC). Thus, we present a highly selective ABP for OTULIN that will facilitate studying the cellular function of this essential DUB.
Collapse
Affiliation(s)
- Aurelia Weber
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Paul R Elliott
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Farid El Oualid
- UbiQ Bio BV, Science Park 408, 1098 XH Amsterdam, the Netherlands.
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
142
|
Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol 2017; 18:861-869. [PMID: 28722711 DOI: 10.1038/ni.3772] [Citation(s) in RCA: 587] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/17/2017] [Indexed: 11/09/2022]
Abstract
A properly mounted immune response is indispensable for recognizing and eliminating danger arising from foreign invaders and tissue trauma. However, the 'inflammatory fire' kindled by the host response must be tightly controlled to prevent it from spreading and causing irreparable damage. Accordingly, acute inflammation is self-limiting and is normally attenuated after elimination of noxious stimuli, restoration of homeostasis and initiation of tissue repair. However, unresolved inflammation may lead to the development of chronic autoimmune and degenerative diseases and cancer. Here, we discuss the key molecular mechanisms that contribute to the self-limiting nature of inflammatory signaling, with emphasis on the negative regulation of the NF-κB pathway and the NLRP3 inflammasome. Understanding these negative regulatory mechanisms should facilitate the development of much-needed therapeutic strategies for treatment of inflammatory and autoimmune pathologies.
Collapse
Affiliation(s)
- Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Zhenyu Zhong
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
143
|
Ebner P, Versteeg GA, Ikeda F. Ubiquitin enzymes in the regulation of immune responses. Crit Rev Biochem Mol Biol 2017; 52:425-460. [PMID: 28524749 PMCID: PMC5490640 DOI: 10.1080/10409238.2017.1325829] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022]
Abstract
Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.
Collapse
|
144
|
Molecular basis for specificity of the Met1-linked polyubiquitin signal. Biochem Soc Trans 2017; 44:1581-1602. [PMID: 27913667 PMCID: PMC5135002 DOI: 10.1042/bst20160227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022]
Abstract
The post-translational modification of proteins provides a rapid and versatile system for regulating all signalling pathways. Protein ubiquitination is one such type of post-translational modification involved in controlling numerous cellular processes. The unique ability of ubiquitin to form polyubiquitin chains creates a highly complex code responsible for different subsequent signalling outcomes. Specialised enzymes ('writers') generate the ubiquitin code, whereas other enzymes ('erasers') disassemble it. Importantly, the ubiquitin code is deciphered by different ubiquitin-binding proteins ('readers') functioning to elicit particular cellular responses. Ten years ago, the methionine1 (Met1)-linked (linear) polyubiquitin code was first identified and the intervening years have witnessed a seismic shift in our understanding of Met1-linked polyubiquitin in cellular processes, particularly inflammatory signalling. This review will discuss the molecular mechanisms of specificity determination within Met1-linked polyubiquitin signalling.
Collapse
|
145
|
Witt A, Vucic D. Diverse ubiquitin linkages regulate RIP kinases-mediated inflammatory and cell death signaling. Cell Death Differ 2017; 24:1160-1171. [PMID: 28475174 PMCID: PMC5520166 DOI: 10.1038/cdd.2017.33] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 12/25/2022] Open
Abstract
Members of the RIP kinase family are key regulators of inflammation and cell death signaling implicated in maintaining immune responses and proper tissue homeostasis. Increasing evidence points to post-translational modifications of RIP1, RIP2 and RIP3 as being critical for regulating their function. Ubiquitination and the E3 ligases, such as inhibitors of apoptosis (IAP) proteins and LUBAC, that direct substrate selectivity as well as the deubiquitinating enzymes, such as A20 and OTULIN, that reverse these modifications dictate the outcome of RIP kinase signaling. Perturbation of the tightly regulated RIP1, RIP2 and RIP3 ubiquitination can lead to signaling disbalance in TNF, TLR and NOD1/2-controlled pathways and result in severe human pathologies. In this review, we focus on the biological function of ubiquitin-modifying enzymes in the context of RIP1, RIP2 and RIP3 signaling. We also discuss the impact of deregulated ubiquitin networks in RIP1, RIP2 and RIP3 signaling pathways on human health.
Collapse
Affiliation(s)
- Axel Witt
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
146
|
Brazee P, Dada LA, Sznajder JI. Role of Linear Ubiquitination in Health and Disease. Am J Respir Cell Mol Biol 2017; 54:761-8. [PMID: 26848516 DOI: 10.1165/rcmb.2016-0014tr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The covalent attachment of ubiquitin to target proteins is one of the most prevalent post-translational modifications, regulating a myriad of cellular processes including cell growth, survival, and metabolism. Recently, a novel RING E3 ligase complex was described, called linear ubiquitin assembly complex (LUBAC), which is capable of connecting ubiquitin molecules in a novel head-to-tail fashion via the N-terminal methionine residue. LUBAC is a heteromeric complex composed of heme-oxidized iron-responsive element-binding protein 2 ubiquitin ligase-1L (HOIL-1L), HOIL-1L-interacting protein, and shank-associated RH domain-interacting protein (SHARPIN). The essential role of LUBAC-generated linear chains for activation of nuclear factor-κB (NF-κB) signaling was first described in the activation of tumor necrosis factor-α receptor signaling complex. A decade of research has identified additional pathways that use LUBAC for downstream signaling, including CD40 ligand and the IL-1β receptor, as well as cytosolic pattern recognition receptors including nucleotide-binding oligomerization domain containing 2 (NOD2), retinoic acid-inducible gene 1 (RIG-1), and the NOD-like receptor family, pyrin domain containing 3 inflammasome (NLRP3). Even though the three components of the complex are required for full activation of NF-κB, the individual components of LUBAC regulate specific cell type- and stimuli-dependent effects. In humans, autosomal defects in LUBAC are associated with both autoinflammation and immunodeficiency, with additional disorders described in mice. Moreover, in the lung epithelium, HOIL-1L ubiquitinates target proteins independently of the other LUBAC components, adding another layer of complexity to the function and regulation of LUBAC. Although many advances have been made, the diverse functions of linear ubiquitin chains and the regulation of LUBAC are not yet completely understood. In this review, we discuss the various roles of linear ubiquitin chains and point to areas of study that would benefit from further investigation into LUBAC-mediated signaling pathways in lung pathophysiology.
Collapse
Affiliation(s)
- Patricia Brazee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
147
|
Bist P, Cheong WS, Ng A, Dikshit N, Kim BH, Pulloor NK, Khameneh HJ, Hedl M, Shenoy AR, Balamuralidhar V, Malik NBA, Hong M, Neutzner A, Chin KC, Kobayashi KS, Bertoletti A, Mortellaro A, Abraham C, MacMicking JD, Xavier RJ, Sukumaran B. E3 Ubiquitin ligase ZNRF4 negatively regulates NOD2 signalling and induces tolerance to MDP. Nat Commun 2017; 8:15865. [PMID: 28656966 PMCID: PMC5493756 DOI: 10.1038/ncomms15865] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
Optimal regulation of the innate immune receptor nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is essential for controlling bacterial infections and inflammatory disorders. Chronic NOD2 stimulation induces non-responsiveness to restimulation, termed NOD2-induced tolerance. Although the levels of the NOD2 adaptor, RIP2, are reported to regulate both acute and chronic NOD2 signalling, how RIP2 levels are modulated is unclear. Here we show that ZNRF4 induces K48-linked ubiquitination of RIP2 and promotes RIP2 degradation. A fraction of RIP2 localizes to the endoplasmic reticulum (ER), where it interacts with ZNRF4 under either 55 unstimulated and muramyl dipeptide-stimulated conditions. Znrf4 knockdown monocytes have sustained nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, and Znrf4 knockdown mice have reduced NOD2-induced tolerance and more effective control of Listeria monocytogenes infection. Our results thus demonstrate E3-ubiquitin ligase ZNRF4-mediated RIP2 degradation as a negative regulatory mechanism of NOD2-induced NF-κB, cytokine and anti-bacterial responses in vitro and in vivo, and identify a ZNRF4-RIP2 axis of fine-tuning NOD2 signalling to promote protective host immunity.
Collapse
Affiliation(s)
- Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wan Shoo Cheong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Aylwin Ng
- Gastrointestinal Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Neha Dikshit
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Bae-Hoon Kim
- HHMI, Yale Systems Biology Institute, Departments of Microbial Pathogenesis and Immunobiology, Yale University School of Medicine, New Haven, Connecticut 065207, USA
| | - Niyas Kudukkil Pulloor
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Hanif Javanmard Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Matija Hedl
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Avinash R. Shenoy
- HHMI, Yale Systems Biology Institute, Departments of Microbial Pathogenesis and Immunobiology, Yale University School of Medicine, New Haven, Connecticut 065207, USA
- Medical Research Council Centre for Molecular Bacteriology & Infection, Armstrong Rd, Imperial College, London SW7 2AZ, UK
| | | | - Najib Bin Abdul Malik
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Michelle Hong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, Basel 4031, Switzerland
| | - Keh-Chuang Chin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, Singapore 117593, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Koichi S. Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Centre, College Station, Texas 77843-1114, USA
| | - Antonio Bertoletti
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Clara Abraham
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - John D. MacMicking
- HHMI, Yale Systems Biology Institute, Departments of Microbial Pathogenesis and Immunobiology, Yale University School of Medicine, New Haven, Connecticut 065207, USA
| | - Ramnik J. Xavier
- Gastrointestinal Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Bindu Sukumaran
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
148
|
Schwerd T, Pandey S, Yang HT, Bagola K, Jameson E, Jung J, Lachmann RH, Shah N, Patel SY, Booth C, Runz H, Düker G, Bettels R, Rohrbach M, Kugathasan S, Chapel H, Keshav S, Elkadri A, Platt N, Muise AM, Koletzko S, Xavier RJ, Marquardt T, Powrie F, Wraith JE, Gyrd-Hansen M, Platt FM, Uhlig HH. Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann-Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn's disease. Gut 2017; 66:1060-1073. [PMID: 26953272 PMCID: PMC5532464 DOI: 10.1136/gutjnl-2015-310382] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/06/2016] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Patients with Niemann-Pick disease type C1 (NPC1), a lysosomal lipid storage disorder that causes neurodegeneration and liver damage, can present with IBD, but neither the significance nor the functional mechanism of this association is clear. We studied bacterial handling and antibacterial autophagy in patients with NPC1. DESIGN We characterised intestinal inflammation in 14 patients with NPC1 who developed IBD. We investigated bacterial handling and cytokine production of NPC1 monocytes or macrophages in vitro and compared NPC1-associated functional defects to those caused by IBD-associated nucleotide-binding oligomerization domain-containing protein 2 (NOD2) variants or mutations in X-linked inhibitor of apoptosis (XIAP). RESULTS Patients with the lysosomal lipid storage disorder NPC1 have increased susceptibility to early-onset fistulising colitis with granuloma formation, reminiscent of Crohn's disease (CD). Mutations in NPC1 cause impaired autophagy due to defective autophagosome function that abolishes NOD2-mediated bacterial handling in vitro similar to variants in NOD2 or XIAP deficiency. In contrast to genetic NOD2 and XIAP variants, NPC1 mutations do not impair NOD2-receptor-interacting kinase 2 (RIPK2)-XIAP-dependent cytokine production. Pharmacological activation of autophagy can rescue bacterial clearance in macrophages in vitro by increasing the autophagic flux and bypassing defects in NPC1. CONCLUSIONS NPC1 confers increased risk of early-onset severe CD. Our data support the concept that genetic defects at different checkpoints of selective autophagy cause a shared outcome of CD-like immunopathology linking monogenic and polygenic forms of IBD. Muramyl dipeptide-driven cytokine responses and antibacterial autophagy induction are parallel and independent signalling cascades downstream of the NOD2-RIPK2-XIAP complex.
Collapse
Affiliation(s)
- Tobias Schwerd
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Huei-Ting Yang
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Katrin Bagola
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Elisabeth Jameson
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester, UK
| | - Jonathan Jung
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | | | - Neil Shah
- Great Ormond Street Hospital, London, UK
| | - Smita Y Patel
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Claire Booth
- Department of Clinical Immunology, Great Ormond Street Hospital, London, UK
| | - Heiko Runz
- University of Heidelberg, Heidelberg, Germany
| | - Gesche Düker
- University Children's Hospital Bonn, Bonn, Germany
| | | | - Marianne Rohrbach
- Children's Research Centre Zurich, University Children's Hospital, Zurich, Switzerland
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Helen Chapel
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Satish Keshav
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Alexio M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Ramnik J Xavier
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Fiona Powrie
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - James E Wraith
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester, UK
| | - Mads Gyrd-Hansen
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK,Department of Pediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
149
|
Schunter S, Villa R, Flynn V, Heidelberger JB, Classen AK, Beli P, Becker PB. Ubiquitylation of the acetyltransferase MOF in Drosophila melanogaster. PLoS One 2017; 12:e0177408. [PMID: 28510597 PMCID: PMC5433716 DOI: 10.1371/journal.pone.0177408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/26/2017] [Indexed: 01/26/2023] Open
Abstract
The nuclear acetyltransferase MOF (KAT8 in mammals) is a subunit of at least two multi-component complexes involved in transcription regulation. In the context of complexes of the ‘Non-Specific-Lethal’ (NSL) type it controls transcription initiation of many nuclear housekeeping genes and of mitochondrial genes. While this function is conserved in metazoans, MOF has an additional, specific function in Drosophila in the context of dosage compensation. As a subunit of the male-specific-lethal dosage compensation complex (MSL-DCC) it contributes to the doubling of transcription output from the single male X chromosome by acetylating histone H4. Proper dosage compensation requires finely tuned levels of MSL-DCC and an appropriate distribution of MOF between the regulatory complexes. The amounts of DCC formed depends directly on the levels of the male-specific MSL2, which orchestrates the assembly of the DCC, including MOF recruitment. We found earlier that MSL2 is an E3 ligase that ubiquitylates most MSL proteins, including MOF, suggesting that ubiquitylation may contribute to a quality control of MOF’s overall levels and folding state as well as its partitioning between the complex entities. We now used mass spectrometry to map the lysines in MOF that are ubiquitylated by MSL2 in vitro and identified in vivo ubiquitylation sites of MOF in male and female cells. MSL2-specific ubiquitylation in vivo could not be traced due to the dominance of other, sex-independent ubiquitylation events and conceivably may be rare or transient. Expressing appropriately mutated MOF derivatives we assessed the importance of the ubiquitylated lysines for dosage compensation by monitoring DCC formation and X chromosome targeting in cultured cells, and by genetic complementation of the male-specific-lethal mof2 allele in flies. Our study provides a comprehensive analysis of MOF ubiquitylation as a reference for future studies.
Collapse
Affiliation(s)
- Sarah Schunter
- Molecular Biology Division, Biomedical Center and Center for integrated Protein Science Ludwig-Maximilians-University, Munich, Germany
| | - Raffaella Villa
- Molecular Biology Division, Biomedical Center and Center for integrated Protein Science Ludwig-Maximilians-University, Munich, Germany
| | - Victoria Flynn
- Molecular Biology Division, Biomedical Center and Center for integrated Protein Science Ludwig-Maximilians-University, Munich, Germany
| | | | | | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Peter B. Becker
- Molecular Biology Division, Biomedical Center and Center for integrated Protein Science Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| |
Collapse
|
150
|
Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation. Nat Microbiol 2017; 2:17066. [DOI: 10.1038/nmicrobiol.2017.66] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
|