101
|
D'Cruz AA, Kershaw NJ, Hayman TJ, Linossi EM, Chiang JJ, Wang MK, Dagley LF, Kolesnik TB, Zhang JG, Masters SL, Griffin MDW, Gack MU, Murphy JM, Nicola NA, Babon JJ, Nicholson SE. Identification of a second binding site on the TRIM25 B30.2 domain. Biochem J 2018; 475:429-440. [PMID: 29259080 PMCID: PMC6200327 DOI: 10.1042/bcj20170427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/29/2022]
Abstract
The retinoic acid-inducible gene-I (RIG-I) receptor recognizes short 5'-di- and triphosphate base-paired viral RNA and is a critical mediator of the innate immune response against viruses such as influenza A, Ebola, HIV and hepatitis C. This response is reported to require an orchestrated interaction with the tripartite motif 25 (TRIM25) B30.2 protein-interaction domain. Here, we present a novel second RIG-I-binding interface on the TRIM25 B30.2 domain that interacts with CARD1 and CARD2 (caspase activation and recruitment domains) of RIG-I and is revealed by the removal of an N-terminal α-helix that mimics dimerization of the full-length protein. Further characterization of the TRIM25 coiled-coil and B30.2 regions indicated that the B30.2 domains move freely on a flexible tether, facilitating RIG-I CARD recruitment. The identification of a dual binding mode for the TRIM25 B30.2 domain is a first for the SPRY/B30.2 domain family and may be a feature of other SPRY/B30.2 family members.
Collapse
Affiliation(s)
- Akshay A D'Cruz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas J Hayman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Edmond M Linossi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Jessica J Chiang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, U. S. A
| | - May K Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, U. S. A
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Tatiana B Kolesnik
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jian-Guo Zhang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Seth L Masters
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | | | - Michaela U Gack
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, U. S. A
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
102
|
Okamoto M, Kouwaki T, Fukushima Y, Oshiumi H. Regulation of RIG-I Activation by K63-Linked Polyubiquitination. Front Immunol 2018; 8:1942. [PMID: 29354136 PMCID: PMC5760545 DOI: 10.3389/fimmu.2017.01942] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022] Open
Abstract
RIG-I is a pattern recognition receptor and recognizes cytoplasmic viral double-stranded RNA (dsRNA). Influenza A virus, hepatitis C virus, and several other pathogenic viruses are mainly recognized by RIG-I, resulting in the activation of the innate immune responses. The protein comprises N-terminal two caspase activation and recruitment domains (2CARDs), an RNA helicase domain, and the C-terminal domain (CTD). The CTD recognizes 5′-triphosphate viral dsRNA. After recognition of viral dsRNA, the protein harbors K63-linked polyubiquitination essential for RIG-I activation. First, it was reported that TRIM25 ubiquitin ligase delivered K63-linked polyubiquitin moiety to the 2CARDs. The polyubiquitin chain stabilizes a structure called the 2CARD tetramer, in which four 2CARDs assemble and make a core that promotes the aggregation of the mitochondrial antiviral-signaling (MAVS) protein on mitochondria. MAVS aggregation then triggers the signal to induce the innate immune responses. However, subsequent studies have reported that Riplet, MEX3C, and TRIM4 ubiquitin ligases are also involved in K63-linked polyubiquitination and the activation of RIG-I. MEX3C and TRIM4 mediate polyubiquitination of the 2CARDs. By contrast, Riplet ubiquitinates the CTD. The physiological significance of each ubiquitin ligases has been shown by knockout and knockdown studies, but there appears to be contradictory to evidence reported in the literature. In this review, we summarize recent findings related to K63-linked polyubiquitination and propose a model that could reconcile current contradictory theories. We also discuss the physiological significance of the ubiquitin ligases in the immune system against viral infection.
Collapse
Affiliation(s)
- Masaaki Okamoto
- Faculty of Life Sciences, Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahisa Kouwaki
- Faculty of Life Sciences, Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshimi Fukushima
- Faculty of Life Sciences, Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Oshiumi
- Faculty of Life Sciences, Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,PRESTO, Japan Science and Technology Agency, Kumamoto, Japan
| |
Collapse
|
103
|
Kouwaki T, Okamoto M, Tsukamoto H, Fukushima Y, Matsumoto M, Seya T, Oshiumi H. Zyxin stabilizes RIG-I and MAVS interactions and promotes type I interferon response. Sci Rep 2017; 7:11905. [PMID: 28928438 PMCID: PMC5605516 DOI: 10.1038/s41598-017-12224-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/06/2017] [Indexed: 02/08/2023] Open
Abstract
RIG-I and MDA5 are cytoplasmic viral RNA sensors that belong to the RIG-I-like receptors (RLRs), which induce antiviral innate immune responses, including the production of type I interferon and other pro-inflammatory cytokines. After recognition of viral RNA, the N-terminal caspase activation and recruitment domains (CARDs) of RIG-I and MDA5 bind to a CARD in the MAVS adaptor molecule, resulting in MAVS oligomerization and downstream signaling. To reveal the molecular mechanism of MAVS-dependent signaling, we performed a yeast two-hybrid screening and identified zyxin as a protein that binds to MAVS. Zyxin co-immunoprecipitated with MAVS in human cells. A proximity ligation assay showed that zyxin and MAVS partly co-localized on mitochondria. Ectopic expression of zyxin augmented MAVS-mediated IFN-β promoter activation, and knockdown of zyxin (ZYX) attenuated the IFN-β promoter activation. Moreover, ZYX knockdown reduced the expression of type I IFN and an interferon-inducible gene after stimulation with polyI:C or influenza A virus RNA. Interestingly, physical interactions between RLRs and MAVS were abrogated by ZYX knockdown. These observations indicate that zyxin serves as a scaffold for the interactions between RLRs and MAVS.
Collapse
Affiliation(s)
- Takahisa Kouwaki
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masaaki Okamoto
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshimi Fukushima
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo, 060-8556, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo, 060-8556, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
- JST, PRESTO, 1-1-1- Honjo, Chuo-ku, Kumamoto, 060-8556, Japan.
| |
Collapse
|
104
|
Granot Y, Peer D. Delivering the right message: Challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics-An innate immune system standpoint. Semin Immunol 2017; 34:68-77. [PMID: 28890238 DOI: 10.1016/j.smim.2017.08.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
mRNA molecules hold tremendous potential as a tool for gene therapy of a wide range of diseases. However, the main hurdle in implementation of mRNA for therapeutics, the systemic delivery of mRNA molecules to target cells, remains a challenge. A feasible solution for this challenge relies in the rapidly evolving field of nucleic acid-loaded nanocarriers and specifically in the established family of lipid-based nanoparticles (LNPs). Herein, we will discuss the main factors, which determine the fate of modified mRNA (mmRNA)-loaded LNPs in-vivo, and will focus on their interactions with the innate immune system as a main consideration in the design of lipid-based mmRNA delivery platforms.
Collapse
Affiliation(s)
- Yasmin Granot
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
105
|
The TRIMendous Role of TRIMs in Virus-Host Interactions. Vaccines (Basel) 2017; 5:vaccines5030023. [PMID: 28829373 PMCID: PMC5620554 DOI: 10.3390/vaccines5030023] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/23/2022] Open
Abstract
The innate antiviral response is integral in protecting the host against virus infection. Many proteins regulate these signaling pathways including ubiquitin enzymes. The ubiquitin-activating (E1), -conjugating (E2), and -ligating (E3) enzymes work together to link ubiquitin, a small protein, onto other ubiquitin molecules or target proteins to mediate various effector functions. The tripartite motif (TRIM) protein family is a group of E3 ligases implicated in the regulation of a variety of cellular functions including cell cycle progression, autophagy, and innate immunity. Many antiviral signaling pathways, including type-I interferon and NF-κB, are TRIM-regulated, thus influencing the course of infection. Additionally, several TRIMs directly restrict viral replication either through proteasome-mediated degradation of viral proteins or by interfering with different steps of the viral replication cycle. In addition, new studies suggest that TRIMs can exert their effector functions via the synthesis of unconventional polyubiquitin chains, including unanchored (non-covalently attached) polyubiquitin chains. TRIM-conferred viral inhibition has selected for viruses that encode direct and indirect TRIM antagonists. Furthermore, new evidence suggests that the same antagonists encoded by viruses may hijack TRIM proteins to directly promote virus replication. Here, we describe numerous virus–TRIM interactions and novel roles of TRIMs during virus infections.
Collapse
|
106
|
Okamoto M, Tsukamoto H, Kouwaki T, Seya T, Oshiumi H. Recognition of Viral RNA by Pattern Recognition Receptors in the Induction of Innate Immunity and Excessive Inflammation During Respiratory Viral Infections. Viral Immunol 2017; 30:408-420. [PMID: 28609250 DOI: 10.1089/vim.2016.0178] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The innate immune system is the first line of defense against virus infection that triggers the expression of type I interferon (IFN) and proinflammatory cytokines. Pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns, resulting in the induction of innate immune responses. Viral RNA in endosomes is recognized by Toll-like receptors, and cytoplasmic viral RNA is recognized by RIG-I-like receptors. The host innate immune response is critical for protection against virus infection. However, it has been postulated that an excessive inflammatory response in the lung caused by the innate immune response is harmful to the host and is a cause of lethality during influenza A virus infection. Although the deletion of genes encoding PRRs or proinflammatory cytokines does not improve the mortality of mice infected with influenza A virus, a partial block of the innate immune response is successful in decreasing the mortality rate of mice without a loss of protection against virus infection. In addition, morbidity and mortality rates are influenced by other factors. For example, secondary bacterial infection increases the mortality rate in patients with influenza A virus and in animal models of the disease, and environmental factors, such as cigarette smoke and fine particles, also affect the innate immune response. In this review, we summarize recent findings related to the role of PRRs in innate immune response during respiratory viral infection.
Collapse
Affiliation(s)
- Masaaki Okamoto
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Hirotake Tsukamoto
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Takahisa Kouwaki
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Tsukasa Seya
- 2 Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan
| | - Hiroyuki Oshiumi
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan .,3 PRESTO JST, Kumamoto, Japan
| |
Collapse
|
107
|
Abstract
RIG-I-like receptors (RLRs) are cytosolic innate immune sensors that detect pathogenic RNA and induce a systemic antiviral response. During the last decade, many studies focused on their molecular characterization and the identification of RNA agonists. Therefore, it became more and more clear that RLR activation needs to be carefully regulated, because constitutive signaling or detection of endogenous RNA through loss of specificity is detrimental. Here, we review the current understanding of RLR activation and selectivity. We specifically focus upon recent findings on the function of the helicase domain in discriminating between different RNAs, and whose malfunctioning causes serious autoimmune diseases.
Collapse
Affiliation(s)
- Charlotte Lässig
- From the Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, 81377 Munich and
| | - Karl-Peter Hopfner
- From the Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, 81377 Munich and
- the Center for Integrated Protein Sciences, 81377 Munich, Germany
| |
Collapse
|
108
|
Vajjhala PR, Ve T, Bentham A, Stacey KJ, Kobe B. The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways. Mol Immunol 2017; 86:23-37. [PMID: 28249680 DOI: 10.1016/j.molimm.2017.02.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/16/2017] [Accepted: 02/19/2017] [Indexed: 12/25/2022]
Abstract
The innate immune system is the first line of defense against infection and responses are initiated by pattern recognition receptors (PRRs) that detect pathogen-associated molecular patterns (PAMPs). PRRs also detect endogenous danger-associated molecular patterns (DAMPs) that are released by damaged or dying cells. The major PRRs include the Toll-like receptor (TLR) family members, the nucleotide binding and oligomerization domain, leucine-rich repeat containing (NLR) family, the PYHIN (ALR) family, the RIG-1-like receptors (RLRs), C-type lectin receptors (CLRs) and the oligoadenylate synthase (OAS)-like receptors and the related protein cyclic GMP-AMP synthase (cGAS). The different PRRs activate specific signaling pathways to collectively elicit responses including the induction of cytokine expression, processing of pro-inflammatory cytokines and cell-death responses. These responses control a pathogenic infection, initiate tissue repair and stimulate the adaptive immune system. A central theme of many innate immune signaling pathways is the clustering of activated PRRs followed by sequential recruitment and oligomerization of adaptors and downstream effector enzymes, to form higher-order arrangements that amplify the response and provide a scaffold for proximity-induced activation of the effector enzymes. Underlying the formation of these complexes are co-operative assembly mechanisms, whereby association of preceding components increases the affinity for downstream components. This ensures a rapid immune response to a low-level stimulus. Structural and biochemical studies have given key insights into the assembly of these complexes. Here we review the current understanding of assembly of immune signaling complexes, including inflammasomes initiated by NLR and PYHIN receptors, the myddosomes initiated by TLRs, and the MAVS CARD filament initiated by RIG-1. We highlight the co-operative assembly mechanisms during assembly of each of these complexes.
Collapse
Affiliation(s)
- Parimala R Vajjhala
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Adam Bentham
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
109
|
Corby MJ, Stoneman MR, Biener G, Paprocki JD, Kolli R, Raicu V, Frick DN. Quantitative microspectroscopic imaging reveals viral and cellular RNA helicase interactions in live cells. J Biol Chem 2017; 292:11165-11177. [PMID: 28483922 DOI: 10.1074/jbc.m117.777045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/29/2017] [Indexed: 01/12/2023] Open
Abstract
Human cells detect RNA viruses through a set of helicases called RIG-I-like receptors (RLRs) that initiate the interferon response via a mitochondrial signaling complex. Many RNA viruses also encode helicases, which are sometimes covalently linked to proteases that cleave signaling proteins. One unresolved question is how RLRs interact with each other and with viral proteins in cells. This study examined the interactions among the hepatitis C virus (HCV) helicase and RLR helicases in live cells with quantitative microspectroscopic imaging (Q-MSI), a technique that determines FRET efficiency and subcellular donor and acceptor concentrations. HEK293T cells were transfected with various vector combinations to express cyan fluorescent protein (CFP) or YFP fused to either biologically active HCV helicase or one RLR (i.e. RIG-I, MDA5, or LGP2), expressed in the presence or absence of polyinosinic-polycytidylic acid (poly(I:C)), which elicits RLR accumulation at mitochondria. Q-MSI confirmed previously reported RLR interactions and revealed an interaction between HCV helicase and LGP2. Mitochondria in CFP-RIG-I:YFP-RIG-I cells, CFP-MDA5:YFP-MDA5 cells, and CFP-MDA5:YFP-LGP2 cells had higher FRET efficiencies in the presence of poly(I:C), indicating that RNA causes these proteins to accumulate at mitochondria in higher-order complexes than those formed in the absence of poly(I:C). However, mitochondria in CFP-LGP2:YFP-LGP2 cells had lower FRET signal in the presence of poly(I:C), suggesting that LGP2 oligomers disperse so that LGP2 can bind MDA5. Data support a new model where an LGP2-MDA5 oligomer shuttles NS3 to the mitochondria to block antiviral signaling.
Collapse
Affiliation(s)
- M J Corby
- From the Departments of Chemistry and Biochemistry
| | | | | | | | - Rajesh Kolli
- From the Departments of Chemistry and Biochemistry
| | - Valerica Raicu
- Physics, and .,Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
| | | |
Collapse
|
110
|
Shi Y, Yuan B, Zhu W, Zhang R, Li L, Hao X, Chen S, Hou F. Ube2D3 and Ube2N are essential for RIG-I-mediated MAVS aggregation in antiviral innate immunity. Nat Commun 2017; 8:15138. [PMID: 28469175 PMCID: PMC5418627 DOI: 10.1038/ncomms15138] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
Innate immunity plays a pivotal role in virus infection. RIG-I senses viral RNA and initiates an effective innate immune response for type I interferon production. To transduce RIG-I-mediated antiviral signalling, a mitochondrial protein MAVS forms prion-like aggregates to activate downstream kinases and transcription factors. However, the activation mechanism of RIG-I is incompletely understood. Here we identify two ubiquitin enzymes Ube2D3 and Ube2N through chromatographic purification as activators for RIG-I on virus infection. We show that together with ubiquitin ligase Riplet, Ube2D3 promotes covalent conjugation of polyubiquitin chains to RIG-I, while Ube2N preferentially facilitates production of unanchored polyubiquitin chains. In the presence of these polyubiquitin chains, RIG-I induces MAVS aggregation directly on the mitochondria. Our data thus reveal two essential polyubiquitin-mediated mechanisms underlying the activation of RIG-I and MAVS for triggering innate immune signalling in response to viral infection in cells.
Collapse
Affiliation(s)
- Yuheng Shi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Bofeng Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wenting Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Rui Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaojing Hao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fajian Hou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
111
|
Delgui LR, Colombo MI. A Novel Mechanism Underlying the Innate Immune Response Induction upon Viral-Dependent Replication of Host Cell mRNA: A Mistake of +sRNA Viruses' Replicases. Front Cell Infect Microbiol 2017; 7:5. [PMID: 28164038 PMCID: PMC5247633 DOI: 10.3389/fcimb.2017.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/04/2017] [Indexed: 12/25/2022] Open
Abstract
Viruses are lifeless particles designed for setting virus-host interactome assuring a new generation of virions for dissemination. This interactome generates a pressure on host organisms evolving mechanisms to neutralize viral infection, which places the pressure back onto virus, a process known as virus-host cell co-evolution. Positive-single stranded RNA (+sRNA) viruses are an important group of viral agents illustrating this interesting phenomenon. During replication, their genomic +sRNA is employed as template for translation of viral proteins; among them the RNA-dependent RNA polymerase (RdRp) is responsible of viral genome replication originating double-strand RNA molecules (dsRNA) as intermediates, which accumulate representing a potent threat for cellular dsRNA receptors to initiate an antiviral response. A common feature shared by these viruses is their ability to rearrange cellular membranes to serve as platforms for genome replication and assembly of new virions, supporting replication efficiency increase by concentrating critical factors and protecting the viral genome from host anti-viral systems. This review summarizes current knowledge regarding cellular dsRNA receptors and describes prototype viruses developing replication niches inside rearranged membranes. However, for several viral agents it's been observed both, a complex rearrangement of cellular membranes and a strong innate immune antiviral response induction. So, we have included recent data explaining the mechanism by, even though viruses have evolved elegant hideouts, host cells are still able to develop dsRNA receptors-dependent antiviral response.
Collapse
Affiliation(s)
- Laura R Delgui
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza, Universidad Nacional de CuyoMendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de CuyoMendoza, Argentina
| | - María I Colombo
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo Mendoza, Argentina
| |
Collapse
|
112
|
Liu Y, Olagnier D, Lin R. Host and Viral Modulation of RIG-I-Mediated Antiviral Immunity. Front Immunol 2017; 7:662. [PMID: 28096803 PMCID: PMC5206486 DOI: 10.3389/fimmu.2016.00662] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Rapid and efficient detection of pathogen-associated molecular patterns via pattern-recognition receptors is essential for the host to mount defensive and protective responses. Retinoic acid-inducible gene-I (RIG-I) is critical in triggering antiviral and inflammatory responses for the control of viral replication in response to cytoplasmic virus-specific RNA structures. Upon viral RNA recognition, RIG-I recruits the mitochondrial adaptor protein mitochondrial antiviral signaling protein, which leads to a signaling cascade that coordinates the induction of type I interferons (IFNs), as well as a large variety of antiviral interferon-stimulated genes. The RIG-I activation is tightly regulated via various posttranslational modifications for the prevention of aberrant innate immune signaling. By contrast, viruses have evolved mechanisms of evasion, such as sequestrating viral structures from RIG-I detections and targeting receptor or signaling molecules for degradation. These virus–host interactions have broadened our understanding of viral pathogenesis and provided insights into the function of the RIG-I pathway. In this review, we summarize the recent advances regarding RIG-I pathogen recognition and signaling transduction, cell-intrinsic control of RIG-I activation, and the viral antagonism of RIG-I signaling.
Collapse
Affiliation(s)
- Yiliu Liu
- Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - David Olagnier
- Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Rongtuan Lin
- Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
113
|
Roers A, Hiller B, Hornung V. Recognition of Endogenous Nucleic Acids by the Innate Immune System. Immunity 2016; 44:739-54. [PMID: 27096317 DOI: 10.1016/j.immuni.2016.04.002] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/14/2016] [Accepted: 04/01/2016] [Indexed: 12/25/2022]
Abstract
Recognition of DNA and RNA by endosomal and cytosolic sensors constitutes a central element in the detection of microbial invaders by the innate immune system. However, the capacity of these sensors to discriminate between microbial and endogenous nucleic acids is limited. Over the past few years, evidence has accumulated to suggest that endogenous DNA or RNA species can engage nucleic-acid-sensing pattern-recognition receptors that can trigger or sustain detrimental pathology. Here, we review principles of how the activation of innate sensors by host nucleic acids is prevented in the steady state and discuss four important determinants of whether a nucleic-acid-driven innate response is mounted. These include structural features of the ligand being sensed, the subcellular location and quantity of pathogen-derived or endogenous nucleic acids, and the regulation of sensor-activation thresholds. Furthermore, we emphasize disease mechanisms initiated by failure to discriminate self from non-self in nucleic acid detection.
Collapse
Affiliation(s)
- Axel Roers
- Institute for Immunology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01069 Dresden, Germany
| | - Björn Hiller
- Institute of Molecular Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital Bonn, 53127 Bonn, Germany; Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; Center for Integrated Protein Science Munich, 81377 Munich, Germany.
| |
Collapse
|
114
|
RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling. mBio 2016; 7:mBio.00833-16. [PMID: 27651356 PMCID: PMC5030355 DOI: 10.1128/mbio.00833-16] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Invading pathogen nucleic acids are recognized and bound by cytoplasmic (retinoic acid-inducible gene I [RIG-I]-like) and membrane-bound (Toll-like) pattern recognition receptors to activate innate immune signaling. Modified nucleotides, when present in RNA molecules, diminish the magnitude of these signaling responses. However, mechanisms explaining the blunted signaling have not been elucidated. In this study, we used several independent biological assays, including inhibition of virus replication, RIG-I:RNA binding assays, and limited trypsin digestion of RIG-I:RNA complexes, to begin to understand how RNAs containing modified nucleotides avoid or suppress innate immune signaling. The experiments were based on a model innate immune activating RNA molecule, the polyU/UC RNA domain of hepatitis C virus, which was transcribed in vitro with canonical nucleotides or with one of eight modified nucleotides. The approach revealed signature assay responses associated with individual modified nucleotides or classes of modified nucleotides. For example, while both N-6-methyladenosine (m6A) and pseudouridine nucleotides correlate with diminished signaling, RNA containing m6A modifications bound RIG-I poorly, while RNA containing pseudouridine bound RIG-I with high affinity but failed to trigger the canonical RIG-I conformational changes associated with robust signaling. These data advance understanding of RNA-mediated innate immune signaling, with additional relevance for applying nucleotide modifications to RNA therapeutics. The innate immune system provides the first response to virus infections and must distinguish between host and pathogen nucleic acids to mount a protective immune response without activating autoimmune responses. While the presence of nucleotide modifications in RNA is known to correlate with diminished innate immune signaling, the underlying mechanisms have not been explored. The data reported here are important for defining mechanistic details to explain signaling suppression by RNAs containing modified nucleotides. The results suggest that RNAs containing modified nucleotides interrupt signaling at early steps of the RIG-I-like innate immune activation pathway and also that nucleotide modifications with similar chemical structures can be organized into classes that suppress or evade innate immune signaling steps. These data contribute to defining the molecular basis for innate immune signaling suppression by RNAs containing modified nucleotides. The results have important implications for designing therapeutic RNAs that evade innate immune detection.
Collapse
|
115
|
The Influenza A Virus Genotype Determines the Antiviral Function of NF-κB. J Virol 2016; 90:7980-90. [PMID: 27356900 DOI: 10.1128/jvi.00946-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/05/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The role of NF-κB in influenza A virus (IAV) infection does not reveal a coherent picture, as pro- and also antiviral functions of this transcription factor have been described. To address this issue, we used clustered regularly interspaced short palindromic repeat with Cas9 (CRISPR-Cas9)-mediated genome engineering to generate murine MLE-15 cells lacking two essential components of the NF-κB pathway. Cells devoid of either the central NF-κB essential modulator (NEMO) scaffold protein and thus defective in IκB kinase (IKK) activation or cells not expressing the NF-κB DNA-binding and transactivation subunit p65 were tested for propagation of the SC35 virus, which has an avian host range, and its mouse-adapted variant, SC35M. While NF-κB was not relevant for replication of SC35M, the absence of NF-κB activity increased replication of the nonadapted SC35 virus. This antiviral effect of NF-κB was most prominent upon infection of cells with low virus titers as they usually occur during the initiation phase of IAV infection. The defect in NF-κB signaling resulted in diminished IAV-triggered phosphorylation of interferon regulatory factor 3 (IRF3) and expression of the antiviral beta interferon (IFN-β) gene. To identify the viral proteins responsible for NF-κB dependency, reassortant viruses were generated by reverse genetics. SC35 viruses containing the SC35M segment encoding neuraminidase (NA) were completely inert to the inhibitory effect of NF-κB, emphasizing the importance of the viral genotype for susceptibility to the antiviral functions of NF-κB. IMPORTANCE This study addresses two different issues. First, we investigated the role of the host cell transcription factor NF-κB in IAV replication by genetic manipulation of IAVs by reverse genetics combined with targeted genome engineering of host cells using CRISPR-Cas9. The analysis of these two highly defined genetic systems indicated that the IAV genotype can influence whether NF-κB displays an antiviral function and thus might in part explain incoherent results from the literature. Second, we found that perturbation of NF-κB function greatly improved the growth of a nonadapted IAV, suggesting that NF-κB may contribute to the maintenance of the host species barrier.
Collapse
|
116
|
Sanchez JG, Chiang JJ, Sparrer KMJ, Alam SL, Chi M, Roganowicz MD, Sankaran B, Gack MU, Pornillos O. Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway. Cell Rep 2016; 16:1315-1325. [PMID: 27425606 PMCID: PMC5076470 DOI: 10.1016/j.celrep.2016.06.070] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/11/2016] [Accepted: 06/16/2016] [Indexed: 12/25/2022] Open
Abstract
Antiviral response pathways induce interferon by higher-order assembly of signaling complexes called signalosomes. Assembly of the RIG-I signalosome is regulated by K63-linked polyubiquitin chains, which are synthesized by the E3 ubiquitin ligase, TRIM25. We have previously shown that the TRIM25 coiled-coil domain is a stable, antiparallel dimer that positions two catalytic RING domains on opposite ends of an elongated rod. We now show that the RING domain is a separate self-association motif that engages ubiquitin-conjugated E2 enzymes as a dimer. RING dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, interferon induction, and antiviral activity. We also provide evidence that RING dimerization and E3 ligase activity are promoted by binding of the TRIM25 SPRY domain to the RIG-I effector domain. These results indicate that TRIM25 actively participates in higher-order assembly of the RIG-I signalosome and helps to fine-tune the efficiency of the RIG-I-mediated antiviral response.
Collapse
Affiliation(s)
- Jacint G Sanchez
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Jessica J Chiang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Steven L Alam
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael Chi
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Marcin D Roganowicz
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michaela U Gack
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
117
|
Barik S. What Really Rigs Up RIG-I? J Innate Immun 2016; 8:429-36. [PMID: 27438016 PMCID: PMC6738806 DOI: 10.1159/000447947] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/24/2022] Open
Abstract
RIG-I (retinoic acid-inducible gene 1) is an archetypal member of the cytoplasmic DEAD-box dsRNA helicase family (RIG-I-like receptors or RLRs), the members of which play essential roles in the innate immune response of the metazoan cell. RIG-I functions as a pattern recognition receptor that detects nonself RNA as a pathogen-associated molecular pattern (PAMP). However, the exact molecular nature of the viral RNAs that act as a RIG-I ligand has remained a mystery and a matter of debate. In this article, we offer a critical review of the actual viral RNAs that act as PAMPs to activate RIG-I, as seen from the perspective of a virologist, including a recent report that the viral Leader-read-through transcript is a novel and effective RIG-I ligand.
Collapse
Affiliation(s)
- Sailen Barik
- Department of Biological, Geological and Environmental Sciences, and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
118
|
Ramanathan A, Robb GB, Chan SH. mRNA capping: biological functions and applications. Nucleic Acids Res 2016; 44:7511-26. [PMID: 27317694 PMCID: PMC5027499 DOI: 10.1093/nar/gkw551] [Citation(s) in RCA: 551] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/03/2016] [Indexed: 12/19/2022] Open
Abstract
The 5′ m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2′O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose.
Collapse
Affiliation(s)
- Anand Ramanathan
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - G Brett Robb
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Siu-Hong Chan
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
119
|
Oshiumi H, Kouwaki T, Seya T. Accessory Factors of Cytoplasmic Viral RNA Sensors Required for Antiviral Innate Immune Response. Front Immunol 2016; 7:200. [PMID: 27252702 PMCID: PMC4879126 DOI: 10.3389/fimmu.2016.00200] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022] Open
Abstract
Type I interferon (IFN) induces many antiviral factors in host cells. RIG-I-like receptors (RLRs) are cytoplasmic viral RNA sensors that trigger the signal to induce the innate immune response that includes type I IFN production. RIG-I and MDA5 are RLRs that form nucleoprotein filaments along viral double-stranded RNA, resulting in the activation of MAVS adaptor molecule. The MAVS protein forms a prion-like aggregation structure, leading to type I IFN production. RIG-I and MDA5 undergo post-translational modification. TRIM25 and Riplet ubiquitin ligases deliver a K63-linked polyubiquitin moiety to the RIG-I N-terminal caspase activation and recruitment domains (CARDs) and C-terminal region; the polyubiquitin chain then stabilizes the two-CARD tetramer structure required for MAVS assembly. MDA5 activation is regulated by phosphorylation. RIOK3 is a protein kinase that phosphorylates the MDA5 protein in a steady state, and PP1α/γ dephosphorylate this protein, resulting in its activation. RIG-I and MDA5 require cytoplasmic RNA helicases for their efficient activation. LGP2, another RLR, is an RNA helicase involved in RLR signaling. This protein does not possess N-terminal CARDs and, thus, cannot trigger downstream signaling by itself. Recent studies have revealed that this protein modulates MDA5 filament formation, resulting in enhanced type I IFN production. Several other cytoplasmic RNA helicases are involved in RLR signaling. DDX3, DHX29, DHX36, and DDX60 RNA helicases have been reported to be involved in RLR-mediated type I IFN production after viral infection. However, the underlying mechanism is largely unknown. Future studies are required to reveal the role of RNA helicases in the RLR signaling pathway.
Collapse
Affiliation(s)
- Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kumamoto, Japan
| | - Takahisa Kouwaki
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University , Kumamoto , Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Hokkaido , Japan
| |
Collapse
|
120
|
Ahmad S, Hur S. Helicases in Antiviral Immunity: Dual Properties as Sensors and Effectors. Trends Biochem Sci 2016; 40:576-585. [PMID: 26410598 DOI: 10.1016/j.tibs.2015.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/01/2023]
Abstract
Many helicases have a unique ability to couple cognate RNA binding to ATP hydrolysis, which can induce a large conformational change that affects its interaction with RNA, position along RNA, or oligomeric state. A growing number of these helicases contribute to the innate immune system, either as sensors that detect foreign nucleic acids and/or as effectors that directly participate in the clearance of such foreign species. In this review, we discuss a few examples, including retinoic acid-inducible gene-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and Dicer, focusing on their dual functions as both sensors and effectors. We will also discuss the closely related, but less understood, helicases, laboratory of genetics and physiology 2 (LGP2) and Dicer-related helicase-1 and -3 (DRH-1 and -3).
Collapse
Affiliation(s)
- Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
121
|
Yoneyama M, Jogi M, Onomoto K. Regulation of antiviral innate immune signaling by stress-induced RNA granules. J Biochem 2016; 159:279-86. [PMID: 26748340 PMCID: PMC4763080 DOI: 10.1093/jb/mvv122] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022] Open
Abstract
Activation of antiviral innate immunity is triggered by cellular pattern recognition receptors. Retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) detect viral non-self RNA in cytoplasm of virus-infected cells and play a critical role in the clearance of the invaded viruses through production of antiviral cytokines. Among the three known RLRs, RIG-I and melanoma differentiation-associated gene 5 recognize distinct non-self signatures of viral RNA and activate antiviral signaling. Recent reports have clearly described the molecular machinery underlying the activation of RLRs and interactions with the downstream adaptor, mitochondrial antiviral signaling protein (MAVS). RLRs and MAVS are thought to form large multimeric filaments around cytoplasmic organelles depending on the presence of Lys63-linked ubiquitin chains. Furthermore, RLRs have been shown to localize to stress-induced ribonucleoprotein aggregate known as stress granules and utilize them as a platform for recognition/activation of signaling. In this review, we will focus on the current understanding of RLR-mediated signal activation and the interactions with stress-induced RNA granules.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Michihiko Jogi
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| |
Collapse
|
122
|
Oshiumi H, Mifsud EJ, Daito T. Links between recognition and degradation of cytoplasmic viral RNA in innate immune response. Rev Med Virol 2016; 26:90-101. [PMID: 26643446 DOI: 10.1002/rmv.1865] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/21/2015] [Accepted: 11/01/2015] [Indexed: 12/24/2022]
Abstract
Recognition and degradation of viral RNA are essential for antiviral innate immune responses. Cytoplasmic viral RNA is recognized by retinoic acid-inducible gene I (RIG-I)-like receptors, which trigger type I interferon (IFN) production. Secreted type I IFN activates ubiquitously expressed type I IFN receptor and induces IFN-stimulated genes (ISGs). To suppress viral replication, several nucleases degrade viral RNA. RNase L is an ISG with endonuclease activity that degrades viral RNA, producing small RNA that activates RIG-I, resulting in the amplification of type I IFN production. Moreover, recent studies have elucidated novel links between viral RNA recognition and degradation. The RNA exosome is a protein complex that includes nucleases and is essential for host and viral RNA decay. Although the small RNAs produced by the RNA exosome do not activate RIG-I, several accessory factors of the RNA exosome promote RIG-I activation. Zinc-finger antiviral protein (ZAP) is an accessory factor that recognizes viral RNA and promotes viral RNA degradation via the RNA exosome. ZAPS is an alternative splicing form of ZAP and promotes RIG-I oligomerization and ATPase activity, resulting in RIG-I activation. DDX60 is another cofactor involved in the viral RNA degradation via the RNA exosome. The DDX60 protein promotes RIG-I signaling in a cell-type specific manner. These observations imply that viral RNA degradation and recognition are linked to each other. In this review, I discuss the links between recognition and degradation of viral RNA.
Collapse
Affiliation(s)
- Hiroyuki Oshiumi
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Edin J Mifsud
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takuji Daito
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
123
|
Sohn J, Hur S. Filament assemblies in foreign nucleic acid sensors. Curr Opin Struct Biol 2016; 37:134-44. [PMID: 26859869 DOI: 10.1016/j.sbi.2016.01.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/24/2022]
Abstract
Helical filamentous assembly is ubiquitous in biology, but was only recently realized to be broadly employed in the innate immune system of vertebrates. Accumulating evidence suggests that the filamentous assemblies and helical oligomerization play important roles in detection of foreign nucleic acids and activation of the signaling pathways to produce antiviral and inflammatory mediators. In this review, we focus on the helical assemblies observed in the signaling pathways of RIG-I-like receptors (RLRs) and AIM2-like receptors (ALRs). We describe ligand-dependent oligomerization of receptor, receptor-dependent oligomerization of signaling adaptor molecules, and their functional implications and regulations.
Collapse
Affiliation(s)
- Jungsan Sohn
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Sun Hur
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
124
|
Wong LYR, Lui PY, Jin DY. A molecular arms race between host innate antiviral response and emerging human coronaviruses. Virol Sin 2016; 31:12-23. [PMID: 26786772 PMCID: PMC7090626 DOI: 10.1007/s12250-015-3683-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023] Open
Abstract
Coronaviruses have been closely related with mankind for thousands of years. Community-acquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.
Collapse
Affiliation(s)
- Lok-Yin Roy Wong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Pak-Yin Lui
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
125
|
Ramanathan A, Devarkar SC, Jiang F, Miller MT, Khan AG, Marcotrigiano J, Patel SS. The autoinhibitory CARD2-Hel2i Interface of RIG-I governs RNA selection. Nucleic Acids Res 2016; 44:896-909. [PMID: 26612866 PMCID: PMC4737149 DOI: 10.1093/nar/gkv1299] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 12/24/2022] Open
Abstract
RIG-I (Retinoic Acid Inducible Gene-I) is a cytosolic innate immune receptor that detects atypical features in viral RNAs as foreign to initiate a Type I interferon signaling response. RIG-I is present in an autoinhibited state in the cytoplasm and activated by blunt-ended double-stranded (ds)RNAs carrying a 5' triphosphate (ppp) moiety. These features found in many pathogenic RNAs are absent in cellular RNAs due to post-transcriptional modifications of RNA ends. Although RIG-I is structurally well characterized, the mechanistic basis for RIG-I's remarkable ability to discriminate between cellular and pathogenic RNAs is not completely understood. We show that RIG-I's selectivity for blunt-ended 5'-ppp dsRNAs is ≈3000 times higher than non-blunt ended dsRNAs commonly found in cellular RNAs. Discrimination occurs at multiple stages and signaling RNAs have high affinity and ATPase turnover rate and thus a high katpase/Kd. We show that RIG-I uses its autoinhibitory CARD2-Hel2i (second CARD-helicase insertion domain) interface as a barrier to select against non-blunt ended dsRNAs. Accordingly, deletion of CARDs or point mutations in the CARD2-Hel2i interface decreases the selectivity from ≈3000 to 150 and 750, respectively. We propose that the CARD2-Hel2i interface is a 'gate' that prevents cellular RNAs from generating productive complexes that can signal.
Collapse
Affiliation(s)
- Anand Ramanathan
- Robert Wood Johnson Medical School, Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Swapnil C Devarkar
- Robert Wood Johnson Medical School, Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Fuguo Jiang
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthew T Miller
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Abdul G Khan
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Joseph Marcotrigiano
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Smita S Patel
- Robert Wood Johnson Medical School, Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
126
|
Abstract
Inflammasomes are oligomeric signaling complexes that promote caspase activation and maturation of proinflammatory cytokines. Structural and biophysical studies have shed light on the mechanisms of nucleic acid recognition and signaling complex assembly involving the AIM2 (absent in myeloma 2) and IFI16 (γ-interferon-inducible protein 16) inflammasomes. However, our understanding of the mechanisms of the NLRP3 (nucleotide-binding oligomerization-like receptor family, pyrin domain-containing protein 3) activation, either by nucleic acids or by other reported stimuli, has remained elusive. Exciting recent progress on the filament formation by the ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) pyrin domain and the IFI16-double stranded DNA complex has established that the formation of higher order polymers is one of the general mechanisms for signaling platform assembly in innate immune system. The paradigm-changing discovery of the extracellular function of the NLRP3-ASC inflammasome has opened the door for therapeutic targeting the inflammasome filament formation for various clinical conditions. Future characterization of the canonical and non-canonical inflammasome complexes will undoubtedly reveal more surprises on their structure and function and enrich our understanding of the molecular mechanisms of ligand recognition, activation, and regulation.
Collapse
Affiliation(s)
- Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
127
|
Structure determination of helical filaments by solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2016; 113:E272-81. [PMID: 26733681 DOI: 10.1073/pnas.1513119113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVS(CARD) filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers.
Collapse
|
128
|
Wu B, Huoh YS, Hur S. Measuring Monomer-to-Filament Transition of MAVS as an In Vitro Activity Assay for RIG-I-Like Receptors. Methods Mol Biol 2016; 1390:131-42. [PMID: 26803627 PMCID: PMC6122957 DOI: 10.1007/978-1-4939-3335-8_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During viral infection, the innate immune RIG-I like receptors (RLRs) recognize viral double stranded RNA (dsRNA) and trigger filament assembly of the adaptor protein Mitochondrial Anti-viral Signaling protein (MAVS). The MAVS filament then activates anti-viral signaling events including the up-regulation of type I interferon expression. In recent years, much insight has been gained into how RLRs recognize dsRNA, but the precise mechanism of how activated RLRs stimulate MAVS filament formation remains less understood. In this chapter, we describe an in vitro reconstitution assay that we have previously developed to study the RLR-catalyzed filament assembly of MAVS. We provide technical guidance for purifying the caspase activation recruitment domain (CARD) of MAVS (MAVS(CARD)) as a functional monomer and also preformed filament seed. We also describe the methods to monitor the monomer-to-filament transition of MAVS(CARD) upon stimulation. This protocol provides a minimalist approach to studying RLR signaling events and can potentially be applied to elucidate signaling mechanisms of other innate immune receptors, such as Toll-like receptors and inflammasomes, that involve higher order assemblies of CARDs or related domains for their downstream signal activation.
Collapse
Affiliation(s)
- Bin Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, 3rd Floor, Boston, MA, 02115, USA
| | - Yu-San Huoh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, 3rd Floor, Boston, MA, 02115, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, 3rd Floor, Boston, MA, 02115, USA.
| |
Collapse
|
129
|
Liu X, Luo D, Yang N. Cytosolic Low Molecular Weight FGF2 Orchestrates RIG-I-Mediated Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2015; 195:4943-52. [PMID: 26466960 DOI: 10.4049/jimmunol.1501503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/15/2015] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor (FGF)2,which is one of the 22 members of the FGF family, functions as an extracellular molecule involved in canonical receptor tyrosine kinase signaling. It has been implicated in angiogenesis and the development of the CNS. In this article, we reveal that cytosolic low m.w. isoform (LMW) FGF2 (18 kDa), not its secreted form, plays an unexpected role in the innate immune response. Cytosolic LMW FGF2 directly associated with inactivated RIG-I under physiological conditions, which enhanced RIG-I protein stability, thereby maintaining basal RIG-I levels. However, during RIG-I activation induced by viral RNA, cytosolic FGF2 bound to the caspase recruitment domains of activated RIG-I, which blocked RIG-I-MAVS complex formation. LMW FGF2 deficiency increased type I IFN production, whereas the overexpression of LMW FGF2 exerted the opposite effect. Cytosolic LMW FGF2 functions as a negative regulator in RIG-I-mediated antiviral signaling. This work provides insight into the role of FGF2 in innate immune response.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; and
| | - Deyan Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; and
| | - Ning Yang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
130
|
Xu J, Mercado-López X, Grier JT, Kim WK, Chun LF, Irvine EB, Del Toro Duany Y, Kell A, Hur S, Gale M, Raj A, López CB. Identification of a Natural Viral RNA Motif That Optimizes Sensing of Viral RNA by RIG-I. mBio 2015; 6:e01265-15. [PMID: 26443454 PMCID: PMC4611036 DOI: 10.1128/mbio.01265-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/11/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Stimulation of the antiviral response depends on the sensing of viral pathogen-associated molecular patterns (PAMPs) by specialized cellular proteins. During infection with RNA viruses, 5'-di- or -triphosphates accompanying specific single or double-stranded RNA motifs trigger signaling of intracellular RIG-I-like receptors (RLRs) and initiate the antiviral response. Although these molecular signatures are present during the replication of many viruses, it is unknown whether they are sufficient for strong activation of RLRs during infection. Immunostimulatory defective viral genomes (iDVGs) from Sendai virus (SeV) are among the most potent natural viral triggers of antiviral immunity. Here we describe an RNA motif (DVG(70-114)) that is essential for the potent immunostimulatory activity of 5'-triphosphate-containing SeV iDVGs. DVG(70-114) enhances viral sensing by the host cell independently of the long stretches of complementary RNA flanking the iDVGs, and it retains its stimulatory potential when transferred to otherwise inert viral RNA. In vitro analysis showed that DVG(70-114) augments the binding of RIG-I to viral RNA and promotes enhanced RIG-I polymerization, thereby facilitating the onset of the antiviral response. Together, our results define a new natural viral PAMP enhancer motif that promotes viral recognition by RLRs and confers potent immunostimulatory activity to viral RNA. IMPORTANCE A discrete group of molecular motifs, including 5'-triphosphates associated with double-stranded RNA, have been identified as essential for the triggering of antiviral immunity. Most RNA viruses expose these motifs during their replication; however, successful viruses normally evade immune recognition and replicate to high levels before detection, indicating that unknown factors drive antiviral immunity. DVGs from SeV are among the most potent natural viral stimuli of the antiviral response known to date. These studies define a new natural viral motif present in DVGs that maximizes viral recognition by the intracellular sensor RIG-I, allowing fast and strong antiviral responses even in the presence of viral-encoded immune antagonists. This motif can be harnessed to increase the immunostimulatory potential of otherwise inert viral RNAs and represents a novel immunostimulatory enhancer that could be used in the development of vaccine adjuvants and antivirals.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiomara Mercado-López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer T Grier
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Won-keun Kim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lauren F Chun
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Irvine
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yoandris Del Toro Duany
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alison Kell
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
131
|
Spengler JR, Patel JR, Chakrabarti AK, Zivcec M, García-Sastre A, Spiropoulou CF, Bergeron É. RIG-I Mediates an Antiviral Response to Crimean-Congo Hemorrhagic Fever Virus. J Virol 2015; 89:10219-29. [PMID: 26223644 PMCID: PMC4580164 DOI: 10.1128/jvi.01643-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED In the cytoplasm, the retinoic acid-inducible gene I (RIG-I) senses the RNA genomes of several RNA viruses. RIG-I binds to viral RNA, eliciting an antiviral response via the cellular adaptor MAVS. Crimean-Congo hemorrhagic fever virus (CCHFV), a negative-sense RNA virus with a 5'-monophosphorylated genome, is a highly pathogenic zoonotic agent with significant public health implications. We found that, during CCHFV infection, RIG-I mediated a type I interferon (IFN) response via MAVS. Interfering with RIG-I signaling reduced IFN production and IFN-stimulated gene expression and increased viral replication. Immunostimulatory RNA was isolated from CCHFV-infected cells and from virion preparations, and RIG-I coimmunoprecipitation of infected cell lysates isolated immunostimulatory CCHFV RNA. This report serves as the first description of a pattern recognition receptor for CCHFV and highlights a critical signaling pathway in the antiviral response to CCHFV. IMPORTANCE CCHFV is a tick-borne virus with a significant public health impact. In order for cells to respond to virus infection, they must recognize the virus as foreign and initiate antiviral signaling. To date, the receptors involved in immune recognition of CCHFV are not known. Here, we investigate and identify RIG-I as a receptor involved in initiating an antiviral response to CCHFV. This receptor initially was not expected to play a role in CCHFV recognition because of characteristics of the viral genome. These findings are important in understanding the antiviral response to CCHFV and support continued investigation into the spectrum of potential viruses recognized by RIG-I.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Animals
- Cell Line
- Cell Line, Tumor
- Chlorocebus aethiops
- DEAD Box Protein 58
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/immunology
- Epithelial Cells
- Fibroblasts/immunology
- Fibroblasts/virology
- Gene Expression Regulation
- Genome, Viral
- HEK293 Cells
- Hemorrhagic Fever Virus, Crimean-Congo/genetics
- Hemorrhagic Fever Virus, Crimean-Congo/immunology
- Host-Pathogen Interactions
- Humans
- Interferon Type I/genetics
- Interferon Type I/immunology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/genetics
- RNA, Viral/immunology
- Receptors, Immunologic
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Signal Transduction
- Vero Cells
- Virus Replication
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jenish R Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ayan K Chakrabarti
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Marko Zivcec
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
132
|
Shi Z, Zhang Z, Zhang Z, Wang Y, Li C, Wang X, He F, Sun L, Jiao S, Shi W, Zhou Z. Structural Insights into mitochondrial antiviral signaling protein (MAVS)-tumor necrosis factor receptor-associated factor 6 (TRAF6) signaling. J Biol Chem 2015; 290:26811-20. [PMID: 26385923 DOI: 10.1074/jbc.m115.666578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Indexed: 12/25/2022] Open
Abstract
In response to viral infection, cytosolic retinoic acid-inducible gene I-like receptors sense viral RNA and promote oligomerization of mitochondrial antiviral signaling protein (MAVS), which then recruits tumor necrosis factor receptor-associated factor (TRAF) family proteins, including TRAF6, to activate an antiviral response. Currently, the interaction between MAVS and TRAF6 is only partially understood, and atomic details are lacking. Here, we demonstrated that MAVS directly interacts with TRAF6 through its potential TRAF6-binding motif 2 (T6BM2; amino acids 455-460). Further, we solved the crystal structure of MAVS T6BM2 in complex with the TRAF6 TRAF_C domain at 2.95 Å resolution. T6BM2 of MAVS binds to the canonical adaptor-binding groove of the TRAF_C domain. Structure-directed mutational analyses in vitro and in cells revealed that MAVS binding to TRAF6 via T6BM2 instead of T6BM1 is essential but not sufficient for an optimal antiviral response. Particularly, a MAVS mutant Y460E retained its TRAF6-binding ability as predicted but showed significantly impaired signaling activity, highlighting the functional importance of this tyrosine. Moreover, these observations were further confirmed in MAVS(-/-) mouse embryonic fibroblast cells. Collectively, our work provides a structural basis for understanding the MAVS-TRAF6 antiviral response.
Collapse
Affiliation(s)
- Zhubing Shi
- From the School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China, the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China, and
| | - Zhen Zhang
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China, and
| | - Zhenzhen Zhang
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China, and
| | - Yanyan Wang
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China, and
| | - Chuanchuan Li
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China, and
| | - Xin Wang
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China, and
| | - Feng He
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China, and
| | - Lina Sun
- Qingdao Binhai University, Qingdao, Shandong 266555, China
| | - Shi Jiao
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China, and
| | - Weiyang Shi
- From the School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China,
| | - Zhaocai Zhou
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China, and
| |
Collapse
|
133
|
Rawling DC, Fitzgerald ME, Pyle AM. Establishing the role of ATP for the function of the RIG-I innate immune sensor. eLife 2015; 4:e09391. [PMID: 26371557 PMCID: PMC4622095 DOI: 10.7554/elife.09391] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/14/2015] [Indexed: 12/24/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) initiates a rapid innate immune response upon detection and binding to viral ribonucleic acid (RNA). This signal activation occurs only when pathogenic RNA is identified, despite the ability of RIG-I to bind endogenous RNA while surveying the cytoplasm. Here we show that ATP binding and hydrolysis by RIG-I play a key role in the identification of viral targets and the activation of signaling. Using biochemical and cell-based assays together with mutagenesis, we show that ATP binding, and not hydrolysis, is required for RIG-I signaling on viral RNA. However, we show that ATP hydrolysis does provide an important function by recycling RIG-I and promoting its dissociation from non-pathogenic RNA. This activity provides a valuable proof-reading mechanism that enhances specificity and prevents an antiviral response upon encounter with host RNA molecules.
Collapse
Affiliation(s)
- David C Rawling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Megan E Fitzgerald
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, Yale University, New Haven, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
- Department of Chemistry, Howard Hughes Medical Institute, Yale University, New Haven, United States
| |
Collapse
|
134
|
Jin T, Xiao TS. Activation and assembly of the inflammasomes through conserved protein domain families. Apoptosis 2015; 20:151-6. [PMID: 25398536 DOI: 10.1007/s10495-014-1053-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inflammasomes are oligomeric protein complexes assembled through interactions among the death domain superfamily members, in particular the CARD and PYD domains. Recent progress has shed lights on how the ASC PYD can polymerize to form filaments using multiple domain:domain interfaces, and how the caspase4 CARD can recognize LPS to activate the non-classical inflammasome pathway. Comprehensive understanding of the molecular mechanisms of inflammasome activation and assembly require more extensive structural and biophysical dissection of the inflammasome components and complexes, in particular additional CARD or PYD filaments. Because of the variations in death domain structures and complexes observed so far, future work will undoubtedly shed lights on the mechanisms of inflammasome assembly as well as more surprises on the versatile structure and function of the death domain superfamily.
Collapse
Affiliation(s)
- Tengchuan Jin
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
135
|
Bruns AM, Horvath CM. LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling. Cytokine 2015; 74:198-206. [PMID: 25794939 PMCID: PMC4475439 DOI: 10.1016/j.cyto.2015.02.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/24/2022]
Abstract
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling. The RIG-I-like receptor (RLR) proteins are expressed in the cytoplasm of nearly all cells and specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RLR family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All RLRs have the ability to detect virus-derived dsRNA and hydrolyze ATP, but display individual differences in enzymatic activity, intrinsic ability to recognize RNA, and mechanisms of activation. Emerging evidence suggests that MDA5 and RIG-I utilize distinct mechanisms to form oligomeric complexes along dsRNA. Aligning of their signaling domains creates a platform capable of propagating and amplifying antiviral signaling responses. LGP2 with intact ATP hydrolysis is critical for the MDA5-mediated antiviral response, but LGP2 lacks the domains essential for activation of antiviral signaling, leaving the role of LGP2 in antiviral signaling unclear. Recent studies revealed a mechanistic basis of synergy between LGP2 and MDA5 leading to enhanced antiviral signaling. This review briefly summarizes the RLR system, and focuses on the relationship between LGP2 and MDA5, describing in detail how these two proteins work together to detect foreign RNA and generate a fully functional antiviral response.
Collapse
Affiliation(s)
- Annie M Bruns
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
136
|
Chiang C, Beljanski V, Yin K, Olagnier D, Ben Yebdri F, Steel C, Goulet ML, DeFilippis VR, Streblow DN, Haddad EK, Trautmann L, Ross T, Lin R, Hiscott J. Sequence-Specific Modifications Enhance the Broad-Spectrum Antiviral Response Activated by RIG-I Agonists. J Virol 2015; 89:8011-25. [PMID: 26018150 PMCID: PMC4505665 DOI: 10.1128/jvi.00845-15] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/17/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The cytosolic RIG-I (retinoic acid-inducible gene I) receptor plays a pivotal role in the initiation of the immune response against RNA virus infection by recognizing short 5'-triphosphate (5'ppp)-containing viral RNA and activating the host antiviral innate response. In the present study, we generated novel 5'ppp RIG-I agonists of varieous lengths, structures, and sequences and evaluated the generation of the antiviral and inflammatory responses in human epithelial A549 cells, human innate immune primary cells, and murine models of influenza and chikungunya viral pathogenesis. A 99-nucleotide, uridine-rich hairpin 5'pppRNA termed M8 stimulated an extensive and robust interferon response compared to other modified 5'pppRNA structures, RIG-I aptamers, or poly(I·C). Interestingly, manipulation of the primary RNA sequence alone was sufficient to modulate antiviral activity and inflammatory response, in a manner dependent exclusively on RIG-I and independent of MDA5 and TLR3. Both prophylactic and therapeutic administration of M8 effectively inhibited influenza virus and dengue virus replication in vitro. Furthermore, multiple strains of influenza virus that were resistant to oseltamivir, an FDA-approved therapeutic treatment for influenza, were highly sensitive to inhibition by M8. Finally, prophylactic M8 treatment in vivo prolonged survival and reduced lung viral titers of mice challenged with influenza virus, as well as reducing chikungunya virus-associated foot swelling and viral load. Altogether, these results demonstrate that 5'pppRNA can be rationally designed to achieve a maximal RIG-I-mediated protective antiviral response against human-pathogenic RNA viruses. IMPORTANCE The development of novel therapeutics to treat human-pathogenic RNA viral infections is an important goal to reduce spread of infection and to improve human health and safety. This study investigated the design of an RNA agonist with enhanced antiviral and inflammatory properties against influenza, dengue, and chikungunya viruses. A novel, sequence-dependent, uridine-rich RIG-I agonist generated a protective antiviral response in vitro and in vivo and was effective at concentrations 100-fold lower than prototype sequences or other RNA agonists, highlighting the robust activity and potential clinical use of the 5'pppRNA against RNA virus infection. Altogether, the results identify a novel, sequence-specific RIG-I agonist as an attractive therapeutic candidate for the treatment of a broad range of RNA viruses, a pressing issue in which a need for new and more effective options persists.
Collapse
Affiliation(s)
- Cindy Chiang
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Vladimir Beljanski
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Kevin Yin
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - David Olagnier
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Canada
| | - Fethia Ben Yebdri
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Canada
| | - Courtney Steel
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Marie-Line Goulet
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Canada
| | - Victor R DeFilippis
- Vaccine & Gene Therapy Institute-Oregon Health and Science University, Beaverton, Oregon, USA
| | - Daniel N Streblow
- Vaccine & Gene Therapy Institute-Oregon Health and Science University, Beaverton, Oregon, USA
| | - Elias K Haddad
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Lydie Trautmann
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Ted Ross
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Rongtuan Lin
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Canada
| | - John Hiscott
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| |
Collapse
|
137
|
Louber J, Brunel J, Uchikawa E, Cusack S, Gerlier D. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. BMC Biol 2015; 13:54. [PMID: 26215161 PMCID: PMC4517655 DOI: 10.1186/s12915-015-0166-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/11/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The cytoplasmic RIG-like receptors are responsible for the early detection of viruses and other intracellular microbes by activating the innate immune response mediated by type I interferons (IFNs). RIG-I and MDA5 detect virus-specific RNA motifs with short 5'-tri/diphosphorylated, blunt-end double-stranded RNA (dsRNA) and >0.5-2 kb long dsRNA as canonical agonists, respectively. However, in vitro, they can bind to many RNA species, while in cells there is an activation threshold. As SF2 helicase/ATPase family members, ATP hydrolysis is dependent on co-operative RNA and ATP binding. Whereas simultaneous ATP and cognate RNA binding is sufficient to activate RIG-I by releasing autoinhibition of the signaling domains, the physiological role of the ATPase activity of RIG-I and MDA5 remains controversial. RESULTS A cross-analysis of a rationally designed panel of RNA binding and ATPase mutants and truncated receptors, using type I IFN promoter activation as readout, allows us to refine our understanding of the structure-function relationships of RIG-I and MDA5. RNA activation of RIG-I depends on multiple critical RNA binding sites in its helicase domain as confirmed by functional evidence using novel mutations. We found that RIG-I or MDA5 mutants with low ATP hydrolysis activity exhibit constitutive activity but this was fully reverted when associated with mutations preventing RNA binding to the helicase domain. We propose that the turnover kinetics of the ATPase domain enables the discrimination of self/non-self RNA by both RIG-I and MDA5. Non-cognate, possibly self, RNA binding would lead to fast ATP turnover and RNA disassociation and thus insufficient time for the caspase activation and recruitment domains (CARDs) to promote downstream signaling, whereas tighter cognate RNA binding provides a longer time window for downstream events to be engaged. CONCLUSIONS The exquisite fine-tuning of RIG-I and MDA5 RNA-dependent ATPase activity coupled to CARD release allows a robust IFN response from a minor subset of non-self RNAs within a sea of cellular self RNAs. This avoids the eventuality of deleterious autoimmunity effects as have been recently described to arise from natural gain-of-function alleles of RIG-I and MDA5.
Collapse
Affiliation(s)
- Jade Louber
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France.
- INSERM, U1111, Lyon, France.
- Ecole Normale Supérieure de Lyon, Lyon, France.
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.
- CNRS, UMR5308, Lyon, France.
| | - Joanna Brunel
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France.
- INSERM, U1111, Lyon, France.
- Ecole Normale Supérieure de Lyon, Lyon, France.
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.
- CNRS, UMR5308, Lyon, France.
| | - Emiko Uchikawa
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP 181, 38042, Grenoble, Cedex 9, France.
- Unit of Virus Host Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, BP 181, 38042, Grenoble, Cedex 9, France.
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP 181, 38042, Grenoble, Cedex 9, France.
- Unit of Virus Host Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, BP 181, 38042, Grenoble, Cedex 9, France.
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France.
- INSERM, U1111, Lyon, France.
- Ecole Normale Supérieure de Lyon, Lyon, France.
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.
- CNRS, UMR5308, Lyon, France.
| |
Collapse
|
138
|
Morrone SR, Matyszewski M, Yu X, Delannoy M, Egelman EH, Sohn J. Assembly-driven activation of the AIM2 foreign-dsDNA sensor provides a polymerization template for downstream ASC. Nat Commun 2015. [PMID: 26197926 PMCID: PMC4525163 DOI: 10.1038/ncomms8827] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM2 recognizes foreign dsDNA and assembles into the inflammasome, a filamentous supramolecular signalling platform required to launch innate immune responses. We show here that the pyrin domain of AIM2 (AIM2PYD) drives both filament formation and dsDNA binding. In addition, the dsDNA-binding domain of AIM2 also oligomerizes and assists in filament formation. The ability to oligomerize is critical for binding dsDNA, and in turn permits the size of dsDNA to regulate the assembly of the AIM2 polymers. The AIM2PYD oligomers define the filamentous structure, and the helical symmetry of the AIM2PYD filament is consistent with the filament assembled by the PYD of the downstream adaptor ASC. Our results suggest that the role of AIM2PYD is not autoinhibitory, but generating a structural template by coupling ligand binding and oligomerization is a key signal transduction mechanism in the AIM2 inflammasome. The AIM2 inflammasome complex is essential for defence against a number of human pathogens but how it assembles upon recognition of foreign DNA remains incompletely understood. Here Morrone et al. suggest the AIM2 pyrin domain acts in both DNA binding and filament assembly to generate a structural template for complex assembly.
Collapse
Affiliation(s)
- Seamus R Morrone
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine Baltimore, Maryland 21205, USA
| | - Mariusz Matyszewski
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine Baltimore, Maryland 21205, USA
| | - Xiong Yu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine Charlottesville, Virginia 22908, USA
| | - Michael Delannoy
- Microscope Core Facilities, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine Charlottesville, Virginia 22908, USA
| | - Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine Baltimore, Maryland 21205, USA
| |
Collapse
|
139
|
Wu B, Hur S. How RIG-I like receptors activate MAVS. Curr Opin Virol 2015; 12:91-8. [PMID: 25942693 PMCID: PMC4470786 DOI: 10.1016/j.coviro.2015.04.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/26/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022]
Abstract
RIG-I and MDA5 are well-conserved cytoplasmic pattern recognition receptors that detect viral RNAs during infection and activate the type I interferon (IFN)-mediated antiviral immune response. While much is known about how these receptors recognize viral RNAs, how they interact with their common signaling adaptor molecule MAVS and activate the downstream signaling pathway had been less clear. Previous studies have shown that the signaling domains (tandem CARDs or 2CARDs) of RIG-I and MDA5 must form homo-oligomers in order to interact with MAVS, and that their interactions lead to filament formation of MAVS, a pre-requisite for downstream signal activation. More recent data suggest that multiple mechanisms synergistically promote tetramer formation of RIG-I 2CARD, and that this tetramer resembles a lock-washer, which serves as a helical template to nucleate the MAVS filament. We here summarize these recent findings and discuss the current understanding of the signal activation mechanisms of RIG-I and MDA5.
Collapse
Affiliation(s)
- Bin Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, United States; Program in Cellular and Molecular Medicine, Boston Children's Hospital, United States
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, United States; Program in Cellular and Molecular Medicine, Boston Children's Hospital, United States.
| |
Collapse
|
140
|
Liu G, Park HS, Pyo HM, Liu Q, Zhou Y. Influenza A Virus Panhandle Structure Is Directly Involved in RIG-I Activation and Interferon Induction. J Virol 2015; 89:6067-79. [PMID: 25810557 PMCID: PMC4442436 DOI: 10.1128/jvi.00232-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/21/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Retinoic acid-inducible gene I (RIG-I) is an important innate immune sensor that recognizes viral RNA in the cytoplasm. Its nonself recognition largely depends on the unique RNA structures imposed by viral RNA. The panhandle structure residing in the influenza A virus (IAV) genome, whose primary function is to serve as the viral promoter for transcription and replication, has been proposed to be a RIG-I agonist. However, this has never been proved experimentally. Here, we employed multiple approaches to determine if the IAV panhandle structure is directly involved in RIG-I activation and type I interferon (IFN) induction. First, in porcine alveolar macrophages, we demonstrated that the viral genomic coding region is dispensable for RIG-I-dependent IFN induction. Second, using in vitro-synthesized hairpin RNA, we showed that the IAV panhandle structure could directly bind to RIG-I and stimulate IFN production. Furthermore, we investigated the contributions of the wobble base pairs, mismatch, and unpaired nucleotides within the wild-type panhandle structure to RIG-I activation. Elimination of these destabilizing elements within the panhandle structure promoted RIG-I activation and IFN induction. Given the function of the panhandle structure as the viral promoter, we further monitored the promoter activity of these panhandle variants and found that viral replication was moderately affected, whereas viral transcription was impaired dramatically. In all, our results indicate that the IAV panhandle promoter region adopts a nucleotide composition that is optimal for balanced viral RNA synthesis and suboptimal for RIG-I activation. IMPORTANCE The IAV genomic panhandle structure has been proposed to be an RIG-I agonist due to its partial complementarity; however, this has not been experimentally confirmed. Here, we provide direct evidence that the IAV panhandle structure is competent in, and sufficient for, RIG-I activation and IFN induction. By constructing panhandle variants with increased complementarity, we demonstrated that the wild-type panhandle structure could be modified to enhance RIG-I activation and IFN induction. These panhandle variants posed moderate influence on viral replication but dramatic impairment of viral transcription. These results indicate that the IAV panhandle promoter region adopts a nucleotide composition to achieve optimal balance of viral RNA synthesis and suboptimal RIG-I activation. Our results highlight the multifunctional role of the IAV panhandle promoter region in the virus life cycle and offer novel insights into the development of antiviral agents aiming to boost RIG-I signaling or virus attenuation by manipulating this conserved region.
Collapse
Affiliation(s)
- GuanQun Liu
- Vaccine and Infectious Disease Organization-International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hong-Su Park
- Vaccine and Infectious Disease Organization-International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hyun-Mi Pyo
- Vaccine and Infectious Disease Organization-International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization-International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
141
|
Ibsen MS, Gad HH, Andersen LL, Hornung V, Julkunen I, Sarkar SN, Hartmann R. Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling. Nucleic Acids Res 2015; 43:5236-48. [PMID: 25925578 PMCID: PMC4446440 DOI: 10.1093/nar/gkv389] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 12/25/2022] Open
Abstract
The oligoadenylate synthetase (OAS) enzymes are cytoplasmic dsRNA sensors belonging to the antiviral innate immune system. Upon binding to viral dsRNA, the OAS enzymes synthesize 2'-5' linked oligoadenylates (2-5As) that initiate an RNA decay pathway to impair viral replication. The human OAS-like (OASL) protein, however, does not harbor the catalytic activity required for synthesizing 2-5As and differs from the other human OAS family members by having two C-terminal ubiquitin-like domains. In spite of its lack of enzymatic activity, human OASL possesses antiviral activity. It was recently demonstrated that the ubiquitin-like domains of OASL could substitute for K63-linked poly-ubiquitin and interact with the CARDs of RIG-I and thereby enhance RIG-I signaling. However, the role of the OAS-like domain of OASL remains unclear. Here we present the crystal structure of the OAS-like domain, which shows a striking similarity with activated OAS1. Furthermore, the structure of the OAS-like domain shows that OASL has a dsRNA binding groove. We demonstrate that the OAS-like domain can bind dsRNA and that mutating key residues in the dsRNA binding site is detrimental to the RIG-I signaling enhancement. Hence, binding to dsRNA is an important feature of OASL that is required for enhancing RIG-I signaling.
Collapse
Affiliation(s)
- Mikkel Søes Ibsen
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Hans Henrik Gad
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Line Lykke Andersen
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital, University of Bonn, Bonn 53127, Germany
| | - Ilkka Julkunen
- Department of Virology, University of Turku, 20520 Turku, Finland Viral Infections Unit, National Institute for Health and Welfare, 00300 Helsinki, Finland
| | - Saumendra N Sarkar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Rune Hartmann
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
142
|
Yao H, Dittmann M, Peisley A, Hoffmann HH, Gilmore RH, Schmidt T, Schmidt-Burgk J, Hornung V, Rice CM, Hur S. ATP-dependent effector-like functions of RIG-I-like receptors. Mol Cell 2015; 58:541-548. [PMID: 25891073 PMCID: PMC4427555 DOI: 10.1016/j.molcel.2015.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/05/2015] [Accepted: 03/11/2015] [Indexed: 01/24/2023]
Abstract
The vertebrate antiviral innate immune system is often considered to consist of two distinct groups of proteins: pattern recognition receptors (PRRs) that detect viral infection and induce the interferon (IFN) signaling, and effectors that directly act against viral replication. Accordingly, previous studies on PRRs, such as RIG-I and MDA5, have primarily focused on their functions in viral double-stranded RNA (dsRNA) detection and consequent antiviral signaling. We report here that both RIG-I and MDA5 efficiently displace viral proteins pre-bound to dsRNA in a manner dependent on their ATP hydrolysis, and that this activity assists a dsRNA-dependent antiviral effector protein, PKR, and allows RIG-I to promote MDA5 signaling. Furthermore, truncated RIG-I/MDA5 lacking the signaling domain, and hence the IFN stimulatory activity, displaces viral proteins and suppresses replication of certain viruses in an ATP-dependent manner. Thus, this study reveals novel "effector-like" functions of RIG-I and MDA5 that challenge the conventional view of PRRs.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Antiviral Agents/metabolism
- Base Sequence
- Blotting, Western
- Cell Line, Tumor
- DEAD Box Protein 58
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- HEK293 Cells
- Humans
- Interferon-Induced Helicase, IFIH1
- Interferon-beta/genetics
- Interferon-beta/metabolism
- Models, Molecular
- Mutation
- Nucleic Acid Conformation
- Phosphorylation
- RNA Interference
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Immunologic
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Diseases/genetics
- Virus Diseases/metabolism
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Hui Yao
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, MA 02115, USA
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences Nankai University, Tianjin 300071, China
| | - Meike Dittmann
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C The Rockefeller University, New York, New York 10065, USA
| | - Alys Peisley
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, MA 02115, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C The Rockefeller University, New York, New York 10065, USA
| | - Rachel H. Gilmore
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C The Rockefeller University, New York, New York 10065, USA
| | - Tobias Schmidt
- Institut für Molekulare Medizin, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | | | - Veit Hornung
- Institut für Molekulare Medizin, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C The Rockefeller University, New York, New York 10065, USA
| | - Sun Hur
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
143
|
Chow J, Franz KM, Kagan JC. PRRs are watching you: Localization of innate sensing and signaling regulators. Virology 2015; 479-480:104-9. [PMID: 25800355 PMCID: PMC4424080 DOI: 10.1016/j.virol.2015.02.051] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 12/24/2022]
Abstract
To prevent the spread of infection, an invading pathogen must first be recognized by the innate immune system. Host pattern recognition receptors detect distinct pathogen-associated molecules and induce the transcription and release of interferon and inflammatory molecules to resolve infection. Unlike infections with pathogens that replicate autonomously from the host, viral infections blur the boundaries of self and non-self. Differentiation of host from virus is achieved by restricting localization of host nucleic acids and by placing pattern recognition receptors in specific subcellular compartments. Within this review, we discuss how several families of pattern recognition receptors act to provide a comprehensive surveillance network that has the potential to induce interferon expression in response to any viral infection.
Collapse
Affiliation(s)
- Jonathan Chow
- Division of Gastroenterology, Boston Children׳s Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Kate M Franz
- Division of Gastroenterology, Boston Children׳s Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children׳s Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
144
|
Anchisi S, Guerra J, Garcin D. RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA. mBio 2015; 6:e02349. [PMID: 25736886 PMCID: PMC4358010 DOI: 10.1128/mbio.02349-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Many RNA viruses are detected by retinoic acid-inducible gene i (RIG-I), a cytoplasmic sensor that triggers an antiviral response upon binding non-self-RNA that contains a stretch of double-stranded RNA (dsRNA) bearing a base-paired 5' ppp nucleotide. To gain insight into how RIG-I discriminates between self-RNA and non-self-RNA, we used duplexes whose complementary bottom strand contained both ribo- and deoxynucleotides. These duplexes were examined for their binding to RIG-I and their relative abilities to stimulate ATPase activity, to induce RIG-I dimerization on the duplex, and to induce beta interferon (IFN-β) expression. We show that the chemical nature of the bottom strand is not critical for RIG-I binding. However, two key ribonucleotides, at positions 2 and 5 on the bottom strand, are minimally required for the RIG-I ATPase activity, which is necessary but not sufficient for IFN-β stimulation. We find that duplexes with shorter stretches of dsRNA, as model self-RNAs, bind less stably to RIG-I but nevertheless have an enhanced ability to stimulate the ATPase. Moreover, ATPase activity promotes RIG-I recycling on RIG-I/dsRNA complexes. Since pseudo-self-RNAs bind to RIG-I less stably, they are preferentially recycled by ATP hydrolysis that weakens the helicase domain binding of dsRNA. Our results suggest that one function of the ATPase is to restrict RIG-I signaling to its interaction with non-self-RNA. A model of how this discrimination occurs as a function of dsRNA length is presented. IMPORTANCE The innate immune response to pathogens is based on the discrimination between self-RNA and non-self-RNA. The main determinants of this detection for RNA viruses are specific pathogen-associated molecular patterns (PAMPs) of RNA, which are detected by dedicated cytoplasmic pattern recognition receptors (PRRs). RIG-I is a PRR that specifically detects short viral dsRNAs amid a sea of cellular RNAs. Here we study the determinants of this discrimination and how RIG-I ATPase activity, the only enzymatic activity of this sensor, contributes to its activation in a manner restricted to its interaction with non-self-RNAs. We also show how the innate immune response evolves during infection via IFN expression, from a state in which discrimination of self-RNA from non-self-RNA is most important to one in which this discrimination is sacrificed for the effectiveness of the antiviral response.
Collapse
Affiliation(s)
- Stéphanie Anchisi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jessica Guerra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
145
|
del Toro Duany Y, Wu B, Hur S. MDA5-filament, dynamics and disease. Curr Opin Virol 2015; 12:20-5. [PMID: 25676875 DOI: 10.1016/j.coviro.2015.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 12/22/2022]
Abstract
Melanoma Differentiation-Associated gene 5 (MDA5), encoded by the gene IFIH1, is a cytoplasmic sensor for viral double-stranded RNAs (dsRNAs). MDA5 activates the type I interferon signaling pathway upon detection of long viral dsRNA generated during replication of picornaviruses. Studies have shown that MDA5 forms a filament along the length of dsRNA and utilizes ATP-dependent filament dynamics to discriminate between self versus non-self on the basis of dsRNA length. This review summarizes our current understanding of how the MDA5 filament assembles and disassembles, how this filament dynamics are utilized in dsRNA length-dependent signaling, and how dysregulated filament dynamics lead to pathogenesis of immune disorders.
Collapse
Affiliation(s)
- Yoandris del Toro Duany
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, United States; Program in Cellular and Molecular Medicine, Boston Children's Hospital, United States
| | - Bin Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, United States; Program in Cellular and Molecular Medicine, Boston Children's Hospital, United States
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, United States; Program in Cellular and Molecular Medicine, Boston Children's Hospital, United States.
| |
Collapse
|
146
|
Zhu J, Ghosh A, Sarkar SN. OASL-a new player in controlling antiviral innate immunity. Curr Opin Virol 2015; 12:15-9. [PMID: 25676874 DOI: 10.1016/j.coviro.2015.01.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/17/2015] [Accepted: 01/22/2015] [Indexed: 01/17/2023]
Abstract
The cellular innate immune system plays a crucial role in mounting the initial resistance to virus infection. It is comprised of various pattern-recognition receptors that induce type I interferon production, which further shapes the adaptive immunity. However, to overcome this resistance and promote replication, viruses have evolved mechanisms to evade this host innate immune response. Here we discuss a recently described mechanism of boosting the innate immunity by oligoadenylate synthetase-like (OASL) protein, which can potentially be used to overcome viral evasion and enhance innate immunity.
Collapse
Affiliation(s)
- Jianzhong Zhu
- Cancer Virology Program, University of Pittsburgh Cancer Institute, United States; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Arundhati Ghosh
- Cancer Virology Program, University of Pittsburgh Cancer Institute, United States; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Saumendra N Sarkar
- Cancer Virology Program, University of Pittsburgh Cancer Institute, United States; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
147
|
Cytoplasmic sensing of viral nucleic acids. Curr Opin Virol 2015; 11:31-7. [PMID: 25668758 PMCID: PMC7172233 DOI: 10.1016/j.coviro.2015.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/24/2022]
Abstract
Viral nucleic acids (NAs) are targeted by cellular proteins with diverse functions. NA sensing proteins are forming a three-layered defence system. NA localisation and modifications synergistically activate defence systems.
Viruses are the most abundant pathogens on earth. A fine-tuned framework of intervening pathways is in place in mammalian cells to orchestrate the cellular defence against these pathogens. Key for this system is sensor proteins that recognise specific features associated with nucleic acids of incoming viruses. Here we review the current knowledge on cytoplasmic sensors for viral nucleic acids. These sensors induce expression of cytokines, affect cellular functions required for virus replication and directly target viral nucleic acids through degradation or sequestration. Their ability to respond to a given nucleic acid is based on both the differential specificity of the individual proteins and the downstream signalling or adaptor proteins. The cooperation of these multiple proteins and pathways plays a key role in inducing successful immunity against virus infections.
Collapse
|
148
|
Boisson B, Quartier P, Casanova JL. Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind. Curr Opin Immunol 2015; 32:90-105. [PMID: 25645939 PMCID: PMC4364384 DOI: 10.1016/j.coi.2015.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/06/2015] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
Abstract
All the human primary immunodeficiencies (PIDs) recognized as such in the 1950s were Mendelian traits and, whether autosomal or X-linked, displayed recessive inheritance. The first autosomal dominant (AD) PID, hereditary angioedema, was recognized in 1963. However, since the first identification of autosomal recessive (AR), X-linked recessive (XR) and AD PID-causing genes in 1985 (ADA; severe combined immunodeficiency), 1986 (CYBB, chronic granulomatous disease) and 1989 (SERPING1; hereditary angioedema), respectively, the number of genetically defined AD PIDs has increased more rapidly than that of any other type of PID. AD PIDs now account for 61 of the 260 known conditions (23%). All known AR PIDs are caused by alleles with some loss-of-function (LOF). A single XR PID is caused by gain-of-function (GOF) mutations (WASP-related neutropenia, 2001). In contrast, only 44 of 61 AD defects are caused by LOF alleles, which exert dominance by haploinsufficiency or negative dominance. Since 2003, up to 17 AD disorders of the third kind, due to GOF alleles, have been described. Remarkably, six of the 17 genes concerned also harbor monoallelic (STAT3), biallelic (C3, CFB, CARD11, PIK3R1) or both monoallelic and biallelic (STAT1) LOF alleles in patients with other clinical phenotypes. Most heterozygous GOF alleles result in auto-inflammation, auto-immunity, or both, with a wide range of immunological and clinical forms. Some also underlie infections and, fewer, allergies, by impairing or enhancing immunity to non-self. Malignancies are also rare. The enormous diversity of immunological and clinical phenotypes is thought provoking and mirrors the diversity and pleiotropy of the underlying genotypes. These experiments of nature provide a unique insight into the quantitative regulation of human immunity.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Pierre Quartier
- Paris Descartes University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Paris 75015, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Paris Descartes University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Paris 75015, France
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France
| |
Collapse
|
149
|
Sarkar SN. Could boosting the oligoadenylate synthetase-like pathway bring a new era of antiviral therapy? Future Virol 2015; 9:1011-1014. [PMID: 25620998 DOI: 10.2217/fvl.14.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Saumendra N Sarkar
- Cancer Virology Program, University of Pittsburgh Cancer Institute & Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Tel.: +1 412 623 7720
| |
Collapse
|
150
|
Abstract
Innate immune responses depend on timely recognition of pathogenic or danger signals by multiple cell surface or cytoplasmic receptors and transmission of signals for proper counteractions through adaptor and effector molecules. At the forefront of innate immunity are four major signaling pathways, including those elicited by Toll-like receptors, RIG-I-like receptors, inflammasomes, or cGAS, each with its own cellular localization, ligand specificity, and signal relay mechanism. They collectively engage a number of overlapping signaling outcomes, such as NF-κB activation, interferon response, cytokine maturation, and cell death. Several proteins often assemble into a supramolecular complex to enable signal transduction and amplification. In this article, we review the recent progress in mechanistic delineation of proteins in these pathways, their structural features, modes of ligand recognition, conformational changes, and homo- and hetero-oligomeric interactions within the supramolecular complexes. Regardless of seemingly distinct interactions and mechanisms, the recurring themes appear to consist of autoinhibited resting-state receptors, ligand-induced conformational changes, and higher-order assemblies of activated receptors, adaptors, and signaling enzymes through conserved protein-protein interactions.
Collapse
Affiliation(s)
- Qian Yin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and
| | | | | | | |
Collapse
|