101
|
Control of Unconventional Secretion By The Autophagy Machinery. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
102
|
Huang X, Yao J, Liu L, Luo Y, Yang A. Atg8-PE protein-based in vitro biochemical approaches to autophagy studies. Autophagy 2022; 18:2020-2035. [PMID: 35072587 PMCID: PMC9397461 DOI: 10.1080/15548627.2022.2025572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved intracellular degradation pathway that maintains cellular homeostasis. Over the past two decades, a series of scientific breakthroughs have helped explain autophagy-related molecular mechanisms and physiological functions. This tremendous progress continues to depend largely on powerful research methods, specifically, various autophagy marker Atg8-PE protein-based methods for studying membrane dynamics and monitoring autophagic activity. Recently, several biochemical approaches have been successfully developed to produce the lipidated protein Atg8-PE or its mimics in vitro, including enzyme-mediated reconstitution systems, chemically defined reconstitution systems, cell-free lipidation systems and protein chemical synthesis. These approaches have contributed important insights into the mechanisms underlying Atg8-mediated membrane dynamics and protein-protein interactions, creating a new perspective in autophagy studies. In this review, we comprehensively summarize Atg8-PE protein-based in vitro biochemical approaches and recent advances to facilitate a better understanding of autophagy mechanisms. In addition, we highlight the advantages and disadvantages of various Atg8-PE protein-based approaches to provide general guidance for their use in studying autophagy.Abbreviations: ATG: autophagy related; ATP: adenosine triphosphate; COPII: coat protein complex II; DGS-NTA: 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel salt); DPPE: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine; DSPE: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; E. coli: Escherichia coli; EPL: expressed protein ligation; ERGIC: ER-Golgi intermediate compartment; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; GUVs: giant unilamellar vesicles; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MBP: maltose binding protein; MEFs: mouse embryonic fibroblasts; MESNa: 2-mercaptoethanesulfonic acid sodium salt; NCL: native chemical ligation; NTA: nitrilotriacetic acid; PE: phosphatidylethanolamine; PS: phosphatidylserine; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; SPPS: solid-phase peptide synthesis; TEV: tobacco etch virus; WT: wild-type.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yu Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China,CONTACT Aimin Yang School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
103
|
Li W, Luo LX, Zhou QQ, Gong HB, Fu YY, Yan CY, Li E, Sun J, Luo Z, Ding ZJ, Zhang QY, Mu HL, Cao YF, Ouyang SH, Kurihara H, Li YF, Sun WY, Li M, He RR. Phospholipid peroxidation inhibits autophagy via stimulating the delipidation of oxidized LC3-PE. Redox Biol 2022; 55:102421. [PMID: 35964342 PMCID: PMC9389305 DOI: 10.1016/j.redox.2022.102421] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023] Open
Abstract
Phospholipid peroxidation of polyunsaturated fatty acids at the bis-allylic position drives ferroptosis. Here we identify a novel role for phospholipid peroxidation in the inhibition of autophagy. Using in vitro and in vivo models, we report that phospholipid peroxidation induced by glutathione peroxidase-4 inhibition and arachidonate 15-lipoxygenase overexpression leads to overload of peroxidized phospholipids and culminate in inhibition of autophagy. Functional and lipidomics analysis further demonstrated that inhibition of autophagy was associated with an increase of peroxidized phosphatidylethanolamine (PE) conjugated LC3. We further demonstrate that autophagy inhibition occurred due to preferential cleavage of peroxidized LC3-PE by ATG4B to yield delipidated LC3. Mouse models of phospholipid peroxidation and autophagy additionally supported a role for peroxidized PE in autophagy inhibition. Our results agree with the recognized role of endoplasmic reticulum as the primary source for autophagosomal membranes. In summary, our studies demonstrated that phospholipid peroxidation inhibited autophagy via stimulating the ATG4B-mediated delipidation of peroxidized LC3-PE.
Collapse
Affiliation(s)
- Wen Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lian-Xiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Qing-Qing Zhou
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hai-Biao Gong
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yuan-Yuan Fu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - E Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jie Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhuo Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhao-Jun Ding
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qiong-Yi Zhang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Han-Lu Mu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yun-Feng Cao
- Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, Guangzhou, 510632, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, Guangzhou, 510632, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, Guangzhou, 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, Guangzhou, 510632, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, Guangzhou, 510632, China.
| | - Min Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, Guangzhou, 510632, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
104
|
Sakamaki JI, Ode KL, Kurikawa Y, Ueda HR, Yamamoto H, Mizushima N. Ubiquitination of phosphatidylethanolamine in organellar membranes. Mol Cell 2022; 82:3677-3692.e11. [PMID: 36044902 DOI: 10.1016/j.molcel.2022.08.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/27/2022] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
Abstract
The covalent conjugation of ubiquitin family proteins is a widespread post-translational protein modification. In the ubiquitin family, the ATG8 subfamily is exceptional because it is conjugated mainly to phospholipids. However, it remains unknown whether other ubiquitin family proteins are also conjugated to phospholipids. Here, we report that ubiquitin is conjugated to phospholipids, mainly phosphatidylethanolamine (PE), in yeast and mammalian cells. Ubiquitinated PE (Ub-PE) accumulates at endosomes and the vacuole (or lysosomes), and its level increases during starvation. Ub-PE is also found in baculoviruses. In yeast, PE ubiquitination is catalyzed by the canonical ubiquitin system enzymes Uba1 (E1), Ubc4/5 (E2), and Tul1 (E3) and is reversed by Doa4. Liposomes containing Ub-PE recruit the ESCRT components Vps27-Hse1 and Vps23 in vitro. Ubiquitin-like NEDD8 and ISG15 are also conjugated to phospholipids. These findings suggest that the conjugation to membrane phospholipids is not specific to ATG8 but is a general feature of the ubiquitin family.
Collapse
Affiliation(s)
- Jun-Ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka Kurikawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka 565-0871, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
105
|
Voronina S, Chvanov M, De Faveri F, Mayer U, Wileman T, Criddle D, Tepikin A. Autophagy, Acute Pancreatitis and the Metamorphoses of a Trypsinogen-Activating Organelle. Cells 2022; 11:cells11162514. [PMID: 36010591 PMCID: PMC9406838 DOI: 10.3390/cells11162514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Recent studies have highlighted the importance of autophagy and particularly non-canonical autophagy in the development and progression of acute pancreatitis (a frequent disease with considerable morbidity and significant mortality). An important early event in the development of acute pancreatitis is the intrapancreatic activation of trypsinogen, (i.e., formation of trypsin) leading to the autodigestion of the organ. Another prominent phenomenon associated with the initiation of this disease is vacuolisation and specifically the formation of giant endocytic vacuoles in pancreatic acinar cells. These organelles develop in acinar cells exposed to several inducers of acute pancreatitis (including taurolithocholic acid and high concentrations of secretagogues cholecystokinin and acetylcholine). Notably, early trypsinogen activation occurs in the endocytic vacuoles. These trypsinogen-activating organelles undergo activation, long-distance trafficking, and non-canonical autophagy. In this review, we will discuss the role of autophagy in acute pancreatitis and particularly focus on the recently discovered LAP-like non-canonical autophagy (LNCA) of endocytic vacuoles.
Collapse
Affiliation(s)
- Svetlana Voronina
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Michael Chvanov
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Francesca De Faveri
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Tom Wileman
- Quadram Institute Bioscience and Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - David Criddle
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Alexei Tepikin
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence:
| |
Collapse
|
106
|
Deretic V, Lazarou M. A guide to membrane atg8ylation and autophagy with reflections on immunity. J Cell Biol 2022; 221:e202203083. [PMID: 35699692 PMCID: PMC9202678 DOI: 10.1083/jcb.202203083] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
The process of membrane atg8ylation, defined herein as the conjugation of the ATG8 family of ubiquitin-like proteins to membrane lipids, is beginning to be appreciated in its broader manifestations, mechanisms, and functions. Classically, membrane atg8ylation with LC3B, one of six mammalian ATG8 family proteins, has been viewed as the hallmark of canonical autophagy, entailing the formation of characteristic double membranes in the cytoplasm. However, ATG8s are now well described as being conjugated to single membranes and, most recently, proteins. Here we propose that the atg8ylation is coopted by multiple downstream processes, one of which is canonical autophagy. We elaborate on these biological outputs, which impact metabolism, quality control, and immunity, emphasizing the context of inflammation and immunological effects. In conclusion, we propose that atg8ylation is a modification akin to ubiquitylation, and that it is utilized by different systems participating in membrane stress responses and membrane remodeling activities encompassing autophagy and beyond.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
107
|
Yu G, Klionsky DJ. Life and Death Decisions-The Many Faces of Autophagy in Cell Survival and Cell Death. Biomolecules 2022; 12:866. [PMID: 35883421 PMCID: PMC9313301 DOI: 10.3390/biom12070866] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Autophagy is a process conserved from yeast to humans. Since the discovery of autophagy, its physiological role in cell survival and cell death has been intensively investigated. The inherent ability of the autophagy machinery to sequester, deliver, and degrade cytoplasmic components enables autophagy to participate in cell survival and cell death in multiple ways. The primary role of autophagy is to send cytoplasmic components to the vacuole or lysosomes for degradation. By fine-tuning autophagy, the cell regulates the removal and recycling of cytoplasmic components in response to various stress or signals. Recent research has shown the implications of the autophagy machinery in other pathways independent of lysosomal degradation, expanding the pro-survival role of autophagy. Autophagy also facilitates certain forms of regulated cell death. In addition, there is complex crosstalk between autophagy and regulated cell death pathways, with a number of genes shared between them, further suggesting a deeper connection between autophagy and cell death. Finally, the mitochondrion presents an example where the cell utilizes autophagy to strike a balance between cell survival and cell death. In this review, we consider the current knowledge on the physiological role of autophagy as well as its regulation and discuss the multiple functions of autophagy in cell survival and cell death.
Collapse
Affiliation(s)
- Ge Yu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA;
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA;
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| |
Collapse
|
108
|
Hooper KM, Jacquin E, Li T, Goodwin JM, Brumell JH, Durgan J, Florey O. V-ATPase is a universal regulator of LC3-associated phagocytosis and non-canonical autophagy. J Cell Biol 2022; 221:213194. [PMID: 35511089 PMCID: PMC9082624 DOI: 10.1083/jcb.202105112] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/04/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Non-canonical autophagy is a key cellular pathway in immunity, cancer, and neurodegeneration, characterized by conjugation of ATG8 to endolysosomal single membranes (CASM). CASM is activated by engulfment (endocytosis, phagocytosis), agonists (STING, TRPML1), and infection (influenza), dependent on K490 in the ATG16L1 WD40-domain. However, factors associated with non-canonical ATG16L1 recruitment and CASM induction remain unknown. Here, using pharmacological inhibitors, we investigate a role for V-ATPase during non-canonical autophagy. We report that increased V0–V1 engagement is associated with, and sufficient for, CASM activation. Upon V0–V1 binding, V-ATPase recruits ATG16L1, via K490, during LC3-associated phagocytosis (LAP), STING- and drug-induced CASM, indicating a common mechanism. Furthermore, during LAP, key molecular players, including NADPH oxidase/ROS, converge on V-ATPase. Finally, we show that LAP is sensitive to Salmonella SopF, which disrupts the V-ATPase–ATG16L1 axis and provide evidence that CASM contributes to the Salmonella host response. Together, these data identify V-ATPase as a universal regulator of CASM and indicate that SopF evolved in part to evade non-canonical autophagy.
Collapse
Affiliation(s)
| | - Elise Jacquin
- Signalling Programme, Babraham Institute, Cambridge, UK.,Institut national de la santé et de la recherche médicale UMR-S 1193, Université Paris-Saclay, Châtenay-Malabry, France
| | - Taoyingnan Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - John H Brumell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,SickKids Inflammatory Bowel Disease Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joanne Durgan
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge, UK
| |
Collapse
|
109
|
Herb M, Gluschko A, Farid A, Krönke M. When the Phagosome Gets Leaky: Pore-Forming Toxin-Induced Non-Canonical Autophagy (PINCA). Front Cell Infect Microbiol 2022; 12:834321. [PMID: 35372127 PMCID: PMC8968195 DOI: 10.3389/fcimb.2022.834321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages remove bacteria from the extracellular milieu via phagocytosis. While most of the engulfed bacteria are degraded in the antimicrobial environment of the phagolysosome, several bacterial pathogens have evolved virulence factors, which evade degradation or allow escape into the cytosol. To counter this situation, macrophages activate LC3-associated phagocytosis (LAP), a highly bactericidal non-canonical autophagy pathway, which destroys the bacterial pathogens in so called LAPosomes. Moreover, macrophages can also target intracellular bacteria by pore-forming toxin-induced non-canonical autophagy (PINCA), a recently described non-canonical autophagy pathway, which is activated by phagosomal damage induced by bacteria-derived pore-forming toxins. Similar to LAP, PINCA involves LC3 recruitment to the bacteria-containing phagosome independently of the ULK complex, but in contrast to LAP, this process does not require ROS production by Nox2. As last resort of autophagic targeting, macrophages activate xenophagy, a selective form of macroautophagy, to recapture bacteria, which evaded successful targeting by LAP or PINCA through rupture of the phagosome. However, xenophagy can also be hijacked by bacterial pathogens for their benefit or can be completely inhibited resulting in intracellular growth of the bacterial pathogen. In this perspective, we discuss the molecular differences and similarities between LAP, PINCA and xenophagy in macrophages during bacterial infections.
Collapse
Affiliation(s)
- Marc Herb
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alexander Gluschko
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alina Farid
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Martin Krönke
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- German Center for Infection Research, Bonn-Cologne, Germany
| |
Collapse
|
110
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20-Membered Macrocyclic Pseudo-Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022; 61:e202114328. [PMID: 34978373 PMCID: PMC9303634 DOI: 10.1002/anie.202114328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 01/02/2023]
Abstract
Design and synthesis of pseudo-natural products (PNPs) through recombination of natural product (NP) fragments in unprecedented arrangements enables the discovery of novel biologically relevant chemical matter. With a view to wider coverage of NP-inspired chemical and biological space, we describe the combination of this principle with macrocycle formation. PNP-macrocycles were synthesized efficiently in a stereoselective one-pot procedure including the 1,3-dipolar cycloadditions of different dipolarophiles with dimeric cinchona alkaloid-derived azomethine ylides formed in situ. The 20-membered bis-cycloadducts embody 18 stereocenters and an additional fragment-sized NP-structure. After further functionalization, a collection of 163 macrocyclic PNPs was obtained. Biological investigation revealed potent inducers of the lipidation of the microtubule associated protein 1 light chain 3 (LC3) protein, which plays a prominent role in various autophagy-related processes.
Collapse
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Anastasia Knyazeva
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Raphael Gasper
- Max Planck Institute of Molecular PhysiologyCrystallography and Biophysics UnitOtto-Hahn-Strasse 1144227DortmundGermany
| | - Dale Corkery
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Julian J. Holstein
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
- Technical University DortmundFaculty of Chemistry, Inorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS)Otto-Hahn-Strasse 1144221DortmundGermany
| | - Yao‐Wen Wu
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| |
Collapse
|
111
|
Münz C. Canonical and Non-Canonical Functions of the Autophagy Machinery in MHC Restricted Antigen Presentation. Front Immunol 2022; 13:868888. [PMID: 35309359 PMCID: PMC8931038 DOI: 10.3389/fimmu.2022.868888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 01/29/2023] Open
Abstract
Macroautophagy delivers cytoplasmic constituents for lysosomal degradation. Since major histocompatibility complex (MHC) class II molecules sample peptides after lysosomal degradation for presentation to CD4+ T cells, it was originally described that these peptides can also originate from macroautophagy substrates. In recent years it has become clear that in addition to this canonical function of the macroautophagy machinery during MHC class II restricted antigen presentation at least parts of this machinery are also used to regulate phagocytosis of antigens, degradation of MHC class I molecules, and unconventional secretion of antigens in extracellular vesicles, including virus particles. This review discusses how both canonical and non-canonical functions of the macroautophagy machinery influence antigen presentation on MHC class I and II molecules to CD8+ and CD4+ T cells. A better understanding of the molecular mechanisms by which the macroautophagy machinery is distributed between its canonical and non-canonical functions should allow targeting of antigens to these different pathways to influence MHC restricted presentation during vaccination against infectious diseases and tumors.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
112
|
Need for more focus on lipid species in studies of biological and model membranes. Prog Lipid Res 2022; 86:101160. [DOI: 10.1016/j.plipres.2022.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/06/2022] [Indexed: 11/23/2022]
|
113
|
Non-canonical roles of ATG8 for TFEB activation. Biochem Soc Trans 2022; 50:47-54. [PMID: 35166325 DOI: 10.1042/bst20210813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Autophagy is an evolutionally conserved cytoplasmic degradation pathway in which the double membrane structure, autophagosome sequesters cytoplasmic material and delivers them to lysosomes for degradation. Many autophagy related (ATG) proteins participate in the regulation of the several steps of autophagic process. Among ATGs, ubiquitin-like protein, ATG8 plays a pivotal role in autophagy. ATG8 is directly conjugated on lipid in autophagosome membrane upon induction of autophagy thus providing a good marker to monitor and analyze autophagy process. However, recent discoveries suggest that ATG8 has autophagy independent non-canonical functions and ATG8 positive structures are not always autophagosomes. This review briefly overviews canonical and non-canonical roles of ATG8 and introduce novel function of ATG8 to activate Transcriptional Factor EB(TFEB), a master transcription factor of autophagy and lysosome function during lysosomal damage.
Collapse
|
114
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20‐Membered Macrocyclic Pseudo‐Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Anastasia Knyazeva
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Raphael Gasper
- Max Planck Institute of Molecular Physiology Crystallography and Biophysics Unit Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Dale Corkery
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Julian J. Holstein
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS) Otto-Hahn-Strasse 11 44221 Dortmund Germany
| | - Yao‐Wen Wu
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
115
|
Aniento F, Sánchez de Medina Hernández V, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants. THE PLANT CELL 2022; 34:146-173. [PMID: 34550393 PMCID: PMC8773984 DOI: 10.1093/plcell/koab235] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 05/10/2023]
Abstract
Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking.
Collapse
Affiliation(s)
| | - Víctor Sánchez de Medina Hernández
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
116
|
Stempels FC, Janssens MH, Ter Beest M, Mesman RJ, Revelo NH, Ioannidis M, van den Bogaart G. Novel and conventional inhibitors of canonical autophagy differently affect LC3-associated phagocytosis. FEBS Lett 2022; 596:491-509. [PMID: 35007347 DOI: 10.1002/1873-3468.14280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022]
Abstract
In autophagy, LC3-positive autophagophores fuse and encapsulate the autophagic cargo in a double-membrane structure. In contrast, lipidated LC3 (LC3-II) is directly formed at the phagosomal membrane in LC3-associated phagocytosis (LAP). In this study, we dissected the effects of autophagy inhibitors on LAP. SAR405, an inhibitor of VPS34, reduced levels of LC3-II and inhibited LAP. In contrast, the inhibitors of endosomal acidification bafilomycin A1 and chloroquine increased levels of LC3-II, due to reduced degradation in acidic lysosomes. However, while bafilomycin A1 inhibited LAP, chloroquine did not. Finally, EACC, which inhibits the fusion of autophagosomes with lysosomes, promoted LC3 degradation possibly by the proteasome. Targeting LAP with small molecule inhibitors is important given its emerging role in infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Femmy C Stempels
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Maaike H Janssens
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob J Mesman
- Department of Microbiology, RIBES, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Melina Ioannidis
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
117
|
Bonam SR, Tranchant C, Muller S. Autophagy-Lysosomal Pathway as Potential Therapeutic Target in Parkinson's Disease. Cells 2021; 10:3547. [PMID: 34944054 PMCID: PMC8700067 DOI: 10.3390/cells10123547] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Cellular quality control systems have gained much attention in recent decades. Among these, autophagy is a natural self-preservation mechanism that continuously eliminates toxic cellular components and acts as an anti-ageing process. It is vital for cell survival and to preserve homeostasis. Several cell-type-dependent canonical or non-canonical autophagy pathways have been reported showing varying degrees of selectivity with regard to the substrates targeted. Here, we provide an updated review of the autophagy machinery and discuss the role of various forms of autophagy in neurodegenerative diseases, with a particular focus on Parkinson's disease. We describe recent findings that have led to the proposal of therapeutic strategies targeting autophagy to alter the course of Parkinson's disease progression.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Sylviane Muller
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
- CNRS and Strasbourg University, Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France
| |
Collapse
|
118
|
Nieto-Torres JL, Hansen M. Macroautophagy and aging: The impact of cellular recycling on health and longevity. Mol Aspects Med 2021; 82:101020. [PMID: 34507801 PMCID: PMC8671213 DOI: 10.1016/j.mam.2021.101020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Aging is associated with many deleterious changes at the cellular level, including the accumulation of potentially toxic components that can have devastating effects on health. A key protective mechanism to this end is the cellular recycling process called autophagy. During autophagy, damaged or surplus cellular components are delivered to acidic vesicles called lysosomes, that secure degradation and recycling of the components. Numerous links between autophagy and aging exist. Autophagy declines with age, and increasing evidence suggests that this reduction plays important roles in both physiological aging and the development of age-associated disorders. Studies in pharmacologically and genetically manipulated model organisms indicate that defects in autophagy promote age-related diseases, and conversely, that enhancement of autophagy has beneficial effects on both healthspan and lifespan. Here, we review our current understanding of the role of autophagy in different physiological processes and their molecular links with aging and age-related diseases. We also highlight some recent advances in the field that could accelerate the development of autophagy-based therapeutic interventions.
Collapse
Affiliation(s)
- Jose L Nieto-Torres
- Sanford Burnham Prebys Medical Discovery Institute. Program of Development, Aging, and Regeneration, La Jolla, CA, USA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute. Program of Development, Aging, and Regeneration, La Jolla, CA, USA.
| |
Collapse
|
119
|
Yim WWY, Kurikawa Y, Mizushima N. An exploratory text analysis of the autophagy research field. Autophagy 2021; 18:1648-1661. [PMID: 34812110 PMCID: PMC9298454 DOI: 10.1080/15548627.2021.1995151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After its discovery in the 1950 s, the autophagy research field has seen its annual number of publications climb from tens to thousands. The ever-growing number of autophagy publications is a wealth of information but presents a challenge to researchers, especially those new to the field, who are looking for a general overview of the field to, for example, determine current topics of the field or formulate new hypotheses. Here, we employed text mining tools to extract research trends in the autophagy field, including those of genes, terms, and topics. The publication trend of the field can be separated into three phases. The exponential rise in publication number began in the last phase and is most likely spurred by a series of highly cited research papers published in previous phases. The exponential increase in papers has resulted in a larger variety of research topics, with the majority involving those that are directly physiologically relevant, such as disease and modulating autophagy. Our findings provide researchers a summary of the history of the autophagy research field and perhaps hints of what is to come.Abbreviations: 5Y-IF: 5-year impact factor; AIS: article influence score; EM: electron microscopy; HGNC: HUGO gene nomenclature committee; LDA: latent Dirichlet allocation; MeSH: medical subject headings; ncRNA: non-coding RNA.
Collapse
Affiliation(s)
- Willa Wen-You Yim
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Kurikawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
120
|
Non-canonical roles of autophagy proteins in endocytosis and exocytosis. Biochem Soc Trans 2021; 49:2841-2851. [PMID: 34783341 DOI: 10.1042/bst20210811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023]
Abstract
Autophagy, the pathways that degrade cytoplasmic constituents in lysosomes, contribute to most biological processes from aging and neurodegeneration to pathogen restriction and immunity. In recent years, it was realized that the autophagy machinery serves additional functions, primarily in endo- and exocytosis. In this review, I summarize recent advances in our understanding on how these non-canonical functions differ from canonical macroautophagy, and contribute to immune activation and viral replication. Understanding these pathways will allow us to harness them for the treatment of human diseases, as well as appreciate how cells use modules of membrane remodeling and trafficking for multiple biological functions.
Collapse
|
121
|
Carosi JM, Nguyen TN, Lazarou M, Kumar S, Sargeant TJ. ATG8ylation of proteins: A way to cope with cell stress? J Cell Biol 2021; 220:e202108120. [PMID: 34671813 PMCID: PMC8532562 DOI: 10.1083/jcb.202108120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ATG8 family of proteins regulates autophagy in a variety of ways. Recently, ATG8s were demonstrated to conjugate directly to cellular proteins in a process termed "ATG8ylation," which is amplified by mitochondrial damage and antagonized by ATG4 proteases. ATG8s may have an emerging role as small protein modifiers.
Collapse
Affiliation(s)
- Julian M. Carosi
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia
| | - Thanh N. Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | - Timothy J. Sargeant
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
122
|
Ulferts R, Marcassa E, Timimi L, Lee LC, Daley A, Montaner B, Turner SD, Florey O, Baillie JK, Beale R. Subtractive CRISPR screen identifies the ATG16L1/vacuolar ATPase axis as required for non-canonical LC3 lipidation. Cell Rep 2021; 37:109899. [PMID: 34706226 PMCID: PMC8567314 DOI: 10.1016/j.celrep.2021.109899] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/08/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
Although commonly associated with autophagosomes, LC3 can also be recruited to membranes by covalent lipidation in a variety of non-canonical contexts. These include responses to ionophores such as the M2 proton channel of influenza A virus. We report a subtractive CRISPR screen that identifies factors required for non-canonical LC3 lipidation. As well as the enzyme complexes directly responsible for LC3 lipidation in all contexts, we show the RALGAP complex is important for M2-induced, but not ionophore drug-induced, LC3 lipidation. In contrast, ATG4D is responsible for LC3 recycling in M2-induced and basal LC3 lipidation. Identification of a vacuolar ATPase subunit in the screen suggests a common mechanism for non-canonical LC3 recruitment. Influenza-induced and ionophore drug-induced LC3 lipidation lead to association of the vacuolar ATPase and ATG16L1 and can be antagonized by Salmonella SopF. LC3 recruitment to erroneously neutral compartments may therefore represent a response to damage caused by diverse invasive pathogens.
Collapse
Affiliation(s)
- Rachel Ulferts
- The Francis Crick Institute, London, UK; Department of Pathology, University of Cambridge, Cambridge, UK.
| | | | | | | | - Andrew Daley
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | - Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge, UK
| | | | - Rupert Beale
- The Francis Crick Institute, London, UK; Department of Pathology, University of Cambridge, Cambridge, UK; Division of Medicine, UCL, London, UK.
| |
Collapse
|
123
|
Nieto-Torres JL, Durgan J, Franco-Romero A, Grumati P, Guardia CM, Leidal AM, Mandell MA, Towers CG, Wang F. The Autophagy, Inflammation and Metabolism Center international eSymposium - an early-career investigators' seminar series during the COVID-19 pandemic. J Cell Sci 2021; 134:jcs259268. [PMID: 34622922 PMCID: PMC8520733 DOI: 10.1242/jcs.259268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Autophagy, Inflammation and Metabolism (AIM) Center organized a globally accessible, virtual eSymposium during the COVID-19 pandemic in 2020. The conference included presentations from scientific leaders, as well as a career discussion panel, and provided a much-needed platform for early-career investigators (ECIs) to showcase their research in autophagy. This Perspective summarizes the science presented by the ECIs during the event and discusses the lessons learned from a virtual meeting of this kind during the pandemic. The meeting was a learning experience for all involved, and the ECI participants herein offer their thoughts on the pros and cons of virtual meetings as a modality, either as standalone or hybrid events, with a view towards the post-pandemic world.
Collapse
Affiliation(s)
- Jose L. Nieto-Torres
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Anais Franco-Romero
- Department of Biomedical Science, University of Padova, via U.Bassi 58b, 35121 Padova, Italy
- Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Carlos M. Guardia
- Section on Intracellular Protein Trafficking, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew M. Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0502, USA
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Christina G. Towers
- The Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037-1002, USA
| | - Fei Wang
- UT Southwestern Medical Center, Department of Cell Biology, Dallas, TX 75390-9039, USA
| |
Collapse
|
124
|
Kumar S, Jia J, Deretic V. Atg8ylation as a general membrane stress and remodeling response. Cell Stress 2021; 5:128-142. [PMID: 34527862 PMCID: PMC8404385 DOI: 10.15698/cst2021.09.255] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
The yeast Atg8 protein and its paralogs in mammals, mammalian Atg8s (mAtg8s), have been primarily appreciated for their participation in autophagy. However, lipidated mAtg8s, including the most frequently used autophagosomal membrane marker LC3B, are found on cellular membranes other than autophagosomes. Here we put forward a hypothesis that the lipidation of mAtg8s, termed 'Atg8ylation', is a general membrane stress and remodeling response analogous to the role that ubiquitylation plays in tagging proteins. Ubiquitin and mAtg8s are related in sequence and structure, and the lipidation of mAtg8s occurs on its C-terminal glycine, akin to the C-terminal glycine of ubiquitin. Conceptually, we propose that mAtg8s and Atg8ylation are to membranes what ubiquitin and ubiquitylation are to proteins, and that, like ubiquitylation, Atg8ylation has a multitude of downstream effector outputs, one of which is autophagy.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jingyue Jia
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
125
|
Abstract
Engagement of LC3-associated phagocytosis (LAP) in response to the uptake of certain particles modulates innate immune responses. Now in Cell Host and Microbe, Akoumianaki et al. (2021) show how a regulatory role of IL-6 on LAP may be at the core of susceptibility to secondary infection during severe sepsis.
Collapse
Affiliation(s)
- Larissa D Cunha
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
126
|
Durgan J, Florey O. A new flavor of cellular Atg8-family protein lipidation - alternative conjugation to phosphatidylserine during CASM. Autophagy 2021; 17:2642-2644. [PMID: 34251968 PMCID: PMC8496549 DOI: 10.1080/15548627.2021.1947730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Atg8-family protein lipidation is the most commonly used marker for monitoring autophagy. During macroautophagy, Atg8-family proteins are specifically conjugated to phosphatidylethanolamine (PE) in forming, double-membrane autophagosomes. A distinct, non-canonical autophagy pathway also operates, characterized by the Conjugation of ATG8s to endolysosomal Single Membranes (CASM). In our new study, we show that CASM is associated with the alternative conjugation of Atg8-family proteins to phosphatidylserine (PS), and PE, in response to various cellular stimuli. We also discover differences in the regulation of conjugation to PE and PS by ATG4s, and altered dynamics between the two species. The identification of alternative Atg8-family protein PS lipidation opens up exciting new questions on the roles, regulation and biology of Atg8-family proteins during non-canonical autophagy.
Collapse
Affiliation(s)
- Joanne Durgan
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge, UK
| |
Collapse
|
127
|
Viret C, Faure M. Lipidation status of single membrane-associated ATG8 proteins. Trends Biochem Sci 2021; 46:787-789. [PMID: 34154877 DOI: 10.1016/j.tibs.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
ATG8 are core autophagy proteins, the lipidated forms of which decorate double-membraned autophagosomes, as well as single-membraned organelles such as endolysosomes. Recent studies from the Florey and Münz laboratories delineate the status of single membrane-associated ATG8 proteins by indicating that their membrane anchoring can involve phosphatidylserine conjugation and their stabilization depends on ATG4 protease inhibition.
Collapse
Affiliation(s)
- Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM, France.
| |
Collapse
|
128
|
Green DR. Alternative careers at the autophagy factory. Trends Cell Biol 2021; 31:613-615. [PMID: 34088555 DOI: 10.1016/j.tcb.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
During autophagy, proteins of the ATG8 family are conjugated to phosphatidylethanolamine (PE) in double-membrane structures called phagophores. Now, Durgan et al. have found that, during the non-canonical process of conjugating ATG8 proteins to single-membrane structures, ATG8 can be ligated to phosphatidylserine. Here, I discuss the potential consequences of their findings.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Institute, Memphis, TN 38105, USA.
| |
Collapse
|
129
|
Nieto-Torres JL, Leidal AM, Debnath J, Hansen M. Beyond Autophagy: The Expanding Roles of ATG8 Proteins. Trends Biochem Sci 2021; 46:673-686. [PMID: 33558127 DOI: 10.1016/j.tibs.2021.01.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
The ATG8 family proteins are critical players in autophagy, a cytoprotective process that mediates degradation of cytosolic cargo. During autophagy, ATG8s conjugate to autophagosome membranes to facilitate cargo recruitment, autophagosome biogenesis, transport, and fusion with lysosomes, for cargo degradation. In addition to these canonical functions, recent reports demonstrate that ATG8s are also delivered to single-membrane organelles, which leads to highly divergent degradative or secretory fates, vesicle maturation, and cargo specification. The association of ATG8s with different vesicles involves complex regulatory mechanisms still to be fully elucidated. Whether individual ATG8 family members play unique canonical or non-canonical roles, also remains unclear. This review summarizes the many open molecular questions regarding ATG8s that are only beginning to be unraveled.
Collapse
Affiliation(s)
- Jose L Nieto-Torres
- Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging, and Regeneration, La Jolla, CA, USA
| | - Andrew M Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging, and Regeneration, La Jolla, CA, USA.
| |
Collapse
|