101
|
Arenkiel BR. Genetic approaches to reveal the connectivity of adult-born neurons. Front Neurosci 2011; 5:48. [PMID: 21519388 PMCID: PMC3078560 DOI: 10.3389/fnins.2011.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/24/2011] [Indexed: 11/24/2022] Open
Abstract
Much has been learned about the environmental and molecular factors that influence the division, migration, and programmed cell death of adult-born neurons in the mammalian brain. However, detailed knowledge of the mechanisms that govern the formation and maintenance of functional circuit connectivity via adult neurogenesis remains elusive. Recent advances in genetic technologies now afford the ability to precisely target discrete brain tissues, neuronal subtypes, and even single neurons for vital reporter expression and controlled activity manipulations. Here, I review current viral tracing methods, heterologous receptor expression systems, and optogenetic technologies that hold promise toward elucidating the wiring diagrams and circuit properties of adult-born neurons.
Collapse
Affiliation(s)
- Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
102
|
Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ. Functional identification of an aggression locus in the mouse hypothalamus. Nature 2011; 470:221-6. [PMID: 21307935 PMCID: PMC3075820 DOI: 10.1038/nature09736] [Citation(s) in RCA: 652] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 12/02/2010] [Indexed: 12/11/2022]
Abstract
Electrical stimulation of certain hypothalamic regions in cats and rodents can elicit attack behaviour, but the exact location of relevant cells within these regions, their requirement for naturally occurring aggression and their relationship to mating circuits have not been clear. Genetic methods for neural circuit manipulation in mice provide a potentially powerful approach to this problem, but brain-stimulation-evoked aggression has never been demonstrated in this species. Here we show that optogenetic, but not electrical, stimulation of neurons in the ventromedial hypothalamus, ventrolateral subdivision (VMHvl) causes male mice to attack both females and inanimate objects, as well as males. Pharmacogenetic silencing of VMHvl reversibly inhibits inter-male aggression. Immediate early gene analysis and single unit recordings from VMHvl during social interactions reveal overlapping but distinct neuronal subpopulations involved in fighting and mating. Neurons activated during attack are inhibited during mating, suggesting a potential neural substrate for competition between these opponent social behaviours.
Collapse
Affiliation(s)
- Dayu Lin
- Division of Biology 216-76, California Institute of Technology, 1201 East California Boulevard, Pasadena, California 91125, USA.
| | | | | | | | | | | | | |
Collapse
|
103
|
Pérez CA, Stanley SA, Wysocki RW, Havranova J, Ahrens-Nicklas R, Onyimba F, Friedman JM. Molecular annotation of integrative feeding neural circuits. Cell Metab 2011; 13:222-32. [PMID: 21284989 PMCID: PMC3286830 DOI: 10.1016/j.cmet.2010.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 09/20/2010] [Accepted: 12/06/2010] [Indexed: 01/20/2023]
Abstract
The identity of higher-order neurons and circuits playing an associative role to control feeding is unknown. We injected pseudorabies virus, a retrograde tracer, into masseter muscle, salivary gland, and tongue of BAC-transgenic mice expressing GFP in specific neural populations and identified several CNS regions that project multisynaptically to the periphery. MCH and orexin neurons were identified in the lateral hypothalamus, and Nurr1 and Cnr1 in the amygdala and insular/rhinal cortices. Cholera toxin β tracing showed that insular Nurr1(+) and Cnr1(+) neurons project to the amygdala or lateral hypothalamus, respectively. Finally, we show that cortical Cnr1(+) neurons show increased Cnr1 mRNA and c-Fos expression after fasting, consistent with a possible role for Cnr1(+) neurons in feeding. Overall, these studies define a general approach for identifying specific molecular markers for neurons in complex neural circuits. These markers now provide a means for functional studies of specific neuronal populations in feeding or other complex behaviors.
Collapse
Affiliation(s)
- Cristian A. Pérez
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Sarah A. Stanley
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Robert W. Wysocki
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065 USA
| | - Jana Havranova
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | | | - Frances Onyimba
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Jeffrey M. Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065 USA
| |
Collapse
|
104
|
LAZARUS M, SAPER CB, FULLER PM. Genetic dissection of neural circuitry regulating behavioral state using conditional transgenics. Sleep Biol Rhythms 2011. [DOI: 10.1111/j.1479-8425.2010.00469.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
105
|
Blackiston D, Adams DS, Lemire JM, Lobikin M, Levin M. Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. Dis Model Mech 2011; 4:67-85. [PMID: 20959630 PMCID: PMC3008964 DOI: 10.1242/dmm.005561] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 08/23/2010] [Indexed: 12/14/2022] Open
Abstract
Understanding the mechanisms that coordinate stem cell behavior within the host is a high priority for developmental biology, regenerative medicine and oncology. Endogenous ion currents and voltage gradients function alongside biochemical cues during pattern formation and tumor suppression, but it is not known whether bioelectrical signals are involved in the control of stem cell progeny in vivo. We studied Xenopus laevis neural crest, an embryonic stem cell population that gives rise to many cell types, including melanocytes, and contributes to the morphogenesis of the face, heart and other complex structures. To investigate how depolarization of transmembrane potential of cells in the neural crest's environment influences its function in vivo, we manipulated the activity of the native glycine receptor chloride channel (GlyCl). Molecular-genetic depolarization of a sparse, widely distributed set of GlyCl-expressing cells non-cell-autonomously induces a neoplastic-like phenotype in melanocytes: they overproliferate, acquire an arborized cell shape and migrate inappropriately, colonizing numerous tissues in a metalloprotease-dependent fashion. A similar effect was observed in human melanocytes in culture. Depolarization of GlyCl-expressing cells induces these drastic changes in melanocyte behavior via a serotonin-transporter-dependent increase of extracellular serotonin (5-HT). These data reveal GlyCl as a molecular marker of a sparse and heretofore unknown cell population with the ability to specifically instruct neural crest derivatives, suggest transmembrane potential as a tractable signaling modality by which somatic cells can control stem cell behavior at considerable distance, identify a new biophysical aspect of the environment that confers a neoplastic-like phenotype upon stem cell progeny, reveal a pre-neural role for serotonin and its transporter, and suggest a novel strategy for manipulating stem cell behavior.
Collapse
Affiliation(s)
- Douglas Blackiston
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
- Department of Regenerative and Developmental Biology, Forsyth Institute, Boston, MA 02115, USA
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
| | - Joan M. Lemire
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
| | - Maria Lobikin
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
106
|
Haubensak W, Kunwar P, Cai H, Ciocchi S, Wall N, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM, Fanselow MS, Lüthi A, Anderson DJ. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 2010; 468:270-6. [PMID: 21068836 PMCID: PMC3597095 DOI: 10.1038/nature09553] [Citation(s) in RCA: 649] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 10/06/2010] [Indexed: 12/12/2022]
Abstract
The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing neurons, located in the lateral subdivision of the central amygdala (CEl), which express protein kinase C-δ (PKC-δ). Channelrhodopsin-2-assisted circuit mapping in amygdala slices and cell-specific viral tracing indicate that PKC-δ(+) neurons inhibit output neurons in the medial central amygdala (CEm), and also make reciprocal inhibitory synapses with PKC-δ(-) neurons in CEl. Electrical silencing of PKC-δ(+) neurons in vivo suggests that they correspond to physiologically identified units that are inhibited by the conditioned stimulus, called CEl(off) units. This correspondence, together with behavioural data, defines an inhibitory microcircuit in CEl that gates CEm output to control the level of conditioned freezing.
Collapse
Affiliation(s)
- Wulf Haubensak
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA USA 91125
| | - Prabhat Kunwar
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA USA 91125
| | - Haijiang Cai
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA USA 91125
| | - Stephane Ciocchi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Nicholas Wall
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Ravikumar Ponnusamy
- Department of Psychology and the Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jonathan Biag
- Laboratory for Neuroimaging, University of California, Los Angeles, Los Angeles, CA 90095
| | - Hong-Wei Dong
- Laboratory for Neuroimaging, University of California, Los Angeles, Los Angeles, CA 90095
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Edward M. Callaway
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Michael S. Fanselow
- Department of Psychology and the Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - David J. Anderson
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA USA 91125
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA USA 91125
| |
Collapse
|
107
|
Bridging the gaps between synapses, circuits, and behavior. ACTA ACUST UNITED AC 2010; 17:607-15. [PMID: 20609410 DOI: 10.1016/j.chembiol.2010.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/04/2010] [Accepted: 06/04/2010] [Indexed: 01/28/2023]
Abstract
The decade of the brain may have come and gone, but the final frontier, cracking the neuronal code, still lies ahead. Today, new technologies that allow precise spatiotemporal remote control over the activity of genetically defined populations of neurons within intact neural circuits are providing a means of obtaining a functional wiring diagram of the mammalian brain, bringing us one step closer to understanding precisely how neuronal activity codes for perception, thought, emotion, and action. These technologies and the design principles underlying them are reviewed herein.
Collapse
|
108
|
Distinct Roles of Synaptic Transmission in Direct and Indirect Striatal Pathways to Reward and Aversive Behavior. Neuron 2010; 66:896-907. [DOI: 10.1016/j.neuron.2010.05.011] [Citation(s) in RCA: 438] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2010] [Indexed: 11/24/2022]
|
109
|
Lynagh T, Lynch JW. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations. J Biol Chem 2010; 285:14890-14897. [PMID: 20308070 PMCID: PMC2865309 DOI: 10.1074/jbc.m110.107789] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/02/2010] [Indexed: 11/06/2022] Open
Abstract
The ability to silence the electrical activity of defined neuronal populations in vivo is dramatically advancing our understanding of brain function. This technology may eventually be useful clinically for treating a variety of neuropathological disorders caused by excessive neuronal activity. Several neuronal silencing methods have been developed, with the bacterial light-activated halorhodopsin and the invertebrate allatostatin-activated G protein-coupled receptor proving the most successful to date. However, both techniques may be difficult to implement clinically due to their requirement for surgically implanted stimulus delivery methods and their use of nonhuman receptors. A third silencing method, an invertebrate glutamate-gated chloride channel receptor (GluClR) activated by ivermectin, solves the stimulus delivery problem as ivermectin is a safe, well tolerated drug that reaches the brain following systemic administration. However, the limitations of this method include poor functional expression, possibly due to the requirement to coexpress two different subunits in individual neurons, and the nonhuman origin of GluClR. Here, we describe the development of a modified human alpha1 glycine receptor as an improved ivermectin-gated silencing receptor. The crucial development was the identification of a mutation, A288G, which increased ivermectin sensitivity almost 100-fold, rendering it similar to that of GluClR. Glycine sensitivity was eliminated via the F207A mutation. Its large unitary conductance, homomeric expression, and human origin may render the F207A/A288G alpha1 glycine receptor an improved silencing receptor for neuroscientific and clinical purposes. As all known highly ivermectin-sensitive GluClRs contain an endogenous glycine residue at the corresponding location, this residue appears essential for exquisite ivermectin sensitivity.
Collapse
Affiliation(s)
- Timothy Lynagh
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Joseph W Lynch
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
110
|
Dymecki SM, Ray RS, Kim JC. Mapping cell fate and function using recombinase-based intersectional strategies. Methods Enzymol 2010; 477:183-213. [PMID: 20699143 DOI: 10.1016/s0076-6879(10)77011-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Cell types are typically defined by expression of a unique combination of genes, rather than a single gene. Intersectional methods therefore become crucial to selectively access these cells for higher resolution fate mapping and functional manipulations. Here, we discuss one such intersectional method. Two recombinase systems (Cre/loxP and Flp/FRT) work together to remove a double STOP cassette and thereby activate expression of a target transgene solely in cells defined by a particular pairwise combination of driver genes. Depending on the nature of the target transgene, this strategy can be used to deliver cell-lineage tracers, sensors, and/or effector molecules to highly selective cell types in vivo. In this chapter, we discuss concepts, reagents, and methods underlying this intersectional approach and encourage consideration of various intersectional and binary methods for accessing uniquely defined cell subsets in the mouse.
Collapse
Affiliation(s)
- Susan M Dymecki
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
111
|
Wisden W, Murray AJ, McClure C, Wulff P. Studying Cerebellar Circuits by Remote Control of Selected Neuronal Types with GABA(A) Receptors. Front Mol Neurosci 2009; 2:29. [PMID: 20076763 PMCID: PMC2805427 DOI: 10.3389/neuro.02.029.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 11/20/2009] [Indexed: 11/13/2022] Open
Abstract
Although GABAA receptor-mediated inhibition of cerebellar Purkinje cells by molecular layer interneurons (MLIs) has been studied intensely at the cellular level, it has remained unclear how this inhibition regulates cerebellum-dependent behaviour. We have implemented two complementary approaches to investigate the function of the MLI-Purkinje cell synapse on the behavioural level. In the first approach we permanently disrupted inhibitory fast synaptic transmission at the synapse by genetically removing the postsynaptic GABAA receptors from Purkinje cells (PC-Δγ2 mice). We found that chronic disruption of the MLI-Purkinje cell synapse strongly impaired cerebellar learning of the vestibular occular reflex (VOR), presumably by disrupting the temporal patterns of Purkinje cell activity. However, in PC-Δγ2 mice the baseline VOR reflex was only mildly affected; indeed PC-Δγ2 mice show no ataxia or gait abnormalities, suggesting that MLI control of Purkinje cell activity is either not involved in ongoing motor tasks or that the system compensates for its loss. To investigate the latter possibility we developed an alternative genetic technique; we made the MLI-Purkinje cell synapse selectively sensitive to rapid manipulation with the GABAA receptor modulator zolpidem (PC-γ2-swap mice). Minutes after intraperitoneal zolpidem injection, these PC-γ2-swap mice developed severe motor abnormalities, revealing a substantial contribution of the MLI-Purkinje cell synapses to real time motor control. The cell-type selective permanent knockout of synaptic GABAergic input and the fast reversible modulation of GABAergic input at the same synapse illustrate how pursuing both strategies gives a fuller view.
Collapse
Affiliation(s)
- William Wisden
- Division of Cell and Molecular Biology, Imperial College London London, UK
| | | | | | | |
Collapse
|
112
|
Abstract
Brain function emerges from the morphologies, spatial organization and patterns of connectivity established between diverse sets of neurons. Historically, the notion that neuronal structure predicts function stemmed from classic histological staining and neuronal tracing methods. Recent advances in molecular genetics and imaging technologies have begun to reveal previously unattainable details about patterns of functional circuit connectivity and the subcellular organization of synapses in the living brain. This sophisticated molecular and genetic 'toolbox', coupled with new methods in optical and electron microscopy, provides an expanding array of techniques for probing neural anatomy and function.
Collapse
Affiliation(s)
- Benjamin R. Arenkiel
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
113
|
Profile of David J. Anderson. Interview by Kaspar D. Mossman. Proc Natl Acad Sci U S A 2009; 106:17623-5. [PMID: 19826087 DOI: 10.1073/pnas.0910003106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
114
|
Abstract
Expression of halorhodopsin (NpHR), a light-driven microbial chloride pump, enables optical control of membrane potential and reversible silencing of targeted neurons. We generated transgenic zebrafish expressing enhanced NpHR under control of the Gal4/UAS system. Electrophysiological recordings showed that eNpHR stimulation effectively suppressed spiking of single neurons in vivo. Applying light through thin optic fibers positioned above the head of a semi-restrained zebrafish larva enabled us to target groups of neurons and to simultaneously test the effect of their silencing on behavior. The photostimulated volume of the zebrafish brain could be marked by subsequent photoconversion of co-expressed Kaede or Dendra. These techniques were used to localize swim command circuitry to a small hindbrain region, just rostral to the commissura infima Halleri. The kinetics of the hindbrain-generated swim command was investigated by combined and separate photo-activation of NpHR and Channelrhodopsin-2 (ChR2), a light-gated cation channel, in the same neurons. Together this "optogenetic toolkit" allows loss-of-function and gain-of-function analyses of neural circuitry at high spatial and temporal resolution in a behaving vertebrate.
Collapse
|
115
|
Wehr M, Hostick U, Kyweriga M, Tan A, Weible AP, Wu H, Wu W, Callaway EM, Kentros C. Transgenic silencing of neurons in the mammalian brain by expression of the allatostatin receptor (AlstR). J Neurophysiol 2009; 102:2554-62. [PMID: 19692509 DOI: 10.1152/jn.00480.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian brain is an enormously complex set of circuits composed of interconnected neuronal cell types. The analysis of central neural circuits will be greatly served by the ability to turn off specific neuronal cell types while recording from others in intact brains. Because drug delivery cannot be restricted to specific cell types, this can only be achieved by putting "silencer" transgenes under the control of neuron-specific promoters. Towards this end we have created a line of transgenic mice putting the Drosophila allatostatin (AL) neuropeptide receptor (AlstR) under the control of the tetO element, thus enabling its inducible expression when crossed to tet-transactivator lines. Mammals have no endogenous AL or AlstR, but activation of exogenously expressed AlstR in mammalian neurons leads to membrane hyperpolarization via endogenous G-protein-coupled inward rectifier K(+) channels, making the neurons much less likely to fire action potentials. Here we show that this tetO/AlstR line is capable of broadly expressing AlstR mRNA in principal neurons throughout the forebrain when crossed to a commercially-available transactivator line. We electrophysiologically characterize this cross in hippocampal slices, demonstrating that bath application of AL leads to hyperpolarization of CA1 pyramidal neurons, making them refractory to the induction of action potentials by injected current. Finally, we demonstrate the ability of AL application to silence the sound-evoked spiking responses of auditory cortical neurons in intact brains of AlstR/tetO transgenic mice. When crossed to other transactivator lines expressing in defined neuronal cell types, this AlstR/tetO line should prove a very useful tool for the analysis of intact central neural circuits.
Collapse
Affiliation(s)
- M Wehr
- epartments of Psychology, Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
The influx of Ca(2+) ions through voltage-dependent calcium (Ca(V)) channels links electrical signals to physiological responses in all excitable cells. Not surprisingly, blocking Ca(V) channel activity is a powerful method to regulate the function of excitable cells, and this is exploited for both physiological and therapeutic benefit. Nevertheless, the full potential for Ca(V) channel inhibition is not being realized by currently available small-molecule blockers or second-messenger modulators due to limitations in targeting them either to defined groups of cells in an organism or to distinct subcellular regions within a single cell. Here, we review early efforts to engineer protein molecule blockers of Ca(V) channels to fill this crucial niche. This technology would greatly expand the toolbox available to physiologists studying the biology of excitable cells at the cellular and systems level.
Collapse
Affiliation(s)
- Xianghua Xu
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | |
Collapse
|
117
|
Scharfman HE, McCloskey DP. Postnatal neurogenesis as a therapeutic target in temporal lobe epilepsy. Epilepsy Res 2009; 85:150-61. [PMID: 19369038 PMCID: PMC2713813 DOI: 10.1016/j.eplepsyres.2009.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 02/08/2009] [Accepted: 03/08/2009] [Indexed: 01/30/2023]
Abstract
After it was first identified that seizures increase neurogenesis in the adult brain of laboratory animals, the idea that postnatal neurogenesis may be involved in epilepsy became a topic of widespread interest. Since that time, two perspectives have developed. They primarily address temporal lobe epilepsy (TLE), because the data have either been based on animal models of TLE or patients with intractable TLE. The first perspective is that postnatal neurogenesis contributes to the predisposition for seizures in TLE. This premise is founded in the observations showing that there is a dramatic rise in neurogenesis after many types of insults or injuries which ultimately lead to TLE. As a result of the increase in neurogenesis, several changes in the dentate gyrus occur, and the net effect appears to be an increase in excitability. One of the changes is the formation of a population of granule cells (GCs) that mismigrate, leading to ectopic granule cells in the hilus (hilar EGCs) that exhibit periodic bursts of action potentials, and contribute to recurrent excitatory circuitry. Atypical dendrites also form on a subset of GCs, and project into the hilus (hilar basal dendrites). Hilar basal dendrites appear to preferentially increase the glutamatergic input relative to GABAergic synapses, increasing excitability of the subset of GCs that form hilar basal dendrites. The alternate view is that postnatal neurogenesis is a homeostatic mechanism in epilepsy that maintains normal excitability. This idea is supported by studies showing that some of the new GCs that are born after seizures, and migrate into the correct location, have normal or reduced excitability. Here we suggest that both perspectives may be important when considering a therapeutic strategy. It would seem advantageous to limit the numbers of mismigrating GCs and hilar basal dendrites, but maintain normal neurogenesis because it is potentially homeostatic. Maintaining normal neurogenesis is also important because it has been suggested that a decrease in dentate gyrus neurogenesis contributes to depression. It is challenging to design a strategy that would achieve these goals, and it is also difficult to propose how one could administer such a therapy prophylactically, that is, as an "antiepileptogenic" approach. Another issue to address is how a therapeutic intervention with these goals could be successful if it were administered after chronic seizures develop, when most patients seek therapy. Although difficult, a number of approaches are possible, and technical advances suggest that there are more on the horizon.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, United States.
| | | |
Collapse
|
118
|
Abstract
Neurobiologists have long sought to understand how circuits in the nervous system are organized to generate the precise neural outputs that underlie particular behaviours. The motor circuits in the spinal cord that control locomotion, commonly referred to as central pattern generator networks, provide an experimentally tractable model system for investigating how moderately complex ensembles of neurons generate select motor behaviours. The advent of novel molecular and genetic techniques coupled with recent advances in our knowledge of spinal cord development means that a comprehensive understanding of how the motor circuitry is organized and operates may be within our grasp.
Collapse
Affiliation(s)
- Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
119
|
Abstract
Over recent years, several groundbreaking techniques have been developed that allow for the anatomical description of neurons, and the observation and manipulation of their activity. Combined, these approaches should provide a great leap forward in our understanding of the structure and connectivity of the nervous system and how, as a network of individual neurons, it generates behavior. Zebrafish, given their external development and optical transparency, are an appealing system in which to employ these methods. These traits allow for direct observation of fluorescence in describing anatomy and observing neural activity, and for the manipulation of neurons using a host of light-triggered proteins. Gal4/Upstream Activating Sequence techniques, as they are based on a binary system, allow for the flexible deployment of a range of transgenes in expression patterns of interest. As such, they provide a promising approach for viewing neurons in a variety of ways, each of which can reveal something different about their structure, connectivity, or function. In this study, the author will review recent progress in the development of the Gal4/Upstream Activating Sequence system in zebrafish, feature examples of promising studies to date, and examine how various new technologies can be used in the future to untangle the complex mechanisms by which behavior is generated.
Collapse
Affiliation(s)
- Ethan K Scott
- The University of Queensland, The Queensland Brain Institute, Brisbane, Australia.
| |
Collapse
|
120
|
Abstract
One of the major challenges in the field of neurobiology is to elucidate the molecular machinery that underlies the formation and storage of memories. For many decades, genetic studies in the fruit fly (Drosophila melanogaster) have provided insight into the role of specific genes underlying memory storage. Although these pioneering studies were groundbreaking, a transition to a mammalian system more closely resembling the human brain is critical for the translation of basic research findings into therapeutic strategies in humans. Because the mouse (Mus musculus) shares the complex genomic and neuroanatomical organization of mammals and there is a wealth of molecular tools that are available to manipulate gene function in mice, the mouse has become the primary model for research into the genetic basis of mammalian memory. Another major advantage of mouse research is the ability to examine in vivo electrophysiological processes, such as synaptic plasticity and neuronal firing patterns during behavior (e.g., the analysis of place cell activity). The focus on mouse models for memory research has led to the development of sophisticated behavioral protocols capable of exploring the role of particular genes in distinct phases of learning and memory formation, which is one of the major accomplishments of the past decade. In this chapter, we will give an overview of several state of the art genetic approaches to study gene function in the mouse brain in a spatially and temporally restricted fashion.
Collapse
Affiliation(s)
- Robbert Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
121
|
Chapter 3 Mapping and Manipulating Neural Circuits in the Fly Brain. ADVANCES IN GENETICS 2009; 65:79-143. [DOI: 10.1016/s0065-2660(09)65003-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
122
|
Thompson CL, Pathak SD, Jeromin A, Ng LL, MacPherson CR, Mortrud MT, Cusick A, Riley ZL, Sunkin SM, Bernard A, Puchalski RB, Gage FH, Jones AR, Bajic VB, Hawrylycz MJ, Lein ES. Genomic Anatomy of the Hippocampus. Neuron 2008; 60:1010-21. [DOI: 10.1016/j.neuron.2008.12.008] [Citation(s) in RCA: 304] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/03/2008] [Accepted: 12/08/2008] [Indexed: 11/16/2022]
|
123
|
Abstract
The dorsal striatum, which consists of the caudate and putamen, is the gateway to the basal ganglia. It receives convergent excitatory afferents from cortex and thalamus and forms the origin of the direct and indirect pathways, which are distinct basal ganglia circuits involved in motor control. It is also a major site of activity-dependent synaptic plasticity. Striatal plasticity alters the transfer of information throughout basal ganglia circuits and may represent a key neural substrate for adaptive motor control and procedural memory. Here, we review current understanding of synaptic plasticity in the striatum and its role in the physiology and pathophysiology of basal ganglia function.
Collapse
Affiliation(s)
- Anatol C Kreitzer
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.
| | | |
Collapse
|
124
|
Drenan RM, Grady SR, Whiteaker P, McClure-Begley T, McKinney S, Miwa JM, Bupp S, Heintz N, McIntosh JM, Bencherif M, Marks MJ, Lester HA. In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha 6 nicotinic acetylcholine receptors. Neuron 2008; 60:123-36. [PMID: 18940593 PMCID: PMC2632732 DOI: 10.1016/j.neuron.2008.09.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/06/2008] [Accepted: 09/04/2008] [Indexed: 11/16/2022]
Abstract
Alpha6-containing (alpha6*) nicotinic ACh receptors (nAChRs) are selectively expressed in dopamine (DA) neurons and participate in cholinergic transmission. We generated and studied mice with gain-of-function alpha6* nAChRs, which isolate and amplify cholinergic control of DA transmission. In contrast to gene knockouts or pharmacological blockers, which show necessity, we show that activating alpha6* nAChRs and DA neurons is sufficient to cause locomotor hyperactivity. alpha6(L9'S) mice are hyperactive in their home cage and fail to habituate to a novel environment. Selective activation of alpha6* nAChRs with low doses of nicotine, by stimulating DA but not GABA neurons, exaggerates these phenotypes and produces a hyperdopaminergic state in vivo. Experiments with additional nicotinic drugs show that altering agonist efficacy at alpha6* provides fine tuning of DA release and locomotor responses. alpha6*-specific agonists or antagonists may, by targeting endogenous cholinergic mechanisms in midbrain or striatum, provide a method for manipulating DA transmission in neural disorders.
Collapse
Affiliation(s)
- Ryan M. Drenan
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Sharon R. Grady
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80309
| | - Paul Whiteaker
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80309
| | | | - Sheri McKinney
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Julie M. Miwa
- The Laboratory of Molecular Biology, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021
| | - Sujata Bupp
- The Laboratory of Molecular Biology, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021
| | - Nathaniel Heintz
- The Laboratory of Molecular Biology, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021
| | - J. Michael McIntosh
- Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT 84112
| | - Merouane Bencherif
- Department of Preclinical Research, Targacept Inc., Winston-Salem, NC 27101
| | - Michael J. Marks
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80309
| | - Henry A. Lester
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
125
|
Morozov A. Conditional gene expression and targeting in neuroscience research. ACTA ACUST UNITED AC 2008; Chapter 4:Unit 4.31. [PMID: 18633998 DOI: 10.1002/0471142301.ns0431s44] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recently developed techniques for spatially and temporally controlled genetic manipulations based on regulated homologous recombination and/or transcription are extensively used in brain research. In addition to being important for testing the role of specific proteins in the central nervous system, these techniques allow analysis of brain functions at the neuronal circuit level. This overview discusses principles of conditional inactivation and expression of genes, and their specific applications to studies of the mammalian brain.
Collapse
Affiliation(s)
- Alexei Morozov
- Unit on Behavioral Genetics, Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, Maryland, USA
| |
Collapse
|
126
|
Zhao S, Cunha C, Zhang F, Liu Q, Gloss B, Deisseroth K, Augustine GJ, Feng G. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. BRAIN CELL BIOLOGY 2008; 36:141-54. [PMID: 18931914 PMCID: PMC3057022 DOI: 10.1007/s11068-008-9034-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Revised: 08/30/2008] [Accepted: 09/03/2008] [Indexed: 12/23/2022]
Abstract
The ability to control and manipulate neuronal activity within an intact mammalian brain is of key importance for mapping functional connectivity and for dissecting the neural circuitry underlying behaviors. We have previously generated transgenic mice that express channelrhodopsin-2 for light-induced activation of neurons and mapping of neural circuits. Here we describe transgenic mice that express halorhodopsin (NpHR), a light-driven chloride pump that can be used to silence neuronal activity via light. Using the Thy-1 promoter to target NpHR expression to neurons, we found that neurons in these mice expressed high levels of NpHR-YFP and that illumination of cortical pyramidal neurons expressing NpHR-YFP led to rapid, reversible photoinhibition of action potential firing in these cells. However, NpHR-YFP expression led to the formation of numerous intracellular blebs, which may disrupt neuronal function. Labeling of various subcellular markers indicated that the blebs arise from retention of NpHR-YFP in the endoplasmic reticulum. By improving the signal peptide sequence and adding an ER export signal to NpHR-YFP, we eliminated the formation of blebs and dramatically increased the membrane expression of NpHR-YFP. Thus, the improved version of NpHR should serve as an excellent tool for neuronal silencing in vitro and in vivo.
Collapse
Affiliation(s)
- Shengli Zhao
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
| | - Catarina Cunha
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
- Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Feng Zhang
- Department of Bioengineering, Stanford University, CA 94305, USA
| | - Qun Liu
- Duke Neurotransgenic Laboratory, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
| | - Bernd Gloss
- Duke Neurotransgenic Laboratory, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, CA 94305, USA
| | - George J. Augustine
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
| | - Guoping Feng
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
- Duke Neurotransgenic Laboratory, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
127
|
An essential role for Frizzled5 in neuronal survival in the parafascicular nucleus of the thalamus. J Neurosci 2008; 28:5641-53. [PMID: 18509025 DOI: 10.1523/jneurosci.1056-08.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Frizzled5 (Fz5), a putative Wnt receptor, is expressed in the retina, hypothalamus, and the parafascicular nucleus (PFN) of the thalamus. By constructing Fz5 alleles in which beta-galactosidase replaces Fz5 or in which Cre-mediated recombination replaces Fz5 with alkaline phosphatase, we observe that Fz5 is required continuously and in a cell autonomous manner for the survival of adult PFN neurons, but is not required for proliferation, migration, or axonal growth and targeting of developing PFN neurons. A motor phenotype associated with loss of Fz5 establishes a role for the PFN in sensorimotor coordination. Transcripts coding for Wnt9b, the likely Fz5 ligand in vivo, and beta-catenin, a mediator of canonical Wnt signaling, are both downregulated in the Fz5(-/-) PFN, implying a positive feedback mechanism in which Wnt signaling is required to maintain the expression of Wnt signaling components. These data suggest that defects in Wnt-Frizzled signaling could be the cause of neuronal loss in degenerative CNS diseases.
Collapse
|
128
|
The effects of cutting solutions on the viability of GABAergic interneurons in cerebral cortical slices of adult mice. J Neurosci Methods 2008; 171:118-25. [DOI: 10.1016/j.jneumeth.2008.02.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 02/24/2008] [Accepted: 02/28/2008] [Indexed: 11/21/2022]
|
129
|
Abstract
Imaging and molecular approaches are perfectly suited to young, transparent zebrafish (Danio rerio), where they have allowed novel functional studies of neural circuits and their links to behavior. Here, we review cutting-edge optical and genetic techniques used to dissect neural circuits in vivo and discuss their application to future studies of developing spinal circuits using living zebrafish. We anticipate that these experiments will reveal general principles governing the assembly of neural circuits that control movements.
Collapse
Affiliation(s)
- David L McLean
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
130
|
Arenkiel BR, Klein ME, Davison IG, Katz LC, Ehlers MD. Genetic control of neuronal activity in mice conditionally expressing TRPV1. Nat Methods 2008; 5:299-302. [PMID: 18327266 PMCID: PMC3127246 DOI: 10.1038/nmeth.1190] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 02/01/2008] [Indexed: 11/09/2022]
Abstract
Here we describe a knock-in mouse model for Cre-loxP-based conditional expression of TRPV1 in central nervous system neurons. Expression of Cre recombinase using biolistics, lentivirus or genetic intercrosses triggered heterologous expression of TRPV1 in a cell-specific manner. Application of the TRPV1 ligand capsaicin induced strong inward currents, triggered action potentials and activated stereotyped behaviors, allowing cell type-specific chemical genetic control of neuronal activity in vitro and in vivo.
Collapse
Affiliation(s)
- Benjamin R Arenkiel
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
131
|
Luo L, Callaway EM, Svoboda K. Genetic dissection of neural circuits. Neuron 2008; 57:634-60. [PMID: 18341986 PMCID: PMC2628815 DOI: 10.1016/j.neuron.2008.01.002] [Citation(s) in RCA: 563] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 12/24/2007] [Accepted: 01/01/2008] [Indexed: 11/29/2022]
Abstract
Understanding the principles of information processing in neural circuits requires systematic characterization of the participating cell types and their connections, and the ability to measure and perturb their activity. Genetic approaches promise to bring experimental access to complex neural systems, including genetic stalwarts such as the fly and mouse, but also to nongenetic systems such as primates. Together with anatomical and physiological methods, cell-type-specific expression of protein markers and sensors and transducers will be critical to construct circuit diagrams and to measure the activity of genetically defined neurons. Inactivation and activation of genetically defined cell types will establish causal relationships between activity in specific groups of neurons, circuit function, and animal behavior. Genetic analysis thus promises to reveal the logic of the neural circuits in complex brains that guide behaviors. Here we review progress in the genetic analysis of neural circuits and discuss directions for future research and development.
Collapse
Affiliation(s)
- Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Edward M. Callaway
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karel Svoboda
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA
| |
Collapse
|
132
|
Nakashiba T, Young JZ, McHugh TJ, Buhl DL, Tonegawa S. Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning. Science 2008; 319:1260-4. [DOI: 10.1126/science.1151120] [Citation(s) in RCA: 361] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
133
|
Neves G, Cooke SF, Bliss TVP. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 2008; 9:65-75. [PMID: 18094707 DOI: 10.1038/nrn2303] [Citation(s) in RCA: 835] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two facts about the hippocampus have been common currency among neuroscientists for several decades. First, lesions of the hippocampus in humans prevent the acquisition of new episodic memories; second, activity-dependent synaptic plasticity is a prominent feature of hippocampal synapses. Given this background, the hypothesis that hippocampus-dependent memory is mediated, at least in part, by hippocampal synaptic plasticity has seemed as cogent in theory as it has been difficult to prove in practice. Here we argue that the recent development of transgenic molecular devices will encourage a shift from mechanistic investigations of synaptic plasticity in single neurons towards an analysis of how networks of neurons encode and represent memory, and we suggest ways in which this might be achieved. In the process, the hypothesis that synaptic plasticity is necessary and sufficient for information storage in the brain may finally be validated.
Collapse
Affiliation(s)
- Guilherme Neves
- Division of Neurophysiology, Medical Research Council National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | | | | |
Collapse
|
134
|
Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 2007; 27:14231-8. [PMID: 18160630 PMCID: PMC6673457 DOI: 10.1523/jneurosci.3578-07.2007] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | - Feng Zhang
- Department of Bioengineering
- Department of Chemistry, and
| | | | | | - M. Bret Schneider
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Karl Deisseroth
- Department of Bioengineering
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|
135
|
Tervo DGR, Karpova AY. Rapidly inducible, genetically targeted inactivation of neural and synaptic activity in vivo. Curr Opin Neurobiol 2007; 17:581-6. [PMID: 18054219 PMCID: PMC2699994 DOI: 10.1016/j.conb.2007.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/03/2007] [Accepted: 10/07/2007] [Indexed: 11/22/2022]
Abstract
Inducible and reversible perturbation of the activity of selected neurons in vivo is critical to understanding the dynamics of brain circuits. Several genetically encoded systems for rapid inducible neuronal silencing have been developed in the past few years offering an arsenal of tools for in vivo experiments. Some systems are based on ion-channels or pumps, others on G protein coupled receptors, and yet others on modified presynaptic proteins. Inducers range from light to small molecules to peptides. This diversity results in differences in the various parameters that may determine the applicability of each tool to a particular biological question. Although further development would be beneficial, the current silencing tool kit already provides the ability to make specific perturbations of circuit function in behaving animals.
Collapse
Affiliation(s)
- Dougal Gowanlock Robinson Tervo
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, (516)606-2697,
| | - Alla Y Karpova
- Howard Hughes Medical Institute, Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, (571) 209-4135,
| |
Collapse
|
136
|
Airan RD, Hu E, Vijaykumar R, Roy M, Meltzer LA, Deisseroth K. Integration of light-controlled neuronal firing and fast circuit imaging. Curr Opin Neurobiol 2007; 17:587-92. [PMID: 18093822 PMCID: PMC6699613 DOI: 10.1016/j.conb.2007.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 11/03/2007] [Indexed: 11/17/2022]
Abstract
For understanding normal and pathological circuit function, capitalizing on the full potential of recent advances in fast optical neural circuit control will depend crucially on fast, intact-circuit readout technology. First, millisecond-scale optical control will be best leveraged with simultaneous millisecond-scale optical imaging. Second, both fast circuit control and imaging should be adaptable to intact-circuit preparations from normal and diseased subjects. Here we illustrate integration of fast optical circuit control and fast circuit imaging, review recent work demonstrating utility of applying fast imaging to quantifying activity flow in disease models, and discuss integration of diverse optogenetic and chemical genetic tools that have been developed to precisely control the activity of genetically specified neural populations. Together these neuroengineering advances raise the exciting prospect of determining the role-specific cell types play in modulating neural activity flow in neuropsychiatric disease.
Collapse
Affiliation(s)
- Raag D. Airan
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Elbert Hu
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Ragu Vijaykumar
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Madhuri Roy
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Leslie A. Meltzer
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Karl Deisseroth
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| |
Collapse
|
137
|
Luan H, White BH. Combinatorial methods for refined neuronal gene targeting. Curr Opin Neurobiol 2007; 17:572-80. [DOI: 10.1016/j.conb.2007.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/01/2007] [Accepted: 10/04/2007] [Indexed: 01/13/2023]
|
138
|
Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 2007; 8:577-81. [PMID: 17643087 DOI: 10.1038/nrn2192] [Citation(s) in RCA: 438] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropsychiatric disorders, which arise from a combination of genetic, epigenetic and environmental influences, epitomize the challenges faced in understanding the mammalian brain. Elucidation and treatment of these diseases will benefit from understanding how specific brain cell types are interconnected and signal in neural circuits. Newly developed neuroengineering tools based on two microbial opsins, channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), enable the investigation of neural circuit function with cell-type-specific, temporally accurate and reversible neuromodulation. These tools could lead to the development of precise neuromodulation technologies for animal models of disease and clinical neuropsychiatry.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Bioengineering, W083 Clark Center, 318 Campus Drive West, Stanford University, California, USA
| | | | | | | | | |
Collapse
|