101
|
Tomas-Roca L, Tsaalbi-Shtylik A, Jansen JG, Singh MK, Epstein JA, Altunoglu U, Verzijl H, Soria L, van Beusekom E, Roscioli T, Iqbal Z, Gilissen C, Hoischen A, de Brouwer APM, Erasmus C, Schubert D, Brunner H, Pérez Aytés A, Marin F, Aroca P, Kayserili H, Carta A, de Wind N, Padberg GW, van Bokhoven H. De novo mutations in PLXND1 and REV3L cause Möbius syndrome. Nat Commun 2015; 6:7199. [PMID: 26068067 PMCID: PMC4648025 DOI: 10.1038/ncomms8199] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 04/17/2015] [Indexed: 11/17/2022] Open
Abstract
Möbius syndrome (MBS) is a neurological disorder that is characterized by paralysis of the facial nerves and variable other congenital anomalies. The aetiology of this syndrome has been enigmatic since the initial descriptions by von Graefe in 1880 and by Möbius in 1888, and it has been debated for decades whether MBS has a genetic or a non-genetic aetiology. Here, we report de novo mutations affecting two genes, PLXND1 and REV3L in MBS patients. PLXND1 and REV3L represent totally unrelated pathways involved in hindbrain development: neural migration and DNA translesion synthesis, essential for the replication of endogenously damaged DNA, respectively. Interestingly, analysis of Plxnd1 and Rev3l mutant mice shows that disruption of these separate pathways converge at the facial branchiomotor nucleus, affecting either motoneuron migration or proliferation. The finding that PLXND1 and REV3L mutations are responsible for a proportion of MBS patients suggests that de novo mutations in other genes might account for other MBS patients. lt has been debated for decades if there is a genetic aetiology underlying Möbius syndrome, a neurological disorder characterized by facial paralysis. Here Tomas-Roca et al. use exome sequencing and identify de novo mutations in PLXND1 and REV3L, representing converging pathways in hindbrain development.
Collapse
Affiliation(s)
- Laura Tomas-Roca
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands.,Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100 Espinardo (Murcia), Spain
| | - Anastasia Tsaalbi-Shtylik
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Manvendra K Singh
- Department of Cell and Developmental Biology, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, 9-105 SCTR, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA.,Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, National Heart Center Singapore, 8 College Road, Singapore 169857, Singapore
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, 9-105 SCTR, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Umut Altunoglu
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Millet Caddesi, Capa, Fatih 34093, Turkey
| | - Harriette Verzijl
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Laura Soria
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Ellen van Beusekom
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Tony Roscioli
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands.,The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | - Zafar Iqbal
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Arjan P M de Brouwer
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Corrie Erasmus
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Han Brunner
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center, PO Box 5800, Maastricht 6200AZ, The Netherlands
| | - Antonio Pérez Aytés
- Dysmorphology and Reproductive Genetics Unit, Moebius Syndrome Foundation of Spain, University Hospital LA FE, Valencia 46540, Spain
| | - Faustino Marin
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100 Espinardo (Murcia), Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100 Espinardo (Murcia), Spain
| | - Hülya Kayserili
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Millet Caddesi, Capa, Fatih 34093, Turkey
| | - Arturo Carta
- Ophthalmology Unit, Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, via Gramsci 14, 43126, Parma, Italy
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - George W Padberg
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
102
|
Deloulme JC, Gory-Fauré S, Mauconduit F, Chauvet S, Jonckheere J, Boulan B, Mire E, Xue J, Jany M, Maucler C, Deparis AA, Montigon O, Daoust A, Barbier EL, Bosc C, Deglon N, Brocard J, Denarier E, Le Brun I, Pernet-Gallay K, Vilgrain I, Robinson PJ, Lahrech H, Mann F, Andrieux A. Microtubule-associated protein 6 mediates neuronal connectivity through Semaphorin 3E-dependent signalling for axonal growth. Nat Commun 2015; 6:7246. [PMID: 26037503 PMCID: PMC4468860 DOI: 10.1038/ncomms8246] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding. We find that MAP6 deletion disrupts brain connectivity and is associated with a lack of post-commissural fornix fibres. MAP6 contributes to fornix development by regulating axonal elongation induced by Semaphorin 3E. We show that MAP6 acts downstream of receptor activation through a mechanism that requires a proline-rich domain distinct from its microtubule-stabilizing domains. We also show that MAP6 directly binds to SH3 domain proteins known to be involved in neurite extension and semaphorin function. We conclude that MAP6 is critical to interface guidance molecules with intracellular signalling effectors during the development of cerebral axon tracts. Loss of the structural microtubule-associated protein 6 (MAP6) leads to neuronal differentiation defects that are independent of MAP6's microtubule-binding properties. Here the authors establish a functional link between MAP6 and Semaphorin 3E signalling for proper formation of the fornix of the brain.
Collapse
Affiliation(s)
- Jean-Christophe Deloulme
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Sylvie Gory-Fauré
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Franck Mauconduit
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Sophie Chauvet
- Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | - Julie Jonckheere
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Benoit Boulan
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Erik Mire
- Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | - Jing Xue
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Wentworthville, New South Wales 2145, Australia
| | - Marion Jany
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Caroline Maucler
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Agathe A Deparis
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Olivier Montigon
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France [3] Centre Hospitalier Universitaire de Grenoble, IRMaGe, 38043 Grenoble, France [4] CNRS, UMS 3552, 38042 Grenoble, France
| | - Alexia Daoust
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Emmanuel L Barbier
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Christophe Bosc
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Nicole Deglon
- 1] Lausanne University Hospital (CHUV), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), 1011 Lausanne, Switzerland [2] Lausanne University Hospital (CHUV), Neuroscience Research Center (CRN), 1011 Lausanne, Switzerland
| | - Jacques Brocard
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Eric Denarier
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France [3] CEA, iRTSV, F-38000 Grenoble, France
| | - Isabelle Le Brun
- 1] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France [2] INSERM, U1036, 38054 Grenoble, France [3] CEA, iRTSV, F-38000 Grenoble, France
| | - Karin Pernet-Gallay
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Isabelle Vilgrain
- 1] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France [2] INSERM, U1036, 38054 Grenoble, France [3] INSERM, U1036, 38054 Grenoble, France
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Wentworthville, New South Wales 2145, Australia
| | - Hana Lahrech
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France [3] CEA, LETI, CLINATEC, MINATEC Campus, F-38054 Grenoble, France
| | - Fanny Mann
- Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | - Annie Andrieux
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France [3] CEA, iRTSV, F-38000 Grenoble, France
| |
Collapse
|
103
|
Cariboni A, André V, Chauvet S, Cassatella D, Davidson K, Caramello A, Fantin A, Bouloux P, Mann F, Ruhrberg C. Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome. J Clin Invest 2015; 125:2413-28. [PMID: 25985275 DOI: 10.1172/jci78448] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 04/02/2015] [Indexed: 01/09/2023] Open
Abstract
Individuals with an inherited deficiency in gonadotropin-releasing hormone (GnRH) have impaired sexual reproduction. Previous genetic linkage studies and sequencing of plausible gene candidates have identified mutations associated with inherited GnRH deficiency, but the small number of affected families and limited success in validating candidates have impeded genetic diagnoses for most patients. Using a combination of exome sequencing and computational modeling, we have identified a shared point mutation in semaphorin 3E (SEMA3E) in 2 brothers with Kallmann syndrome (KS), which causes inherited GnRH deficiency. Recombinant wild-type SEMA3E protected maturing GnRH neurons from cell death by triggering a plexin D1-dependent (PLXND1-dependent) activation of PI3K-mediated survival signaling. In contrast, recombinant SEMA3E carrying the KS-associated mutation did not protect GnRH neurons from death. In murine models, lack of either SEMA3E or PLXND1 increased apoptosis of GnRH neurons in the developing brain, reducing innervation of the adult median eminence by GnRH-positive neurites. GnRH neuron deficiency in male mice was accompanied by impaired testes growth, a characteristic feature of KS. Together, these results identify SEMA3E as an essential gene for GnRH neuron development, uncover a neurotrophic function for SEMA3E in the developing brain, and elucidate SEMA3E/PLXND1/PI3K signaling as a mechanism that prevents GnRH neuron deficiency.
Collapse
|
104
|
Wang F, Eagleson KL, Levitt P. Positive regulation of neocortical synapse formation by the Plexin-D1 receptor. Brain Res 2015; 1616:157-165. [PMID: 25976775 DOI: 10.1016/j.brainres.2015.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/06/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022]
Abstract
Synapse formation is a critical process during neural development and is coordinated by multiple signals. Several lines of evidence implicate the Plexin-D1 receptor in synaptogenesis. Studies have shown that Plexin-D1 signaling is involved in synaptic specificity and synapse formation in spinal cord and striatum. Expression of Plexin-D1 and its principal neural ligand, Sema3E, by neocortical neurons is temporally and spatially regulated, reaching the highest level at the time of synaptogenesis in mice. In this study, we examined the function of Plexin-D1 in synapse formation by primary neocortical neurons in vitro. A novel, automated image analysis method was developed to quantitate synapse formation under baseline conditions and with manipulation of Plexin-D1 levels. shRNA and overexpression manipulations caused opposite changes, with reduction resulting in less synapse formation, an effect distinct from that reported in the striatum. The data indicate that Plexin-D1 operates in a cell context-specific fashion, mediating different synaptogenic outcomes depending upon neuron type.
Collapse
Affiliation(s)
- F Wang
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - K L Eagleson
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - P Levitt
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
105
|
Rama N, Dubrac A, Mathivet T, Ní Chárthaigh RA, Genet G, Cristofaro B, Pibouin-Fragner L, Ma L, Eichmann A, Chédotal A. Slit2 signaling through Robo1 and Robo2 is required for retinal neovascularization. Nat Med 2015; 21:483-91. [PMID: 25894826 PMCID: PMC4819398 DOI: 10.1038/nm.3849] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/25/2015] [Indexed: 02/07/2023]
Abstract
Ocular neovascular diseases are a leading cause of blindness. Vascular endothelial growth factor (VEGF) blockade improves vision, but not all individuals respond to anti-VEGF treatment, making additional means to prevent neovascularization necessary. Slit-family proteins (Slits) are ligands of Roundabout (Robo) receptors that repel developing axons in the nervous system. Robo1 expression is altered in ocular neovascular diseases, and previous in vitro studies have reported both pro- and anti-angiogenic effects of Slits. However, genetic evidence supporting a role for Slits in ocular neovascularization is lacking. Here we generated conditional knockout mice deficient in various Slit and Robo proteins and found that Slit2 potently and selectively promoted angiogenesis via Robo1 and Robo2 in mouse postnatal retina and in a model of ocular neovascular disease. Mechanistically, Slit2 acting through Robo1 and Robo2 promoted the migration of endothelial cells. These receptors are required for both Slit2- and VEGF-induced Rac1 activation and lamellipodia formation. Thus, Slit2 blockade could potentially be used therapeutically to inhibit angiogenesis in individuals with ocular neovascular disease.
Collapse
Affiliation(s)
- Nicolas Rama
- 1] INSERM UMR S968, Institut de la Vision, Paris, France. [2] Université Pierre et Marie Curie, Sorbonne Universités, Paris, France. [3] UMR 7210, CNRS, Paris, France
| | - Alexandre Dubrac
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas Mathivet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
| | - Róisín-Ana Ní Chárthaigh
- 1] INSERM UMR S968, Institut de la Vision, Paris, France. [2] Université Pierre et Marie Curie, Sorbonne Universités, Paris, France. [3] UMR 7210, CNRS, Paris, France
| | - Gael Genet
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brunella Cristofaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
| | | | - Le Ma
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anne Eichmann
- 1] Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France. [3] Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alain Chédotal
- 1] INSERM UMR S968, Institut de la Vision, Paris, France. [2] Université Pierre et Marie Curie, Sorbonne Universités, Paris, France. [3] UMR 7210, CNRS, Paris, France
| |
Collapse
|
106
|
Modeling transmembrane domain dimers/trimers of plexin receptors: implications for mechanisms of signal transmission across the membrane. PLoS One 2015; 10:e0121513. [PMID: 25837709 PMCID: PMC4383379 DOI: 10.1371/journal.pone.0121513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/03/2015] [Indexed: 01/01/2023] Open
Abstract
Single-pass transmembrane (TM) receptors transmit signals across lipid bilayers by helix association or by configurational changes within preformed dimers. The structure determination for such TM regions is challenging and has mostly been accomplished by NMR spectroscopy. Recently, the computational prediction of TM dimer structures is becoming recognized for providing models, including alternate conformational states, which are important for receptor regulation. Here we pursued a strategy to predict helix oligomers that is based on packing considerations (using the PREDDIMER webserver) and is followed by a refinement of structures, utilizing microsecond all-atom molecular dynamics simulations. We applied this method to plexin TM receptors, a family of 9 human proteins, involved in the regulation of cell guidance and motility. The predicted models show that, overall, the preferences identified by PREDDIMER are preserved in the unrestrained simulations and that TM structures are likely to be diverse across the plexin family. Plexin-B1 and -B3 TM helices are regular and tend to associate, whereas plexin-A1, -A2, -A3, -A4, -C1 and -D1 contain sequence elements, such as poly-Glycine or aromatic residues that distort helix conformation and association. Plexin-B2 does not form stable dimers due to the presence of TM prolines. No experimental structural information on the TM region is available for these proteins, except for plexin-C1 dimeric and plexin-B1 - trimeric structures inferred from X-ray crystal structures of the intracellular regions. Plexin-B1 TM trimers utilize Ser and Thr sidechains for interhelical contacts. We also modeled the juxta-membrane (JM) region of plexin-C1 and plexin-B1 and show that it synergizes with the TM structures. The structure and dynamics of the JM region and TM-JM junction provide determinants for the distance and distribution of the intracellular domains, and for their binding partners relative to the membrane. The structures suggest experimental tests and will be useful for the interpretation of future studies.
Collapse
|
107
|
Helmbrecht MS, Soellner H, Truckenbrodt AML, Sundermeier J, Cohrs C, Hans W, de Angelis MH, Feuchtinger A, Aichler M, Fouad K, Huber AB. Loss of Npn1 from motor neurons causes postnatal deficits independent from Sema3A signaling. Dev Biol 2014; 399:2-14. [PMID: 25512301 DOI: 10.1016/j.ydbio.2014.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/20/2022]
Abstract
The correct wiring of neuronal circuits is of crucial importance for the function of the vertebrate nervous system. Guidance cues like the neuropilin receptors (Npn) and their ligands, the semaphorins (Sema) provide a tight spatiotemporal control of sensory and motor axon growth and guidance. Among this family of guidance partners the Sema3A-Npn1 interaction has been shown to be of great importance, since defective signaling leads to wiring deficits and defasciculation. For the embryonic stage these defects have been well described, however, also after birth the organism can adapt to new challenges by compensational mechanisms. Therefore, we used the mouse lines Olig2-Cre;Npn1(cond) and Npn1(Sema-) to investigate how postnatal organisms cope with the loss of Npn1 selectively from motor neurons or a systemic dysfunctional Sema3A-Npn1 signaling in the entire organism, respectively. While in Olig2-Cre(+);Npn1(cond-/-) mice clear anatomical deficits in paw posturing, bone structure, as well as muscle and nerve composition became evident, Npn1(Sema-) mutants appeared anatomically normal. Furthermore, Olig2-Cre(+);Npn1(cond) mutants revealed a dysfunctional extensor muscle innervation after single-train stimulation of the N.radial. Interestingly, these mice did not show obvious deficits in voluntary locomotion, however, skilled motor function was affected. In contrast, Npn1(Sema-) mutants were less affected in all behavioral tests and able to improve their performance over time. Our data suggest that loss of Sema3A-Npn1 signaling is not the only cause for the observed deficits in Olig2-Cre(+);Npn1(cond-/-) mice and that additional, yet unknown binding partners for Npn1 may be involved that allow Npn1(Sema-) mutants to compensate for their developmental deficits.
Collapse
Affiliation(s)
- Michaela S Helmbrecht
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.
| | - Heidi Soellner
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Anna M L Truckenbrodt
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Julia Sundermeier
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Christian Cohrs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; DFG-Research Center for Regenerative Therapies Dresden, Technische Universität and Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Germany
| | - Wolfgang Hans
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), Ingostädter Landstr. 1, 85764 Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Insititute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Insititute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Karim Fouad
- Faculty of Rehabilitation Medicine and Centre for Neuroscience, University of Alberta, Canada
| | - Andrea B Huber
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
108
|
Abstract
Semaphorins are secreted and membrane-associated proteins that regulate many different developmental processes, including neural circuit assembly, bone formation and angiogenesis. Trans and cis interactions between semaphorins and their multimeric receptors trigger intracellular signal transduction networks that regulate cytoskeletal dynamics and influence cell shape, differentiation, motility and survival. Here and in the accompanying poster we provide an overview of the molecular biology of semaphorin signalling within the context of specific cell and developmental processes, highlighting the mechanisms that act to fine-tune, diversify and spatiotemporally control the effects of semaphorins.
Collapse
Affiliation(s)
- Bart C. Jongbloets
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht, 3451 PM Utrecht, The Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht, 3451 PM Utrecht, The Netherlands
| |
Collapse
|
109
|
Plasticity versus specificity in RTK signalling modalities for distinct biological outcomes in motor neurons. BMC Biol 2014; 12:56. [PMID: 25124859 PMCID: PMC4169644 DOI: 10.1186/s12915-014-0056-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple growth factors are known to control several aspects of neuronal biology, consecutively acting as morphogens to diversify neuronal fates, as guidance cues for axonal growth, and as modulators of survival or death to regulate neuronal numbers. The multiplicity of neuronal types is permitted by the combinatorial usage of growth factor receptors, each of which is expressed in distinct and overlapping subsets of neurons, and by the multitasking role of growth factor receptors, which recruit multiple signalling cascades differentially required for distinct biological outcomes. We have explored signalling robustness in cells where a given receptor tyrosine kinase (RTK) elicits qualitatively distinct outcomes. As the HGF/Met system regulates several biological responses in motor neurons (MN) during neuromuscular development, we have investigated the signalling modalities through which the HGF/Met system impacts on MN biology, and the degree of robustness of each of these functions, when challenged with substitutions of signalling pathways. RESULTS Using a set of mouse lines carrying signalling mutations that change the Met phosphotyrosine binding preferences, we have asked whether distinct functions of Met in several MN subtypes require specific signalling pathways, and to which extent signalling plasticity allows a pleiotropic system to exert distinct developmental outcomes. The differential ability of signalling mutants to promote muscle migration versus axonal growth allowed us to uncouple an indirect effect of HGF/Met signalling on nerve growth through the regulation of muscle size from a direct regulation of motor growth via the PI3 kinase (PI3K), but not Src kinase, pathway. Furthermore, we found that HGF/Met-triggered expansion of Pea3 expression domain in the spinal cord can be accomplished through several alternative signalling cascades, differentially sensitive to the Pea3 dosage. Finally, we show that the regulation of MN survival by HGF/Met can equally be achieved in vitro and in vivo by alternative signalling cascades involving either PI3K-Akt or Src and Mek pathways. CONCLUSIONS Our findings distinguish MN survival and fate specification, as RTK-triggered responses allowing substitutions of the downstream signalling routes, from nerve growth patterning, which depends on a selective, non-substitutable pathway.
Collapse
|
110
|
Sema3E/PlexinD1 regulates the migration of hem-derived Cajal-Retzius cells in developing cerebral cortex. Nat Commun 2014; 5:4265. [PMID: 24969029 DOI: 10.1038/ncomms5265] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/31/2014] [Indexed: 02/06/2023] Open
Abstract
During the development of the cerebral cortex, Cajal-Retzius (CR) cells settle in the preplate and coordinate the precise growth of the neocortex. Indeed, CR cells migrate tangentially from specific proliferative regions of the telencephalon (for example, the cortical hem (CH)) to populate the entire cortical surface. This is a very finely tuned process regulated by an emerging number of factors that has been sequentially revealed in recent years. However, the putative participation of one of the major families of axon guidance molecules in this process, the Semaphorins, was not explored. Here we show that Semaphorin-3E (Sema3E) is a natural negative regulator of the migration of PlexinD1-positive CR cells originating in the CH. Our results also indicate that Sema3E/PlexinD1 signalling controls the motogenic potential of CR cells in vitro and in vivo. Indeed, absence of Sema3E/PlexinD1 signalling increased the migratory properties of CR cells. This modulation implies negative effects on CXCL12/CXCR4 signalling and increased ADF/Cofilin activity.
Collapse
|
111
|
Tata A, Stoppel DC, Hong S, Ben-Zvi A, Xie T, Gu C. An image-based RNAi screen identifies SH3BP1 as a key effector of Semaphorin 3E-PlexinD1 signaling. ACTA ACUST UNITED AC 2014; 205:573-90. [PMID: 24841563 PMCID: PMC4033773 DOI: 10.1083/jcb.201309004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular signals have to be precisely interpreted intracellularly and translated into diverse cellular behaviors often mediated by cytoskeletal changes. Semaphorins are one of the largest families of guidance cues and play a critical role in many systems. However, how different cell types translate extracellular semaphorin binding into intracellular signaling remains unclear. Here we developed and performed a novel image-based genome-wide functional RNAi screen for downstream signaling molecules that convert the interaction between Semaphorin 3E (Sema3E) and PlexinD1 into cellular behaviors. One of the genes identified in this screen is a RhoGAP protein, SH3-domain binding protein 1 (SH3BP1). We demonstrate that SH3BP1 mediates Sema3E-induced cell collapse through interaction with PlexinD1 and regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1) activity. The identification and characterization of SH3BP1 as a novel downstream effector of Sema3E-PlexinD1 provides an explanation for how extracellular signals are translated into cytoskeletal changes and unique cell behavior, but also lays the foundation for characterizing other genes identified from our screen to obtain a more complete picture of plexin signaling.
Collapse
Affiliation(s)
- Aleksandra Tata
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - David C Stoppel
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Shangyu Hong
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Ayal Ben-Zvi
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Tiao Xie
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Chenghua Gu
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| |
Collapse
|
112
|
Aghajanian H, Choi C, Ho VC, Gupta M, Singh MK, Epstein JA. Semaphorin 3d and semaphorin 3e direct endothelial motility through distinct molecular signaling pathways. J Biol Chem 2014; 289:17971-9. [PMID: 24825896 DOI: 10.1074/jbc.m113.544833] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Class 3 semaphorins were initially described as axonal growth cone guidance molecules that signal through plexin and neuropilin coreceptors and since then have been established to be regulators of vascular development. Semaphorin 3e (Sema3e) has been shown previously to repel endothelial cells and is the only class 3 semaphorin known to be capable of signaling via a plexin receptor without a neuropilin coreceptor. Sema3e signals through plexin D1 (Plxnd1) to regulate vascular patterning by modulating the cytoskeleton and focal adhesion structures. We showed recently that semaphorin 3d (Sema3d) mediates endothelial cell repulsion and pulmonary vein patterning during embryogenesis. Here we show that Sema3d and Sema3e affect human umbilical vein endothelial cells similarly but through distinct molecular signaling pathways. Time-lapse imaging studies show that both Sema3d and Sema3e can inhibit cell motility and migration, and tube formation assays indicate that both can impede tubulogenesis. Endothelial cells incubated with either Sema3d or Sema3e demonstrate a loss of actin stress fibers and focal adhesions. However, the addition of neuropilin 1 (Nrp1)-blocking antibody or siRNA knockdown of Nrp1 inhibits Sema3d-mediated, but not Sema3e-mediated, cytoskeletal reorganization, and siRNA knockdown of Nrp1 abrogates Sema3d-mediated, but not Sema3e-mediated, inhibition of tubulogenesis. On the other hand, endothelial cells deficient in Plxnd1 are resistant to endothelial repulsion mediated by Sema3e but not Sema3d. Unlike Sema3e, Sema3d incubation results in phosphorylation of Akt in human umbilical vein endothelial cells, and inhibition of the PI3K/Akt pathway blocks the endothelial guidance and cytoskeletal reorganization functions of Sema3d but not Sema3e.
Collapse
Affiliation(s)
- Haig Aghajanian
- From the Department of Cell and Developmental Biology and the Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Connie Choi
- From the Department of Cell and Developmental Biology and the Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Vivienne C Ho
- From the Department of Cell and Developmental Biology and the Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mudit Gupta
- From the Department of Cell and Developmental Biology and the Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Manvendra K Singh
- From the Department of Cell and Developmental Biology and the Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jonathan A Epstein
- From the Department of Cell and Developmental Biology and the Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
113
|
Otsmane B, Moumen A, Aebischer J, Coque E, Sar C, Sunyach C, Salsac C, Valmier J, Salinas S, Bowerman M, Raoul C. Somatic and axonal LIGHT signaling elicit degenerative and regenerative responses in motoneurons, respectively. EMBO Rep 2014; 15:540-7. [PMID: 24668263 DOI: 10.1002/embr.201337948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A receptor-ligand interaction can evoke a broad range of biological activities in different cell types depending on receptor identity and cell type-specific post-receptor signaling intermediates. Here, we show that the TNF family member LIGHT, known to act as a death-triggering factor in motoneurons through LT-βR, can also promote axon outgrowth and branching in motoneurons through the same receptor. LIGHT-induced axonal elongation and branching require ERK and caspase-9 pathways. This distinct response involves a compartment-specific activation of LIGHT signals, with somatic activation-inducing death, while axonal stimulation promotes axon elongation and branching in motoneurons. Following peripheral nerve damage, LIGHT increases at the lesion site through expression by invading B lymphocytes, and genetic deletion of Light significantly delays functional recovery. We propose that a central and peripheral activation of the LIGHT pathway elicits different functional responses in motoneurons.
Collapse
Affiliation(s)
- Belkacem Otsmane
- The Mediterranean Institute of Neurobiology, Inmed, Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Frei JA, Stoeckli ET. SynCAMs extend their functions beyond the synapse. Eur J Neurosci 2014; 39:1752-60. [DOI: 10.1111/ejn.12544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Jeannine A. Frei
- Institute of Molecular Life Sciences and Neuroscience Center Zurich; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences and Neuroscience Center Zurich; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
115
|
Mlechkovich G, Peng SS, Shacham V, Martinez E, Gokhman I, Minis A, Tran TS, Yaron A. Distinct cytoplasmic domains in Plexin-A4 mediate diverse responses to semaphorin 3A in developing mammalian neurons. Sci Signal 2014; 7:ra24. [PMID: 24619647 DOI: 10.1126/scisignal.2004734] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Guidance receptor signaling is crucial for neural circuit formation and elicits diverse cellular events in specific neurons. We found that signaling from the guidance cue semaphorin 3A diverged through distinct cytoplasmic domains in its receptor Plexin-A4 to promote disparate cellular behavior in different neuronal cell types. Plexin-A4 has three main cytoplasmic domains--C1, Hinge/RBD, and C2--and interacts with family members of the Rho guanine nucleotide exchange factor FARP proteins. We show that growth cone collapse occurred in Plexin-A4-deficient dorsal root ganglion sensory neurons reconstituted with Plexin-A4 containing either the Hinge/RBD or C2 domain, whereas both of the Hinge/RBD and C1 domains were required for dendritic arborization in cortical neurons. Although knockdown studies indicated that both the collapse and arborization responses involved FARP2, mutations in the cytoplasmic region of Plexin-A4 that reduced its interaction with FARP2 strongly inhibited semaphorin 3A-induced dendritic branching but not growth cone collapse, suggesting that different degrees of interaction are required for the two responses or that developing axons have an indirect path to FARP2 activation. Thus, our study provided insights into the multifunctionality of guidance receptors, in particular showing that the semaphorin 3A signal diverges through specific functions of the modular domains of Plexin-A4.
Collapse
Affiliation(s)
- Guy Mlechkovich
- 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Mammalian plexins constitute a family of transmembrane receptors for semaphorins and represent critical regulators of various processes during development of the nervous, cardiovascular, skeletal, and renal system. In vitro studies have shown that plexins exert their effects via an intracellular R-Ras/M-Ras GTPase-activating protein (GAP) domain or by activation of RhoA through interaction with Rho guanine nucleotide exchange factor proteins. However, which of these signaling pathways are relevant for plexin functions in vivo is largely unknown. Using an allelic series of transgenic mice, we show that the GAP domain of plexins constitutes their key signaling module during development. Mice in which endogenous Plexin-B2 or Plexin-D1 is replaced by transgenic versions harboring mutations in the GAP domain recapitulate the phenotypes of the respective null mutants in the developing nervous, vascular, and skeletal system. We further provide genetic evidence that, unexpectedly, the GAP domain-mediated developmental functions of plexins are not brought about via R-Ras and M-Ras inactivation. In contrast to the GAP domain mutants, Plexin-B2 transgenic mice defective in Rho guanine nucleotide exchange factor binding are viable and fertile but exhibit abnormal development of the liver vasculature. Our genetic analyses uncover the in vivo context-dependence and functional specificity of individual plexin-mediated signaling pathways during development.
Collapse
|
117
|
Schindler AJ, Sherwood DR. Morphogenesis of the caenorhabditis elegans vulva. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 2:75-95. [PMID: 23418408 DOI: 10.1002/wdev.87] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding how cells move, change shape, and alter cellular behaviors to form organs, a process termed morphogenesis, is one of the great challenges of developmental biology. Formation of the Caenorhabditis elegans vulva is a powerful, simple, and experimentally accessible model for elucidating how morphogenetic processes produce an organ. In the first step of vulval development, three epithelial precursor cells divide and differentiate to generate 22 cells of 7 different vulval subtypes. The 22 vulval cells then rearrange from a linear array into a tube, with each of the seven cell types undergoing characteristic morphogenetic behaviors that construct the vulva. Vulval morphogenesis entails many of the same cellular activities that underlie organogenesis and tissue formation across species, including invagination, lumen formation, oriented cell divisions, cell–cell adhesion, cell migration, cell fusion, extracellular matrix remodeling, and cell invasion. Studies of vulval development have led to pioneering discoveries in a number of these processes and are beginning to bridge the gap between the pathways that specify cells and their connections to morphogenetic behaviors. The simplicity of the vulva and the experimental tools available in C. elegans will continue to make vulval morphogenesis a powerful paradigm to further our understanding of the largely mysterious mechanisms that build tissues and organs.
Collapse
|
118
|
Oh WJ, Gu C. Establishment of neurovascular congruency in the mouse whisker system by an independent patterning mechanism. Neuron 2014; 80:458-69. [PMID: 24139045 DOI: 10.1016/j.neuron.2013.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2013] [Indexed: 01/06/2023]
Abstract
Nerves and vessels often run parallel to one another, a phenomenon that reflects their functional interdependency. Previous studies have suggested that neurovascular congruency in planar tissues such as skin is established through a "one-patterns-the-other" model, in which either the nervous system or the vascular system precedes developmentally and then instructs the other system to form using its established architecture as a template. Here, we find that, in tissues with complex three-dimensional structures such as the mouse whisker system, neurovascular congruency does not follow the previous model but rather is established via a mechanism in which nerves and vessels are patterned independently. Given the diversity of neurovascular structures in different tissues, guidance signals emanating from a central organizer in the specific target tissue may act as an important mechanism to establish neurovascular congruency patterns that facilitate unique target tissue function.
Collapse
Affiliation(s)
- Won-Jong Oh
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
119
|
Yammine M, Saade M, Chauvet S, Nguyen C. Spatial gene's (Tbata) implication in neurite outgrowth and dendrite patterning in hippocampal neurons. Mol Cell Neurosci 2013; 59:1-9. [PMID: 24361585 DOI: 10.1016/j.mcn.2013.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 01/12/2023] Open
Abstract
The unique architecture of neurons requires the establishment and maintenance of polarity, which relies in part on microtubule-based kinesin motor transport to deliver essential cargo into axons and dendrites. In developing neurons, kinesin trafficking is essential for delivering organelles and molecules that are crucial for elongation and guidance of the growing axonal and dendritic termini. In mature neurons, kinesin cargo delivery is essential for neuron dynamic physiological functions which are critical in brain development. In this work, we followed Spatial (Tbata) gene expression during primary hippocampal neuron development and showed that it is highly expressed during dendrite formation. Spatial protein exhibits a somatodendritic distribution and we show that the kinesin motor Kif17, among other dendrite specific kinesins, is crucial for Spatial localization to dendrites of hippocampal neurons. Furthermore, Spatial down regulation in primary hippocampal cells revealed a role for Spatial in maintaining neurons' polarity by ensuring proper neurite outgrowth. This polarity is specified by intrinsic and extracellular signals that allow neurons to determine axon and dendrite fate during development. Neurotrophic factors, such as the Nerve Growth Factor (NGF), are candidate extracellular polarity-regulating cues which are proposed to accelerate neuronal polarization by enhancing dendrite growth. Here, we show that NGF treatment increases Spatial expression in hippocampal neurons. Altogether, these data suggest that Spatial, in response to NGF and through its transport by Kif17, is crucial for neuronal polarization and can be a key regulator of neurite outgrowth.
Collapse
Affiliation(s)
- Miriam Yammine
- Aix-Marseille Université, Inserm UMR 1090, TAGC, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| | - Murielle Saade
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, C/Baldiri i Reixac, Barcelona, Spain
| | - Sophie Chauvet
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| | - Catherine Nguyen
- Aix-Marseille Université, Inserm UMR 1090, TAGC, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France.
| |
Collapse
|
120
|
Dual role for Islet-1 in promoting striatonigral and repressing striatopallidal genetic programs to specify striatonigral cell identity. Proc Natl Acad Sci U S A 2013; 111:E168-77. [PMID: 24351932 DOI: 10.1073/pnas.1319138111] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Striatal projection neurons comprise two populations of striatonigral and striatopallidal neurons. These two neuronal populations play distinct roles in controlling movement-related functions in the basal ganglia circuits. An important issue is how striatal progenitors are developmentally specified into these two distinct neuronal populations. In the present study, we characterized the function of Islet-1 (Isl1), a LIM-homeodomain transcription factor, in striatal development. Genetic fate mapping showed that Isl1(+) progeny specifically developed into a subpopulation of striatonigral neurons that transiently expressed Isl1. In Nestin-Cre;Isl1(f/f) KO mouse brain, differentiation of striatonigral neurons was defective, as evidenced by decreased expression of striatonigral-enriched genes, including substance P, prodynorphin, solute carrier family 35, member D3 (Slc35d3), and PlexinD1. Striatonigral axonal projections were also impaired, and abnormal apoptosis was observed in Isl1 KO striatum. It was of particular interest that striatopallidal-enriched genes, including dopamine D2 receptor (Drd2), proenkephalin, A2A adenosine receptor (A2aR) and G protein-coupled receptor 6 (Gpr6), were concomitantly up-regulated in Isl1 mutant striatum, suggesting derepression of striatopallidal genes in striatonigral neurons in the absence of Isl1. The suppression of striatopallidal genes by Isl1 was further examined by overexpression of Isl1 in the striatum of Drd2-EGFP transgenic mice using in utero electroporation. Ectopic Isl1 expression was sufficient to repress Drd2-EGFP signals in striatopallidal neurons. Taken together, our study suggests that Isl1 specifies the cell fate of striatonigral neurons not only by orchestrating survival, differentiation, and axonal projections of striatonigral neurons but also by suppressing striatopallidal-enriched genes. The dual action of developmental control by Isl1 in promoting appropriate striatonigral but repressing inappropriate striatopallidal genetic profiles may ensure sharpening of the striatonigral identity during development.
Collapse
|
121
|
Choi YI, Duke-Cohan JS, Tan J, Gui J, Singh MK, Epstein JA, Reinherz EL. Plxnd1 expression in thymocytes regulates their intrathymic migration while that in thymic endothelium impacts medullary topology. Front Immunol 2013; 4:392. [PMID: 24312099 PMCID: PMC3832804 DOI: 10.3389/fimmu.2013.00392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/07/2013] [Indexed: 02/02/2023] Open
Abstract
An important role for plexinD1 in thymic development is inferred from studies of germline Plxnd1 knockout (KO) mice where mislocalized CD69+ thymocytes as well as ectopic thymic subcapsular medullary structures were observed. Given embryonic lethality of the Plxnd1−/− genotype, fetal liver transplantation was employed in these prior analyses. Such embryonic hematopoietic reconstitution may have transferred Plxnd1 KO endothelial and/or epithelial stem cells in addition to Plxnd1 KO lymphoid progenitors, thereby contributing to that phenotype. Here we use Plxnd1flox/flox mice crossed to pLck-Cre, pKeratin14-Cre, or pTek-Cre transgenic animals to create cell-type specific conditional knockout (CKO) lines involving thymocytes (D1ThyCKO), thymic epithelium (D1EpCKO), and thymic endothelium (D1EnCKO), respectively. These CKOs allowed us to directly assess the role of plexinD1 in each lineage. Loss of plexinD1 expression on double positive (DP) thymocytes leads to their aberrant migration and cortical retention after TCR-mediated positive selection. In contrast, ectopic medulla formation is a consequence of loss of plexinD1 expression on endothelial cells, in turn linked to dysregulation of thymic angiogenesis. D1EpCKO thymi manifest neither abnormality. Collectively, our findings underscore the non-redundant roles for plexinD1 on thymocytes and endothelium, including the dynamic nature of medulla formation resulting from crosstalk between these thymic cellular components.
Collapse
Affiliation(s)
- Young I Choi
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute , Boston, MA , USA ; Department of Medicine, Harvard Medical School , Boston, MA , USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Fukuhara K, Imai F, Ladle DR, Katayama KI, Leslie JR, Arber S, Jessell TM, Yoshida Y. Specificity of monosynaptic sensory-motor connections imposed by repellent Sema3E-PlexinD1 signaling. Cell Rep 2013; 5:748-58. [PMID: 24210822 PMCID: PMC3844154 DOI: 10.1016/j.celrep.2013.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 08/04/2013] [Accepted: 10/02/2013] [Indexed: 11/23/2022] Open
Abstract
In mammalian spinal cord, group Ia proprioceptive afferents form selective monosynaptic connections with a select group of motor pool targets. The extent to which sensory recognition of motor neurons contributes to the selectivity of sensory-motor connections remains unclear. We show here that proprioceptive sensory afferents that express PlexinD1 avoid forming monosynaptic connections with neurons in Sema3E(+) motor pools yet are able to form direct connections with neurons in Sema3E(off) motor pools. Anatomical and electrophysiological analysis of mice in which Sema3E-PlexinD1 signaling has been deregulated or inactivated genetically reveals that repellent signaling underlies aspects of the specificity of monosynaptic sensory-motor connectivity in these reflex arcs. A semaphorin-based system of motor neuron recognition and repulsion therefore contributes to the formation of specific sensory-motor connections in mammalian spinal cord.
Collapse
Affiliation(s)
- Kaori Fukuhara
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Shimizu I, Yoshida Y, Moriya J, Nojima A, Uemura A, Kobayashi Y, Minamino T. Semaphorin3E-induced inflammation contributes to insulin resistance in dietary obesity. Cell Metab 2013; 18:491-504. [PMID: 24093674 DOI: 10.1016/j.cmet.2013.09.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/10/2013] [Accepted: 08/13/2013] [Indexed: 01/02/2023]
Abstract
Semaphorins and their receptors (plexins) are axon-guiding molecules that regulate the development of the nervous system during embryogenesis. Here we describe a previously unknown role of class 3 semaphorin E (Sema3E) in adipose tissue inflammation and insulin resistance. Expression of Sema3E and its receptor plexinD1 was upregulated in the adipose tissue of a mouse model of dietary obesity. Inhibition of the Sema3E-plexinD1 axis markedly reduced adipose tissue inflammation and improved insulin resistance in this model. Conversely, overexpression of Sema3E in adipose tissue provoked inflammation and insulin resistance. Sema3E promoted infiltration of macrophages, and this effect was inhibited by disrupting plexinD1 expression in macrophages. Disruption of adipose tissue p53 expression led to downregulation of Sema3E expression and improved adipose tissue inflammation. These results indicate that Sema3E acts as a chemoattractant for macrophages, with p53-induced upregulation of Sema3E expression provoking adipose tissue inflammation and systemic insulin resistance in association with dietary obesity.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Science and Medicine, 1-8-1 Inohana, Chuo-ku, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
124
|
The LIM homeobox gene Isl1 is required for the correct development of the striatonigral pathway in the mouse. Proc Natl Acad Sci U S A 2013; 110:E4026-35. [PMID: 24082127 DOI: 10.1073/pnas.1308275110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mammalian striatum controls the output of the basal ganglia via two distinct efferent pathways, the direct (i.e., striatonigral) and the indirect (i.e., striatopallidal) pathways. The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in a subpopulation of striatal progenitors; however, its specific role in striatal development remains unknown. Our genetic fate-mapping results show that Isl1-expressing progenitors give rise to striatal neurons belonging to the striatonigral pathway. Conditional inactivation of Isl1 in the telencephalon resulted in a smaller striatum with fewer striatonigral neurons and reduced projections to the substantia nigra. Additionally, conditional inactivation in the ventral forebrain (including both the telencephalon and diencephalon) revealed a unique role for Isl1 in diencephalic cells bordering the internal capsule for the normal development of the striatonigral pathway involving PlexinD1-Semaphorin 3e (Sema3e) signaling. Finally, Isl1 conditional mutants displayed a hyperlocomotion phenotype, and their locomotor response to psychostimulants was significantly blunted, indicating that the alterations in basal ganglia circuitry contribute to these mutant behaviors.
Collapse
|
125
|
cAMP-induced expression of neuropilin1 promotes retinal axon crossing in the zebrafish optic chiasm. J Neurosci 2013; 33:11076-88. [PMID: 23825413 DOI: 10.1523/jneurosci.0197-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growing axons navigate a complex environment as they respond to attractive and repellent guidance cues. Axons can modulate their responses to cues through a G-protein-coupled, cAMP-dependent signaling pathway. To examine the role of G-protein signaling in axon guidance in vivo, we used the GAL4/UAS system to drive expression of dominant-negative heterotrimeric G-proteins (DNG) in retinal ganglion cells (RGCs) of embryonic zebrafish. Retinal axons normally cross at the ventral midline and project to the contralateral tectum. Expression of DNGα(S) in RGCs causes retinal axons to misproject to the ipsilateral tectum. These errors resemble misprojections in adcy1, adcy8, nrp1a, sema3D, or sema3E morphant embryos, as well as in sema3D mutant embryos. nrp1a is expressed in RGCs as their axons extend toward and across the midline. sema3D and sema3E are expressed adjacent to the chiasm, suggesting that they facilitate retinal midline crossing. We demonstrate synergistic induction of ipsilateral misprojections between adcy8 knockdown and transgenic DNGα(S) expression, adcy8 and nrp1a morphants, or nrp1a morphants and transgenic DNGα(S) expression. Using qPCR analysis, we show that either transgenic DNGα(S)-expressing embryos or adcy8 morphant embryos have decreased levels of nrp1a and nrp1b mRNA. Ipsilateral misprojections in adcy8 morphants are corrected by the expression of an nrp1a rescue construct expressed in RGCs. These findings are consistent with the idea that elevated cAMP levels promote Neuropilin1a expression in RGCs, increasing the sensitivity of retinal axons to Sema3D, Sema3E, or other neuropilin ligands at the midline, and consequently facilitate retinal axon crossing in the chiasm.
Collapse
|
126
|
Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol 2013; 29:299-353. [PMID: 23937349 DOI: 10.1146/annurev-cellbio-101512-122400] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization.
Collapse
Affiliation(s)
- Irina Evsyukova
- Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | | | | |
Collapse
|
127
|
Movassagh H, Shan L, Halayko AJ, Roth M, Tamm M, Chakir J, Gounni AS. Neuronal chemorepellent Semaphorin 3E inhibits human airway smooth muscle cell proliferation and migration. J Allergy Clin Immunol 2013; 133:560-7. [PMID: 23932461 DOI: 10.1016/j.jaci.2013.06.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/11/2013] [Accepted: 06/11/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Chronic airway diseases, including asthma, are characterized by increased airway smooth muscle (ASM) mass that is due in part to growth factor-mediated ASM cell proliferation and migration. However, the molecular mechanisms underlying these effects are not completely understood. Semaphorin 3E (Sema3E) has emerged as an essential mediator involved in cell migration, proliferation, and angiogenesis, although its role in ASM cell function is not investigated. OBJECTIVES We sought to determine the expression of Sema3E receptor, plexinD1, in human ASM cells (HASMCs); effect of Sema3E on basal and platelet-derived growth factor (PDGF)-induced proliferation and migration; and underlying signaling pathways. METHODS Expression of plexinD1 in HASMCs was studied with RT-PCR, immunostaining, and flow cytometry. The effect of Sema3E on HASMC proliferation and migration was evaluated by 5-ethynyl-2'-deoxyuridine (EdU) incorporation, cell count, and Boyden chamber assay. Sema3E-mediated intracellular signaling was investigated with fluorescent microscopy, flow cytometry, Rac1 activation, and Western blot analysis. RESULTS HASMCs from healthy persons expressed plexinD1 more than HASMCs from asthmatic patients. Sema3E increased plexinD1 expression in HASMCs from asthmatic patients. Recombinant Sema3E inhibited PDGF-mediated HASMC proliferation and migration, which was associated with F-actin depolymerization, suppression of PDGF-induced Rac1 guanosine triphosphatase activity, and Akt and extracellular signal-regulated kinase 1 and 2 phosphorylation. Bronchial biopsies from patients with mild asthma displayed immunoreactivity of plexinD1, suggesting the potential in vivo role of Sema3E-PlexinD1 axis in HASMC function. CONCLUSION This study provides the first evidence that Sema3E receptor is expressed and plays functional roles in HASMCs. Our data suggest a regulatory role of Sema3E in PDGF-mediated proliferation and migration, leading to downregulation of ASM remodeling.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lianyu Shan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael Roth
- University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Tamm
- University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jamila Chakir
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie du Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Abdelilah S Gounni
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
128
|
Degenhardt K, Singh MK, Aghajanian H, Massera D, Wang Q, Li J, Li L, Choi C, Yzaguirre AD, Francey LJ, Gallant E, Krantz ID, Gruber PJ, Epstein JA. Semaphorin 3d signaling defects are associated with anomalous pulmonary venous connections. Nat Med 2013; 19:760-5. [PMID: 23685842 DOI: 10.1038/nm.3185] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 04/04/2013] [Indexed: 01/22/2023]
Abstract
Total anomalous pulmonary venous connection (TAPVC) is a potentially lethal congenital disorder that occurs when the pulmonary veins do not connect normally to the left atrium, allowing mixing of pulmonary and systemic blood. In contrast to the extensive knowledge of arterial vascular patterning, little is known about the patterning of veins. Here we show that the secreted guidance molecule semaphorin 3d (Sema3d) is crucial for the normal patterning of pulmonary veins. Prevailing models suggest that TAPVC occurs when the midpharyngeal endothelial strand (MES), the precursor of the common pulmonary vein, does not form at the proper location on the dorsal surface of the embryonic common atrium. However, we found that TAPVC occurs in Sema3d mutant mice despite normal formation of the MES. In these embryos, the maturing pulmonary venous plexus does not anastomose uniquely with the properly formed MES. In the absence of Sema3d, endothelial tubes form in a region that is normally avascular, resulting in aberrant connections. Normally, Sema3d provides a repulsive cue to endothelial cells in this area, establishing a boundary. Sequencing of SEMA3D in individuals with anomalous pulmonary veins identified a phenylalanine-to-leucine substitution that adversely affects SEMA3D function. These results identify Sema3d as a crucial pulmonary venous patterning cue and provide experimental evidence for an alternate developmental model to explain abnormal pulmonary venous connections.
Collapse
Affiliation(s)
- Karl Degenhardt
- Department of Pediatrics, Division of Cardiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Chauvet S, Burk K, Mann F. Navigation rules for vessels and neurons: cooperative signaling between VEGF and neural guidance cues. Cell Mol Life Sci 2013; 70:1685-703. [PMID: 23475066 PMCID: PMC11113827 DOI: 10.1007/s00018-013-1278-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
Abstract
Many organs, such as lungs, nerves, blood and lymphatic vessels, consist of complex networks that carry flows of information, gases, and nutrients within the body. The morphogenetic patterning that generates these organs involves the coordinated action of developmental signaling cues that guide migration of specialized cells. Precision guidance of endothelial tip cells by vascular endothelial growth factors (VEGFs) is well established, and several families of neural guidance molecules have been identified to exert guidance function in both the nervous and the vascular systems. This review discusses recent advances in VEGF research, focusing on the emerging role of neural guidance molecules as key regulators of VEGF function during vascular development and on the novel role of VEGFs in neural cell migration and nerve wiring.
Collapse
Affiliation(s)
- Sophie Chauvet
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| | - Katja Burk
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| | - Fanny Mann
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| |
Collapse
|
130
|
A sympathetic neuron autonomous role for Egr3-mediated gene regulation in dendrite morphogenesis and target tissue innervation. J Neurosci 2013; 33:4570-83. [PMID: 23467373 DOI: 10.1523/jneurosci.5481-12.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons.
Collapse
|
131
|
Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections. Neuron 2013; 77:472-84. [PMID: 23395374 DOI: 10.1016/j.neuron.2012.11.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2012] [Indexed: 12/11/2022]
Abstract
Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms governing CTA versus CSA pathfinding remain elusive. Here, we show that thalamocortical axons are required to guide pioneer CTAs away from a default CSA-like trajectory. This process relies on a hold in the progression of cortical axons, or waiting period, during which thalamic projections navigate toward cortical axons. At the molecular level, Sema3E/PlexinD1 signaling in pioneer cortical neurons mediates a "waiting signal" required to orchestrate the mandatory meeting with reciprocal thalamic axons. Our study reveals that temporal control of axonal progression contributes to spatial pathfinding of cortical projections and opens perspectives on brain wiring.
Collapse
|
132
|
Ruhrberg C, Bautch VL. Neurovascular development and links to disease. Cell Mol Life Sci 2013; 70:1675-84. [PMID: 23475065 PMCID: PMC3632722 DOI: 10.1007/s00018-013-1277-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
Abstract
The developing central nervous system (CNS) is vascularized via ingression of blood vessels from the outside as the neural tissue expands. This angiogenic process occurs without perturbing CNS architecture due to exquisite cross-talk between the neural compartment and invading blood vessels. Subsequently, this intimate relationship also promotes the formation of the neurovascular unit that underlies the blood-brain barrier and regulates blood flow to match brain activity. This review provides a historical perspective on research into CNS blood vessel growth and patterning, discusses current models used to study CNS angiogenesis, and provides an overview of the cellular and molecular mechanisms that promote blood vessel growth and maturation. Finally, we highlight the significance of these mechanisms for two different types of neurovascular CNS disease.
Collapse
Affiliation(s)
- Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | |
Collapse
|
133
|
Serini G, Bussolino F, Maione F, Giraudo E. Class 3 semaphorins: physiological vascular normalizing agents for anti-cancer therapy. J Intern Med 2013. [PMID: 23198760 DOI: 10.1111/joim.12017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Findings from preclinical and clinical studies show that vascular normalization represents a novel strategy to enhance the efficacy of and overcome the acquired resistance to anti-angiogenic therapies in cancer. Several mechanisms of tumour vessel normalization have been revealed. Amongst them, secreted class 3 semaphorins (Sema3), which regulate axon guidance and angiogenesis, have been recently identified as novel vascular normalizing agents that inhibit metastatic dissemination by restoring vascular function. Here, we discuss the different biological functions and mechanisms of action of Sema3 in the context of tumour vascular normalization, and their impact on the different cellular components of the tumour microenvironment.
Collapse
Affiliation(s)
- G Serini
- Institute for Cancer Research at Candiolo (IRCC), University of Torino, Turin, Italy
| | | | | | | |
Collapse
|
134
|
Yam PT, Kent CB, Morin S, Farmer WT, Alchini R, Lepelletier L, Colman DR, Tessier-Lavigne M, Fournier AE, Charron F. 14-3-3 proteins regulate a cell-intrinsic switch from sonic hedgehog-mediated commissural axon attraction to repulsion after midline crossing. Neuron 2013. [PMID: 23177959 DOI: 10.1016/j.neuron.2012.09.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Axons must switch responsiveness to guidance cues during development for correct pathfinding. Sonic Hedgehog (Shh) attracts spinal cord commissural axons ventrally toward the floorplate. We show that after crossing the floorplate, commissural axons switch their response to Shh from attraction to repulsion, so that they are repelled anteriorly by a posterior-high/anterior-low Shh gradient along the longitudinal axis. This switch is recapitulated in vitro with dissociated commissural neurons as they age, indicating that the switch is intrinsic and time dependent. 14-3-3 protein inhibition converted Shh-mediated repulsion of aged dissociated neurons to attraction and prevented the correct anterior turn of postcrossing commissural axons in vivo, an effect mediated through PKA. Conversely, overexpression of 14-3-3 proteins was sufficient to drive the switch from Shh-mediated attraction to repulsion both in vitro and in vivo. Therefore, we identify a 14-3-3 protein-dependent mechanism for a cell-intrinsic temporal switch in the polarity of axon turning responses.
Collapse
Affiliation(s)
- Patricia T Yam
- Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Roney K, Holl E, Ting J. Immune plexins and semaphorins: old proteins, new immune functions. Protein Cell 2013; 4:17-26. [PMID: 23307780 DOI: 10.1007/s13238-012-2108-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 12/24/2022] Open
Abstract
Plexins and semaphorins are a large family of proteins that are involved in cell movement and response. The importance of plexins and semaphorins has been emphasized by their discovery in many organ systems including the nervous (Nkyimbeng-Takwi and Chapoval, 2011; McCormick and Leipzig, 2012; Yaron and Sprinzak, 2012), epithelial (Miao et al., 1999; Fujii et al., 2002), and immune systems (Takamatsu and Kumanogoh, 2012) as well as diverse cell processes including angiogenesis (Serini et al., 2009; Sakurai et al., 2012), embryogenesis (Perala et al., 2012), and cancer (Potiron et al., 2009; Micucci et al., 2010). Plexins and semaphorins are transmembrane proteins that share a conserved extracellular semaphorin domain (Hota and Buck, 2012). The plexins and semaphorins are divided into four and eight subfamilies respectively based on their structural homology. Semaphorins are relatively small proteins containing the extracellular semaphorin domain and short intracellular tails. Plexins contain the semaphorin domain and long intracellular tails (Hota and Buck, 2012). The majority of plexin and semaphorin research has focused on the nervous system, particularly the developing nervous system, where these proteins are found to mediate many common neuronal cell processes including cell movement, cytoskeletal rearrangement, and signal transduction (Choi et al., 2008; Takamatsu et al., 2010). Their roles in the immune system are the focus of this review.
Collapse
Affiliation(s)
- Kelly Roney
- Department of Microbiology and Immunology, 22-004 Lineberger Comprehensive Cancer Center, University of Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
136
|
Eichmann A, Thomas JL. Molecular parallels between neural and vascular development. Cold Spring Harb Perspect Med 2013; 3:a006551. [PMID: 23024177 DOI: 10.1101/cshperspect.a006551] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human central nervous system (CNS) features a network of ~400 miles of blood vessels that receives >20% of the body's cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood-brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors.
Collapse
Affiliation(s)
- Anne Eichmann
- Center for Interdisciplinary Research in Biology, CNRS/UMR 7241-INSERM U1050, Collège de France, 75005 Paris, France.
| | | |
Collapse
|
137
|
The role and mechanism-of-action of Sema3E and Plexin-D1 in vascular and neural development. Semin Cell Dev Biol 2012; 24:156-62. [PMID: 23270617 DOI: 10.1016/j.semcdb.2012.12.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 02/05/2023]
Abstract
Class 3 secreted semaphorins (Sema3A-3G) participate in many aspects of axon guidance through holoreceptor complexes that include Neuropilin-1 (Npn-1) or Neuropilin-2 and one of the four class A plexin proteins. However, unlike other Sema3 family proteins, Sema3E directly binds to Plexin-D1 without neuropilins. Its biological function was first explored in intersomitic vessel formation and since its initial discovery, Sema3E-Plexin-D1 signaling has been found to participate in the many biological systems in addition to vascular development, via seemingly different mode of actions. For example, temporal and spatial control of ligand vs. receptor results in two different mechanisms governing vascular patterning. Interactions with other transmembrane proteins such as neuropilin and VEGFR2 result in different axonal behaviors. Ligand receptor localization on pre- vs. post-synaptic neurons is used to control different types of synapse formation. Perhaps different downstream effectors will also result in different functional outcomes. Given the limited number of ligands and receptors in the genome and their multifunctional nature, we expect that more modes of action will be discovered in the future. In this review, we highlight current advances on the mechanisms of how Sema3E-Plexin-D1 interaction shapes the networks of multiple biological systems, in particular the vascular and nervous systems.
Collapse
|
138
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
139
|
Abstract
Solid tumors not only comprise malignant cells but also other nonmalignant cell types, forming a unique microenvironment that can strongly influence the behavior of tumor cells. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins. In fact, semaphorins form a family of molecular signals known to guide and control cell migration during embryo development and in adults. Tumor cells express semaphorins as well as their receptors, plexins and neuropilins. It has been shown that semaphorin signaling can regulate tumor cell behavior. Moreover, semaphorins are important regulators of tumor angiogenesis. Conversely, very little is known about the functional relevance of semaphorin signals for tumor-infiltrating stromal cells, such as leukocytes. In this chapter, we review the current knowledge on the functional role of semaphorins in cancer progression, and we focus on the emerging role of semaphorins in mediating the cross talk between tumor cells and different tumor stromal cells.
Collapse
Affiliation(s)
- Claudia Muratori
- University of Torino Medical School, Institute for Cancer Research (IRCC), Candiolo, Turin, Italy
| | | |
Collapse
|
140
|
Huang CY, Chu D, Hwang WC, Tsaur ML. Coexpression of high-voltage-activated ion channels Kv3.4 and Cav1.2 in pioneer axons during pathfinding in the developing rat forebrain. J Comp Neurol 2012; 520:3650-72. [DOI: 10.1002/cne.23119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
141
|
Abstract
Semaphorins are key players in the control of neural circuit development. Recent studies have uncovered several exciting and novel aspects of neuronal semaphorin signalling in various cellular processes--including neuronal polarization, topographical mapping and axon sorting--that are crucial for the assembly of functional neuronal connections. This progress is important for further understanding the many neuronal and non-neuronal functions of semaphorins and for gaining insight into their emerging roles in the perturbed neural connectivity that is observed in some diseases. This Review discusses recent advances in semaphorin research, focusing on novel aspects of neuronal semaphorin receptor regulation and previously unexplored cellular functions of semaphorins in the nervous system.
Collapse
|
142
|
Optic chiasm presentation of Semaphorin6D in the context of Plexin-A1 and Nr-CAM promotes retinal axon midline crossing. Neuron 2012; 74:676-90. [PMID: 22632726 DOI: 10.1016/j.neuron.2012.03.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2012] [Indexed: 01/23/2023]
Abstract
At the optic chiasm, retinal ganglion cells (RGCs) project ipsi- or contralaterally to establish the circuitry for binocular vision. Ipsilateral guidance programs have been characterized, but contralateral guidance programs are not well understood. Here, we identify a tripartite molecular system for contralateral RGC projections: Semaphorin6D (Sema6D) and Nr-CAM are expressed on midline radial glia and Plexin-A1 on chiasm neurons, and Plexin-A1 and Nr-CAM are also expressed on contralateral RGCs. Sema6D is repulsive to contralateral RGCs, but Sema6D in combination with Nr-CAM and Plexin-A1 converts repulsion to growth promotion. Nr-CAM functions as a receptor for Sema6D. Sema6D, Plexin-A1, and Nr-CAM are all required for efficient RGC decussation at the optic chiasm. These findings suggest a mechanism by which a complex of Sema6D, Nr-CAM, and Plexin-A1 at the chiasm midline alters the sign of Sema6D and signals Nr-CAM/Plexin-A1 receptors on RGCs to implement the contralateral RGC projection.
Collapse
|
143
|
Sharma A, Verhaagen J, Harvey AR. Receptor complexes for each of the Class 3 Semaphorins. Front Cell Neurosci 2012; 6:28. [PMID: 22783168 PMCID: PMC3389612 DOI: 10.3389/fncel.2012.00028] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/20/2012] [Indexed: 01/08/2023] Open
Abstract
The Class 3 Semaphorins (Sema3s) are a sub-family of proteins whose known biological roles are varied and growing. The mechanism of action of the Sema3s requires binding to transmembrane receptors that comprise heteromeric complexes of Neuropilins, Plexins and cell adhesion molecules (CAMs). However, knowledge of the receptor components of the Sema3s remains incomplete, and there may be receptor components which are as yet undiscovered. The receptor complexes of the Sema3s share receptor components with each other, and it is the specific combination of these components within a heteromeric complex that is thought to give rise to selective binding and signalling for individual Sema3s. This crosstalk makes it experimentally difficult to define a single holoreceptor for each Sema3. Furthermore, the receptor composition for a given Sema3 may differ between cell types, and change as a function of developmental state or pathological situation. Nevertheless, there are at least some known differences in the constitutive structure of the receptors for the Sema3s. For example in neural cells, Sema3a and Sema3f signal through different Neuropilins (Nrp1 and Nrp2 respectively) and L1cam only appears important for Sema3a signaling, while Nrcam forms a complex with Nrp2. Further complexity arises from crosstalk of other families of ligands (e.g., VEGF) with Sema3 receptor components. Thus the Sema3s, which have been shown as antagonists for each other, can also act as antagonists for other families of molecules. This review compiles experimental evidence describing the receptor components for the Sema3s, detailing the current state of knowledge of which components are important for signaling of each Sema3 before going on to consider possible future directions for the field.
Collapse
Affiliation(s)
- Anil Sharma
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley WA, Australia
| | | | | |
Collapse
|
144
|
Bouvrée K, Brunet I, Del Toro R, Gordon E, Prahst C, Cristofaro B, Mathivet T, Xu Y, Soueid J, Fortuna V, Miura N, Aigrot MS, Maden CH, Ruhrberg C, Thomas JL, Eichmann A. Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation. Circ Res 2012; 111:437-45. [PMID: 22723296 DOI: 10.1161/circresaha.112.269316] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE The lymphatic vasculature plays a major role in fluid homeostasis, absorption of dietary lipids, and immune surveillance. Fluid transport depends on the presence of intraluminal valves within lymphatic collectors. Defective formation of lymphatic valves leads to lymphedema, a progressive and debilitating condition for which curative treatments are currently unavailable. How lymphatic valve formation is regulated remains largely unknown. OBJECTIVE We investigated if the repulsive axon guidance molecule Semaphorin3A (Sema3A) plays a role in lymphatic valve formation. METHODS AND RESULTS We show that Sema3A mRNA is expressed in lymphatic vessels and that Sema3A protein binds to lymphatic valves expressing the Neuropilin-1 (Nrp1) and PlexinA1 receptors. Using mouse knockout models, we show that Sema3A is selectively required for lymphatic valve formation, via interaction with Nrp1 and PlexinA1. Sema3a(-/-) mice exhibit defects in lymphatic valve formation, which are not due to abnormal lymphatic patterning or sprouting, and mice carrying a mutation in the Sema3A binding site of Nrp1, or deficient for Plxna1, develop lymphatic valve defects similar to those seen in Sema3a(-/-) mice. CONCLUSIONS Our data demonstrate an essential direct function of Sema3A-Nrp1-PlexinA1 signaling in lymphatic valve formation.
Collapse
Affiliation(s)
- Karine Bouvrée
- CIRB Collège de France/CNRS UMR 7241/INSERM U1050, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Yoshida Y. Semaphorin signaling in vertebrate neural circuit assembly. Front Mol Neurosci 2012; 5:71. [PMID: 22685427 PMCID: PMC3368236 DOI: 10.3389/fnmol.2012.00071] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/17/2012] [Indexed: 11/13/2022] Open
Abstract
Neural circuit formation requires the coordination of many complex developmental processes. First, neurons project axons over long distances to find their final targets and then establish appropriate connectivity essential for the formation of neuronal circuitry. Growth cones, the leading edges of axons, navigate by interacting with a variety of attractive and repulsive axon guidance cues along their trajectories and at final target regions. In addition to guidance of axons, neuronal polarization, neuronal migration, and dendrite development must be precisely regulated during development to establish proper neural circuitry. Semaphorins consist of a large protein family, which includes secreted and cell surface proteins, and they play important roles in many steps of neural circuit formation. The major semaphorin receptors are plexins and neuropilins, however other receptors and co-receptors also mediate signaling by semaphorins. Upon semaphorin binding to their receptors, downstream signaling molecules transduce this event within cells to mediate further events, including alteration of microtubule and actin cytoskeletal dynamics. Here, I review recent studies on semaphorin signaling in vertebrate neural circuit assembly, with the goal of highlighting how this diverse family of cues and receptors imparts exquisite specificity to neural complex connectivity.
Collapse
Affiliation(s)
- Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| |
Collapse
|
146
|
Toyofuku T, Nojima S, Ishikawa T, Takamatsu H, Tsujimura T, Uemura A, Matsuda J, Seki T, Kumanogoh A. Endosomal sorting by Semaphorin 4A in retinal pigment epithelium supports photoreceptor survival. Genes Dev 2012; 26:816-29. [PMID: 22465952 DOI: 10.1101/gad.184481.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Photoreceptor cell death is the hallmark of a group of human inherited retinal degeneration. Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Here, we show that Semaphorin 4A (Sema4A), a member of axonal guidance molecule semaphorin, plays a role in Rab11/FIP2-mediated endosomal sorting in retinal pigment epithelial cells to support photoreceptor function. In response to oxidative stress, Sema4A switches the endosomal sorting of the lysosomal precursor protein prosaposin from the lysosome to the exosomal release, which prevents light-induced photoreceptor apoptosis. In the absence of oxidative stress, Sema4A sorts retinoid-binding proteins with retinoids between the cell surface and endoplasmic reticulum, by which 11-cis-retinal, a chromophore for phototransduction, is regenerated and transported back to photoreceptors. Owing to defects in these processes, Sema4A-deficient mice exhibit marked photoreceptor degeneration. Our findings therefore indicate that Sema4A regulates two distinct endosomal-sorting pathways that are critical for photoreceptor survival and phototransduction during the transition between daylight and darkness.
Collapse
Affiliation(s)
- Toshihiko Toyofuku
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Sijaona A, Luukko K, Kvinnsland IH, Kettunen P. Expression patterns of Sema3F, PlexinA4, -A3, Neuropilin1 and -2 in the postnatal mouse molar suggest roles in tooth innervation and organogenesis. Acta Odontol Scand 2012; 70:140-8. [PMID: 21815834 DOI: 10.3109/00016357.2011.600708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Semaphorins form a family of axon wiring molecules but still little is known about their role in tooth formation. A class 3 semaphorin, Semaphorin3F (Sema3F), besides acting as a chemorepellant for different types of axons, controls a variety of non-neuronal developmental processes. MATERIALS AND METHODS Cellular mRNA expression patterns of Sema3F as well as neuropilin 1 (Npn1), neuropilin 2 (Npn2), plexinA3 and plexinA4 receptors were analyzed by sectional in situ hybridization in the mouse molar tooth during postnatal days 0-7. The expression of the receptors was studied in PN5 trigeminal ganglia. RESULTS Sema3F, Npn1, -2 and plexinA4 exhibited distinct, spatiotemporally changing expression patterns, whereas plexinA3 was not observed in the tooth germs. Besides being expressed in the base of the dental mesenchyme Sema3F, like plexinA4, Npn1 and -2, was present in the ameloblast cell lineage. Npn1 and Npn2 were additionally seen in the pulp horns and endothelial cells and like PlexinA4 in the developing alveolar bone. Npn1, plexinA3 and -A4 were observed in trigeminal ganglion neurons. CONCLUSIONS Sema3F may act as a tooth target-derived axonal chemorepellant controlling establishment of the tooth nerve supply. Furthermore, Sema3F, like Npn1, -2 and plexinA4 may serve non-neuronal functions by controlling the development of the ameloblast cell lineage. Moreover, Npn1 and Npn2 may regulate dental vasculogenesis and, together with PlexinA4, alveolar bone formation. Further analyses such as investigation of transgenic mouse models will be required to elucidate in vivo signaling functions of Sema3F and the receptors in odontogenesis.
Collapse
|
148
|
Ruediger T, Zimmer G, Barchmann S, Castellani V, Bagnard D, Bolz J. Integration of opposing semaphorin guidance cues in cortical axons. ACTA ACUST UNITED AC 2012; 23:604-14. [PMID: 22368082 DOI: 10.1093/cercor/bhs044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous work demonstrated that members of the semaphorin family, Sema3A and Sema3C, act as repulsive and attractive guidance signals, respectively, for cortical axons. During the development of corticofugal projections, these semaphorins are expressed in adjacent cortical zones, but there is a considerable overlap between Sema3A and Sema3C expression in the subventricular zone. We used different in vitro assays to examine the response of cortical axons exposed to defined mixtures of these opposing guidance cues. Results showed that even at very low concentrations, Sema3A overrides the effects of Sema3C. Moreover, experiments with function-blocking antibodies directed against neuropilin provided insights into how cortical axons integrate disparate guidance signals at the receptor level. These in vitro data suggest that the pathway of corticofugal axons is defined by an attractive cue in the intermediate zone, where Sema3C is expressed alone. To directly test this hypothesis in vivo, we performed axon-tracing experiments in Sema3C-deficient mice. Compared with wild-type animals, corticofugal axons take a more superficial route in Sema3C(-/-) mice, and the corticofugal pathway is more compacted. This phenotype is expected when an attractive cue for cortical axons, Sema3C, is eliminated and a repulsive cue, Sema3A, becomes predominant.
Collapse
Affiliation(s)
- Tina Ruediger
- Institut für Allgemeine Zoologie und Tierphysiologie, Universität Jena, 07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
149
|
Casazza A, Kigel B, Maione F, Capparuccia L, Kessler O, Giraudo E, Mazzone M, Neufeld G, Tamagnone L. Tumour growth inhibition and anti-metastatic activity of a mutated furin-resistant Semaphorin 3E isoform. EMBO Mol Med 2012; 4:234-50. [PMID: 22247010 PMCID: PMC3376853 DOI: 10.1002/emmm.201100205] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 11/21/2022] Open
Abstract
Secreted Semaphorin 3E (Sema3E) promotes cancer cell invasiveness and metastatic spreading. The pro-metastatic activity of Sema3E is due to its proteolytic fragment p61, capable of transactivating the oncogenic tyrosine kinase ErbB2 that associates with the Sema3E receptor PlexinD1 in cancer cells. Here, we show that a mutated, uncleavable variant of Sema3E (Uncl-Sema3E) binds to PlexinD1 like p61-Sema3E, but does not promote the association of PlexinD1 with ErbB2 nor activates the ensuing signalling cascade leading to metastatic spreading. Furthermore, Uncl-Sema3E competes with endogenous p61-Sema3E produced by tumour cells, thereby hampering their metastatic ability. Uncl-Sema3E also acts independently as a potent anti-angiogenic factor. It activates a PlexinD1-mediated signalling cascade in endothelial cells that leads to the inhibition of adhesion to extracellular matrix, directional migration and cell survival. The putative therapeutic potential of Uncl-Sema3E was validated in multiple orthotopic or spontaneous tumour models in vivo, where either local or systemic delivery of Uncl-Sema3E-reduced angiogenesis, growth and metastasis, even in the case of tumours refractory to treatment with a soluble vascular endothelial growth factor trap. In summary, we conclude that Uncl-Sema3E is a novel inhibitor of tumour angiogenesis and growth that concomitantly hampers metastatic spreading.
Collapse
Affiliation(s)
- Andrea Casazza
- Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Candiolo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Peradziryi H, Tolwinski NS, Borchers A. The many roles of PTK7: a versatile regulator of cell-cell communication. Arch Biochem Biophys 2012; 524:71-6. [PMID: 22230326 DOI: 10.1016/j.abb.2011.12.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022]
Abstract
PTK7 (protein tyrosine kinase 7) is an evolutionarily conserved transmembrane receptor with functions in various processes ranging from embryonic morphogenesis to epidermal wound repair. Here, we review recent findings indicating that PTK7 is a versatile co-receptor that functions as a molecular switch in Wnt, Semaphorin/Plexin and VEGF signaling pathways. We focus in particular on the role of PTK7 in Wnt signaling, as recent data indicate that PTK7 acts as a Wnt co-receptor, which activates the planar cell polarity pathway, but inhibits canonical Wnt signaling.
Collapse
Affiliation(s)
- Hanna Peradziryi
- Department of Developmental Biochemistry, Center for Molecular Physiology of the Brain (CMPB), GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|