101
|
Fallatah W, Smith T, Cui W, Jayasinghe D, Di Pietro E, Ritchie SA, Braverman N. Oral administration of a synthetic vinyl-ether plasmalogen normalizes open field activity in a mouse model of rhizomelic chondrodysplasia punctata. Dis Model Mech 2020; 13:dmm.042499. [PMID: 31862688 PMCID: PMC6994958 DOI: 10.1242/dmm.042499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023] Open
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a rare genetic disorder caused by mutations in peroxisomal genes essential for plasmalogen biosynthesis. Plasmalogens are a class of membrane glycerophospholipids containing a vinyl-ether-linked fatty alcohol at the sn-1 position that affect functions including vesicular transport, membrane protein function and free radical scavenging. A logical rationale for the treatment of RCDP is therefore the therapeutic augmentation of plasmalogens. The objective of this work was to provide a preliminary characterization of a novel vinyl-ether synthetic plasmalogen, PPI-1040, in support of its potential utility as an oral therapeutic option for RCDP. First, wild-type mice were treated with 13C6-labeled PPI-1040, which showed that the sn-1 vinyl-ether and the sn-3 phosphoethanolamine groups remained intact during digestion and absorption. Next, a 4-week treatment of adult plasmalogen-deficient Pex7hypo/null mice with PPI-1040 showed normalization of plasmalogen levels in plasma, and variable increases in plasmalogen levels in erythrocytes and peripheral tissues (liver, small intestine, skeletal muscle and heart). Augmentation was not observed in brain, lung and kidney. Functionally, PPI-1040 treatment normalized the hyperactive behavior observed in the Pex7hypo/null mice as determined by open field test, with a significant inverse correlation between activity and plasma plasmalogen levels. Parallel treatment with an equal amount of ether plasmalogen precursor, PPI-1011, did not effectively augment plasmalogen levels or reduce hyperactivity. Our findings show, for the first time, that a synthetic vinyl-ether plasmalogen is orally bioavailable and can improve plasmalogen levels in an RCDP mouse model. Further exploration of its clinical utility is warranted. This article has an associated First Person interview with the joint first authors of the paper. Summary: This article shows, for the first time, that a synthetic vinyl-ether plasmalogen is orally bioavailable and bioactive in vivo following administration in animals.
Collapse
Affiliation(s)
- Wedad Fallatah
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada.,Department of Medical Genetics, King Abdul-Aziz University, Jeddah, 21589 Saudi Arabia
| | - Tara Smith
- Med-Life Discoveries LP, Saskatoon, SK S7N2X8, Canada
| | - Wei Cui
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada
| | | | - Erminia Di Pietro
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada
| | | | - Nancy Braverman
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada
| |
Collapse
|
102
|
Li M, Shen L, Chen L, Huai C, Huang H, Wu X, Yang C, Ma J, Zhou W, Du H, Fan L, He L, Wan C, Qin S. Novel genetic susceptibility loci identified by family based whole exome sequencing in Han Chinese schizophrenia patients. Transl Psychiatry 2020; 10:5. [PMID: 32066673 PMCID: PMC7026419 DOI: 10.1038/s41398-020-0708-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/07/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia (SCZ) is a highly heritable psychiatric disorder that affects approximately 1% of population around the world. However, early relevant studies did not reach clear conclusions of the genetic mechanisms of SCZ, suggesting that additional susceptibility loci that exert significant influence on SCZ are yet to be revealed. So, in order to identify novel susceptibility genes that account for the genetic risk of SCZ, we performed a systematic family-based study using whole exome sequencing (WES) in 65 Han Chinese families. The analysis of 51 SCZ trios with both unaffected parents identified 22 exonic and 1 splice-site de novo mutations (DNMs) on a total of 23 genes, and showed that 12 genes carried rare protein-altering compound heterozygous mutations in more than one trio. In addition, we identified 26 exonic or splice-site single nucleotide polymorphisms (SNPs) on 18 genes with nominal significance (P < 5 × 10-4) using a transmission disequilibrium test (TDT) in all the families. Moreover, TDT result confirmed a SCZ susceptibility locus on 3p21.1, encompassing the multigenetic region NEK4-ITIH1-ITIH3-ITIH4. Through several different strategies to predict the potential pathogenic genes in silico, we revealed 4 previous discovered susceptibility genes (TSNARE1, PBRM1, STAB1 and OLIG2) and 4 novel susceptibility loci (PSEN1, TLR5, MGAT5B and SSPO) in Han Chinese SCZ patients. In summary, we identified a list of putative candidate genes for SCZ using a family-based WES approach, thus improving our understanding of the pathology of SCZ and providing critical clues to future functional validation.
Collapse
Affiliation(s)
- Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Luan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Chao Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jingsong Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Huihui Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lingzi Fan
- Psychiatric Hospital of Zhumadian City, Henan, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
- The Third Affiliated Hospital, Guangzhou Medical University, Guangdong, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
- Collaborative Innovation Center, Jining Medical University, Shandong, China.
| |
Collapse
|
103
|
Abstract
PURPOSE OF REVIEW Consanguinity can increase the risk for autosomal recessive conditions, along with autism spectrum disorder (ASD). Rarely outside of the genetics community is this discussed. Understanding its impact on the development of ASD and increasing awareness for physicians is important. RECENT FINDINGS ASD is a polygenic multifactorial disorder associated with morbidity and burden of care. Studies have confirmed its heritability, suspecting to an autosomal recessive transmission. Consanguinity increases the risk for uncovering recessive disorder and its role as an independent contributor for the development of ASD should be examined. With consanguinity being a known risk factor for autosomal recessive conditions, clinicians should routinely screen for it when evaluating for ASD, as this is inconsistently done. If suspected, genetic testing should be also recommended. Understanding current risk as well as future risk and providing families with the education to make the most informed decisions is necessary.
Collapse
|
104
|
Abstract
Autism spectrum disorder (ASD) is a heterogeneous condition affecting >1% of all children, characterized by impaired social interactions, repetitive behavior and a widely variable spectrum of comorbidities. These comorbidities may include developmental delay, gastrointestinal problems, cardiac disorders, immune and autoimmune dysregulation, neurological manifestations (e.g., epilepsy, intellectual disability), and other clinical features. This wide phenotypic heterogeneity is difficult to predict and manifests across a wide range of ages and with a high degree of difference in severity, making disease management and prediction of a successful intervention very difficult. Recently, advances in genomics and other molecular technologies have enabled the study of ASD on a molecular level, illuminating genes and pathways whose perturbations help explain the clinical variability among patients, and whose impairments provide possible opportunities for better treatment options. In fact, there are now >1000 genes that have been linked to ASD through genetic studies of more than 10,000 patients and their families. This chapter discusses these discoveries and in the context of recent developments in genomics and bioinformatics, while also examining the trajectory of gene discovery efforts over the past few decades, as both better ascertainment and global attention have been given to this highly vulnerable patient population.
Collapse
|
105
|
New Horizons for Molecular Genetics Diagnostic and Research in Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2020; 24:43-81. [PMID: 32006356 DOI: 10.1007/978-3-030-30402-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a highly heritable, heterogeneous, and complex pervasive neurodevelopmental disorder (PND) characterized by distinctive abnormalities of human cognitive functions, social interaction, and speech development.Nowadays, several genetic changes including chromosome abnormalities, genetic variations, transcriptional epigenetics, and noncoding RNA have been identified in ASD. However, the association between these genetic modifications and ASDs has not been confirmed yet.The aim of this review is to summarize the key findings in ASD from genetic viewpoint that have been identified from the last few decades of genetic and molecular research.
Collapse
|
106
|
Abstract
The prevalence of autism spectrum disorder (ASD) has been increasing steadily over the last 20 years; however, the molecular basis for the majority of ASD cases remains unknown. Recent advances in next-generation sequencing and detection of DNA modifications have made methylation-dependent regulation of transcription an attractive hypothesis for being a causative factor in ASD etiology. Evidence for abnormal DNA methylation in ASD can be seen on multiple levels, from genetic mutations in epigenetic machinery to loci-specific and genome-wide changes in DNA methylation. Epimutations in DNA methylation can be acquired throughout life, as global DNA methylation reprogramming is dynamic during embryonic development and the early postnatal period that corresponds to the peak time of synaptogenesis. However, technical advances and causative evidence still need to be established before abnormal DNA methylation and ASD can be confidently associated.
Collapse
Affiliation(s)
- Martine W Tremblay
- Program in Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA
| | - Yong-Hui Jiang
- Program in Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA.,Departments of Pediatrics and Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA;
| |
Collapse
|
107
|
Li J, Jew B, Zhan L, Hwang S, Coppola G, Freimer NB, Sul JH. ForestQC: Quality control on genetic variants from next-generation sequencing data using random forest. PLoS Comput Biol 2019; 15:e1007556. [PMID: 31851693 PMCID: PMC6938691 DOI: 10.1371/journal.pcbi.1007556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/01/2020] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
Next-generation sequencing technology (NGS) enables the discovery of nearly all genetic variants present in a genome. A subset of these variants, however, may have poor sequencing quality due to limitations in NGS or variant callers. In genetic studies that analyze a large number of sequenced individuals, it is critical to detect and remove those variants with poor quality as they may cause spurious findings. In this paper, we present ForestQC, a statistical tool for performing quality control on variants identified from NGS data by combining a traditional filtering approach and a machine learning approach. Our software uses the information on sequencing quality, such as sequencing depth, genotyping quality, and GC contents, to predict whether a particular variant is likely to be false-positive. To evaluate ForestQC, we applied it to two whole-genome sequencing datasets where one dataset consists of related individuals from families while the other consists of unrelated individuals. Results indicate that ForestQC outperforms widely used methods for performing quality control on variants such as VQSR of GATK by considerably improving the quality of variants to be included in the analysis. ForestQC is also very efficient, and hence can be applied to large sequencing datasets. We conclude that combining a machine learning algorithm trained with sequencing quality information and the filtering approach is a practical approach to perform quality control on genetic variants from sequencing data.
Collapse
Affiliation(s)
- Jiajin Li
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Brandon Jew
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Lingyu Zhan
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Sungoo Hwang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Nelson B. Freimer
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Jae Hoon Sul
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
108
|
Pirooznia M, Niranjan T, Chen YC, Tunc I, Goes FS, Avramopoulos D, Potash JB, Huganir RL, Zandi PP, Wang T. Affected Sib-Pair Analyses Identify Signaling Networks Associated With Social Behavioral Deficits in Autism. Front Genet 2019; 10:1186. [PMID: 31827489 PMCID: PMC6892440 DOI: 10.3389/fgene.2019.01186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/25/2019] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorders (ASDs) are characterized by deficits in three core behavioral domains: reciprocal social interactions, communication, and restricted interests and/or repetitive behaviors. Several hundreds of risk genes for autism have been identified, however, it remains a challenge to associate these genes with specific core behavioral deficits. In multiplex autism families, affected sibs often show significant differences in severity of individual core phenotypes. We hypothesize that a higher mutation burden contributes to a larger difference in the severity of specific core phenotypes between affected sibs. We tested this hypothesis on social behavioral deficits in autism. We sequenced synaptome genes (n = 1,886) in affected male sib-pairs (n = 274) in families from the Autism Genetics Research Exchange (AGRE) and identified rare (MAF ≤ 1%) and predicted functional variants. We selected affected sib-pairs with a large (≥10; n = 92 pairs) or a small (≤4; n = 108 pairs) difference in total cumulative Autism Diagnostic Interview-Revised (ADI-R) social scores (SOCT_CS). We compared burdens of unshared variants present only in sibs with severe social deficits and found a higher burden in SOCT_CS≥10 compared to SOCT_CS ≤ 4 (SOCT_CS≥10: 705.1 ± 16.2; SOCT_CS ≤ 4, 668.3 ± 9.0; p = 0.025). Unshared SOCT_CS≥10 genes only in sibs with severe social deficits are significantly enriched in the SFARI gene set. Network analyses of these genes using InWeb_IM, molecular signatures database (MSigDB), and GeNetMeta identified enrichment for phosphoinositide 3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) (Enrichment Score [eScore] p value = 3.36E−07; n = 8 genes) and Nerve growth factor (NGF) (eScore p value = 8.94E−07; n = 9 genes) networks. These studies support a key role for these signaling networks in social behavioral deficits and present a novel approach to associate risk genes and signaling networks with core behavioral domains in autism.
Collapse
Affiliation(s)
- Mehdi Pirooznia
- Bioinformatics and Computational Biology Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD, United States.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tejasvi Niranjan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yun-Ching Chen
- Bioinformatics and Computational Biology Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD, United States
| | - Ilker Tunc
- Bioinformatics and Computational Biology Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD, United States
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dimitrios Avramopoulos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Mental Health and Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, United States
| | - Tao Wang
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
109
|
Kunze M. The type-2 peroxisomal targeting signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118609. [PMID: 31751594 DOI: 10.1016/j.bbamcr.2019.118609] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
The type-2 peroxisomal targeting signal (PTS2) is one of two peptide motifs destining soluble proteins for peroxisomes. This signal acts as amphiphilic α-helix exposing the side chains of all conserved residues to the same side. PTS2 motifs are recognized by a bipartite protein complex consisting of the receptor PEX7 and a co-receptor. Cargo-loaded receptor complexes are translocated across the peroxisomal membrane by a transient pore and inside peroxisomes, cargo proteins are released and processed in many, but not all species. The components of the bipartite receptor are re-exported into the cytosol by a ubiquitin-mediated and ATP-driven export mechanism. Structurally, PTS2 motifs resemble other N-terminal targeting signals, whereas the functional relation to the second peroxisomal targeting signal (PTS1) is unclear. Although only a few PTS2-carrying proteins are known in humans, subjects lacking a functional import mechanism for these proteins suffer from the severe inherited disease rhizomelic chondrodysplasia punctata.
Collapse
Affiliation(s)
- Markus Kunze
- Medical University of Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
110
|
Starr DA. A network of nuclear envelope proteins and cytoskeletal force generators mediates movements of and within nuclei throughout Caenorhabditis elegans development. Exp Biol Med (Maywood) 2019; 244:1323-1332. [PMID: 31495194 PMCID: PMC6880151 DOI: 10.1177/1535370219871965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nuclear migration and anchorage, together referred to as nuclear positioning, are central to many cellular and developmental events. Nuclear positioning is mediated by a conserved network of nuclear envelope proteins that interacts with force generators in the cytoskeleton. At the heart of this network are li nker of n ucleoskeleton and c ytoskeleton (LINC) complexes made of S ad1 and UN C-84 (SUN) proteins at the inner nuclear membrane and K larsicht, A NC-1, and S yne homology (KASH) proteins in the outer nuclear membrane. LINC complexes span the nuclear envelope, maintain nuclear envelope architecture, designate the surface of nuclei distinctly from the contiguous endoplasmic reticulum, and were instrumental in the early evolution of eukaryotes. LINC complexes interact with lamins in the nucleus and with various cytoplasmic KASH effectors from the surface of nuclei. These effectors regulate the cytoskeleton, leading to a variety of cellular outputs including pronuclear migration, nuclear migration through constricted spaces, nuclear anchorage, centrosome attachment to nuclei, meiotic chromosome movements, and DNA damage repair. How LINC complexes are regulated and how they function are reviewed here. The focus is on recent studies elucidating the best-understood network of LINC complexes, those used throughout Caenorhabditis elegans development.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology,
University of California, Davis, CA 95616, USA
| |
Collapse
|
111
|
Iakoucheva LM, Muotri AR, Sebat J. Getting to the Cores of Autism. Cell 2019; 178:1287-1298. [PMID: 31491383 PMCID: PMC7039308 DOI: 10.1016/j.cell.2019.07.037] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/07/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
The genetic architecture of autism spectrum disorder (ASD) is itself a diverse allelic spectrum that consists of rare de novo or inherited variants in hundreds of genes and common polygenic risk at thousands of loci. ASD susceptibility genes are interconnected at the level of transcriptional and protein networks, and many function as genetic regulators of neurodevelopment or synaptic proteins that regulate neural activity. So that the core underlying neuropathologies can be further elucidated, we emphasize the importance of first defining subtypes of ASD on the basis of the phenotypic signatures of genes in model systems and humans.
Collapse
Affiliation(s)
- Lilia M Iakoucheva
- University of California San Diego, Department of Psychiatry, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, Department of Cellular & Molecular Medicine, La Jolla, CA 92093, USA; University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, La Jolla, CA 92093, USA; University of California San Diego, Kavli Institute for Brain and Mind, La Jolla, CA 92093, USA; Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA 92093, USA
| | - Jonathan Sebat
- University of California San Diego, Department of Psychiatry, La Jolla, CA 92093, USA; University of California San Diego, School of Medicine, Department of Cellular & Molecular Medicine, La Jolla, CA 92093, USA; University of California San Diego, Beyster Center for Psychiatric Genomics, La Jolla, CA 92093.
| |
Collapse
|
112
|
Dorninger F, Gundacker A, Zeitler G, Pollak DD, Berger J. Ether Lipid Deficiency in Mice Produces a Complex Behavioral Phenotype Mimicking Aspects of Human Psychiatric Disorders. Int J Mol Sci 2019; 20:E3929. [PMID: 31412538 PMCID: PMC6720005 DOI: 10.3390/ijms20163929] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
Ether lipids form a specialized subgroup of phospholipids that requires peroxisomes to be synthesized. We have previously detected that deficiency in these lipids leads to a severe disturbance of neurotransmitter homeostasis and release as well as behavioral abnormalities, such as hyperactivity, in a mouse model. Here, we focused on a more detailed examination of the behavioral phenotype of ether lipid-deficient mice (Gnpat KO) and describe a set of features related to human psychiatric disorders. Gnpat KO mice show strongly impaired social interaction as well as nestlet shredding and marble burying, indicating disturbed execution of inborn behavioral patterns. Also, compromised contextual and cued fear conditioning in these animals suggests a considerable memory deficit, thus potentially forming a connection to the previously determined ether lipid deficit in human patients with Alzheimer's disease. Nesting behavior and the preference for social novelty proved normal in ether lipid-deficient mice. In addition, we detected task-specific alterations in paradigms assessing depression- and anxiety-related behavior. The reported behavioral changes may be used as easy readout for the success of novel treatment strategies against ether lipid deficiency in ameliorating nervous system-associated symptoms. Furthermore, our findings underline that ether lipids are paramount for brain function and demonstrate their relevance for cognitive, social, and emotional behavior. We hereby substantially extend previous observations suggesting a link between deficiency in ether lipids and human mental illnesses, particularly autism and attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Gerhard Zeitler
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
113
|
Change in Brain Plasmalogen Composition by Exposure to Prenatal Undernutrition Leads to Behavioral Impairment of Rats. J Neurosci 2019; 39:7689-7702. [PMID: 31391260 DOI: 10.1523/jneurosci.2721-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies suggest that poor nutrition during pregnancy influences offspring predisposition to experience developmental and psychiatric disorders. Animal studies have shown that maternal undernutrition leads to behavioral impairment, which is linked to alterations in monoaminergic systems and inflammation in the brain. In this study, we focused on the ethanolamine plasmalogen of the brain as a possible contributor to behavioral disturbances observed in offspring exposed to maternal undernutrition. Maternal food or protein restriction between gestational day (GD) 5.5 and GD 10.5 resulted in hyperactivity of rat male adult offspring. Genes related to the phospholipid biosynthesis were found to be activated in the PFC, but not in the NAcc or striatum, in the offspring exposed to prenatal undernutrition. Corresponding to these gene activations, increased ethanolamine plasmalogen (18:0p-22:6) was observed in the PFC using mass spectrometry imaging. A high number of crossings and the long time spent in the center area were observed in the offspring exposed to prenatal undernutrition and were mimicked in adult rats via the intravenous injection of ethanolamine plasmalogen (18:0p-22:6) incorporated into the liposome. Additionally, plasmalogen (18:0p-22:6) increased only in the PFC, and not in the NAcc or striatum. These results suggest that brain plasmalogen is one of the key molecules to control behavior, and its injection using liposome is a potential therapeutic approach for cognitive impairment.SIGNIFICANCE STATEMENT Maternal undernutrition correlates to developmental and psychiatric disorders. Here, we found that maternal undernutrition in early pregnancy led to hyperactivity in rat male offspring and induced gene activation of phospholipid-synthesizing enzyme and elevation of ethanolamine plasmalogen (18:0p-22:6) level in the PFC. Intravenous injection of ethanolamine plasmalogen (18:0p-22:6) incorporated into the liposome maintained crossing activity and the activity was circumscribed to the center area for a long time period, as in prenatally undernourished offspring with aberrant behavior. Furthermore, the amount of ethanolamine plasmalogen (18:0p-22:6) increased in the PFC of the rat after injection. Our result suggests that brain plasmalogen is one of the key molecules to control behavior and that its injection using liposome is a potential therapeutic approach for cognitive impairment.
Collapse
|
114
|
Abstract
Autism spectrum disorder (ASD) is a common disorder that causes substantial distress. Heritability studies consistently show a strong genetic contribution, raising the hope that identifying ASD-associated genetic variants will offer insights into neurobiology and ultimately therapeutics. Next-generation sequencing (NGS) enabled the identification of disruptive variants throughout protein-coding regions of the genome. Alongside large cohorts and novel statistical methods, these NGS methods revolutionized ASD gene discovery. NGS methods have also contributed substantially to functional genetic data, such as gene expression, used to understand the neurobiological consequences of disrupting these ASD-associated genes. These functional data are also critical for annotating the noncoding genome as whole-genome sequencing (WGS) begins to provide initial insights outside of protein-coding regions. NGS methods still have a major role to play, as do similarly transformative advances in stem cell and gene-editing methods, in translating genetic discoveries into a first generation of ASD therapeutics.
Collapse
Affiliation(s)
- Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
115
|
Abstract
Major psychiatric disorders are heritable but they are genetically complex. This means that, with certain exceptions, single gene markers will not be helpful for diagnosis. However, we are learning more about the large number of gene variants that, in combination, are associated with risk for disorders such as schizophrenia, bipolar disorder, and other psychiatric conditions. The presence of those risk variants may now be combined into a polygenic risk score (PRS). Such a score provides a quantitative index of the genomic burden of risk variants in an individual, which relates to the likelihood that a person has a particular disorder. Currently, such scores are quite useful in research, and they are telling us much about the relationships between different disorders and other indices of brain function. In the future, as the datasets supporting the development of such scores become larger and more diverse and as methodological developments improve predictive capacity, we expect that PRS will have substantial clinical utility in the assessment of risk for disease, subtypes of disease, and even treatment response. Here, we provide an overview of PRS in general terms (including a glossary suitable for informed non-geneticists) and discuss the use of PRS in psychiatry, including their limitations and cautions for interpretation, as well as their applications now and in the future.
Collapse
Affiliation(s)
- Janice M Fullerton
- Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, Sydney, NSW, 2031, Australia.,School of Medical Sciences, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, 355 W. 16th Street, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN, 46202-2266, USA
| |
Collapse
|
116
|
Quartier A, Courraud J, Thi Ha T, McGillivray G, Isidor B, Rose K, Drouot N, Savidan MA, Feger C, Jagline H, Chelly J, Shaw M, Laumonnier F, Gecz J, Mandel JL, Piton A. Novel mutations in NLGN3 causing autism spectrum disorder and cognitive impairment. Hum Mutat 2019; 40:2021-2032. [PMID: 31184401 DOI: 10.1002/humu.23836] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022]
Abstract
The X-linked NLGN3 gene, encoding a postsynaptic cell adhesion molecule, was involved in a nonsyndromic monogenic form of autism spectrum disorder (ASD) by the description of one unique missense variant, p.Arg451Cys (Jamain et al. 2003). We investigated here the pathogenicity of additional missense variants identified in two multiplex families with intellectual disability (ID) and ASD: c.1789C>T, p.Arg597Trp, previously reported by our group (Redin et al. 2014) and present in three affected cousins and c.1540C>T, p.Pro514Ser, identified in two affected brothers. Overexpression experiments in HEK293 and HeLa cell lines revealed that both variants affect the level of the mature NLGN3 protein, its localization at the plasma membrane and its presence as a cleaved form in the extracellular environment, even more drastically than what was reported for the initial p.Arg451Cys mutation. The variants also induced an unfolded protein response, probably due to the retention of immature NLGN3 proteins in the endoplasmic reticulum. In comparison, the c.1894A>G, p.Ala632Thr and c.1022T>C, p.Val341Ala variants, present in males from the general population, have no effect. Our report of two missense variants affecting the normal localization of NLGN3 in a total of five affected individuals reinforces the involvement of the NLGN3 gene in a neurodevelopmental disorder characterized by ID and ASD.
Collapse
Affiliation(s)
- Angélique Quartier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Jérémie Courraud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Thuong Thi Ha
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Katherine Rose
- Monash Genetics, Monash Health, Clayton, Victoria, Australia
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Marie-Armel Savidan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Claire Feger
- Molecular Genetic Unit, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hélène Jagline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Molecular Genetic Unit, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marie Shaw
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Frédéric Laumonnier
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Génétique, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Jozef Gecz
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France.,University of Strasbourg Institute of Advanced Studies, Strasbourg, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Molecular Genetic Unit, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
117
|
Cardoso AR, Lopes-Marques M, Silva RM, Serrano C, Amorim A, Prata MJ, Azevedo L. Essential genetic findings in neurodevelopmental disorders. Hum Genomics 2019; 13:31. [PMID: 31288856 PMCID: PMC6617629 DOI: 10.1186/s40246-019-0216-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) represent a growing medical challenge in modern societies. Ever-increasing sophisticated diagnostic tools have been continuously revealing a remarkably complex architecture that embraces genetic mutations of distinct types (chromosomal rearrangements, copy number variants, small indels, and nucleotide substitutions) with distinct frequencies in the population (common, rare, de novo). Such a network of interacting players creates difficulties in establishing rigorous genotype-phenotype correlations. Furthermore, individual lifestyles may also contribute to the severity of the symptoms fueling a large spectrum of gene-environment interactions that have a key role on the relationships between genotypes and phenotypes.Herein, a review of the genetic discoveries related to NDDs is presented with the aim to provide useful general information for the medical community.
Collapse
Affiliation(s)
- Ana R Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Mónica Lopes-Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Raquel M Silva
- Department of Medical Sciences and iBiMED, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Present Address: Center for Interdisciplinary Research in Health (CIIS), Institute of Health Sciences (ICS), Universidade Católica Portuguesa, 3504-505, Viseu, Portugal
| | - Catarina Serrano
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - António Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Maria J Prata
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Luísa Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal. .,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
118
|
Rafi SK, Fernández-Jaén A, Álvarez S, Nadeau OW, Butler MG. High Functioning Autism with Missense Mutations in Synaptotagmin-Like Protein 4 (SYTL4) and Transmembrane Protein 187 (TMEM187) Genes: SYTL4- Protein Modeling, Protein-Protein Interaction, Expression Profiling and MicroRNA Studies. Int J Mol Sci 2019; 20:E3358. [PMID: 31323913 PMCID: PMC6651166 DOI: 10.3390/ijms20133358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 01/31/2023] Open
Abstract
We describe a 7-year-old male with high functioning autism spectrum disorder (ASD) and maternally-inherited rare missense variant of Synaptotagmin-like protein 4 (SYTL4) gene (Xq22.1; c.835C>T; p.Arg279Cys) and an unknown missense variant of Transmembrane protein 187 (TMEM187) gene (Xq28; c.708G>T; p. Gln236His). Multiple in-silico predictions described in our study indicate a potentially damaging status for both X-linked genes. Analysis of predicted atomic threading models of the mutant and the native SYTL4 proteins suggest a potential structural change induced by the R279C variant which eliminates the stabilizing Arg279-Asp60 salt bridge in the N-terminal half of the SYTL4, affecting the functionality of the protein's critical RAB-Binding Domain. In the European (Non-Finnish) population, the allele frequency for this variant is 0.00042. The SYTL4 gene is known to directly interact with several members of the RAB family of genes, such as, RAB27A, RAB27B, RAB8A, and RAB3A which are known autism spectrum disorder genes. The SYTL4 gene also directly interacts with three known autism genes: STX1A, SNAP25 and STXBP1. Through a literature-based analytical approach, we identified three of five (60%) autism-associated serum microRNAs (miRs) with high predictive power among the total of 298 mouse Sytl4 associated/predicted microRNA interactions. Five of 13 (38%) miRs were differentially expressed in serum from ASD individuals which were predicted to interact with the mouse equivalent Sytl4 gene. TMEM187 gene, like SYTL4, is a protein-coding gene that belongs to a group of genes which host microRNA genes in their introns or exons. The novel Q236H amino acid variant in the TMEM187 in our patient is near the terminal end region of the protein which is represented by multiple sequence alignments and hidden Markov models, preventing comparative structural analysis of the variant harboring region. Like SYTL4, the TMEM187 gene is expressed in the brain and interacts with four known ASD genes, namely, HCFC1; TMLHE; MECP2; and GPHN. TMM187 is in linkage with MECP2, which is a well-known determinant of brain structure and size and is a well-known autism gene. Other members of the TMEM gene family, TMEM132E and TMEM132D genes are associated with bipolar and panic disorders, respectively, while TMEM231 is a known syndromic autism gene. Together, TMEM187 and SYTL4 genes directly interact with recognized important ASD genes, and their mRNAs are found in extracellular vesicles in the nervous system and stimulate target cells to translate into active protein. Our evidence shows that both these genes should be considered as candidate genes for autism. Additional biological testing is warranted to further determine the pathogenicity of these gene variants in the causation of autism.
Collapse
Affiliation(s)
- Syed K Rafi
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | - Sara Álvarez
- Genomics and Medicine, NIM Genetics, 28108 Madrid, Spain
| | - Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
119
|
Doan RN, Lim ET, De Rubeis S, Betancur C, Cutler DJ, Chiocchetti AG, Overman LM, Soucy A, Goetze S, Freitag CM, Daly MJ, Walsh CA, Buxbaum JD, Yu TW. Recessive gene disruptions in autism spectrum disorder. Nat Genet 2019; 51:1092-1098. [PMID: 31209396 PMCID: PMC6629034 DOI: 10.1038/s41588-019-0433-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/02/2019] [Indexed: 01/27/2023]
Abstract
Autism spectrum disorder (ASD) affects up to 1 in 59 individuals1. Genome-wide association and large-scale sequencing studies strongly implicate both common variants2-4 and rare de novo variants5-10 in ASD. Recessive mutations have also been implicated11-14 but their contribution remains less well defined. Here we demonstrate an excess of biallelic loss-of-function and damaging missense mutations in a large ASD cohort, corresponding to approximately 5% of total cases, including 10% of females, consistent with a female protective effect. We document biallelic disruption of known or emerging recessive neurodevelopmental genes (CA2, DDHD1, NSUN2, PAH, RARB, ROGDI, SLC1A1, USH2A) as well as other genes not previously implicated in ASD including FEV (FEV transcription factor, ETS family member), which encodes a key regulator of the serotonergic circuitry. Our data refine estimates of the contribution of recessive mutation to ASD and suggest new paths for illuminating previously unknown biological pathways responsible for this condition.
Collapse
Affiliation(s)
- Ryan N Doan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elaine T Lim
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catalina Betancur
- Neuroscience Paris Seine, Institut de Biologie Paris Seine, Sorbonne Université, INSERM, CNRS, Paris, France
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Lynne M Overman
- Human Developmental Biology Resource, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle-upon-Tyne, UK
| | - Aubrie Soucy
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Susanne Goetze
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Mark J Daly
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Human Genetic Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy W Yu
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
120
|
Dorninger F, König T, Scholze P, Berger ML, Zeitler G, Wiesinger C, Gundacker A, Pollak DD, Huck S, Just WW, Forss-Petter S, Pifl C, Berger J. Disturbed neurotransmitter homeostasis in ether lipid deficiency. Hum Mol Genet 2019; 28:2046-2061. [PMID: 30759250 PMCID: PMC6548223 DOI: 10.1093/hmg/ddz040] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/21/2019] [Accepted: 02/10/2019] [Indexed: 12/30/2022] Open
Abstract
Plasmalogens, the most prominent ether (phospho)lipids in mammals, are structural components of most cellular membranes. Due to their physicochemical properties and abundance in the central nervous system, a role of plasmalogens in neurotransmission has been proposed, but conclusive data are lacking. Here, we targeted this issue in the glyceronephosphate O-acyltransferase (Gnpat) KO mouse, a model of complete deficiency in ether lipid biosynthesis. Throughout the study, focusing on adult male animals, we found reduced brain levels of various neurotransmitters. In the dopaminergic nigrostriatal tract, synaptic endings but not neuronal cell bodies were affected. Neurotransmitter turnover was altered in ether lipid-deficient murine as well as human post-mortem brain tissue. A generalized loss of synapses did not account for the neurotransmitter deficits, since the levels of several presynaptic proteins appeared unchanged. However, reduced amounts of vesicular monoamine transporter indicate a compromised vesicular uptake of neurotransmitters. As exemplified by norepinephrine, the release of neurotransmitters from Gnpat KO brain slices was diminished in response to strong electrical and chemical stimuli. Finally, addressing potential phenotypic correlates of the disturbed neurotransmitter homeostasis, we show that ether lipid deficiency manifests as hyperactivity and impaired social interaction. We propose that the lack of ether lipids alters the properties of synaptic vesicles leading to reduced amounts and release of neurotransmitters. These features likely contribute to the behavioral phenotype of Gnpat KO mice, potentially modeling some human neurodevelopmental disorders like autism or attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Theresa König
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Michael L Berger
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Gerhard Zeitler
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Christoph Wiesinger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, Vienna, Austria
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Wilhelm W Just
- Biochemistry Center Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| |
Collapse
|
121
|
Zhou WZ, Zhang J, Li Z, Lin X, Li J, Wang S, Yang C, Wu Q, Ye AY, Wang M, Wang D, Pu TZ, Wu YY, Wei L. Targeted resequencing of 358 candidate genes for autism spectrum disorder in a Chinese cohort reveals diagnostic potential and genotype-phenotype correlations. Hum Mutat 2019; 40:801-815. [PMID: 30763456 PMCID: PMC6593842 DOI: 10.1002/humu.23724] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/30/2022]
Abstract
Autism spectrum disorder (ASD) is a childhood neuropsychiatric disorder with a complex genetic architecture. The diagnostic potential of a targeted panel of ASD genes has only been evaluated in small cohorts to date and is especially understudied in the Chinese population. Here, we designed a capture panel with 358 genes (111 syndromic and 247 nonsyndromic) for ASD and sequenced a Chinese cohort of 539 cases evaluated with the Autism Diagnostic Interview‐Revised (ADI‐R) and the Autism Diagnostic Observation Schedule (ADOS) as well as 512 controls. ASD cases were found to carry significantly more ultra‐rare functional variants than controls. A subset of 78 syndromic and 54 nonsyndromic genes was the most significantly associated and should be given high priority in the future screening of ASD patients. Pathogenic and likely pathogenic variants were detected in 9.5% of cases. Variants in SHANK3 and SHANK2 were the most frequent, especially in females, and occurred in 1.2% of cases. Duplications of 15q11–13 were detected in 0.8% of cases. Variants in CNTNAP2 and MEF2C were correlated with epilepsy/tics in cases. Our findings reveal the diagnostic potential of ASD genetic panel testing and new insights regarding the variant spectrum. Genotype–phenotype correlations may facilitate the diagnosis and management of ASD.
Collapse
Affiliation(s)
- Wei-Zhen Zhou
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ziyi Li
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xiaojing Lin
- National Institute of Biological Sciences, Beijing, China
| | - Jiarui Li
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sheng Wang
- National Institute of Biological Sciences, Beijing, China.,College of Biological Sciences, China Agricultural University, Beijing, China
| | - Changhong Yang
- National Institute of Biological Sciences, Beijing, China.,College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qixi Wu
- School of Life Sciences, Peking University, Beijing, China
| | - Adam Yongxin Ye
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Meng Wang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Dandan Wang
- National Institute of Biological Sciences, Beijing, China
| | | | - Yu-Yu Wu
- Yuning Psychiatry Clinic, Taipei, Taiwan
| | - Liping Wei
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
122
|
Smith AM, Donley ELR, Burrier RE, King JJ, Amaral DG. Reply to: Lack of Diagnostic Utility of "Amino Acid Dysregulation Metabotypes". Biol Psychiatry 2019; 85:e43-e44. [PMID: 30595230 DOI: 10.1016/j.biopsych.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Alan M Smith
- Stemina Biomarker Discovery, Inc., Madison, Wisconsin
| | | | | | - Joseph J King
- Stemina Biomarker Discovery, Inc., Madison, Wisconsin
| | - David G Amaral
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, California; Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California.
| |
Collapse
|
123
|
Lu C, Shi X, Allen A, Baez-Nieto D, Nikish A, Sanjana NE, Pan JQ. Overexpression of NEUROG2 and NEUROG1 in human embryonic stem cells produces a network of excitatory and inhibitory neurons. FASEB J 2019; 33:5287-5299. [PMID: 30698461 PMCID: PMC6436650 DOI: 10.1096/fj.201801110rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/02/2019] [Indexed: 01/19/2023]
Abstract
Overexpression of mouse neurogenin ( Neurog) 2 alone or in combination with mouse Neurog2/1 in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can rapidly produce high-yield excitatory neurons. Here, we report a detailed characterization of human neuronal networks induced by the expression of human NEUROG2 together with human NEUROG2/1 in hESCs using molecular, cellular, and electrophysiological measurements over 60 d after induction. Both excitatory synaptic transmission and network firing activity increased over time. Strikingly, inhibitory synaptic transmission and GABAergic cells were identified from NEUROG2/1 induced neurons (iNs). To illustrate the application of such iNs, we demonstrated that the heterozygous knock out of SCN2A, whose loss-of-function mutation is strongly implicated in autism risk, led to a dramatic reduction in network activity in the NEUROG2/1 iNs. Our findings not only extend our understanding of the NEUROG2/1-induced human neuronal network but also substantiate NEUROG2/1 iNs as an in vitro system for modeling neuronal and functional deficits on a human genetic background.-Lu, C., Shi, X., Allen, A., Baez-Nieto, D., Nikish, A., Sanjana, N. E., Pan, J. Q. Overexpression of NEUROG2 and NEUROG1 in human embryonic stem cells produces a network of excitatory and inhibitory neurons.
Collapse
Affiliation(s)
- Congyi Lu
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
- New York Genome Center, New York, New York, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
- Department of Biology, New York University, New York, New York, USA
| | - Xi Shi
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Andrew Allen
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Alexandria Nikish
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Neville E. Sanjana
- New York Genome Center, New York, New York, USA
- Department of Biology, New York University, New York, New York, USA
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
124
|
Ayhan F, Konopka G. Regulatory genes and pathways disrupted in autism spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:57-64. [PMID: 30165121 PMCID: PMC6249101 DOI: 10.1016/j.pnpbp.2018.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/01/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent and complex genetic disorder. The complex genetic make-up of ASD has been extensively studied and both common and rare genetic variants in up to 1000 genes have been linked to increased ASD risk. While these studies highlight the genetic complexity and begin to provide a window for delineating pathways at risk in ASD, the pathogenicity and specific contribution of many mutations to the disorder are poorly understood. Defining the convergent pathways disrupted by this large number of ASD-associated genetic variants will help to understand disease pathogenesis and direct future therapeutic efforts for the groups of patients with distinct etiologies. Here, we review some of the common regulatory pathways including chromatin remodeling, transcription, and alternative splicing that have emerged as common features from genetic and transcriptomic profiling of ASD. For each category, we focus on one gene (CHD8, FOXP1, and RBFOX1) that is significantly linked to ASD and functionally characterized in recent years. Finally, we discuss genetic and transcriptomic overlap between ASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Fatma Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas 75390-9111, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas 75390-9111, USA.
| |
Collapse
|
125
|
Gabrielli AP, Manzardo AM, Butler MG. GeneAnalytics Pathways and Profiling of Shared Autism and Cancer Genes. Int J Mol Sci 2019; 20:ijms20051166. [PMID: 30866437 PMCID: PMC6429377 DOI: 10.3390/ijms20051166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023] Open
Abstract
Recent research revealed that autism spectrum disorders (ASD) and cancer may share common genetic architecture, with evidence first reported with the PTEN gene. There are approximately 800 autism genes and 3500 genes associated with cancer. The VarElect phenotype program was chosen to identify genes jointly associated with both conditions based on genomic information stored in GeneCards. In total, 138 overlapping genes were then profiled with GeneAnalytics, an analysis pathway enrichment tool utilizing existing gene datasets to identify shared pathways, mechanisms, and phenotypes. Profiling the shared gene data identified seven significantly associated diseases of 2310 matched disease entities with factors implicated in shared pathology of ASD and cancer. These included 371 super-pathways of 455 matched entities reflecting major cell-signaling pathways and metabolic disturbances (e.g., CREB, AKT, GPCR); 153 gene ontology (GO) biological processes of 226 matched processes; 41 GO molecular functions of 78 matched functions; and 145 phenotypes of 232 matched phenotypes. The entries were scored and ranked using a matching algorithm that takes into consideration genomic expression, sequencing, and microarray datasets with cell or tissue specificity. Shared mechanisms may lead to the identification of a common pathology and a better understanding of causation with potential treatment options to lessen the severity of ASD-related symptoms in those affected.
Collapse
Affiliation(s)
- Alexander P Gabrielli
- Departments of Psychiatry, Behavioral Sciences & Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Ann M Manzardo
- Departments of Psychiatry, Behavioral Sciences & Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Merlin G Butler
- Departments of Psychiatry, Behavioral Sciences & Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
126
|
The role of Pax6 in brain development and its impact on pathogenesis of autism spectrum disorder. Brain Res 2019; 1705:95-103. [DOI: 10.1016/j.brainres.2018.02.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 12/14/2022]
|
127
|
Patowary A, Won SY, Oh SJ, Nesbitt RR, Archer M, Nickerson D, Raskind WH, Bernier R, Lee JE, Brkanac Z. Family-based exome sequencing and case-control analysis implicate CEP41 as an ASD gene. Transl Psychiatry 2019; 9:4. [PMID: 30664616 PMCID: PMC6341097 DOI: 10.1038/s41398-018-0343-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/13/2018] [Indexed: 12/03/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic component. Although next-generation sequencing (NGS) technologies have been successfully applied to gene identification in de novo ASD, the genetic architecture of familial ASD remains largely unexplored. Our approach, which leverages the high specificity and sensitivity of NGS technology, has focused on rare variants in familial autism. We used NGS exome sequencing in 26 families with distantly related affected individuals to identify genes with private gene disrupting and missense variants of interest (VOI). We found that the genes carrying VOIs were enriched for biological processes related to cell projection organization and neuron development, which is consistent with the neurodevelopmental hypothesis of ASD. For a subset of genes carrying VOIs, we then used targeted NGS sequencing and gene-based variant burden case-control analysis to test for association with ASD. Missense variants in one gene, CEP41, associated significantly with ASD (p = 6.185e-05). Homozygous gene-disrupting variants in CEP41 were initially found to be responsible for recessive Joubert syndrome. Using a zebrafish model, we evaluated the mechanism by which the CEP41 variants might contribute to ASD. We found that CEP41 missense variants affect development of the axonal tract, cranial neural crest migration and social behavior phenotype. Our work demonstrates the involvement of CEP41 heterozygous missense variants in ASD and that biological processes involved in cell projection organization and neuron development are enriched in ASD families we have studied.
Collapse
Affiliation(s)
- Ashok Patowary
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - So Yeon Won
- 0000 0001 2181 989Xgrid.264381.aDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Shin Ji Oh
- 0000 0001 2181 989Xgrid.264381.aDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Ryan R Nesbitt
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Marilyn Archer
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Debbie Nickerson
- 0000000122986657grid.34477.33Department of Genome Sciences, University of Washington, Seattle, WA USA
| | - Wendy H. Raskind
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA ,0000000122986657grid.34477.33Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA USA
| | - Raphael Bernier
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Ji Eun Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea. .,Division of Medical Science Research, Samsung Medical Center, Seoul, Korea.
| | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
128
|
Buchsbaum IY, Cappello S. Neuronal migration in the CNS during development and disease: insights from in vivo and in vitro models. Development 2019; 146:146/1/dev163766. [DOI: 10.1242/dev.163766] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Neuronal migration is a fundamental process that governs embryonic brain development. As such, mutations that affect essential neuronal migration processes lead to severe brain malformations, which can cause complex and heterogeneous developmental and neuronal migration disorders. Our fragmented knowledge about the aetiology of these disorders raises numerous issues. However, many of these can now be addressed through studies of in vivo and in vitro models that attempt to recapitulate human-specific mechanisms of cortical development. In this Review, we discuss the advantages and limitations of these model systems and suggest that a complementary approach, using combinations of in vivo and in vitro models, will broaden our knowledge of the molecular and cellular mechanisms that underlie defective neuronal positioning in the human cerebral cortex.
Collapse
Affiliation(s)
- Isabel Yasmin Buchsbaum
- Developmental Neurobiology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Silvia Cappello
- Developmental Neurobiology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
129
|
Du X, Gao X, Liu X, Shen L, Wang K, Fan Y, Sun Y, Luo X, Liu H, Wang L, Wang Y, Gong Z, Wang J, Yu Y, Li F. Genetic Diagnostic Evaluation of Trio-Based Whole Exome Sequencing Among Children With Diagnosed or Suspected Autism Spectrum Disorder. Front Genet 2018; 9:594. [PMID: 30555518 PMCID: PMC6284054 DOI: 10.3389/fgene.2018.00594] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of clinically and genetically heterogeneous neurodevelopmental disorders. Recent tremendous advances in the whole exome sequencing (WES) enable rapid identification of variants associated with ASD including single nucleotide variations (SNVs) and indels. To further explore genetic etiology of ASD in Chinese children with negative findings of copy number variants (CNVs), we applied WES in 80 simplex families with a single affected offspring with ASD or suspected ASD, and validated variations predicted to be damaging by Sanger sequencing. The results showed that an overall diagnostic yield of 8.8% (9.2% in the group of ASD and 6.7% in the group of suspected ASD) was observed in our cohort. Among patients with diagnosed ASD, developmental delay or intellectual disability (DD/ID) was the most common comorbidity with a diagnostic yield of 13.3%, followed by seizures (50.0%) and craniofacial anomalies (40.0%). All of identified de novo SNVs and indels among patients with ASD were loss of function (LOF) variations and were slightly more frequent among female (male vs. female: 7.3% vs. 8.5%). A total of seven presumed causative genes (CHD8, AFF2, ADNP, POGZ, SHANK3, IL1RAPL1, and PTEN) were identified in this study. In conclusion, WES is an efficient diagnostic tool for diagnosed ASD especially those with negative findings of CNVs and other neurological disorders in clinical practice, enabling early identification of disease related genes and contributing to precision and personalized medicine.
Collapse
Affiliation(s)
- Xiujuan Du
- Developmental and Behavioral Pediatric Department - Child Primary Care Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueren Gao
- Department of Pediatric Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Liu
- Developmental and Behavioral Pediatric Department - Child Primary Care Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixiao Shen
- Developmental and Behavioral Pediatric Department - Child Primary Care Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Wang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Department of Pediatric Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomei Luo
- Department of Pediatric Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huili Liu
- Department of Pediatric Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Wang
- Department of Pediatric Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Pediatric Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuwen Gong
- Department of Pediatric Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianguo Wang
- Department of Pediatric Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- Developmental and Behavioral Pediatric Department - Child Primary Care Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
130
|
Qiao D, Ameli A, Prokopenko D, Chen H, Kho AT, Parker MM, Morrow J, Hobbs BD, Liu Y, Beaty TH, Crapo JD, Barnes KC, Nickerson DA, Bamshad M, Hersh CP, Lomas DA, Agusti A, Make BJ, Calverley PMA, Donner CF, Wouters EF, Vestbo J, Paré PD, Levy RD, Rennard SI, Tal-Singer R, Spitz MR, Sharma A, Ruczinski I, Lange C, Silverman EK, Cho MH. Whole exome sequencing analysis in severe chronic obstructive pulmonary disease. Hum Mol Genet 2018; 27:3801-3812. [PMID: 30060175 PMCID: PMC6196654 DOI: 10.1093/hmg/ddy269] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), one of the leading causes of death worldwide, is substantially influenced by genetic factors. Alpha-1 antitrypsin deficiency demonstrates that rare coding variants of large effect can influence COPD susceptibility. To identify additional rare coding variants in patients with severe COPD, we conducted whole exome sequencing analysis in 2543 subjects from two family-based studies (Boston Early-Onset COPD Study and International COPD Genetics Network) and one case-control study (COPDGene). Applying a gene-based segregation test in the family-based data, we identified significant segregation of rare loss of function variants in TBC1D10A and RFPL1 (P-value < 2x10-6), but were unable to find similar variants in the case-control study. In single-variant, gene-based and pathway association analyses, we were unable to find significant findings that replicated or were significant in meta-analysis. However, we found that the top results in the two datasets were in proximity to each other in the protein-protein interaction network (P-value = 0.014), suggesting enrichment of these results for similar biological processes. A network of these association results and their neighbors was significantly enriched in the transforming growth factor beta-receptor binding and cilia-related pathways. Finally, in a more detailed examination of candidate genes, we identified individuals with putative high-risk variants, including patients harboring homozygous mutations in genes associated with cutis laxa and Niemann-Pick Disease Type C. Our results likely reflect heterogeneity of genetic risk for COPD along with limitations of statistical power and functional annotation, and highlight the potential of network analysis to gain insight into genetic association studies.
Collapse
Affiliation(s)
- Dandi Qiao
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Asher Ameli
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Dmitry Prokopenko
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Alvin T Kho
- Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Margaret M Parker
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jarrett Morrow
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yanhong Liu
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - James D Crapo
- National Jewish Health, Denver, Colorado, United States of America
| | - Kathleen C Barnes
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, Washington , United States of America
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, IDIBAPS, University of Barcelona, CIBERES, Barcelona, Spain
| | - Barry J Make
- National Jewish Health, Denver, Colorado, United States of America
| | | | - Claudio F Donner
- Mondo Medico di I.F.I.M. srl, Multidisciplinary and Rehabilitation Outpatient Clinic, Borgomanero, Novara, Italy
| | - Emiel F Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center, AZ Maastricht, The Netherlands
| | - Jørgen Vestbo
- University of Manchester, Manchester, United Kingdom
| | - Peter D Paré
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia V6T, Canada
| | - Robert D Levy
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia V6T, Canada
| | - Stephen I Rennard
- University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- AstraZeneca, Cambridge CB2 0RE, United Kingdom
| | - Ruth Tal-Singer
- GSK Research and Development, KingOf Prussia, Pennsylvania, United States of America
| | - Margaret R Spitz
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Amitabh Sharma
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Christoph Lange
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Longwood Avenue, Boston, MA, USA
| |
Collapse
|
131
|
Somatic mosaicism and neurodevelopmental disease. Nat Neurosci 2018; 21:1504-1514. [PMID: 30349109 DOI: 10.1038/s41593-018-0257-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022]
Abstract
Traditionally, we have considered genetic mutations that cause neurodevelopmental diseases to be inherited or de novo germline mutations. Recently, we have come to appreciate the importance of de novo somatic mutations, which occur postzygotically and are thus present in only a subset of the cells of an affected individual. The advent of next-generation sequencing and single-cell sequencing technologies has shown that somatic mutations contribute to normal and abnormal human brain development. Somatic mutations are one important cause of neuronal migration and brain overgrowth disorders, as suggested by visible focal lesions. In addition, somatic mutations contribute to neurodevelopmental diseases without visible lesions, including epileptic encephalopathies, intellectual disability, and autism spectrum disorder, and may contribute to a broad range of neuropsychiatric diseases. Studying somatic mutations provides insight into the mechanisms underlying human brain development and neurodevelopmental diseases and has important implications for diagnosis and treatment.
Collapse
|
132
|
Wu J, Yu P, Jin X, Xu X, Li J, Li Z, Wang M, Wang T, Wu X, Jiang Y, Cai W, Mei J, Min Q, Xu Q, Zhou B, Guo H, Wang P, Zhou W, Hu Z, Li Y, Cai T, Wang Y, Xia K, Jiang YH, Sun ZS. Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing. J Genet Genomics 2018; 45:527-538. [PMID: 30392784 DOI: 10.1016/j.jgg.2018.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/25/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with considerable clinical and genetic heterogeneity. In this study, we identified all classes of genomic variants from whole-genome sequencing (WGS) dataset of 32 Chinese trios with ASD, including de novo mutations, inherited variants, copy number variants (CNVs) and genomic structural variants. A higher mutation rate (Poisson test, P < 2.2 × 10-16) in exonic (1.37 × 10-8) and 3'-UTR regions (1.42 × 10-8) was revealed in comparison with that of whole genome (1.05 × 10-8). Using an integrated model, we identified 87 potentially risk genes (P < 0.01) from 4832 genes harboring various rare deleterious variants, including CHD8 and NRXN2, implying that the disorders may be in favor to multiple-hit. In particular, frequent rare inherited mutations of several microcephaly-associated genes (ASPM, WDR62, and ZNF335) were found in ASD. In chromosomal structure analyses, we found four de novo CNVs and one de novo chromosomal rearrangement event, including a de novo duplication of UBE3A-containing region at 15q11.2-q13.1, which causes Angelman syndrome and microcephaly, and a disrupted TNR due to de novo chromosomal translocation t(1; 5)(q25.1; q33.2). Taken together, our results suggest that abnormalities of centrosomal function and chromatin remodeling of the microcephaly-associated genes may be implicated in pathogenesis of ASD. Adoption of WGS as a new yet efficient technique to illustrate the full genetic spectrum in complex disorders, such as ASD, could provide novel insights into pathogenesis, diagnosis and treatment.
Collapse
Affiliation(s)
- Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Ping Yu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiu Xu
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Jinchen Li
- State Key Laboratory of Medical Genetics, Central South University, Changsha 410078, China
| | - Zhongshan Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | | | - Tao Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xueli Wu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yi Jiang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Junpu Mei
- BGI-Shenzhen, Shenzhen 518083, China
| | - Qingjie Min
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Qiong Xu
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Bingrui Zhou
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Hui Guo
- State Key Laboratory of Medical Genetics, Central South University, Changsha 410078, China
| | - Ping Wang
- Department of Pediatrics and Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wenhao Zhou
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Zhengmao Hu
- State Key Laboratory of Medical Genetics, Central South University, Changsha 410078, China
| | | | - Tao Cai
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yi Wang
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha 410078, China.
| | - Yong-Hui Jiang
- Department of Pediatrics and Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Zhong Sheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
133
|
Kvarnung M, Taylan F, Nilsson D, Anderlid BM, Malmgren H, Lagerstedt-Robinson K, Holmberg E, Burstedt M, Nordenskjöld M, Nordgren A, Lundberg ES. Genomic screening in rare disorders: New mutations and phenotypes, highlighting ALG14 as a novel cause of severe intellectual disability. Clin Genet 2018; 94:528-537. [PMID: 30221345 DOI: 10.1111/cge.13448] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
We have investigated 20 consanguineous families with multiple children affected by rare disorders. Detailed clinical examinations, exome sequencing of affected as well as unaffected family members and further validation of likely pathogenic variants were performed. In 16/20 families, we identified pathogenic variants in autosomal recessive disease genes (ALMS1, PIGT, FLVCR2, TFG, CYP7B1, ALG14, EXOSC3, MEGF10, ASAH1, WDR62, ASPM, PNPO, ERCC5, KIAA1109, RIPK4, MAN1B1). A number of these genes have only rarely been reported previously and our findings thus confirm them as disease genes, further delineate the associated phenotypes and expand the mutation spectrum with reports of novel variants. We highlight the findings in two affected siblings with splice altering variants in ALG14 and propose a new clinical entity, which includes severe intellectual disability, epilepsy, behavioral problems and mild dysmorphic features, caused by biallelic variants in ALG14.
Collapse
Affiliation(s)
- Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Malmgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Holmberg
- Department of Medical Bioscience, Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| | - Magnus Burstedt
- Department of Medical Bioscience, Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth S Lundberg
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
134
|
Janin A, Gache V. Nesprins and Lamins in Health and Diseases of Cardiac and Skeletal Muscles. Front Physiol 2018; 9:1277. [PMID: 30245638 PMCID: PMC6137955 DOI: 10.3389/fphys.2018.01277] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of the inner nuclear transmembrane protein emerin in the early 1990s, nuclear envelope (NE) components and related involvement in nuclei integrity and functionality have been highly investigated. The NE is composed of two distinct lipid bilayers described as the inner (INM) and outer (ONM) nuclear membrane. NE proteins can be specifically “integrated” in the INM (such as emerin and SUN proteins) or in the ONM such as nesprins. Additionally, flanked to the INM, the nuclear lamina, a proteinaceous meshwork mainly composed of lamins A and C completes NE composition. This network of proteins physically interplays to guarantee NE integrity and most importantly, shape the bridge between cytoplasmic cytoskeletons networks (such as microtubules and actin) and the genome, through the anchorage to the heterochromatin. The essential network driving the connection of nucleoskeleton with cytoskeleton takes place in the perinuclear space (the space between ONM and INM) with the contribution of the LINC complex (for Linker of Nucleoskeleton to Cytoskeleton), hosting KASH and SUN proteins interactions. This close interplay between compartments has been related to diverse functions from nuclear integrity, activity and positioning through mechanotransduction pathways. At the same time, mutations in NE components genes coding for proteins such as lamins or nesprins, had been associated with a wide range of congenital diseases including cardiac and muscular diseases. Although most of these NE associated proteins are ubiquitously expressed, a large number of tissue-specific disorders have been associated with diverse pathogenic mutations. Thus, diagnosis and molecular explanation of this group of diseases, commonly called “nuclear envelopathies,” is currently challenging. This review aims, first, to give a better understanding of diverse functions of the LINC complex components, from the point of view of lamins and nesprins. Second, to summarize human congenital diseases with a special focus on muscle and heart abnormalities, caused by mutations in genes coding for these two types of NE associated proteins.
Collapse
Affiliation(s)
- Alexandre Janin
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Vincent Gache
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
135
|
Hou Q, Wang Y, Li Y, Chen D, Yang F, Wang S. A Developmental Study of Abnormal Behaviors and Altered GABAergic Signaling in the VPA-Treated Rat Model of Autism. Front Behav Neurosci 2018; 12:182. [PMID: 30186123 PMCID: PMC6110947 DOI: 10.3389/fnbeh.2018.00182] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
Although studies have investigated the role of gamma-aminobutyric acid (GABA)ergic signaling in rodent neural development and behaviors relevant to autism, behavioral ontogeny, as underlain by the changes in GABAergic system, is poorly characterized in different brain regions. Here, we employed a valproic acid (VPA) rat model of autism to investigate the autism-like behaviors and GABAergic glutamic acid decarboxylase 67 (GAD67) expression underlying these altered behaviors in multiple brain areas at different developmental stages from birth to adulthood. We found that VPA-treated rats exhibited behavioral abnormalities relevant to autism, including delayed nervous reflex development, altered motor coordination, delayed sensory development, autistic-like and anxiety behaviors and impaired spatial learning and memory. We also found that VPA rats had the decreased expression of GAD67 in the hippocampus (HC) and cerebellum from childhood to adulthood, while decreased GAD67 expression of the temporal cortex (TC) was only observed in adulthood. Conversely, GAD67 expression was increased in the prefrontal cortex (PFC) from adolescence to adulthood. The dysregulated GAD67 expression could alter the excitatory-inhibitory balance in the cerebral cortex, HC and cerebellum. Our findings indicate an impaired GABAergic system could be a major etiological factor occurring in the cerebral cortex, HC and cerebellum of human cases of autism, which suggests enhancement of GABA signaling would be a promising therapeutic target for its treatment.
Collapse
Affiliation(s)
- Qianling Hou
- Cerebrovascular Disease Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Cerebrovascular Disease Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yingbo Li
- Cerebrovascular Disease Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Di Chen
- Cerebrovascular Disease Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Feng Yang
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, United States
| | - Shali Wang
- Cerebrovascular Disease Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
136
|
Runs of homozygosity, copy number variation, and risk for depression and suicidal behavior in an Arab Bedouin kindred. Psychiatr Genet 2018; 27:169-177. [PMID: 28570395 DOI: 10.1097/ypg.0000000000000177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Inbreeding increases the probability of homozygosity of deleterious alleles. Inbreeding and runs of homozygosity (ROH) are associated with an increased risk for disease phenotypes, including schizophrenia and other psychiatric disorders. The effects of inbreeding, ROH, homozygous deletions, and other copy number variations (CNVs) on risk for depression and suicide attempt (SA) were quantified in an Arab Bedouin Kindred. METHODS We carried out genetic analyses of 439 individuals from an Arab kindred with high rates of depression and suicidal behavior. We obtained complete ascertainment of SAs and first-degree relatives of individuals who have attempted or died by suicide. RESULTS We found extensive regions of ROH. On average, 5% of the genome is covered by ROH for these individuals, two-fold higher than ROH rates for individuals from populations of European ancestry. Inbreeding and total length of ROH were not associated with risk for depression or attempt. For CNVs, an increased number of duplications more than 500 kb was associated with an increased risk for attempt (odds ratio: 2.9; P=0.01; 95% confidence interval: 1.3-6.6). Although not significant after correction for multiple testing, the risk for SA appears to increase with copy number for a CNV on chromosome 9p24.1. This possibility is intriguing because the CNV covers GLDC, which encodes glycine dehydrogenase that binds to glycine, a co-agonist at N-methyl-D-aspartate glutamate receptors, and is involved in glutamatergic neurotransmission. CONCLUSION Our findings add to the growing evidence of genetic risk factors that act pleiotropically to increase the risk for several neuropsychiatric disorders, including depression and SA, irrespective of ancestry.
Collapse
|
137
|
Doostparast Torshizi A, Duan J, Wang K. Transcriptional network analysis on brains reveals a potential regulatory role of PPP1R3F in autism spectrum disorders. BMC Res Notes 2018; 11:489. [PMID: 30016992 PMCID: PMC6050725 DOI: 10.1186/s13104-018-3594-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/12/2018] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE This study aims at identifying master regulators of transcriptional networks in autism spectrum disorders (ASDs). RESULTS With two sets of independent RNA-Seq data generated on cerebellum from patients with ASDs and control subjects (N = 39 and 45 for set 1, N = 24 and 38 for set 2, respectively), we carried out a network deconvolution of transcriptomic data, followed by virtual protein activity analysis. We identified PPP1R3F (Protein Phosphatase 1 Regulatory Subunit 3F) as a candidate master regulator affecting a large body of downstream genes that are associated with the disease phenotype. Pathway analysis on the identified targets of PPP1R3F in both datasets indicated alteration of endocytosis pathway. Despite a limited sample size, our study represents one of the first applications of network deconvolution approach to brain transcriptomic data to generate hypotheses that may be further validated by large-scale studies.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Jubao Duan
- Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201 USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60015 USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
138
|
DeThorne LS, Ceman S. Genetic testing and autism: Tutorial for communication sciences and disorders. JOURNAL OF COMMUNICATION DISORDERS 2018; 74:61-73. [PMID: 29879582 PMCID: PMC6083877 DOI: 10.1016/j.jcomdis.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/16/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
This tutorial provides professionals in communication sciences and disorders with an overview of the molecular basis and parental perceptions of genetic testing as associated with autism. The introduction notes the prominence of genetic testing within present-day medical practices and highlights related limitations and concerns through the lens of disability critique. The body of the tutorial provides an overview of four different forms of genetic variation, highlighting the potential associations with autism and available genetic testing. In sum, most autism cases cannot be associated directly with specified forms of genetic variation but are attributed instead to multiple genetic and environmental influences working in concert. Finally, the discussion focuses on parental perceptions of the genetic testing associated with autism, both the potential benefits and harms, and emphasizes the need to integrate first-person perspectives from autistic individuals.
Collapse
Affiliation(s)
- Laura S DeThorne
- Department of Speech & Hearing Science, University of Illinois, 901 S. Sixth Street, Champaign, IL, 61820, United States.
| | - Stephanie Ceman
- Department of Cell and Developmental Biology, College of Medicine, University of Illinois, 601 S. Goodwin Ave Urbana, IL, 61801, United States.
| |
Collapse
|
139
|
Rao AR, Nelson SF. Calculating the statistical significance of rare variants causal for Mendelian and complex disorders. BMC Med Genomics 2018; 11:53. [PMID: 29898714 PMCID: PMC6001062 DOI: 10.1186/s12920-018-0371-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/25/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND With the expanding use of next-gen sequencing (NGS) to diagnose the thousands of rare Mendelian genetic diseases, it is critical to be able to interpret individual DNA variation. To calculate the significance of finding a rare protein-altering variant in a given gene, one must know the frequency of seeing a variant in the general population that is at least as damaging as the variant in question. METHODS We developed a general method to better interpret the likelihood that a rare variant is disease causing if observed in a given gene or genic region mapping to a described protein domain, using genome-wide information from a large control sample. Based on data from 2504 individuals in the 1000 Genomes Project dataset, we calculated the number of individuals who have a rare variant in a given gene for numerous filtering threshold scenarios, which may be used for calculating the significance of an observed rare variant being causal for disease. Additionally, we calculated mutational burden data on the number of individuals with rare variants in genic regions mapping to protein domains. RESULTS We describe methods to use the mutational burden data for calculating the significance of observing rare variants in a given proportion of sequenced individuals. We present SORVA, an implementation of these methods as a web tool, and we demonstrate application to 20 relevant but diverse next-gen sequencing studies. Specifically, we calculate the statistical significance of findings involving multi-family studies with rare Mendelian disease and a large-scale study of a complex disorder, autism spectrum disorder. If we use the frequency counts to rank genes based on intolerance for variation, the ranking correlates well with pLI scores derived from the Exome Aggregation Consortium (ExAC) dataset (ρ = 0.515), with the benefit that the scores are directly interpretable. CONCLUSIONS We have presented a strategy that is useful for vetting candidate genes from NGS studies and allows researchers to calculate the significance of seeing a variant in a given gene or protein domain. This approach is an important step towards developing a quantitative, statistics-based approach for presenting clinical findings.
Collapse
Affiliation(s)
- Aliz R. Rao
- Department of Human Genetics, University of California, Los Angeles, California, Los Angeles USA
| | - Stanley F. Nelson
- Department of Human Genetics, University of California, Los Angeles, California, Los Angeles USA
- Department of Psychiatry and Biobehavioral Sciences at the David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles USA
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, Los Angeles USA
| |
Collapse
|
140
|
Luo J, Norris RH, Gordon SL, Nithianantharajah J. Neurodevelopmental synaptopathies: Insights from behaviour in rodent models of synapse gene mutations. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:424-439. [PMID: 29217145 DOI: 10.1016/j.pnpbp.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 11/15/2022]
Abstract
The genomic revolution has begun to unveil the enormous complexity and heterogeneity of the genetic basis of neurodevelopmental disorders such as such epilepsy, intellectual disability, autism spectrum disorder and schizophrenia. Increasingly, human mutations in synapse genes are being identified across these disorders. These neurodevelopmental synaptopathies highlight synaptic homeostasis pathways as a convergence point underlying disease mechanisms. Here, we review some of the key pre- and postsynaptic genes in which penetrant human mutations have been identified in neurodevelopmental disorders for which genetic rodent models have been generated. Specifically, we focus on the main behavioural phenotypes that have been documented in these animal models, to consolidate our current understanding of how synapse genes regulate key behavioural and cognitive domains. These studies provide insights into better understanding the basis of the overlapping genetic and cognitive heterogeneity observed in neurodevelopmental disorders.
Collapse
Affiliation(s)
- J Luo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - R H Norris
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - S L Gordon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - J Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
141
|
Tordjman S, Cohen D, Anderson G, Botbol M, Canitano R, Coulon N, Roubertoux P. Repint of “Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity”. Neurosci Biobehav Rev 2018; 89:132-150. [DOI: 10.1016/j.neubiorev.2018.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/18/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022]
|
142
|
Schwede M, Nagpal S, Gandal MJ, Parikshak NN, Mirnics K, Geschwind DH, Morrow EM. Strong correlation of downregulated genes related to synaptic transmission and mitochondria in post-mortem autism cerebral cortex. J Neurodev Disord 2018; 10:18. [PMID: 29859039 PMCID: PMC5984825 DOI: 10.1186/s11689-018-9237-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
Background Genetic studies in autism have pinpointed a heterogeneous group of loci and genes. Further, environment may be an additional factor conferring susceptibility to autism. Transcriptome studies investigate quantitative differences in gene expression between patient-derived tissues and control. These studies may pinpoint genes relevant to pathophysiology yet circumvent the need to understand genetic architecture or gene-by-environment interactions leading to disease. Methods We conducted alternate gene set enrichment analyses using differentially expressed genes from a previously published RNA-seq study of post-mortem autism cerebral cortex. We used three previously published microarray datasets for validation and one of the microarray datasets for additional differential expression analysis. The RNA-seq study used 26 autism and 33 control brains in differential gene expression analysis, and the largest microarray dataset contained 15 autism and 16 control post-mortem brains. Results While performing a gene set enrichment analysis of genes differentially expressed in the RNA-seq study, we discovered that genes associated with mitochondrial function were downregulated in autism cerebral cortex, as compared to control. These genes were correlated with genes related to synaptic function. We validated these findings across the multiple microarray datasets. We also did separate differential expression and gene set enrichment analyses to confirm the importance of the mitochondrial pathway among downregulated genes in post-mortem autism cerebral cortex. Conclusions We found that genes related to mitochondrial function were differentially expressed in autism cerebral cortex and correlated with genes related to synaptic transmission. Our principal findings replicate across all datasets investigated. Further, these findings may potentially replicate in other diseases, such as in schizophrenia. Electronic supplementary material The online version of this article (10.1186/s11689-018-9237-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew Schwede
- Department of Molecular Biology, Cell Biology and Biochemistry, and Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - Shailender Nagpal
- Department of Molecular Biology, Cell Biology and Biochemistry, and Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - Michael J Gandal
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Neelroop N Parikshak
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Karoly Mirnics
- Department of Psychiatry and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37203, USA.,Present address: Department of Psychiatry, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, and Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA. .,Developmental Disorders Genetics Research Program, Emma Pendleton Bradley Hospital and Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, East Providence, RI, 02915, USA. .,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI, 02912, USA. .,Laboratories for Molecular Medicine, Brown University, 70 Ship Street, Box G-E4, Providence, RI, 02912, USA.
| |
Collapse
|
143
|
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition with no current treatment available. Although advances in genetics and genomics have identified hundreds of genes associated with ASD, very little is known about the pathophysiology of ASD and the functional contribution of specific genes to ASD phenotypes. Improved understanding of the biological function of ASD-associated genes and how this heterogeneous group of genetic variants leads to the disease is needed in order to develop therapeutic strategies. Here, we review the current state of ASD research related to gene discovery and examples of emerging molecular mechanisms (protein translation and alternative splicing). In addition, we discuss how patient-derived three-dimensional brain organoids might provide an opportunity to model specific genetic variants in order to define molecular and cellular defects that could be amenable for developing and screening personalized therapies related to ASD.
Collapse
Affiliation(s)
- Fatma Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, 75390-9111 TX, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, 75390-9111 TX, USA
| |
Collapse
|
144
|
Mouse models of nesprin-related diseases. Biochem Soc Trans 2018; 46:669-681. [PMID: 29784648 DOI: 10.1042/bst20180085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/05/2018] [Accepted: 04/20/2018] [Indexed: 02/05/2023]
Abstract
Nesprins (nuclear envelope spectrin repeat proteins) are a family of multi-isomeric scaffolding proteins. Nesprins form the LInker of Nucleoskeleton-and-Cytoskeleton (LINC) complex with SUN (Sad1p/UNC84) domain-containing proteins at the nuclear envelope, in association with lamin A/C and emerin, linking the nucleoskeleton to the cytoskeleton. The LINC complex serves as both a physical linker between the nuclear lamina and the cytoskeleton and a mechanosensor. The LINC complex has a broad range of functions and is involved in maintaining nuclear architecture, nuclear positioning and migration, and also modulating gene expression. Over 80 disease-related variants have been identified in SYNE-1/2 (nesprin-1/2) genes, which result in muscular or central nervous system disorders including autosomal dominant Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy and autosomal recessive cerebellar ataxia type 1. To date, 17 different nesprin mouse lines have been established to mimic these nesprin-related human diseases, which have provided valuable insights into the roles of nesprin and its scaffold LINC complex in a tissue-specific manner. In this review, we summarise the existing nesprin mouse models, compare their phenotypes and discuss the potential mechanisms underlying nesprin-associated diseases.
Collapse
|
145
|
Li M, Huang TY, Ye J, Zhao S, Chen LS. Perceived recurrence risk of having another affected child: A survey on parents of children with autism spectrum disorders in Taiwan. PATIENT EDUCATION AND COUNSELING 2018; 101:926-931. [PMID: 29301637 DOI: 10.1016/j.pec.2017.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE Autism Spectrum Disorders (ASD) have a significant genetic predisposition. The recurrence risk of ASD ranges from 3% to 18.7% for parents having one affected child. As recurrence risk perceptions have important implications for family planning, prenatal preparation, and future children managements, absolute and relative recurrence risk perceptions of having another affected child among Taiwanese parents of children with ASD were assessed. METHODS This study collected quantitative survey data from 415 Taiwanese parents who had one child with ASD. RESULTS Participants reported their absolute recurrence risk of having another child with ASD was 33.4%. Compared to other parents with normally-developing children, merely 49.8% of participants perceived higher relative recurrence risk. By controlling for the sociodemographic characteristics, participants' absolute recurrence risk perceptions were significantly predicted by their perceived genetic causes of ASD and family history of ASD. Yet, participants' relative recurrence risk perceptions were significantly associated with only the perceived genetic etiology. CONCLUSION Taiwanese parents of children diagnosed with ASD had an incorrect understanding of their absolute and relative recurrence risks. PRACTICE IMPLICATIONS To facilitate informed decision-making in family planning, healthcare providers should discuss absolute and relative recurrence risks as well as genetic causes of ASD with this particular group.
Collapse
Affiliation(s)
- Ming Li
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Tse-Yang Huang
- Department of Special Education, National Tsing Hua University, HsinChu, Taiwan
| | - Jia Ye
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Shixi Zhao
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Lei-Shih Chen
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
146
|
|
147
|
Luo W, Zhang C, Jiang YH, Brouwer CR. Systematic reconstruction of autism biology from massive genetic mutation profiles. SCIENCE ADVANCES 2018; 4:e1701799. [PMID: 29651456 PMCID: PMC5895441 DOI: 10.1126/sciadv.1701799] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3',5'-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein-coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity.
Collapse
Affiliation(s)
- Weijun Luo
- Department of Bioinformatics and Genomics, University of North Carolina (UNC) at Charlotte, Charlotte, NC 28223, USA
- UNC Charlotte Bioinformatics Service Division, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Yong-hui Jiang
- Department of Pediatrics, Department of Neurobiology, Program in Genetics and Genomics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Cory R. Brouwer
- Department of Bioinformatics and Genomics, University of North Carolina (UNC) at Charlotte, Charlotte, NC 28223, USA
- UNC Charlotte Bioinformatics Service Division, North Carolina Research Campus, Kannapolis, NC 28081, USA
| |
Collapse
|
148
|
O'Neill AC, Kyrousi C, Einsiedler M, Burtscher I, Drukker M, Markie DM, Kirk EP, Götz M, Robertson SP, Cappello S. Mob2 Insufficiency Disrupts Neuronal Migration in the Developing Cortex. Front Cell Neurosci 2018; 12:57. [PMID: 29593499 PMCID: PMC5857600 DOI: 10.3389/fncel.2018.00057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/19/2018] [Indexed: 12/29/2022] Open
Abstract
Disorders of neuronal mispositioning during brain development are phenotypically heterogeneous and their genetic causes remain largely unknown. Here, we report biallelic variants in a Hippo signaling factor—MOB2—in a patient with one such disorder, periventricular nodular heterotopia (PH). Genetic and cellular analysis of both variants confirmed them to be loss-of-function with enhanced sensitivity to transcript degradation via nonsense mediated decay (NMD) or increased protein turnover via the proteasome. Knockdown of Mob2 within the developing mouse cortex demonstrated its role in neuronal positioning. Cilia positioning and number within migrating neurons was also impaired with comparable defects detected following a reduction in levels of an upstream modulator of Mob2 function, Dchs1, a previously identified locus associated with PH. Moreover, reduced Mob2 expression increased phosphorylation of Filamin A, an actin cross-linking protein frequently mutated in cases of this disorder. These results reveal a key role for Mob2 in correct neuronal positioning within the developing cortex and outline a new candidate locus for PH development.
Collapse
Affiliation(s)
- Adam C O'Neill
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand.,Helmholtz Center, Institute of Stem Cell Research, Munich, Germany
| | | | | | - Ingo Burtscher
- Helmholtz Center, Institute of Stem Cell Research, Munich, Germany.,Helmholtz Center Munich, Institute of Diabetes and Regeneration Research, Garching, Germany
| | - Micha Drukker
- Helmholtz Center, Institute of Stem Cell Research, Munich, Germany.,Helmholtz Center, iPSC Core Facility, Munich, Germany
| | - David M Markie
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Edwin P Kirk
- Sydney Children's Hospital, University of New South Wales and New South Wales Health Pathology, Randwick, NSW, Australia
| | - Magdalena Götz
- Helmholtz Center, Institute of Stem Cell Research, Munich, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany.,Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany
| | - Stephen P Robertson
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
149
|
Oaks AW, Zamarbide M, Tambunan DE, Santini E, Di Costanzo S, Pond HL, Johnson MW, Lin J, Gonzalez DM, Boehler JF, Wu GK, Klann E, Walsh CA, Manzini MC. Cc2d1a Loss of Function Disrupts Functional and Morphological Development in Forebrain Neurons Leading to Cognitive and Social Deficits. Cereb Cortex 2018; 27:1670-1685. [PMID: 26826102 DOI: 10.1093/cercor/bhw009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Loss-of-function (LOF) mutations in CC2D1A cause a spectrum of neurodevelopmental disorders, including intellectual disability, autism spectrum disorder, and seizures, identifying a critical role for this gene in cognitive and social development. CC2D1A regulates intracellular signaling processes that are critical for neuronal function, but previous attempts to model the human LOF phenotypes have been prevented by perinatal lethality in Cc2d1a-deficient mice. To overcome this challenge, we generated a floxed Cc2d1a allele for conditional removal of Cc2d1a in the brain using Cre recombinase. While removal of Cc2d1a in neuronal progenitors using Cre expressed from the Nestin promoter still causes death at birth, conditional postnatal removal of Cc2d1a in the forebrain via calcium/calmodulin-dependent protein kinase II-alpha (CamKIIa) promoter-driven Cre generates animals that are viable and fertile with grossly normal anatomy. Analysis of neuronal morphology identified abnormal cortical dendrite organization and a reduction in dendritic spine density. These animals display deficits in neuronal plasticity and in spatial learning and memory that are accompanied by reduced sociability, hyperactivity, anxiety, and excessive grooming. Cc2d1a conditional knockout mice therefore recapitulate features of both cognitive and social impairment caused by human CC2D1A mutation, and represent a model that could provide much needed insights into the developmental mechanisms underlying nonsyndromic neurodevelopmental disorders.
Collapse
Affiliation(s)
- Adam W Oaks
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Marta Zamarbide
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Dimira E Tambunan
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Emanuela Santini
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Stefania Di Costanzo
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Heather L Pond
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Mark W Johnson
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Jeff Lin
- Department of Psychology, The George Washington University, Washington, DC 20052, USA
| | - Dilenny M Gonzalez
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica F Boehler
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Guangying K Wu
- Department of Psychology, The George Washington University, Washington, DC 20052, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - M Chiara Manzini
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
150
|
Sundby A, Boolsen MW, Burgdorf KS, Ullum H, Hansen TF, Mors O. Attitudes of stakeholders in psychiatry towards the inclusion of children in genomic research. Hum Genomics 2018; 12:12. [PMID: 29506557 PMCID: PMC5839067 DOI: 10.1186/s40246-018-0144-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic sequencing of children in research raises complex ethical issues. This study aims to gain more knowledge on the attitudes towards the inclusion of children as research subjects in genomic research and towards the disclosure of pertinent and incidental findings to the parents and the child. METHODS Qualitative data were collected from interviews with a wide range of informants: experts engaged in genomic research, clinical geneticists, persons with mental disorders, relatives, and blood donors. Quantitative data were collected from a cross-sectional web-based survey among 1227 parents and 1406 non-parents who were potential stakeholders in psychiatric genomic research. RESULTS Participants generally expressed positive views on children's participation in genomic research. The informants in the qualitative interviews highlighted the age of the child as a critical aspect when disclosing genetic information. Other important aspects were the child's right to an autonomous choice, the emotional burden of knowing imposed on both the child and the parents, and the possibility of receiving beneficial clinical information regarding the future health of the child. Nevertheless, there was no consensus whether the parent or the child should receive the findings. A majority of survey stakeholders agreed that children should be able to participate in genomic research. The majority agreed that both pertinent and incidental findings should be returned to the parents and to the child when of legal age. Having children does not affect the stakeholder's attitudes towards the inclusion of children as research subjects in genomic research. CONCLUSION Our findings illustrate that both the child's right to autonomy and the parents' interest to be informed are important factors that are found valuable by the participants. In future guidelines governing children as subjects in genomic research, it would thus be essential to incorporate the child's right to an open future, including the right to receive information on adult-onset genetic disorders.
Collapse
Affiliation(s)
- Anna Sundby
- Department of Clinical Medicine, Psychosis Research Unit, Aarhus University Hospital, Skovagervej 2, 8240, Risskov, Denmark. .,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark.
| | | | | | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Folkmann Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark.,Institute for Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Copenhagen, Denmark.,Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Ole Mors
- Department of Clinical Medicine, Psychosis Research Unit, Aarhus University Hospital, Skovagervej 2, 8240, Risskov, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
| |
Collapse
|