101
|
Affiliation(s)
- Carla B Green
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9111, USA.
| |
Collapse
|
102
|
Maywood ES. Synchronization and maintenance of circadian timing in the mammalian clockwork. Eur J Neurosci 2018; 51:229-240. [DOI: 10.1111/ejn.14279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Elizabeth S. Maywood
- Neurobiology DivisionMedical Research Council Laboratory of Molecular Biology Cambridge UK
| |
Collapse
|
103
|
Yamada Y, Prosser RA. Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. Eur J Neurosci 2018; 51:47-70. [PMID: 30269387 DOI: 10.1111/ejn.14181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.
Collapse
Affiliation(s)
- Yukihiro Yamada
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
104
|
Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice. Proc Natl Acad Sci U S A 2018; 115:E12388-E12397. [PMID: 30487216 PMCID: PMC6310849 DOI: 10.1073/pnas.1811438115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Circadian rhythms dominate our lives through our daily cycle of sleep and wakefulness. They are controlled by a brain master clock: the suprachiasmatic nucleus (SCN). SCN timekeeping pivots around a molecular loop incorporating Cryptochrome (Cry) proteins; global loss of these proteins disables the clock. We developed a biologically appropriate translational switch based on genetic code expansion to achieve reversible control of Cry1 expression. Cry1 translation in neurons of arrhythmic Cry-null SCN slices immediately, reversibly, and dose-dependently initiated circadian molecular rhythms. Cry1 translation in SCN neurons was sufficient to initiate circadian behavior rapidly and reversibly in arrhythmic Cry-null mice. This demonstrates control of mammalian behavior using translational switching, a method of broad applicability. The suprachiasmatic nucleus (SCN) is the principal circadian clock of mammals, coordinating daily rhythms of physiology and behavior. Circadian timing pivots around self-sustaining transcriptional–translational negative feedback loops (TTFLs), whereby CLOCK and BMAL1 drive the expression of the negative regulators Period and Cryptochrome (Cry). Global deletion of Cry1 and Cry2 disables the TTFL, resulting in arrhythmicity in downstream behaviors. We used this highly tractable biology to further develop genetic code expansion (GCE) as a translational switch to achieve reversible control of a biologically relevant protein, Cry1, in the SCN. This employed an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair delivered to the SCN by adeno-associated virus (AAV) vectors, allowing incorporation of a noncanonical amino acid (ncAA) into AAV-encoded Cry1 protein carrying an ectopic amber stop codon. Thus, translational readthrough and Cry1 expression were conditional on the supply of ncAA via culture medium or drinking water and were restricted to neurons by synapsin-dependent expression of aminoacyl tRNA-synthetase. Activation of Cry1 translation by ncAA in neurons of arrhythmic Cry-null SCN slices immediately and dose-dependently initiated TTFL circadian rhythms, which dissipated rapidly after ncAA withdrawal. Moreover, genetic activation of the TTFL in SCN neurons rapidly and reversibly initiated circadian behavior in otherwise arrhythmic Cry-null mice, with rhythm amplitude being determined by the number of transduced SCN neurons. Thus, Cry1 does not specify the development of circadian circuitry and competence but is essential for its labile and rapidly reversible activation. This demonstrates reversible control of mammalian behavior using GCE-based translational switching, a method of potentially broad neurobiological interest.
Collapse
|
105
|
Schroeder M, Jakovcevski M, Polacheck T, Drori Y, Ben-Dor S, Röh S, Chen A. Sex dependent impact of gestational stress on predisposition to eating disorders and metabolic disease. Mol Metab 2018; 17:1-16. [PMID: 30174229 PMCID: PMC6197785 DOI: 10.1016/j.molmet.2018.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Vulnerability to eating disorders (EDs) is broadly assumed to be associated with early life stress. However, a careful examination of the literature shows that susceptibility to EDs may depend on the type, severity and timing of the stressor and the sex of the individual. We aimed at exploring the link between chronic prenatal stress and predisposition to EDs and metabolic disease. METHODS We used a chronic variable stress protocol during gestation to explore the metabolic response of male and female offspring to food restriction (FR), activity-based anorexia (ABA), binge eating (BE) and exposure to high fat (HF) diet. RESULTS Contrary to controls, prenatally stressed (PNS) female offspring showed resistance to ABA and BE and displayed a lower metabolic rate leading to hyperadiposity and obesity on HF diet. Male PNS offspring showed healthy responses to FR and ABA, increased propensity to binge and improved coping with HF compared to controls. We found that long-lasting abnormal responses to metabolic challenge are linked to fetal programming and adult hypothalamic dysregulation in PNS females, resulting from sexually dimorphic adaptations in placental methylation and gene expression. CONCLUSIONS Our results show that maternal stress may have variable and even opposing effects on ED risk, depending on the ED and the sex of the offspring.
Collapse
Affiliation(s)
- Mariana Schroeder
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, 80804, Germany.
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Tamar Polacheck
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yonat Drori
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Biological Services, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Simone Röh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, 80804, Germany.
| |
Collapse
|
106
|
Collins B, Brown SA. Beyond the molecular clock. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
107
|
Ono D, Honma KI, Yanagawa Y, Yamanaka A, Honma S. Role of GABA in the regulation of the central circadian clock of the suprachiasmatic nucleus. J Physiol Sci 2018; 68:333-343. [PMID: 29560549 PMCID: PMC10717195 DOI: 10.1007/s12576-018-0604-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/14/2018] [Indexed: 11/25/2022]
Abstract
In mammals, circadian rhythms, such as sleep/wake cycles, are regulated by the central circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN consists of thousands of individual neurons, which exhibit circadian rhythms. They synchronize with each other and produce robust and stable oscillations. Although several neurotransmitters are expressed in the SCN, almost all SCN neurons are γ-amino butyric acid (GABA)-ergic. Several studies have attempted to understand the roles of GABA in the SCN; however, precise mechanisms of the action of GABA in the SCN are still unclear. GABA exhibits excitatory and/or inhibitory characteristics depending on the circadian phase or region in the SCN. It can both synchronize and destabilize cellular circadian rhythms in individual SCN cells. Differing environmental light conditions, such as a long photoperiod, result in the decoupling of circadian oscillators of the dorsal and ventral SCN. This is due to high intracellular chloride concentrations in the dorsal SCN. Because mice with functional GABA deficiency, such as vesicular GABA transporter- and glutamate decarboxylase-deficient mice, are neonatal lethal, research has been limited to pharmacological approaches. Furthermore, different recording methods have been used to understand the roles of GABA in the SCN. The excitability of GABAergic neurons also changes during the postnatal period. Although there are technical difficulties in understanding the functions of GABA in the SCN, technical developments may help uncover new roles of GABA in circadian physiology and behavior.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| |
Collapse
|
108
|
A Meta-Analysis Characterizing Stem-Like Gene Expression in the Suprachiasmatic Nucleus and Its Circadian Clock. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3610603. [PMID: 30046594 PMCID: PMC6038684 DOI: 10.1155/2018/3610603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/24/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022]
Abstract
Cells expressing proteins characteristic of stem cells and progenitor cells are present in the suprachiasmatic nucleus (SCN) of the adult mammalian hypothalamus. Any relationship between this distinctive feature and the master circadian clock of the SCN is unclear. Considering the lack of obvious neurogenesis in the adult SCN relative to the hippocampus and other structures that provide neurons and glia, it is possible that the SCN has partially differentiated cells that can provide neural circuit plasticity rather than ongoing neurogenesis. To test this possibility, available databases and publications were explored to identify highly expressed genes in the mouse SCN that also have known or suspected roles in cell differentiation, maintenance of stem-like states, or cell-cell interactions found in adult and embryonic stem cells and cancer stem cells. The SCN was found to have numerous genes associated with stem cell maintenance and increased motility from which we selected 25 of the most relevant genes. Over ninety percent of these stem-like genes were expressed at higher levels in the SCN than in other brain areas. Further analysis of this gene set could provide a greater understanding of how adjustments in cell contacts alter period and phase relationships of circadian rhythms. Circadian timing and its role in cancer, sleep, and metabolic disorders are likely influenced by genes selected in this study.
Collapse
|
109
|
Honma S. The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm. J Physiol Sci 2018; 68:207-219. [PMID: 29460036 PMCID: PMC10717972 DOI: 10.1007/s12576-018-0597-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
Abstract
The circadian nature of physiology and behavior is regulated by a circadian clock that generates intrinsic rhythms with a periodicity of approximately 24 h. The mammalian circadian system is composed of a hierarchical multi-oscillator structure, with the central clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus regulating the peripheral clocks found throughout the body. In the past two decades, key clock genes have been discovered in mammals and shown to be interlocked in transcriptional and translational feedback loops. At the cellular level, each cell is governed by its own independent clock; and yet, these cellular circadian clocks in the SCN form regional oscillators that are further coupled to one another to generate a single rhythm for the tissue. The oscillatory coupling within and between the regional oscillators appears to be critical for the extraordinary stability and the wide range of adaptability of the circadian clock, the mechanism of which is now being elucidated with newly advanced molecular tools.
Collapse
Affiliation(s)
- Sato Honma
- Research and Education Center for Brain Science, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
110
|
Abstract
A new study utilizes transgenic mice to elucidate the coupling between cells of a neuronal pacemaker that determines circadian period.
Collapse
Affiliation(s)
- Eric L Bittman
- Department of Biology and Program in Neuroscience and Behavior, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
111
|
Wan Y, Zhang J, Fang C, Chen J, Li J, Li J, Wu C, Wang Y. Characterization of neuromedin U (NMU), neuromedin S (NMS) and their receptors (NMUR1, NMUR2) in chickens. Peptides 2018; 101:69-81. [PMID: 29288685 DOI: 10.1016/j.peptides.2017.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022]
Abstract
Neuromedin U (NMU) and its structurally-related peptide, neuromedin S (NMS), are reported to regulate many physiological processes and their actions are mediated by two NMU receptors (NMUR1, NMUR2) in mammals. However, the information regarding NMU, NMS, and their receptors is limited in birds. In this study, we examined the structure, functionality, and expression of NMS, NMU, NMUR1 and NMUR2 in chickens. The results showed that: 1) chicken (c-) NMU cDNA encodes a 181-amino acid precursor, which may generate two forms of NMU peptide with 9 (cNMU-9) and 25 amino acids (cNMU-25), respectively. 2) Interestingly, two cNMS transcripts encoding two cNMS precursors of different lengths were identified from chicken pituitary, and both cNMS precursors may produce a mature cNMS peptide of 9 amino acids (cNMS-9). 3) cNMU-9, cNMU-25 and cNMS-9 could activate cNMUR1 expressed in HEK293 cells potently, as monitored by three cell-based luciferase reporter systems, indicating that cNMUR1 can act as a receptor common for cNMU and cNMS peptides, whereas cNMUR2 could be potently activated by cNMS-9, but not by cNMU-9/cNMU-25. 4) cNMU and cNMUR1 are widely expressed in chicken tissues with abundant expression noted in the gastrointestinal tract, as detected by quantitative real-time PCR, whereas cNMUR2 expression is mainly restricted to the brain and anterior pituitary, and cNMS is widely expressed in chicken tissues. Collectively, our data helps to elucidate the physiological roles of NMU/NMS peptides in birds and reveal the functional conservation and changes of NMU/NMS-NMUR axis across vertebrates.
Collapse
Affiliation(s)
- Yiping Wan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Chao Fang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Junan Chen
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| | - Chenlei Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
112
|
Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity. Cell Rep 2017; 18:3227-3241. [PMID: 28355573 DOI: 10.1016/j.celrep.2017.03.004] [Citation(s) in RCA: 393] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/31/2017] [Accepted: 02/28/2017] [Indexed: 12/16/2022] Open
Abstract
The hypothalamus is one of the most complex brain structures involved in homeostatic regulation. Defining cell composition and identifying cell-type-specific transcriptional features of the hypothalamus is essential for understanding its functions and related disorders. Here, we report single-cell RNA sequencing results of adult mouse hypothalamus, which defines 11 non-neuronal and 34 neuronal cell clusters with distinct transcriptional signatures. Analyses of cell-type-specific transcriptomes reveal gene expression dynamics underlying oligodendrocyte differentiation and tanycyte subtypes. Additionally, data analysis provides a comprehensive view of neuropeptide expression across hypothalamic neuronal subtypes and uncover Crabp1+ and Pax6+ neuronal populations in specific hypothalamic sub-regions. Furthermore, we found food deprivation exhibited differential transcriptional effects among the different neuronal subtypes, suggesting functional specification of various neuronal subtypes. Thus, the work provides a comprehensive transcriptional perspective of adult hypothalamus, which serves as a valuable resource for dissecting cell-type-specific functions of this complex brain region.
Collapse
|
113
|
Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast 2017; 2017:1504507. [PMID: 29230328 PMCID: PMC5694588 DOI: 10.1155/2017/1504507] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders.
Collapse
|
114
|
Klett NJ, Allen CN. Intracellular Chloride Regulation in AVP+ and VIP+ Neurons of the Suprachiasmatic Nucleus. Sci Rep 2017; 7:10226. [PMID: 28860458 PMCID: PMC5579040 DOI: 10.1038/s41598-017-09778-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/28/2017] [Indexed: 12/15/2022] Open
Abstract
Several reports have described excitatory GABA transmission in the suprachiasmatic nucleus (SCN), the master pacemaker of circadian physiology. However, there is disagreement regarding the prevalence, timing, and neuronal location of excitatory GABA transmission in the SCN. Whether GABA is inhibitory or excitatory depends, in part, on the intracellular concentration of chloride ([Cl-]i). Here, using ratiometric Cl- imaging, we have investigated intracellular chloride regulation in AVP and VIP-expressing SCN neurons and found evidence suggesting that [Cl-]i is higher during the day than during the night in both AVP+ and VIP+ neurons. We then investigated the contribution of the cation chloride cotransporters to setting [Cl-]i in these SCN neurons and found that the chloride uptake transporter NKCC1 contributes to [Cl-]i regulation in SCN neurons, but that the KCCs are the primary regulators of [Cl-]i in SCN neurons. Interestingly, we observed that [Cl-]i is differentially regulated between AVP+ and VIP+ neurons-a low concentration of the loop diuretic bumetanide had differential effects on AVP+ and VIP+ neurons, while blocking the KCCs with VU0240551 had a larger effect on VIP+ neurons compared to AVP+ neurons.
Collapse
Affiliation(s)
- Nathan J Klett
- Neuroscience Graduate Program, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- Oregon Institute for Occupational Health Sciences, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Charles N Allen
- Oregon Institute for Occupational Health Sciences, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
115
|
Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017; 93:747-765. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Citation(s) in RCA: 590] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/29/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Sleep remains one of the most mysterious yet ubiquitous animal behaviors. We review current perspectives on the neural systems that regulate sleep/wake states in mammals and the circadian mechanisms that control their timing. We also outline key models for the regulation of rapid eye movement (REM) sleep and non-REM sleep, how mutual inhibition between specific pathways gives rise to these distinct states, and how dysfunction in these circuits can give rise to sleep disorders.
Collapse
Affiliation(s)
- Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02215, USA.
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jonathan O Lipton
- Department of Neurology, Boston Children's Hospital, Boston, MA 02215, USA; F.M. Kirby Neurobiology Center, Boston, MA 02215, USA
| |
Collapse
|
116
|
Wilcox AG, Vizor L, Parsons MJ, Banks G, Nolan PM. Inducible Knockout of Mouse Zfhx3 Emphasizes Its Key Role in Setting the Pace and Amplitude of the Adult Circadian Clock. J Biol Rhythms 2017; 32:433-443. [PMID: 28816086 PMCID: PMC5692189 DOI: 10.1177/0748730417722631] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transcription factor zinc finger homeobox 3 (ZFHX3) plays a key role in coupling intracellular transcriptional-translational oscillations with intercellular synchrony in mouse suprachiasmatic nucleus (SCN). However, like many key players in central nervous system function, ZFHX3 serves an important role in neurulation and neuronal terminal differentiation while retaining discrete additional functions in the adult SCN. Recently, using a dominant missense mutation in mouse Zfhx3, we established that this gene can modify circadian period and sleep in adult animals. Nevertheless, we were still concerned that the neurodevelopmental consequences of ZFHX3 dysfunction in this mutant may interfere with, or confound, its critical adult-specific roles in SCN circadian function. To circumvent the developmental consequences of Zfhx3 deletion, we crossed a conditional null Zfhx3 mutant to an inducible, ubiquitously expressed Cre line (B6.Cg-Tg(UBC-cre/ERT2)1Ejb/J). This enabled us to assess circadian behavior in the same adult animals both before and after Cre-mediated excision of the critical Zfhx3 exons using tamoxifen treatment. Remarkably, we found a strong and significant alteration in circadian behavior in tamoxifen-treated homozygous animals with no phenotypic changes in heterozygous or control animals. Cre-mediated excision of Zfhx3 critical exons in adult animals resulted in shortening of the period of wheel-running in constant darkness by more than 1 h in the majority of homozygotes while, in 30% of animals, excision resulted in complete behavioral arrhythmicity. In addition, we found that homozygous animals reentrain almost immediately to 6-h phase advances in the light-dark cycle. No additional overt phenotypic changes were evident in treated homozygous animals. These findings confirm a sustained and significant role for ZFHX3 in maintaining rhythmicity in the adult mammalian circadian system.
Collapse
|
117
|
King AN, Barber AF, Smith AE, Dreyer AP, Sitaraman D, Nitabach MN, Cavanaugh DJ, Sehgal A. A Peptidergic Circuit Links the Circadian Clock to Locomotor Activity. Curr Biol 2017; 27:1915-1927.e5. [PMID: 28669757 PMCID: PMC5698909 DOI: 10.1016/j.cub.2017.05.089] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/19/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023]
Abstract
The mechanisms by which clock neurons in the Drosophila brain confer an ∼24-hr rhythm onto locomotor activity are unclear, but involve the neuropeptide diuretic hormone 44 (DH44), an ortholog of corticotropin-releasing factor. Here we identified DH44 receptor 1 as the relevant receptor for rest:activity rhythms and mapped its site of action to hugin-expressing neurons in the subesophageal zone (SEZ). We traced a circuit that extends from Dh44-expressing neurons in the pars intercerebralis (PI) through hugin+ SEZ neurons to the ventral nerve cord. Hugin neuropeptide, a neuromedin U ortholog, also regulates behavioral rhythms. The DH44 PI-Hugin SEZ circuit controls circadian locomotor activity in a daily cycle but has minimal effect on feeding rhythms, suggesting that the circadian drive to feed can be separated from circadian locomotion. These findings define a linear peptidergic circuit that links the clock to motor outputs to modulate circadian control of locomotor activity.
Collapse
Affiliation(s)
- Anna N King
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annika F Barber
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amelia E Smith
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Austin P Dreyer
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Divya Sitaraman
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Department of Genetics, Yale University, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Daniel J Cavanaugh
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
118
|
Goto K, Doi M, Wang T, Kunisue S, Murai I, Okamura H. G-protein-coupled receptor signaling through Gpr176, Gz, and RGS16 tunes time in the center of the circadian clock [Review]. Endocr J 2017; 64:571-579. [PMID: 28502923 DOI: 10.1507/endocrj.ej17-0130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute an immensely important class of drug targets with diverse clinical applications. There are still more than 120 orphan GPCRs whose cognate ligands and physiological functions are not known. A set of circadian pacemaker neurons that governs daily rhythms in behavior and physiology resides in the suprachiasmatic nucleus (SCN) in the brain. Malfunction of the circadian clock has been linked to a multitude of diseases, such as sleeping disorders, obesity, diabetes, cardiovascular diseases, and cancer, which makes the clock an attractive target for drug development. Here, we review a recently identified role of Gpr176 in the SCN. Gpr176 is an SCN-enriched orphan GPCR that sets the pace of the circadian clock in the SCN. Even without known ligand, this orphan receptor has an agonist-independent basal activity to reduce cAMP signaling. A unique cAMP-repressing G-protein subclass Gz is required for the activity of Gpr176. We also provide an overview on the circadian regulation of G-protein signaling, with an emphasis on a role for the regulator of G-protein signaling 16 (RGS16). RGS16 is indispensable for the circadian regulation of cAMP in the SCN. Developing drugs that target the SCN remains an unfulfilled opportunity for the circadian pharmacology. This review argues for the potential impact of focusing on GPCRs in the SCN for the purpose of tuning the body clock.
Collapse
Affiliation(s)
- Kaoru Goto
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Tianyu Wang
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Sumihiro Kunisue
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Iori Murai
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
119
|
Frederick A, Goldsmith J, de Zavalia N, Amir S. Mapping the co-localization of the circadian proteins PER2 and BMAL1 with enkephalin and substance P throughout the rodent forebrain. PLoS One 2017; 12:e0176279. [PMID: 28423013 PMCID: PMC5397057 DOI: 10.1371/journal.pone.0176279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Despite rhythmic expression of clock genes being found throughout the central nervous system, very little is known about their function outside of the suprachiasmatic nucleus. Determining the pattern of clock gene expression across neuronal subpopulations is a key step in understanding their regulation and how they may influence the functions of various brain structures. Using immunofluorescence and confocal microscopy, we quantified the co-expression of the clock proteins BMAL1 and PER2 with two neuropeptides, Substance P (SubP) and Enkephalin (Enk), expressed in distinct neuronal populations throughout the forebrain. Regions examined included the limbic forebrain (dorsal striatum, nucleus accumbens, amygdala, stria terminalis), thalamus medial habenula of the thalamus, paraventricular nucleus and arcuate nucleus of the hypothalamus and the olfactory bulb. In most regions examined, BMAL1 was homogeneously expressed in nearly all neurons (~90%), and PER2 was expressed in a slightly lower proportion of cells. There was no specific correlation to SubP- or Enk- expressing subpopulations. The olfactory bulb was unique in that PER2 and BMAL1 were expressed in a much smaller percentage of cells, and Enk was rarely found in the same cells that expressed the clock proteins (SubP was undetectable). These results indicate that clock genes are not unique to specific cell types, and further studies will be required to determine the factors that contribute to the regulation of clock gene expression throughout the brain.
Collapse
Affiliation(s)
- Ariana Frederick
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montreal, Quebec, Canada
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Jory Goldsmith
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montreal, Quebec, Canada
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Nuria de Zavalia
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montreal, Quebec, Canada
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Shimon Amir
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montreal, Quebec, Canada
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
120
|
Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED. Astrocytes Regulate Daily Rhythms in the Suprachiasmatic Nucleus and Behavior. Curr Biol 2017; 27:1055-1061. [PMID: 28343966 DOI: 10.1016/j.cub.2017.02.037] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
Abstract
Astrocytes are active partners in neural information processing [1, 2]. However, the roles of astrocytes in regulating behavior remain unclear [3, 4]. Because astrocytes have persistent circadian clock gene expression and ATP release in vitro [5-8], we hypothesized that they regulate daily rhythms in neurons and behavior. Here, we demonstrated that daily rhythms in astrocytes within the mammalian master circadian pacemaker, the suprachiasmatic nucleus (SCN), determine the period of wheel-running activity. Ablating the essential clock gene Bmal1 specifically in SCN astrocytes lengthened the circadian period of clock gene expression in the SCN and in locomotor behavior. Similarly, excision of the short-period CK1ε tau mutation specifically from SCN astrocytes resulted in lengthened rhythms in the SCN and behavior. These results indicate that astrocytes within the SCN communicate to neurons to determine circadian rhythms in physiology and in rest activity.
Collapse
Affiliation(s)
- Chak Foon Tso
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Tatiana Simon
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Alison C Greenlaw
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Tanvi Puri
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Michihiro Mieda
- Department of Molecular Neuroscience and Integrative Physiology, Kanazawa University, 920-1192 Ishikawa, Japan
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63108, USA.
| |
Collapse
|
121
|
Vinod C, Jagota A. Daily Socs1 rhythms alter with aging differentially in peripheral clocks in male Wistar rats: therapeutic effects of melatonin. Biogerontology 2017; 18:333-345. [DOI: 10.1007/s10522-017-9687-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022]
|
122
|
Buijs FN, León-Mercado L, Guzmán-Ruiz M, Guerrero-Vargas NN, Romo-Nava F, Buijs RM. The Circadian System: A Regulatory Feedback Network of Periphery and Brain. Physiology (Bethesda) 2017; 31:170-81. [PMID: 27053731 DOI: 10.1152/physiol.00037.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Circadian rhythms are generated by the autonomous circadian clock, the suprachiasmatic nucleus (SCN), and clock genes that are present in all tissues. The SCN times these peripheral clocks, as well as behavioral and physiological processes. Recent studies show that frequent violations of conditions set by our biological clock, such as shift work, jet lag, sleep deprivation, or simply eating at the wrong time of the day, may have deleterious effects on health. This infringement, also known as circadian desynchronization, is associated with chronic diseases like diabetes, hypertension, cancer, and psychiatric disorders. In this review, we will evaluate evidence that these diseases stem from the need of the SCN for peripheral feedback to fine-tune its output and adjust physiological processes to the requirements of the moment. This feedback can vary from neuronal or hormonal signals from the liver to changes in blood pressure. Desynchronization renders the circadian network dysfunctional, resulting in a breakdown of many functions driven by the SCN, disrupting core clock rhythms in the periphery and disorganizing cellular processes that are normally driven by the synchrony between behavior and peripheral signals with neuronal and humoral output of the hypothalamus. Consequently, we propose that the loss of synchrony between the different elements of this circadian network as may occur during shiftwork and jet lag is the reason for the occurrence of health problems.
Collapse
Affiliation(s)
- Frederik N Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Luis León-Mercado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico
| | - Mara Guzmán-Ruiz
- Departamento de Anatomía, Facultad de Medicina, Universidad Autónoma de México, Ciudad Universitaria, Mexico
| | - Natali N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Autónoma de México, Ciudad Universitaria, Mexico
| | - Francisco Romo-Nava
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico; Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorder Research, University of Cincinnati, Cincinnati, Ohio; and
| | - Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico;
| |
Collapse
|
123
|
Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A, Tomer R, Alpár A, Mulder J, Clotman F, Keimpema E, Hsueh B, Crow AK, Martens H, Schwindling C, Calvigioni D, Bains JS, Máté Z, Szabó G, Yanagawa Y, Zhang M, Rendeiro A, Farlik M, Uhlén M, Wulff P, Bock C, Broberger C, Deisseroth K, Hökfelt T, Linnarsson S, Horvath TL, Harkany T. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat Neurosci 2017; 20:176-188. [PMID: 27991900 PMCID: PMC7615022 DOI: 10.1038/nn.4462] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022]
Abstract
The hypothalamus contains the highest diversity of neurons in the brain. Many of these neurons can co-release neurotransmitters and neuropeptides in a use-dependent manner. Investigators have hitherto relied on candidate protein-based tools to correlate behavioral, endocrine and gender traits with hypothalamic neuron identity. Here we map neuronal identities in the hypothalamus by single-cell RNA sequencing. We distinguished 62 neuronal subtypes producing glutamatergic, dopaminergic or GABAergic markers for synaptic neurotransmission and harboring the ability to engage in task-dependent neurotransmitter switching. We identified dopamine neurons that uniquely coexpress the Onecut3 and Nmur2 genes, and placed these in the periventricular nucleus with many synaptic afferents arising from neuromedin S+ neurons of the suprachiasmatic nucleus. These neuroendocrine dopamine cells may contribute to the dopaminergic inhibition of prolactin secretion diurnally, as their neuromedin S+ inputs originate from neurons expressing Per2 and Per3 and their tyrosine hydroxylase phosphorylation is regulated in a circadian fashion. Overall, our catalog of neuronal subclasses provides new understanding of hypothalamic organization and function.
Collapse
Affiliation(s)
- Roman A. Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Amit Zeisel
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Joanne Bakker
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fatima Girach
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Arash Hellysaz
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Raju Tomer
- Department of Bioengineering & CNC Program, Stanford University, Stanford, CA, USA
| | - Alán Alpár
- MTA-SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Jan Mulder
- Science for Life Laboratories, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Frédéric Clotman
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Brian Hsueh
- Department of Bioengineering & CNC Program, Stanford University, Stanford, CA, USA
| | - Ailey K. Crow
- Department of Bioengineering & CNC Program, Stanford University, Stanford, CA, USA
| | | | - Christian Schwindling
- Microscopy Labs Munich, Global Sales Support-Life Sciences, Carl Zeiss Microscopy GmbH, Munich, Germany
| | - Daniela Calvigioni
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jaideep S. Bains
- The Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Mingdong Zhang
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andre Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mathias Uhlén
- Science for Life Laboratory, Albanova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Peer Wulff
- Institute of Physiology, Christian Albrechts University, Kiel, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Karl Deisseroth
- Department of Bioengineering & CNC Program, Stanford University, Stanford, CA, USA
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tamas L. Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
124
|
Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH. Regulating the Suprachiasmatic Nucleus (SCN) Circadian Clockwork: Interplay between Cell-Autonomous and Circuit-Level Mechanisms. Cold Spring Harb Perspect Biol 2017; 9:9/1/a027706. [PMID: 28049647 DOI: 10.1101/cshperspect.a027706] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the principal circadian clock of the brain, directing daily cycles of behavior and physiology. SCN neurons contain a cell-autonomous transcription-based clockwork but, in turn, circuit-level interactions synchronize the 20,000 or so SCN neurons into a robust and coherent daily timer. Synchronization requires neuropeptide signaling, regulated by a reciprocal interdependence between the molecular clockwork and rhythmic electrical activity, which in turn depends on a daytime Na+ drive and nighttime K+ drag. Recent studies exploiting intersectional genetics have started to identify the pacemaking roles of particular neuronal groups in the SCN. They support the idea that timekeeping involves nonlinear and hierarchical computations that create and incorporate timing information through the interactions between key groups of neurons within the SCN circuit. The field is now poised to elucidate these computations, their underlying cellular mechanisms, and how the SCN clock interacts with subordinate circadian clocks across the brain to determine the timing and efficiency of the sleep-wake cycle, and how perturbations of this coherence contribute to neurological and psychiatric illness.
Collapse
Affiliation(s)
- Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899
| | - Tracey Hermanstyne
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899
| | - Nicola J Smyllie
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
125
|
Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) Are Necessary for Light Entrainment of Peripheral Clocks. PLoS One 2016; 11:e0168651. [PMID: 27992553 PMCID: PMC5161485 DOI: 10.1371/journal.pone.0168651] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/04/2016] [Indexed: 11/23/2022] Open
Abstract
Light is a powerful entrainer of circadian clocks in almost all eukaryotic organisms promoting synchronization of internal circadian rhythms with external environmental light-dark (LD) cycles. In mammals, the circadian system is organized in a hierarchical manner, in which a central pacemaker in the suprachiasmatic nucleus (SCN) synchronizes oscillators in peripheral tissues. Recent evidence demonstrates that photoentrainment of the SCN proceeds via signaling from a subpopulation of retinal ganglion cells (RGCs) which are melanopsin-expressing and intrinsically photosensitive (ipRGCs). However, it is still unclear whether photoentrainment of peripheral clocks is mediated exclusively by the ipRGC system or if signaling from RGCs that do not express melanopsin also plays a role. Here we have used genetic “silencing” of ipRGC neurotransmission in mice to investigate whether this photoreceptive system is obligatory for the photoentrainment of peripheral circadian clocks. Genetic silencing of ipRGC neurotransmission in mice was achieved by expression of tetanus toxin light chain in melanopsin-expressing cells (Opn4::TeNT mouse line). Rhythms of the clock gene Period 2 in various peripheral tissues were measured by crossbreeding Opn4::TeNT mice with PER2 luciferase knock-in mice (mPER2Luc). We found that in Opn4::TeNT mice the pupillary light reflex, light modulation of activity, and circadian photoentrainment of locomotor activity were severely impaired. Furthermore, ex vivo cultures from Opn4::TeNT, mPER2Luc mice of the adrenal gland, cornea, lung, liver, pituitary and spleen exhibited robust circadian rhythms of PER2::LUC bioluminescence. However, their peak bioluminescence rhythms were not aligned to the projected LD cycles indicating their lack of photic entrainment in vivo. Finally, we found that the circadian rhythm in adrenal corticosterone in Opn4::TeNT mice, as monitored by in vivo subcutaneous microdialysis, was desynchronized from environmental LD cycles. Our findings reveal a non-redundant role of ipRGCs for photic entrainment of peripheral tissues, highlighting the importance of this photoreceptive system for the organismal adaptation to daily environmental LD cycles.
Collapse
|
126
|
Yao Z, Bennett AJ, Clem JL, Shafer OT. The Drosophila Clock Neuron Network Features Diverse Coupling Modes and Requires Network-wide Coherence for Robust Circadian Rhythms. Cell Rep 2016; 17:2873-2881. [PMID: 27974202 PMCID: PMC5161247 DOI: 10.1016/j.celrep.2016.11.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
In animals, networks of clock neurons containing molecular clocks orchestrate daily rhythms in physiology and behavior. However, how various types of clock neurons communicate and coordinate with one another to produce coherent circadian rhythms is not well understood. Here, we investigate clock neuron coupling in the brain of Drosophila and demonstrate that the fly's various groups of clock neurons display unique and complex coupling relationships to core pacemaker neurons. Furthermore, we find that coordinated free-running rhythms require molecular clock synchrony not only within the well-characterized lateral clock neuron classes but also between lateral clock neurons and dorsal clock neurons. These results uncover unexpected patterns of coupling in the clock neuron network and reveal that robust free-running behavioral rhythms require a coherence of molecular oscillations across most of the fly's clock neuron network.
Collapse
Affiliation(s)
- Zepeng Yao
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amelia J Bennett
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jenna L Clem
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Orie T Shafer
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
127
|
Qu Z, Zhang H, Huang M, Shi G, Liu Z, Xie P, Li H, Wang W, Xu G, Zhang Y, Yang L, Huang G, Takahashi JS, Zhang WJ, Xu Y. Loss of ZBTB20 impairs circadian output and leads to unimodal behavioral rhythms. eLife 2016; 5:e17171. [PMID: 27657167 PMCID: PMC5033604 DOI: 10.7554/elife.17171] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022] Open
Abstract
Many animals display morning and evening bimodal activities in the day/night cycle. However, little is known regarding the potential components involved in the regulation of bimodal behavioral rhythms in mammals. Here, we identified that the zinc finger protein gene Zbtb20 plays a crucial role in the regulation of bimodal activities in mice. Depletion of Zbtb20 in nerve system resulted in the loss of early evening activity, but the increase of morning activity. We found that Zbtb20-deficient mice exhibited a pronounced decrease in the expression of Prokr2 and resembled phenotypes of Prok2 and Prokr2-knockout mice. Injection of adeno-associated virus-double-floxed Prokr2 in suprachiasmatic nucleus could partly restore evening activity in Nestin-Cre; Zbtb20fl/fl (NS-ZB20KO) mice. Furthermore, loss of Zbtb20 in Foxg1 loci, but intact in the suprachiasmatic nucleus, was not responsible for the unimodal activity of NS-ZB20KO mice. Our study provides evidence that ZBTB20-mediated PROKR2 signaling is critical for the evening behavioral rhythms.
Collapse
Affiliation(s)
- Zhipeng Qu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hai Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, China
| | - Moli Huang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Guangsen Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Pancheng Xie
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hui Li
- Department of Pathophysiology, Second Military Medical University, Shanghai, China
| | - Wei Wang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Guoqiang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yang Zhang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Ling Yang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Guocun Huang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Weiping J Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, China
| | - Ying Xu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| |
Collapse
|
128
|
Ono D, Honma S, Honma KI. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN. SCIENCE ADVANCES 2016; 2:e1600960. [PMID: 27626074 PMCID: PMC5017821 DOI: 10.1126/sciadv.1600960] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/09/2016] [Indexed: 06/01/2023]
Abstract
The suprachiasmatic nucleus (SCN) is the site of the master circadian clock in mammals. The SCN neural network plays a critical role in expressing the tissue-level circadian rhythm. Previously, we demonstrated postnatal changes in the SCN network in mice, in which the clock gene products CRYPTOCHROMES (CRYs) are involved. Here, we show that vasoactive intestinal polypeptide (VIP) signaling is essential for the tissue-level circadian PER2::LUC rhythm in the neonatal SCN of CRY double-deficient mice (Cry1,2 (-/-) ). VIP and arginine vasopressin (AVP) signaling showed redundancy in expressing the tissue-level circadian rhythm in the SCN. AVP synthesis was significantly attenuated in the Cry1,2 (-/-) SCN, which contributes to aperiodicity in the adult mice together with an attenuation of VIP signaling as a natural process of ontogeny. The SCN network consists of multiple clusters of cellular circadian rhythms that are differentially integrated by AVP and VIP signaling, depending on the postnatal period.
Collapse
Affiliation(s)
- Daisuke Ono
- Photonic Bioimaging Section, Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Sato Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ken-ichi Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
129
|
Mieda M, Okamoto H, Sakurai T. Manipulating the Cellular Circadian Period of Arginine Vasopressin Neurons Alters the Behavioral Circadian Period. Curr Biol 2016; 26:2535-2542. [PMID: 27568590 DOI: 10.1016/j.cub.2016.07.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/19/2016] [Accepted: 07/12/2016] [Indexed: 11/24/2022]
Abstract
As the central pacemaker in mammals, the circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is a heterogeneous structure consisting of multiple types of GABAergic neurons with distinct chemical identities [1, 2]. Although individual cells have a cellular clock driven by autoregulatory transcriptional/translational feedback loops of clock genes, interneuronal communication among SCN clock neurons is likely essential for the SCN to generate a highly robust, coherent circadian rhythm [1]. However, neuronal mechanisms that determine circadian period length remain unclear. The SCN is composed of two subdivisions: a ventral core region containing vasoactive intestinal peptide (VIP)-producing neurons and a dorsal shell region characterized by arginine vasopressin (AVP)-producing neurons. Here we examined whether AVP neurons act as pacemaker cells that regulate the circadian period of behavior rhythm in mice. The deletion of casein kinase 1 delta (CK1δ) specific to AVP neurons, which was expected to lengthen the period of cellular clocks [3-6], lengthened the free-running period of circadian behavior as well. Conversely, the overexpression of CK1δ specific to SCN AVP neurons shortened the free-running period. PER2::LUC imaging in slices confirmed that cellular circadian periods of the SCN shell were lengthened in mice without CK1δ in AVP neurons. Thus, AVP neurons may be an essential component of circadian pacemaker cells in the SCN. Remarkably, the alteration of the shell-core phase relationship in the SCN of these mice did not impair the generation per se of circadian behavior rhythm, thereby underscoring the robustness of the SCN network.
Collapse
Affiliation(s)
- Michihiro Mieda
- Department of Molecular Neuroscience and Integrative Physiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan.
| | - Hitoshi Okamoto
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
130
|
Evans JA. Collective timekeeping among cells of the master circadian clock. J Endocrinol 2016; 230:R27-49. [PMID: 27154335 PMCID: PMC4938744 DOI: 10.1530/joe-16-0054] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the master circadian clock that coordinates daily rhythms in behavior and physiology in mammals. Like other hypothalamic nuclei, the SCN displays an impressive array of distinct cell types characterized by differences in neurotransmitter and neuropeptide expression. Individual SCN neurons and glia are able to display self-sustained circadian rhythms in cellular function that are regulated at the molecular level by a 24h transcriptional-translational feedback loop. Remarkably, SCN cells are able to harmonize with one another to sustain coherent rhythms at the tissue level. Mechanisms of cellular communication in the SCN network are not completely understood, but recent progress has provided insight into the functional roles of several SCN signaling factors. This review discusses SCN organization, how intercellular communication is critical for maintaining network function, and the signaling mechanisms that play a role in this process. Despite recent progress, our understanding of SCN circuitry and coupling is far from complete. Further work is needed to map SCN circuitry fully and define the signaling mechanisms that allow for collective timekeeping in the SCN network.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Biomedical SciencesMarquette University, Milwaukee, WI, USA
| |
Collapse
|
131
|
Chiu CN, Rihel J, Lee DA, Singh C, Mosser EA, Chen S, Sapin V, Pham U, Engle J, Niles BJ, Montz CJ, Chakravarthy S, Zimmerman S, Salehi-Ashtiani K, Vidal M, Schier AF, Prober DA. A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States. Neuron 2016; 89:842-56. [PMID: 26889812 DOI: 10.1016/j.neuron.2016.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/16/2015] [Accepted: 12/24/2015] [Indexed: 12/27/2022]
Abstract
Neuromodulation of arousal states ensures that an animal appropriately responds to its environment and engages in behaviors necessary for survival. However, the molecular and circuit properties underlying neuromodulation of arousal states such as sleep and wakefulness remain unclear. To tackle this challenge in a systematic and unbiased manner, we performed a genetic overexpression screen to identify genes that affect larval zebrafish arousal. We found that the neuropeptide neuromedin U (Nmu) promotes hyperactivity and inhibits sleep in zebrafish larvae, whereas nmu mutant animals are hypoactive. We show that Nmu-induced arousal requires Nmu receptor 2 and signaling via corticotropin releasing hormone (Crh) receptor 1. In contrast to previously proposed models, we find that Nmu does not promote arousal via the hypothalamic-pituitary-adrenal axis, but rather probably acts via brainstem crh-expressing neurons. These results reveal an unexpected functional and anatomical interface between the Nmu system and brainstem arousal systems that represents a novel wake-promoting pathway.
Collapse
Affiliation(s)
- Cindy N Chiu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chanpreet Singh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eric A Mosser
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shijia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viveca Sapin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Uyen Pham
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jae Engle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brett J Niles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christin J Montz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sridhara Chakravarthy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Steven Zimmerman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kourosh Salehi-Ashtiani
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Division of Sleep Medicine, Harvard University, Cambridge, MA 02138, USA.
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
132
|
Pauls SD, Honma KI, Honma S, Silver R. Deconstructing Circadian Rhythmicity with Models and Manipulations. Trends Neurosci 2016; 39:405-419. [PMID: 27090429 DOI: 10.1016/j.tins.2016.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 01/15/2023]
Abstract
A master brain clock, localized to the hypothalamic suprachiasmatic nucleus (SCN), coordinates daily rhythms of physiology and behavior. Within the SCN, interconnected individual neurons are oscillators that, as an ensemble, function to send a coherent timing signal to the brain and body. However, individually, these neurons display different amplitudes, periods, and phases of oscillation. The dynamic properties of the SCN have been characterized over several spatial levels of analysis, from proteins to cells to tissues, and over several temporal ranges, from milliseconds to weeks. Modeling tools guide empirical research in this complex and multiscale spatiotemporal environment. Given that the SCN is a prototypical example of oscillating neural systems, principles of its organization hold promise as general prototypes of rhythms in other frequencies.
Collapse
Affiliation(s)
- Scott D Pauls
- Mathematics Department, Dartmouth College, Hanover, NH, USA
| | - Ken-Ichi Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Sato Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Rae Silver
- Neuroscience Program, Barnard College, New York, NY, USA; Department of Psychology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
133
|
Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2016; 113:3657-62. [PMID: 26966234 PMCID: PMC4822582 DOI: 10.1073/pnas.1511351113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) is the principal circadian clock of the mammalian brain. To function effectively, SCN neurons must operate as a synchronized circuit. How cell-autonomous and circuit-level circadian mechanisms interact to achieve this is unclear. Here, we used intersectional genetics to create temporally chimeric mice where both 24-h and 20-h clock neurons were present in the SCN, in different cell populations. The 24-h dopamine receptor-positive cells set the speed of the SCN, imposing their cell-autonomous 24-h period on all cells in the circuit. Exposure to a 20-h lighting cycle, however, inverted this dominance, reprograming the circuit to 20 h. These results show how robust circuit-level signaling underlies complex, nonlinear computations of circadian period that also exhibit a remarkable level of plasticity. The suprachiasmatic nucleus (SCN) is the master circadian clock controlling daily behavior in mammals. It consists of a heterogeneous network of neurons, in which cell-autonomous molecular feedback loops determine the period and amplitude of circadian oscillations of individual cells. In contrast, circuit-level properties of coherence, synchrony, and ensemble period are determined by intercellular signals and are embodied in a circadian wave of gene expression that progresses daily across the SCN. How cell-autonomous and circuit-level mechanisms interact in timekeeping is poorly understood. To explore this interaction, we used intersectional genetics to create temporally chimeric mice with SCN containing dopamine 1a receptor (Drd1a) cells with an intrinsic period of 24 h alongside non-Drd1a cells with 20-h clocks. Recording of circadian behavior in vivo alongside cellular molecular pacemaking in SCN slices in vitro demonstrated that such chimeric circuits form robust and resilient circadian clocks. It also showed that the computation of ensemble period is nonlinear. Moreover, the chimeric circuit sustained a wave of gene expression comparable to that of nonchimeric SCN, demonstrating that this circuit-level property is independent of differences in cell-intrinsic periods. The relative dominance of 24-h Drd1a and 20-h non-Drd1a neurons in setting ensemble period could be switched by exposure to resonant or nonresonant 24-h or 20-h lighting cycles. The chimeric circuit therefore reveals unanticipated principles of circuit-level operation underlying the emergent plasticity, resilience, and robustness of the SCN clock. The spontaneous and light-driven flexibility of period observed in chimeric mice provides a new perspective on the concept of SCN pacemaker cells.
Collapse
|
134
|
Zhou D, Wang Y, Chen L, Jia L, Yuan J, Sun M, Zhang W, Wang P, Zuo J, Xu Z, Luan J. Evolving roles of circadian rhythms in liver homeostasis and pathology. Oncotarget 2016; 7:8625-39. [PMID: 26843619 PMCID: PMC4890992 DOI: 10.18632/oncotarget.7065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Circadian clock in mammals is determined by a core oscillator in the suprachiasmatic nucleus (SCN) of the hypothalamus and synchronized peripheral clocks in other tissues. The coherent timing systems could sustain robust output of circadian rhythms in response to the entrainment controlled environmentally. Disparate approaches have discovered that clock genes and clock-controlled genes (CCGs) exist in nearly all mammalian cell types and are essential for establishing the mechanisms and complexity of internal time-keeping systems. Accumulating evidence demonstrates that the control of homeostasis and pathology in the liver involves intricate loops of transcriptional and post-translational regulation of clock genes expression. This review will focus on the recent advances with great importance concerning clock rhythms linking liver homeostasis and diseases. We particularly highlight what is currently known of the evolving insights into the mechanisms underlying circadian clock . Eventually , findings during recent years in the field might prompt new circadian-related chronotherapeutic strategies for the diagnosis and treatment of liver diseases by coupling these processes.
Collapse
Affiliation(s)
- Dexi Zhou
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Yaqin Wang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Lu Chen
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Leijuan Jia
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jie Yuan
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Mei Sun
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Wen Zhang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Peipei Wang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jian Zuo
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhenyu Xu
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jiajie Luan
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
135
|
Jeong B, Hong JH, Kim H, Choe HK, Kim K, Lee KJ. Multi-stability of circadian phase wave within early postnatal suprachiasmatic nucleus. Sci Rep 2016; 6:21463. [PMID: 26891917 PMCID: PMC4759822 DOI: 10.1038/srep21463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/20/2016] [Indexed: 11/09/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) is a group of cells that functions as a biological master clock. In different SCN cells, oscillations of biochemical markers such as the expression-level of clock genes, are not synchronized but instead form slow circadian phase waves propagating over the whole cell population spatio-temporal struc- ture is a fixed property set by the anatomy of a given SCN. Here, we show that this is not the case in early postnatal SCN. Earlier studies presumed that their Based on bioluminescence imaging experiments with Per2-Luciferase mice SCN cultures which guided computer simulations of a realistic model of the SCN, we demonstrate that the wave is not unique but can be in various modes including phase- coherent oscillation, crescent-shaped wave, and most notably, a rotating pinwheel wave that conceptually resembles a wall clock with a rotating hand. Furthermore, mode transitions can be induced by a pulse of 38.5 °C temperature perturbation. Importantly, the waves support a significantly different period, suggesting that neither a spatially-fixed phase ordering nor a specialized pacemaker having a fixed period exist in these studied SCNs. These results lead to new important questions of what the observed multi-stability means for the proper function of an SCN and its arrhythmia.
Collapse
Affiliation(s)
- Byeongha Jeong
- Department of Physics, Korea University, Seoul, 136-713, Korea
| | - Jin Hee Hong
- Department of Physics, Korea University, Seoul, 136-713, Korea
| | - Hyun Kim
- Department of Physics, Korea University, Seoul, 136-713, Korea
| | - Han Kyoung Choe
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Kyungjin Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Kyoung J Lee
- Department of Physics, Korea University, Seoul, 136-713, Korea
| |
Collapse
|
136
|
Evans JA, Gorman MR. In synch but not in step: Circadian clock circuits regulating plasticity in daily rhythms. Neuroscience 2016; 320:259-80. [PMID: 26861419 DOI: 10.1016/j.neuroscience.2016.01.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
The suprachiasmatic nucleus (SCN) is a network of neural oscillators that program daily rhythms in mammalian behavior and physiology. Over the last decade much has been learned about how SCN clock neurons coordinate together in time and space to form a cohesive population. Despite this insight, much remains unknown about how SCN neurons communicate with one another to produce emergent properties of the network. Here we review the current understanding of communication among SCN clock cells and highlight a collection of formal assays where changes in SCN interactions provide for plasticity in the waveform of circadian rhythms in behavior. Future studies that pair analytical behavioral assays with modern neuroscience techniques have the potential to provide deeper insight into SCN circuit mechanisms.
Collapse
Affiliation(s)
- J A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| | - M R Gorman
- Department of Psychology, University of San Diego, La Jolla, CA, USA
| |
Collapse
|
137
|
Nakahara K, Akagi A, Shimizu S, Tateno S, Qattali AW, Mori K, Miyazato M, Kangawa K, Murakami N. Involvement of endogenous neuromedin U and neuromedin S in thermoregulation. Biochem Biophys Res Commun 2016; 470:930-5. [PMID: 26826380 DOI: 10.1016/j.bbrc.2016.01.155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/24/2016] [Indexed: 11/25/2022]
Abstract
We investigated the possible involvement of neuromedin U (NMU) and neuromedin S (NMS) in thermoregulation in rats. Intracerebroventricular (icv) injection of NMU or NMS increased the back surface temperature (BS-T) in a dose-dependent manner during both the light and dark periods. Pre-treatment with the β3 blocker SR59230A, and the cyclooxygenase blocker indomethacin, inhibited the increase in BS-T induced by NMS. Icv injection of NMS and NMU increased the expression of mRNAs for prostaglandin E synthase and cyclooxygenase 2 (COX2) in the hypothalamus, and that of mRNA for uncoupling protein 1 (UCP1) in the brown adipose tissue. Comparison of thermogenesis in terms of body temperature under normal and cold conditions revealed that NMS-KO and double-KO mice had a significantly low BS-T during the active phase, whereas NMU-KO mice did not. Exposure to low temperature decreased the BS temperature in all KO mice, but BS-T was lower in NMS-KO and double-KO mouse than in NMU-KO mice. Calorie and oxygen consumption was also significantly lower in all KO mice than in wild-type mice during the dark period. These results suggest that NMU and NMS are involved in thermoregulation via the prostaglandin E2 and β3 adrenergic receptors, but that endogenous NMS might play a more predominant role than NMU.
Collapse
Affiliation(s)
- Keiko Nakahara
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Ai Akagi
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Seiya Shimizu
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Satoshi Tateno
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Abdul Wahid Qattali
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Kenji Mori
- Department of Biochemistry, National Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Noboru Murakami
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan.
| |
Collapse
|
138
|
Poletini MO, Moraes MN, Ramos BC, Jerônimo R, Castrucci AMDL. TRP channels: a missing bond in the entrainment mechanism of peripheral clocks throughout evolution. Temperature (Austin) 2015; 2:522-34. [PMID: 27227072 PMCID: PMC4843991 DOI: 10.1080/23328940.2015.1115803] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/10/2015] [Accepted: 10/29/2015] [Indexed: 11/03/2022] Open
Abstract
Circadian rhythm may be understood as a temporal organization that works to orchestrate physiological processes and behavior in a period of approximately 24 h. Because such temporal organization has evolved in the presence of predictable environmental clues, such as day length, tides, seasons, and temperature, the organism has confronted the natural selection in highly precise intervals of opportunities and risks, generating temporal programs and resetting mechanisms, which are well conserved among different taxa of animals. The present review brings some evidence of how these programs may have co-evolved in systems able to deal with 2 or more environmental clues, and how they similarly function in different group of animals, stressing how important temperature and light were to establish the temporal organizations. For example, melanopsin and rhodopsin, photopigments present respectively in circadian and visual photoreceptors, are required for temperature discrimination in Drosophila melanogaster. These pigments may signal light and temperature via activation of cationic membrane channel, named transient-receptor potential channel (TRP). In fact, TRPs have been suggested to function as thermal sensor for various groups of animals. Another example is the clock machinery at the molecular level. A set of very-well conserved proteins, known as clock proteins, function as transcription factors in positive and negative auto-regulatory loops generating circadian changes of their expression, and of clock-controlled genes. Similar molecular machinery is present in organisms as diverse as cyanobacteria (Synechococcus), fungi (Neurospora), insects (Drosophila), and vertebrates including humans.
Collapse
Affiliation(s)
- Maristela O Poletini
- Department of Physiology and Biophysics; Institute of Biological Sciences; Federal University of Minas Gerais ; Belo Horizonte, Brazil
| | - Maria Nathália Moraes
- Department of Physiology; Institute of Biosciences; University of Sao Paulo ; São Paulo, Brazil
| | - Bruno César Ramos
- Department of Physiology; Institute of Biosciences; University of Sao Paulo ; São Paulo, Brazil
| | - Rodrigo Jerônimo
- Department of Physiology; Institute of Biosciences; University of Sao Paulo ; São Paulo, Brazil
| | | |
Collapse
|
139
|
Yamaguchi Y, Okada K, Mizuno T, Ota T, Yamada H, Doi M, Kobayashi M, Tei H, Shigeyoshi Y, Okamura H. Real-Time Recording of Circadian Per1 and Per2 Expression in the Suprachiasmatic Nucleus of Freely Moving Rats. J Biol Rhythms 2015; 31:108-11. [PMID: 26656624 DOI: 10.1177/0748730415621412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Measuring real-time gene activity in the brains of freely moving animals presents a challenging issue in neuroscience research. Circadian gene expression in neurons of the suprachiasmatic nucleus (SCN), a small nucleus in the hypothalamus, is reflected in behavioral rhythmicity. Cellular oscillatory gene expression is generated by a transcription-translation feedback loop of clock genes including 2 oscillatory genes, Per1 and Per2. Here we have succeeded in real-time monitoring of Per1 and Per2 transcription separately by detecting the bioluminescence of luciferase (luc) reporters using a plastic optical fiber inserted into the SCN of freely moving rats. Per1-luc and Per2-luc rhythms peaked in the middle and late subjective day, respectively, which was confirmed by quantitative PCR-based measurements of SCN tissue samples. Studies of in vivo transcriptional states of clock genes in freely moving animals should improve our understanding of how clock gene expression is reflected in behavior.
Collapse
Affiliation(s)
- Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Kazuki Okada
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takanobu Mizuno
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takumi Ota
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroyuki Yamada
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Masaki Kobayashi
- Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai, Japan
| | - Hajime Tei
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kinki University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
140
|
Parsons MJ, Brancaccio M, Sethi S, Maywood ES, Satija R, Edwards JK, Jagannath A, Couch Y, Finelli MJ, Smyllie NJ, Esapa C, Butler R, Barnard AR, Chesham JE, Saito S, Joynson G, Wells S, Foster RG, Oliver PL, Simon MM, Mallon AM, Hastings MH, Nolan PM. The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis. Cell 2015; 162:607-21. [PMID: 26232227 PMCID: PMC4537516 DOI: 10.1016/j.cell.2015.06.060] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 01/17/2023]
Abstract
We identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3(Sci)), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3(Sci/+) SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3(Sci/+) SCN slices. In conclusion, by cloning Zfhx3(Sci), we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms.
Collapse
Affiliation(s)
- Michael J Parsons
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Marco Brancaccio
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Siddharth Sethi
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Elizabeth S Maywood
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Rahul Satija
- New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10012, USA
| | - Jessica K Edwards
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Aarti Jagannath
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Yvonne Couch
- Acute Stroke Program, Radcliffe Department of Clinical Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Mattéa J Finelli
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Nicola J Smyllie
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Christopher Esapa
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Rachel Butler
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Alun R Barnard
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Johanna E Chesham
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Shoko Saito
- Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Greg Joynson
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Sara Wells
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Russell G Foster
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Peter L Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Michelle M Simon
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Ann-Marie Mallon
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Michael H Hastings
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Patrick M Nolan
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK.
| |
Collapse
|
141
|
Hughes ATL, Croft CL, Samuels RE, Myung J, Takumi T, Piggins HD. Constant light enhances synchrony among circadian clock cells and promotes behavioral rhythms in VPAC2-signaling deficient mice. Sci Rep 2015; 5:14044. [PMID: 26370467 PMCID: PMC4642707 DOI: 10.1038/srep14044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022] Open
Abstract
Individual neurons in the suprachiasmatic nuclei (SCN) contain an intracellular molecular clock and use intercellular signaling to synchronize their timekeeping activities so that the SCN can coordinate brain physiology and behavior. The neuropeptide vasoactive intestinal polypeptide (VIP) and its VPAC2 receptor form a key component of intercellular signaling systems in the SCN and critically control cellular coupling. Targeted mutations in either the intracellular clock or intercellular neuropeptide signaling mechanisms, such as VIP-VPAC2 signaling, can lead to desynchronization of SCN neuronal clocks and loss of behavioral rhythms. An important goal in chronobiology is to develop interventions to correct deficiencies in circadian timekeeping. Here we show that extended exposure to constant light promotes synchrony among SCN clock cells and the expression of ~24 h rhythms in behavior in mice in which intercellular signaling is disrupted through loss of VIP-VPAC2 signaling. This study highlights the importance of SCN synchrony for the expression of rhythms in behavior and reveals how non-invasive manipulations in the external environment can be used to overcome neurochemical communication deficits in this important brain system.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Cara L Croft
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Rayna E Samuels
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Jihwan Myung
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
142
|
Ode KL, Ueda HR. Seeing the forest and trees: whole-body and whole-brain imaging for circadian biology. Diabetes Obes Metab 2015; 17 Suppl 1:47-54. [PMID: 26332968 DOI: 10.1111/dom.12511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/26/2015] [Indexed: 01/13/2023]
Abstract
Recent advances in methods for making mammalian organs translucent have made possible whole-body fluorescent imaging with single-cell resolution. Because organ-clearing methods can be used to image the heterogeneous nature of cell populations, they are powerful tools to investigate the hierarchical organization of the cellular circadian clock, and how the clock synchronizes a variety of physiological activities. In particular, methods compatible with genetically encoded fluorescent reporters have the potential to detect circadian activity in different brain regions and the circadian-phase distribution across the whole body. In this review, we summarize the current methods and strategy for making organs translucent (removal of lipids, decolourization of haemoglobin and adjusting the refractive index of the specimen). We then discuss possible applications to circadian biology. For example, the coupling of circadian rhythms among different brain regions, brain activity in sleep-wake cycles and the role of migrating cells such as immune cells and cancer cells in chronopharmacology.
Collapse
Affiliation(s)
- K L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Quantitative Biology Center, RIKEN, Osaka, Japan
| | - H R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Quantitative Biology Center, RIKEN, Osaka, Japan
| |
Collapse
|
143
|
Husse J, Eichele G, Oster H. Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock: alternate routes of entrainment optimize the alignment of the body's circadian clock network with external time. Bioessays 2015; 37:1119-28. [PMID: 26252253 PMCID: PMC5054915 DOI: 10.1002/bies.201500026] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A vast network of cellular circadian clocks regulates 24-hour rhythms of behavior and physiology in mammals. Complex environments are characterized by multiple, and often conflicting time signals demanding flexible mechanisms of adaptation of endogenous rhythms to external time. Traditionally this process of circadian entrainment has been conceptualized in a hierarchical scheme with a light-reset master pacemaker residing in the hypothalamus that subsequently aligns subordinate peripheral clocks with each other and with external time. Here we review new experiments using conditional mouse genetics suggesting that resetting of the circadian system occurs in a more "federated" and tissue-specific fashion, which allows for increased noise resistance and plasticity of circadian timekeeping under natural conditions.
Collapse
Affiliation(s)
- Jana Husse
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gregor Eichele
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henrik Oster
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
144
|
Bendersky M. [Chronotherapy in arterial hypertension]. HIPERTENSION Y RIESGO VASCULAR 2015; 32:119-24. [PMID: 26180036 DOI: 10.1016/j.hipert.2015.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 11/19/2022]
Abstract
The blood pressure profile in most normo- and hypertensive subjects are currently known, as well as the impact their changes induced on the cardio- and cerebrovascular risk. Ambulatory blood pressure monitoring (ABPM) has contributed greatly to the knowledge of this parameter. It to correct the schedule of drug administration (chronotherapy) with changes in any component of the BP profile that have better correlation with risk. These include the nocturnal decrease and the morning BP surge. Investigations in this direction are still scarce, and multicenter studies need to be conducted that can answer the true preventive impact of such modifications.
Collapse
Affiliation(s)
- M Bendersky
- Departamento de Farmacología Aplicada, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
145
|
Bedont JL, Blackshaw S. Constructing the suprachiasmatic nucleus: a watchmaker's perspective on the central clockworks. Front Syst Neurosci 2015; 9:74. [PMID: 26005407 PMCID: PMC4424844 DOI: 10.3389/fnsys.2015.00074] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/23/2015] [Indexed: 11/13/2022] Open
Abstract
The circadian system constrains an organism's palette of behaviors to portions of the solar day appropriate to its ecological niche. The central light-entrained clock in the suprachiasmatic nucleus (SCN) of the mammalian circadian system has evolved a complex network of interdependent signaling mechanisms linking multiple distinct oscillators to serve this crucial function. However, studies of the mechanisms controlling SCN development have greatly lagged behind our understanding of its physiological functions. We review advances in the understanding of adult SCN function, what has been described about SCN development to date, and the potential of both current and future studies of SCN development to yield important insights into master clock function, dysfunction, and evolution.
Collapse
Affiliation(s)
- Joseph L Bedont
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Physiology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Center for High-Throughput Biology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
146
|
Loh DH, Kudo T, Colwell CS. Short circuiting the circadian system with a new generation of precision tools. Neuron 2015; 85:895-8. [PMID: 25741718 DOI: 10.1016/j.neuron.2015.02.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Circadian behavior in mammals is coordinated by neurons within the suprachiasmatic nucleus (SCN). In this issue, Lee et al. (2015) and Mieda et al. (2015) applied state-of-the-art genetic tools to dissect the microcircuits within the SCN generating circadian rhythmic behavior.
Collapse
Affiliation(s)
- Dawn H Loh
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry, Semel Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Takashi Kudo
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry, Semel Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Christopher S Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry, Semel Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|